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The pricing of American call option with transaction cost is a free boundary problem. Using a new
transformation method the boundary is made to follow a certain known trajectory in time. The
new transformed problem is solved by various finite difference methods, such as explicit and implicit
schemes. Broyden’s and Schubert’s methods are applied as a modification to Newton’s method in the
case of nonlinearity in the equation. An Alternating Direction Explicit (ADE) method with second
order accuracy in time is used as an example in this paper to demonstrate the technique. Numerical
results demonstrate the efficiency and the rate of convergence of the methods.
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1. Introduction

Pricing American option is a problem often studied in the field of computational finance.
The well-known Black-Scholes (BS) model [5] provides an easy computable pricing for-
mula of European option in an idealistic market. Such assumptions are not realistic [6],
[24], and do not take into account, for instance, transaction costs, investor’s preferences,
feedback and illiquid markets effects. This has motivated the development of new non-
linear models to take account of various realistic trading environment.

Leland [24] proposed a BS formula with an augmented volatility due to transaction
cost. Authors in [3], [16] presented an adjusted volatility which depends on the sign of
the gamma of the option to control effectively the hedging risk and transaction cost.
These ideas led to a nonlinear BS equation for European options. Barles and Soner [4]
proposed a more complicated nonlinear model by assuming that investor’s preferences are
characterized by an exponential utility function. Later risk adjusted pricing methodology
(RAPM) was proposed by Kratka [19] and revisited by Jandačka and Ševčovič in [18].
Note that all the above mentioned nonlinear models are consistent with the original BS
equation in the case when the additional parameters are vanishing.

In general there is no closed form solution for nonlinear American or European option
pricing problem. Therefore numerical methods are usually employed to solve them. For
European options numerical methods have been developed by several authors in recent
years [10], [14], [31], etc. For American options the main difficulty is the existence of the
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unknown optimal stopping boundary. One way to overcome this difficulty is to present
it as a nonlinear complementarity problem (NCP) arising from the discretisation of the
free boundary problem. In [15] and [25] the penalty approach is proposed to solve the
NCP by approximating it using an algebraic system of nonlinear equations containing a
power penalty term.

A common alternative approach to NCP that is able to remember the free bound-
ary while solving the problem is the so-called front-fixing method [11], based on the
transformation of the original equation into a new one defined on a fixed domain. The
unknown free boundary is calculated as an additional unknown function involved in the
PDE problem. Although free boundary problems originated in physics, this technique
has been used in computational finance since 1998 [36].

For the case of American options with constant volatility various front-fixing trans-
formations have been studied in [7], [21], [29], [32]. Ševčovič proposed a fixed domain
transformation for nonlinear American option pricing problem [33]. Further, this method
was studied in some recent papers (see [2], [12]). Since the transformed equation contains
a strong convective term the operator splitting method is used to overcome numerical
difficulties. Moreover, in order to close up the system of equations that determines the
value of a new function an additional equation for the free boundary position is required.

In this paper a new transformation in the framework of a front-fixing method is pro-
posed. Under the transformation the free boundary is replaced by time-dependent known
boundary. In the resulting equation there is no reaction term and the convection term
is simplified in a such way that the operator splitting technique is not required. This
ensured a single numerical scheme is suitable for the entire equation. The connection
between the transformed boundary conditions with the transformed option price and the
free boundary does not require additional information.

The proposed formulation of the nonlinear problem allows the use of a versatile numer-
ical treatment. In this paper an explicit Euler and alternating direction explicit (ADE)
method [13], [30] together with implicit methods were studied. Dealing with implicit
methods one has to solve nonlinear system. In this paper Newton’s method with suit-
able modifications to improve its efficiency and in saving computational cost [22] were
examined.

The paper is organized as follows. Section 2 presents the transformation of the nonlinear
models of Barles and Soner [4] and RAPM [18] for American option pricing. Section 3
presents the discretisation of the transformed option pricing problem and the related
numerical methods, Section 4 provides the numerical results and their comparison. In
Section 5 conclusion and discussion of the results are presented.

2. Transformation of the Nonlinear American Option Pricing Problem

The transformation of the free boundary American option pricing problem into another
nonlinear PDE problem, such that the free boundary is written in terms of another
variable with a known moving boundary, is presented.

Nonlinear American call option pricing models may be presented as the free boundary
PDE problem

Cτ =
σ̃2

2
S2CSS + (r − q)SCS − rC, 0 ≤ S < B(τ), 0 < τ ≤ T, (1)

2
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where the adjusted volatility function is given by

σ̃2 = σ̃2 (τ, S, CSS) . (2)

Here τ = T − t denotes the time to maturity T , S is the asset price, C(S, τ) is the
option price, B(τ) is the unknown early exercise boundary, σ0 is the implied volatility of
the asset, r is the risk free interest rate, q is the continuous dividend yield and E is the
strike price.

The boundary and initial conditions for an American call option problem are (see [35])

C(S, 0) = max(S − E, 0), (3)

∂C

∂S
(B(τ), τ) = 1, (4)

C(B(τ), τ) = B(τ)− E, (5)

C(0, τ) = 0, (6)

B(0) =

{
E, r ≤ q,
r
qE, r > q.

(7)

It is well known that if there is no dividend payment (q = 0), then the optimal strategy
is to exercise option at the maturity (see [35], [17]). In that case the American call
becomes an European call. Due to this reason q > 0 [17] is used in the problem defined
in (1)-(7).

In the following study, two nonlinear models with different adjusted volatility func-
tions (2) are considered. First the strong nonlinear RAPM model, where σ̃2 is a cubic
root function. Second the widely used Barles and Soner’s model in which the adjusted
volatility function is obtained through the solution of an ordinary differential equation.

Under the RAPM model the volatility σ is a function of the asset price (S) and the

second derivative of the option price
(
∂2C
∂S2

)
, i.e.

σ̃2 = σ2
0

(
1 + µ

(
S
∂2C

∂S2

) 1

3

)
, (8)

where σ2
0 is a constant historical volatility of the asset and µ is a nonnegative constant.

Barles and Soner introduced a nonlinear Black-Scholes equation with an adjusted
volatility [4] which is a function of the second derivative of the price itself, i.e.

σ̃2 = σ2
0

(
1 + Ψ

(
erτa2S2CSS

))
, (9)

where a = µ
√
γN , γ is the risk aversion factor and N is the number of options to be

sold. The function Ψ is the solution of the nonlinear singular initial-value problem

Ψ′(A) =
Ψ(A) + 1

2
√
AΨ(A)−A

, A 6= 0, Ψ(0) = 0. (10)

From the Theorem 1.1 of [9] it is known that Ψ(A) is an increasing function mapping

3
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the real line onto the interval ]− 1,+∞] and is implicitly defined by

A =
(
−arcsinh

√
Ψ√

Ψ+1
+
√

Ψ
)2
, Ψ > 0; (11)

A = −
(

arcsin
√
−Ψ√

Ψ+1
+
√
−Ψ
)2
, −1 < Ψ < 0. (12)

The case for Barles and Soner’s model is a slightly complicated one in terms of nu-
merical implementation. By using numerical examples it is able to demonstrate that the
proposed method may be used to handle other models with nonconstant volatility.

Taking advantages of Landau transformation [23] with modifications in the exponential
factors like those described in [10], it is possible to remove the reaction term and partially
the convection term by using the transformation given below.

x = e(r−q)τ S

B(τ)
, V (x, τ) =

erτ

E
C(S, τ), Sf (τ) =

B(τ)

E
. (13)

Using transformation (13) the equation (1) takes the form

Vτ =
σ2

2
x2Vxx +

S′f
Sf
xVx, 0 ≤ x < e(r−q)τ , 0 < τ ≤ T, (14)

where

σ2 = σ2 (τ, x, Vxx) = σ̃2(τ, S, CSS), (15)

with new initial and boundary conditions

Sf (0) = max(
r

q
, 1), (16)

V (x, 0) = max (xSf (0)− 1, 0) , (17)

V (0, τ) = 0, (18)

V (e(r−q)τ , τ = erτ (Sf (τ)− 1) , (19)

Vx(e(r−q)τ , τ) = eqτSf (τ). (20)

Note that the transformation described in (13) transformed the original free boundary
value problem to a known moving boundary problem. In the case r > q the computational
domain increases with respect to time, otherwise it decreases.

In the problem (14) - (20) there are two sources of nonlinearity. First, the additional
unknown function (free boundary) in the equation (14). The method to handle this
problem relies on the choice of the finite difference method and is explained in section 3.

Second, the volatility σ is nonlinear. With the moving domain transformation (13)
argument of the function σ in RAPM model changes and is given below.

σ2 = σ2
0

(
1 + µ

(
xVxx

e−qτ

Sf (τ)

) 1

3

)
. (21)

4
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Table 1. CPU-time (sec) for linear
and binary search.

Number of calls 103 104

Linear search 5.022 47.600
Binary search 0.062 0.707

For Barles and Soner’s model σ is transformed to

σ2 = σ2
0

(
1 + Ψ

(
a2Ex2Vxx

))
. (22)

3. Numerical Methods

This section begins with an algorithm computing the implicitly adjusted volatility func-
tion Ψ given by Barles and Soner’s model. It follows with a description of three finite
difference methods of solving the transformed problem described in equation (14). These
finite difference methods include an explicit Euler method, an alternating direction ex-
plicit method and an implicit method.

Note that the numerical evaluation of the adjusted volatility function for the RAPM
model is straight forward as an explicit function of the volatility is defined. In the case
of Barles and Soner’s model the volatility function is given in terms of the solution Ψ
of the ODE (10). It is well known that MATLAB built-in solver for ODE [1], [34] may
be used, or in some other cases simply take Ψ(A) = A. One way to avoid the additional
errors due to the numerical solution of the ODE is to make use of the implicit solution
(11)-(12), given in [9], through an interpolation procedure as proposed in the numerical
algorithm below.

Algorithm 1: Computing Ψ using Barles and Soner’s model.

Data: L := Desired range of Ψ; NΨ := Number of discrete points for Ψ;
∆Ψ = L/(NΨ − 1);

Result: Ψ(A)
1 Discretise Ψ as Ψj , j = 1, 2, ..., NΨ;
2 Compute aj at Ψj , using formulae (11)-(12);
3 Compute the argument A of Ψ at every spatial finite difference node using (22);
4 For all values of A: Search J such that A ∈ [aJ , aJ+1];
5 Obtain an approximate value of Ψ(A) using interpolation.

There exists many search algorithms in literature. It is very important to choose an
appropriate one. The simplest and widely used one is the linear search. It is a method
for finding a particular value (key) in an array that checks each element in sequence until
the desired element is found or the list is exhausted [20]. The cost of the worst case is
proportional to the number of elements in the array. Since function Ψ(A) is increasing,
the list of search is also an increasing sequence, i.e. it is sorted. Therefore binary search
can be used. In each step, the algorithm compares the key value with the middle element
of the list. If the values match, then a matching element has been found. Otherwise, if
the search key is less than the middle element, then the algorithm repeats its action on
the sub-array to the left of the middle element or, if the search key is greater, on the
sub-array to the right. Binary search takes logarithmic time (see [20], p. 414).

Both algorithms were tested in this paper. For the search of just one element (i.e. cal-
culate one value of σ), both algorithms work with similar speed. The difference becomes

5
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noticeable when the procedure repeats several times. Results of the tests are presented
in the Table 1. Number of calls there means the number of repetition of the procedure.

In the finite difference methods described below for the solutions of (14)-(20), the
temporal axis takes a uniform partition with the time step k = T

N . Each time level is
denoted as τn = nk, 0 ≤ n ≤ N . Let the right boundary of the domain be denoted as
xnmax = e(r−q)τn

. The spatial step size hn and grid point xnj at time level τn are defined
as

hn =
e(r−q)nk

M
, xnj = jhn, 0 ≤ j ≤M, (23)

where M is the number of spatial grid points.
Denote the approximate value of the solution V (x, τ) at the point xnj and time τn as

unj ≈ V (xnj , τ
n) and the approximate value of the free boundary as Snf ≈ Sf (τn). As the

problem itself has a moving boundary which means that the spatial finite difference mesh
would have to be rearranged at every time level. A typical spatial mesh with grid points
(xnj , τ

n) at time τ = nk does not remain as a grid point at time τ = (n + 1)k. Fig. 1
illustrates the nodal points (xnj , τ

n) as black dots and those corresponding nodes as white
dots and the spatial finite difference mesh remains unchanged, and the corresponding
moveable nodes in black dots at the next time level. The pair (xnj , τ

n+1) is known as a
non-grid point for this purpose.

3.1 Explicit Euler method

Let the approximation at the non-grid point (xnj , τ
n+1) be denoted as ũn+1

j ≈
V (xnj , τ

n+1). In order to calculate the value at a new time level an orthogonal 4-point

stencil unj−1, unj , unj+1, and ũn+1
j is used following the forward difference approximation

of the temporal derivative of V at (xnj , τ
n) is given by

∂V

∂τ
(xnj , τ

n) ≈
ũn+1
j − unj

k
. (24)

Once the approximations {ũn+1
j } are computed {un+1

j } may be obtained by using a

Lagrange interpolation from the resulting data {ũn+1
j }.

Figure 1. Moving grid. Black points are from a mesh and white points are out of the grid.

For the numerical solution of the problem (14)-(20) an explicit finite difference scheme
based on a central difference scheme for the spatial derivatives and a forward difference

6
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scheme, as described in (24), for the temporal derivative is constructed as follows

ũn+1
j − unj

k
=
σ2
j,n

2
(xnj )2

unj−1 − 2unj + unj+1

h2
n

+
Sn+1
f − Snf
kSnf

xnj
unj+1 − unj−1

2hn
, (25)

where σ2
j,n = σ(xnj , τ

n) is computed by using either the RAPM or the Barles and Soner’s

model. For the RAPM model σ2 is calculated as follows

σ2
j,n = σ2

0

(
1 + µ

(
xnj
e−qnk

Snf

unj−1 − 2unj + unj+1

h2
n

))
. (26)

In the case of Barles and Soner’s model

σ2
j,n = σ2

0

(
1 + Ψ

(
Ea2(xnj )2

unj−1 − 2unj + unj+1

h2
n

))
. (27)

From the boundary conditions (19), (20) one obtains

un0 = 0, unM = erτ
n

(Snf − 1), (28)

unM − unM−1

hn
= eqτ

n

Snf ⇒ unM−1 = eqτ
n

Snf

(
e(r−q)τn − hn

)
− erτn

. (29)

The initial conditions are discretised as follows

S0
f = max

(
r

q
, 1

)
, u0

j = max
(
S0
fx

0
j − 1, 0

)
, j = 0, ..M. (30)

Using the scheme (25) for j = M − 1 and equation (29) at the (n + 1)-th time level,
the expression for Sn+1

f takes the form

Sn+1
f = %(un, Snf ) =

unM−1 + σ2(M−1,n)k
2h2

n
(xnM−1)2(unM−2 − 2unM−1 + unM )− xnM−1

un
M−un

M−2

2hn
+ erτ

n

eqτn
(
e(r−q)τn − hn+1

)
− xnM−1

un
M−un

M−2

2hnSn
f

.

(31)
Assembling all these ideas leads to the following algorithm.

Remark 1. Linear interpolation is used in order to preserve the second order accuracy
of the approximations of the spatial derivatives.
Remark 2. With the interpolation one needs to guarantee that new grid point xn+1

j ∈
[xnj , x

n
j+1). In the case r > q if

jhn ≤ jhn+1 < (j + 1)hn, (33)

one has from the definition (23),

0 ≤ j
(
e(r−q)k−1

)
< 1, ∀j. (34)

7
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Algorithm 2: Explicit Euler method

Data: Initial values using (17);
Result: Solution at τ = T ;

1 n=0;
2 while n < N do
3 Compute σ2

j,n for j = 1, ...,M − 1 using Alg. 1;

4 Compute Sn+1
f by (31);

5 Compute un+1
0 , un+1

M−1, un+1
M at the boundary points using the boundary

conditions (28), (29);
6 for j = 1, ...,M − 2 do
7 Obtain ũn+1

j ;

8 end
9 Construct new uniform grid: for j = 0, ...,M do

10 xn+1
j = jhn+1;

11 end
12 Interpolation:

un+1
j = ũn+1

j +
xn+1
j − xnj
hn

(
ũn+1
j+1 − ũ

n+1
j

)
; (32)

n=n+1;
13 end

The inequality (34) is guaranteed if

M
(
e(r−q)k−1

)
< 1, (35)

which occurs if k satisfies

k <
ln(1 + h0)

r − q
. (36)

In the case r < q domain is decreasing and k < ln(1+h0)
q−r is a sufficient condition for

xnj ∈ [xn+1
j , xn+1

j+1 ). In the case when r = q the moving boundary is fixed with xnM = 1 for
all n and the interpolation is not necessary.

3.2 An Alternating Direction Explicit (ADE)

An Alternating Direction Explicit method combines the advantages of simplicity of an
explicit method and the unconditional stability of implicit scheme for the linear case (see
[26]). The numerical solution is calculated as the average of two solutions using explicit
scheme known as the right direction solution {Rnj } and the left direction solution {Lnj }.
The algorithm of the ADE method for the moving domain problem (14)-(20) is given as
follows.

8
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Algorithm 3: Alternating direction explicit method.

Data: Initial values: L0
j = R0

j = u0
j ;

Result: Solution at τ = T ;
1 n=0;
2 while n < N do
3 Sn+1

f = %(un, Snf );

4 Set the boundary conditions: R̃n+1
0 = L̃n+1

0 = 0;
5 Compute right direction solution:
6 for j = 1, ...,M − 1 do
7

R̃n+1
j −Rnj

k
=
σ2
j,n

2
(xnj )2

R̃n+1
j−1 − R̃

n+1
j −Rnj +Rnj+1

h2
n

+
Sn+1
f − Snf
kSnf

xnj
Rnj+1 − R̃

n+1
j−1

2hn
.

(37)
8 end

9 Set the boundary conditions: Rn+1
M = Ln+1

M = erτ
n+1
(
Sn+1
f − 1

)
;

R̃n+1
M−1 = L̃n+1

M−1 = Rn+1
M − Sn+1

f eqτ
n+1

(e(r−q)τn+1 − xnM−1);

10 Compute left direction solution:
11 for j = M − 1, ..., 1 do
12

L̃n+1
j − Lnj

k
=
σ2
j,n

2
(xnj )2

Lnj−1 − Lnj − L̃
n+1
j + L̃n+1

j+1

h2
n

+
Sn+1
f − Snf
kSnf

xnj
L̃n+1
j+1 − Lnj−1

2hn
.

(38)
13 end
14 Construct new uniform grid:
15 for j = 0, ...,M do
16 xn+1

j = jhn+1;

17 end

18 Interpolate the data Rn+1
j and Ln+1

j , j = 1, ..,M − 1 onto the new grid;

19 end
20 for j = 0, ...,M do

21 un+1
j =

Rn+1
j +Ln+1

j

2 ;

22 end
23 n=n+1;

3.3 Implicit numerical methods

Both implicit and explicit numerical methods have advantages and disadvantages (see
introduction of [8]). In previous subsections two explicit numerical methods are discussed
and in this subsection implicit schemes are discussed. The discretisation of the nonlinear
equation described in (14) leads to a system of nonlinear equations. The most popular
and widely used method for solving nonlinear systems is the so-called Newton’s method.
This method is iterative and requires to calculate Jacobian of the nonlinear system every
iteration which is time consuming. There exists various modifications of the method [22].

9
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A fully implicit scheme for the equation (14) using the same notation as in (27) takes
the form

ũn+1
j − unj

k
=
σ2
j,n+1

2
(xnj )2

ũn+1
j−1 − 2ũn+1

j + ũn+1
j+1

h2
n

+
Sn+1
f − Snf
kSn+1

f

xnj
ũn+1
j+1 − ũ

n+1
j−1

2hn
(39)

for j = 1, ..,M − 2. Since the left boundary is fixed at xn0 = 0, and the right boundary is

given by xnM = e(r−q)τn

, the last three points are non-equidistant. Let h̃n = xn+1
M −xnM−1.

Taylor’s series expansion is used to obtain a discretization of the second derivative on
the non-uniform grid:

Vxx(xnM−1, τ
n+1) ≈ 2

(
ũn+1
M−2

hn(hn + h̃n)
+

un+1
M

h̃n(hn + h̃n)
−
ũn+1
M−1

hnh̃n

)
. (40)

Using (40) and a central difference for the first derivative, the implicit scheme (39) for
j = M − 1 takes the following form:

ũn+1
M−1 − unM−1

k
=σ2(M − 1, n+ 1)(xnM−1)2

(
ũn+1
M−2

hn(hn + h̃n)
+

un+1
M

h̃n(hn + h̃n)
−
ũn+1
M−1

hnh̃n

)

+
Sn+1
f − Snf
kSn+1

f

xnM−1

un+1
M − ũn+1

M−2

2hn
.

(41)

Boundary conditions are discretised as follows

un+1
M = erτ

n+1

(Sn+1
f − 1),

un+1
M − ũn+1

M−1

h̃n
= eqτ

n+1

Sn+1
f . (42)

10
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Define the following coefficients

a−1(j, n+ 1) = − k

h2
n

(xnj )2
σ2
j,n+1

2
+

(
1−

Snf

Sn+1
f

)
xnj
2hn

, (43)

a0(j, n+ 1) = 1 +
k

h2
n

(xnj )2σ2
j,n+1, (44)

a+1(j, n+ 1) = − k

h2
n

(xnj )2
σ2
j,n+1

2
−

(
1−

Snf

Sn+1
f

)
xnj
2hn

, (45)

ã−1(n+ 1) = − k

hn(hn + h̃n)
(xnM−1)2σ2(M − 1, n+ 1) (46)

+

(
1−

Snf

Sn+1
f

)
xnM−1

hn + h̃
, (47)

ã0(n+ 1) = 1 +
k

hnh̃n
(xnM−1)2σ2(M − 1, n+ 1), (48)

ã−1(n+ 1) = − k

hn(hn + h̃n)
(xnM−1)2σ2(M − 1, n+ 1) (49)

−

(
1−

Snf

Sn+1
f

)
xnM−1

hn + h̃
. (50)

The fully implicit scheme can be expressed in the matrix form

An+1Un+1 = Bn, (51)

where

An+1 =



a0(1, n+ 1) a+1(1, n+ 1) 0 0 · · · 0
a−1(2, n+ 1) a0(2, n+ 1) a+1(2, n+ 1) 0 · · · 0

0
. . .

. . .
. . .

. . .
...

0 · · · ã−1(n+ 1) ã0(n+ 1) ã+1(n+ 1) 0

0 · · · 0 −1 1 −eqτn+1

h̃n
0 · · · 0 0 −1 erτ

n+1


(52)

Un+1 =



ũn+1
1

ũn+1
1
...

ũn+1
M−1

un+1
M

Sn+1
f


, Bn =



un1
un2
...

unM−1
0

erτ
n+1


. (53)

Newton’s method is applied to solve the nonlinear system (51). At each time level an
initial guess is required for the iterative process in the Newton’s method and may be
chosen as the approximate solution at the previous time level. The stopping criterion is
chosen to be the norm of the increment becomes smaller than the tolerance ε.

11
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Algorithm 4: Newton’s method.

Data: Initial conditions U0;
Result: UN ;

1 n=0;
2 while n < N do
3 Newton loop: Initial approximation Un+1 := Un; ||e|| := big value;
4 while ||e|| > ε do
5 G := An+1Un+1 −Bn;
6 Compute Jacobian: J(G);

7 e = {J(G)}−1G;
8 Un+1 = Un+1 − e;
9 end

10 Construct new uniform mesh at the new time level;
11 Calculate values in the new points using linear (or quadratic) interpolation;
12 n=n+1;

13 end

There are many modifications of Newton’s method mainly to improve the efficiency and
robustness of the method. One type of modification aims to avoid the computations of
Jacobian every iteration in order to reduce the total computational time. These methods
are collectively known as Newton-like methods. For instance, the main idea of Broyden’s
method is to calculate an approximate Jacobian iteratively using simple matrix vector
multiplications as given below.

Jk = Jk−1 +
∆Gk − Jk−1∆uk
‖∆uk‖2

∆uTk , (54)

where k is the number of current Newton’s iteration, ∆Gk = Gk−Gk−1, ∆uk = uk−uk−1.
The initial value J0 has to be calculated by a standard procedure to avoid instability.
Since ∆Gk − Jk−1∆uk ≈ Gk+1, (54) can be presented in the following form

Jk = Jk−1 +
Gk+1

‖∆uk‖2
∆uTk . (55)

Unfortunately, if the Jacobian has a given sparsity structure, as it occurs in the present
study, Broyden’s approximation breaks the structure and introduces non-zero values to
those zero components. Schubert’s method [28] is widely used for sparse matrices because
it preserves the sparsity of the Jacobian. Although it has good properties, it is sensitive to
the problem under consideration and size of the matrix. Indeed, our problem is not well
conditioned for the Schubert’s methods as it is shown in Table 5. Therefore, a modification
of the method is proposed in order to overcome these computational difficulties. Instead
of taking the squared norm in denominator power one was used in all the tests. This
modification is denoted as ”Schubert-1” method. Numerical tests show that it ensures
the convergence of Schubert’s algorithm.

In order to overcome the drawback of Broyden’s method all of the matrix elements
outside the tri-diagonal band were ”frozen” at zeros in the numerical tests. This modifi-
cation preserves the structure of the matrix in the same way as Schubert’s method does.

12
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The proposed modification is known as ”frozen-Broyden”:

Jk(i, j) =

{
Jk(i, j), j − 1 ≤ i ≤ j + 1,

0, otherwise.

Spectral analysis confirms quality of the proposed methods by the numerical examples
provided in Section 4.

4. Numerical examples

This section is devoted to several numerical tests and a comparison of the explicit and
implicit methods as described above. Convergence rate and computational costs for the
numerical solution of Barles and Soner’s model for American options are presented.
Example 1. An American call option pricing problem in the transformed form (14)-

(20) with the parameters:

r = 0.1, q = 0.05, T = 1, σ0 = 0.2, E = 10, (56)

was tested.
Barles and Soner’s model with a = 0.05 was chosen in the test. In this example the

numerical convergence rate in terms of root mean square error (RMSE) (see [27], p. 385)
of the proposed methods are presented. The RMSE may be computed by the following
formula:

RMSEh =

√∑
(u∗(xi, T )− uh(xi, T ))2

M
, (57)

where u∗(xi, T ) is a ”true value” of function V (xi, T ) and uh(xi, T ) is calculated value
in the point (xi, τ

N ). Here the ”true value” is understood as the numerical solution on a
refined grid with step sizes h = 5 · 10−3 and k = 10−5.

The spatial convergence rate of the approximate solutions are calculated for different
step sizes h at a fixed time step k by using the following formula

γ(h1, h2) =
ln(RMSEh1

)− ln(RMSEh2
)

ln(h1)− ln(h2)
. (58)

In Table 2 the results and comparison are presented. The time step is fixed at k =
0.0001 to guarantee stability of all numerical solutions. For implicit method the tolerance
was chosen as ε = 10−4.

From Table 2, taking the mean value of all combinations of h1 and h2, one obtains

γexpl = 1.512, γimpl = 1.191, γADE = 1.734, γNL = 1.713. (59)

An analogous formula to (58) can be used for convergence rate in time. RMSE and
computational time for a fixed spatial step are presented in Table 3.

Using data from Table 3, the convergence rate in time can be calculated as follows

γexpl = 0.627 γimpl = 0.733, γADE = 1.789, γNL = 0.691. (60)

13
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Table 2. RMSE with respect to CPU-time for different
h0 and fixed k = 0.0001.

h0 0.08 0.04 0.02 0.01

Explicit method
RMSE 0.04984 0.02629 0.01232 0.00464
CPU-time, s 15.810 27.566 51.476 99.434

ADE method
RMSE 0.16816 0.08172 0.02099 0.00620
CPU-time, s 15.129 27.776 53.865 104.247

Implicit method
RMSE 0.04984 0.02355 0.00958 0.00445
CPU-time, s 34.099 60.030 112.728 257.880

Newton-like method
RMSE 0.11376 0.06026 0.01389 0.00471
CPU-time, s 33.869 58.141 107.561 315.505

Table 3. RMSE with respect to CPU-time for different k

and fixed h0 = 0.01.

k 0.001 0.0005 0.0002 0.0001

Explicit method
RMSE 0.01713 0.01373 0.00675 0.00464
CPU-time, s 11.470 21.361 50.598 99.434

ADE method
RMSE 0.38763 0.08152 0.01839 0.00620
CPU-time, s 10.829 21.199 52.684 104.247

Implicit method
RMSE 0.02122 0.01528 0.00639 0.00445
CPU-time, s 39.318 52.327 129.045 257.880

Newton-like method
RMSE 0.02127 0.01524 0.00815 0.00471
CPU-time, s 38.650 52.277 128.371 255.347

Note that the main part of the computational time is pertained for the calculation
of Ψ(A). For the implicit methods it has to be calculated on each iteration of Newton’s
method. Thus, their computational costs may be noticeably reduced by choosing another
model.

Next example presents a study of the free boundary for both RAPM and Barles and
Soner’s models with various values of the respective transaction cost parameters R and
a.
Example 2. Let the problem (1)-(7) under RAPM model with the parameters

(56), fixed transaction cost Ctr = 0.01 and various risk premium measure R =

5, 15, 40, 70, 100 to be considered. The coefficient µ = 3
(
C2

trR
2π

)1/3
, according to

[18]. Figure 2 shows the variation of the normalised free boundary Sf (τ) depending on
the parameter R.

In Figure 3 there are numerical results for Barles and Soner’s model for various a. The
difference between values for a = 0 and a = 0.01 is inappreciable.

In next example the validity of the proposed explicit scheme (25) is discussed. Explicit
scheme uses information from the previous time level to compute a solution at the current
moment. For nonlinear equations with coefficients depending on the solution one has two
alternatives: if we take values from the current time level to compute the coefficients the
scheme would not be explicit and we have to use any iterative solver for this problem.
It increases computational time. Another alternative is to take values from the previous

14
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Figure 2. A comparison of the free boundary Sf (τ) for RAPM model for various risk premium measures R =

5, 15, 40, 70, 100 with the corresponding free boundary for R = 0 (bold line).
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Figure 3. A comparison of the free boundary Sf (τ) for Barles and Soner’s model for a = 0, 0.01, 0.07, 0.13.

time level as we used, and the coefficients may be inaccurate.
Example 3. The transformed American call option pricing problem under Barles

and Soner’s model (14)-(20) with parameters (56) and a = 0.05 is considered. Figure 4
demonstrates the difference between the solutions obtained by both alternatives for fixed
h0 and various k. One can see that the difference presents orders no bigger than O(k)
that is the order of approximation of the explicit forward in time scheme (25).

Moreover, the series of tests was provided to insure this statement. For fixed k the
maximum value of the difference between the solutions is calculated. The results are
collected in Table 4.

In order to study stability of the proposed explicit method we compare solutions for

15
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Figure 4. Difference between solutions by explicit method and iterative explicit method with h0 = 10−2 and
various k.

Table 4. The maximum distance between the solution of

the problem (14) by explicit and iterative explicit method.

h0 0.01 0.02 0.04

k = 10−3 1.3548 · 10−4 7.5463 · 10−4 9.5728 · 10−5

k = 10−4 9.9036 · 10−6 1.2605 · 10−5 1.0068 · 10−5

k = 10−5 1.0936 · 10−6 1.2995 · 10−6 1.6136 · 10−6

the problem with the parameters (56) for fixed h = 10−2 and various k = 10−4 and
k = 2.6 · 10−3 (Figures 5 and 6 correspondingly). As one can see, the numerical solution
as shown in Figure 6 is unstable.

Figure 5. Numerical solution with k = 10−4. Figure 6. Numerical solution with k = 2.6 · 10−3

Next example is used to examine the validity of the proposed modifications in the class
of Newton-like methods.
Example 4. Well known Newton-like methods developed by Broyden and Schubert

as well as proposed modifications are used to approximate the Jacobian of the problem
of Example 1 with h = 0.01, k = 0.001 and k = 0.0001.

16
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In order to demonstrate the viability of the modifications to well known Broyden’s and
Schubert’s methods described in Section 3.3, the spectral radius is used. Let a approx-
imation of Jacobian by any method be denoted as Japprox. Since matrices supposed to
be approximation of the original Jacobian J , then matrix J−1

approxJ should be close to
identity matrix. Spectral radius of matrix is used to check this fact.

In Table 5 maximum, minimum and mean value of spectral radius of matrices J−1
approxJ

are presented. Further tests, performed but not presented in the paper, show that Broy-
den’s method fails for smaller step sizes and solution is unstable.

Table 5. Spectral radius of matrix J−1
approxJ , where Japprox

is calculated by various methods.

Min Max Mean

h = 0.01, k = 0.001
frozen-Broyden 1.00239414 1.01232560 1.00648229
Schubert-1 1.00000712 1.12629296 1.00054588
Broyden 1.00015443 1.00103625 1.00066090
Schubert fail

h = 0.01, k = 0.0001
frozen-Broyden 1.00044224 1.00372329 1.00095909
Schubert-1 1.00020364 1.00333878 1.00059102
Broyden 1.00024579 1.00377139 1.00075563
Schubert fail

5. Conclusion

American option pricing with transaction cost is well known to be a free boundary
problem. A new suitable transformation is proposed leading to a problem with known
moving domain that is solved numerically. Explicit Euler scheme, ADE method, fully
implicit method based on Newton and Newton-like methods are described and compared
with their convergence rates and computational costs analysed.

Modifications of Broyden’s and Schubert’s methods to improve qualitative properties
are proposed. Thus, the so-called ”frozen-Broyden” preserves tridiagonal structure of
approximated Jacobian. New ”Schubert-1” technique produces convergent results for a
wide range of step sizes. All Newton-like methods are compared in the sense of spectral
radius. The results confirm viability of the proposed modifications.

For explicit methods coefficients from the previous known time level are used. It does
not influence on the accuracy of the solution and does not require additional computa-
tions of iterative procedure. This fact is confirmed by numerical examples.

The techniques described have been applied to the RAPM and Barles and Soner’s mod-
els. Its versatility allows to be used for any nonlinear model with nonconstant volatility.

Acknowledgements

This work has been partially supported by the European Union in the FP7- PEOPLE-
2012-ITN program under Grant Agreement Number 304617 (FP7 Marie Curie Action,
Project Multi-ITN STRIKE-Novel Methods in Computational Finance) and the Minis-
terio de Economı́a y Competitividad Spanish grant MTM2013-41765-P.

17



September 27, 2015 11:46 International Journal of Computer Mathematics Moving˙revision

References

[1] J. Ankudinova, M. Ehrhardt, Fixed domain transformations and split-step Finite Difference schemes
for sonlinear Black-Scholes equations for American Options. Nonlinear Models in Mathematical
Finance: New Research Trends in Option Pricing. Nova Science Publishers, Inc. New York (2008)
243–283.

[2] J. Ankudinova, M. Ehrhardt, On the numerical solution of nonlinear Black-Scholes equations, J.
Computers and Mathematics with Applications 56 (2008) 799–812.
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[8] R. Company, L. Jódar, E. Ponsoda, C. Ballester, Numerical analysis and simulation of option pricing
problems modeling illiquid markets, Computers & Mathematics with Applications, 59-8 (2010) 2964–
2975.

[9] R. Company, E. Navarro, J.R. Pintos and E. Ponsoda, Numerical solution of linear and nonlinear
Black-Scholes option pricing equations, J. Computers & Mathematics with Applications, 56 (2008)
813–821.
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[14] B. Düring, M. Fournier and A. Jüngel, Convergence of a high order compact finite difference scheme

for a nonlinear BlackScholes equation, ESAIM: Mathematical Modelling and Numerical Analysis, 38
(2004) 359-369.

[15] P. Heider, Numerical methods for nonlinear Black-Scholes equations, J. Applied Mathematical Fi-
nance, 17 (2010) 59-81

[16] T. Hoggard, A.E. Whalley and P. Wilmott, Hedging option portfolios in the presence of transaction
costs. J. Advances in Futures and Options Research, 7 (1994) 217-35.

[17] J. Hull, A. White, Valuing derivative securities using the explicit finite difference method. J. Finan-
cial and Quantitative Analysis, 25 (1990) 87–100.
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