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Abstract 

Microalgae play a key role in the dynamics of biofloc technology aquaculture systems. Some 

phytoplankton groups, such as diatoms, are desired for their high nutritional value and contribution to 

water quality. Other groups, such as cyanobacteria, are undesired because of their low nutritional value 

and capacity of producing toxins. So, monitoring the phytoplankton community structure and succession 

is key for managing biofloc systems. However, research on phytoplankton in these systems is scarce and 

mostly done by microscopy. The primary objective of this research was to estimate phytoplankton 

community structure in shrimp biofloc system water samples, using high-performance liquid 

chromatography methods and CHEMTAX software. The major groups present in our system were 

diatoms, euglenophytes, cyanobacteria and chlorophytes, while dinoflagellates were only remarkable at 

the initial period. We observed a clear dominance of diatoms all along the 5 months that comprised a 

complete biofloc system culture. The characteristic succession of autotrophic processes by heterotrophs of 

the biofloc systems, was observed by the reduction of net primary production. Light intensity played a 

key role in determining the phytoplankton composition and abundance.  Algal pigment analyses using 

high-performance liquid chromatography and subsequent CHEMTAX analysis in water samples was 

useful for estimating the phytoplankton community structure in the biofloc systems. However, we found 

some limitations when the biofloc system was in heterotrophic mode. Under these conditions, some 

dinoflagellates and cyanobacteria behaved as heterotrophs and lost or decreased their biomarkers 

pigments. So, further research is needed to increase knowledge on the accuracy of high-performance 

liquid chromatography /CHEMTAX under these conditions. 
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Introduction 

Biofloc technology (BFT) has been defined as an environmentally friendly aquaculture technique based 

on in situ microorganism production, and it is considered the “blue revolution” in aquaculture 

(Emerenciano et al. 2017). In BFT systems, physicochemical variables of the culture are modified to 

favor the proliferation of particular biotic communities, for both, improving the recirculation of nutrients 

(maintaining the water quality), and as direct food source for the cultured organisms (Avnimelech 2007). 

Biofloc systems are highly dynamic, and the physical, chemical, and biological interactions that occur 

into these systems are complex (Natrah et al. 2014; Emerenciano et al. 2017). Ju et al. (2008) pointed out 

that the relationship between environmental factors and the microbial community (bacteria and 

microalgae) present in the floc of aquatic culture ecosystems is one of the least understood areas of 

crustacean aquaculture. Knowledge of the abundance, composition and succession of the phytoplankton is 

a prerequisite for the successful management of BFT system (Lukwambe et al. 2015). Microalgae have an 

important nutritional value, that depends on its size and shape, digestibility, biochemical composition, and 

bioactive compounds as enzymes, vitamins, antioxidants, etc. (Emerenciano et al. 2017). We can classify 

phytoplankton into desired groups, because of their nutritional value and their positive effect on water 

quality, and not desired groups, because of their low nutritional value and bad effect on water quality 

(toxin production). In this sense, diatoms are one of the most desired groups, because they can enhance 

the contents of essential amino acids and highly unsaturated fatty acids in shrimp tissue, and increase 

shrimp production (Becerra-Dórame et al. 2011; Lukwambe et al. 2015; Brito et al. 2016). On the other 

side, cyanobacteria are generally considered an undesired group, which is favored by excessive 

concentrations of nitrogen and phosphorus. Cyanobacteria may produce uncontrolled blooms, that 

produce toxic compounds to aquatic animals, and can cause unpleasant flavors in cultured species (Sinden 

and Sinang 2016; Emerenciano et al. 2017). Their dominance in shrimp ponds has caused heavy 

economic losses (Ju et al. 2008). 

Scarce studies on phytoplankton community structure have been reported on crustacean aquaculture in 

BFT  (Casé et al. 2008; Ju et al. 2008; Becerra-Dórame et al. 2011; Schrader et al. 2011; Brito et al. 

2016). Moreover, the majority focus on a short time period and do not study the full culture period. For 

instance, Lukwambe et al. (2015) studied the effect in shrimp production of the application of probiotics 

during one month; and both Becerra-Dórame et al. (2011) (microcosms experiment) and Brito et al. 



(2016) (indoor trial) conducted experiments during 28 days to evaluate the productive response of the 

Pacific white shrimp (Litopenaeus vannamei). According to Ju et al. (2008), a major reason for this scarce 

information is the lack of rapid analytical techniques to monitor changes in the community structure of 

microorganisms. Almost all the BFT research used microscope methodology for studying phytoplankton 

composition and abundance. Only Ju et al. (2008) used an alternative methodology. They used high-

performance liquid chromatography (HPLC) for detecting photopigments in samples, these pigments are 

algal biomarkers that allow to estimate the phytoplankton community structure. Diagnostic photopigment 

analyses are able to detect significant changes in phytoplankton and are routinely used for monitoring 

programs designed to observe trends in water quality in response to nutrient enrichment (Niemi et al. 

2004; Sebastiá et al. 2012). Conventional microscope methodology has some disadvantages that can be 

overwhelmed using HPLC. Microscopy is time-consuming, labor intensive, potentially vulnerable to 

subjective judgements, and requires advanced taxonomic skills and expertise; while HPLC has proved to 

be rapid, reproducible, and cost-effective (Duarte et al. 1990; Schlüter et al. 2006; Ju et al. 2008; Schlüter 

et al. 2016). Moreover, algal groups with potentially harmful effects, such as cyanobacteria and 

dinoflagellates, could also be present at a low abundance in the phytoplankton community so microscope 

analysis could not detect them, while the high accuracy of the pigment method is able to detect all the 

functional groups present (Duarte et al. 1990; Schlüter et al. 2006; Schlüter et al. 2016). Ju et al. (2008) 

tested HPLC methodology during one week and used a multiple regression model to estimate the 

contribution of each phytoplankton group to total chlorophyll a. Multiple regression models were a 

common methodology during their research, but in recent years CHEMTAX software is mostly applied 

(Latasa et al. 2010; Garrido et al. 2011; Higgins et al. 2011; Ahmed et al. 2016) and it is recommended by 

the SCOR (Scientific Committee on Oceanic Research)  (Roy et al. 2011).  

The primary objective of this research was to estimate phytoplankton community structure in shrimp BFT 

water samples, using HPLC analysis and CHEMTAX software. The secondary objectives were to study 

the phytoplankton changes in the culture system during a complete biofloc culture cycle with high 

sampling frequency (weekly), and to analyze the environmental parameters that can affect the 

phytoplankton population. This research was developed in Gandia (València, Spain) from May to October 

2016. 



Materials and methods 

Shrimp 

Postlarvae white shrimp (PL) were purchased from a commercial laboratory (Shrimp Improvement 

Systems, SIS, Florida, USA), they were certificated as free of pathogen. PLs were moved to Universitat 

Politècnica de València (UPV) – Spain for BFT system experiment development. The L. vannamei 

shrimp were transferred to a nursery laboratory, where the PLs grow up to 0.0675 ± 0.0433 g, at which 

time the experiment started. 

The shrimp were distributed in 9 square tanks filled with 2,250 L of water and with a surface of 3.2 m2 

each tank. Each tank was filled with disinfected seawater which had a salinity level of 22.5. The tanks 

were located in a greenhouse and constantly individually aerated. Shrimp density was 200 shrimp/m2. The 

greenhouse system is very useful, in Mediterranean area, for shrimp culture during the cold and temperate 

seasons. During the hot season, the greenhouses need to be covered with different awnings to keep water 

temperature between 28 - 32ºC. Temperatures higher than 32ºC are critical for shrimp culture (Van Wyk 

and Scarpa 1999). In our study, water temperature was kept to optimum values with the following system: 

1) at the beginning of the study period (May, 5) the greenhouse roof was covered with a white awning, 2) 

on day 59 (July, 8) the awning was substituted by a black one, and 3) on day 136 (September, 29) the 

black awning was removed, due to lower environmental temperature at the end of summer. 

Every day the shrimp were fed with commercial feed (Le Gouessant) specifically designed for L. 

vannamei. Feed amount was calculated according to the shrimp biomass, according to Jory et al. (2001). 

Feeding was provided twice a day, 40% in the morning and 60% in the afternoon, and distributing the 

feed in feed trays. 

Biofloc development was achieved following the methodology proposed by  Avnimelech (1999) and 

Ebeling et al. (2006). The initial fertilization of the system was done with sucrose, with a theoretical 15:1 

carbon/nitrogen ratio. During the experiment, sucrose was added when the ammonia reached a 

concentration greater than 1 mg/L, maintaining a carbon/nitrogen ratio of 6:1. Renewal of the water 

during the experiment was minimal and was performed when the nitrite level reached 8 mg/L.  Higher 

nitrite levels could cause mortality in the shrimp L. vannamei, as indicated by  Lin and Chen (2003). 

 



Environmental parameters 

Dissolved oxygen (DO), salinity and temperature were monitored in situ, using a multi-parameter probe 

(YSI ProODO and WTW Multi 340i respectively) twice a day. pH was measured once a day using pH-

Meter BASIC 20+ the Crison. 

Every two days an aliquot of water was collected to determine the concentration of total dissolved 

ammonia (N-TA mg/L) using the methodology described by Baumgarten et al. (2010), nitrites (N-NO2
- 

mg/L), using the methodology of Bendschneider and Robinson described in Baumgarten et al. (2010), the 

nitrates (N-NO3
- mg/L) were analyzed by means of the difference between nitrites plus nitrates using the 

methodology described by Grasshof (1976) and phosphates  (P-PO4
3- mg/L) were analyzed following the 

colorimetric reaction described by  Murphy and Riley (1962). 

The biofloc volume (mL/L) and light intensity (lux) were measured weekly. The biofloc volume (BV) 

was determined by placing one litre of water in an Imhoff cone, following the methodology described by 

Avnimelech (2007). The light intensity was measured with a luxometer (Delta OHM HD9221). 

Biological parameters 

Samples for phytoplankton pigment analysis were filtered on GF/F fiberglass filters (25 mm diameter) 

once a week. Pigments were extracted using acetone (100% HPLC grade) and were measured using 

reverse-phase high-performance liquid chromatography (HPLC). The HPLC method employed was that 

proposed by Wright et al. (1991) slightly modified as per Hooker et al. (2001). The system was calibrated 

with external standards obtained commercially from the DHI Water and Environment Institute 

(Hørsholm, Denmark). Phytoplankton signature pigments analyses are able to detect significant changes 

in phytoplankton community composition over a broad range of time scales (Sebastiá et al. 2012).  

In order to identify the phytoplankton groups present in the biofloc system, we observed a sample each 

tank in the microscopy some weeks, the aim of these samples is supplementing information on group 

presence for CHEMTAX. Utermohl (1985) was used for micro and macroplanktonic cell size. 

Phytoplankton samples were fixed with formaldehyde, concentrated according to UNE EN15204:2006, 

based on Utermohl (1985), and qualitatively examined under a LEICA DM IL inverted microscope. 

Once the concentration of important photosynthetic pigments was determined, the phytoplankton 

community was studied using the CHEMTAX program (Mackey et al. 1996) version 1.95 (S. Wright, 

pers. comm.) to obtain the contribution to total chlorophyll a from the phytoplankton groups identified 

with microscopy. In order to identify groups of samples with similar characteristics, a cluster analysis was 



performed using STATGRAPHICS Centurion XVI.I to group samples according to pigments 

concentration. City block distances were calculated and samples clustered according to Ward’s method. 

Pigment samples were separated into two subsets because it is highly recommended to apply CHEMTAX 

to dataset where pigment ratios within the different groups do not change (Latasa et al. 2010). 

CHEMTAX was applied independently to each subset to obtain the contribution of eight phytoplankton 

groups to the Chla stock: diatoms, dinoflagellates, euglenophytes, chlorophytes, cryptophytes, 

prymnesiophytes, prasinophytes, and cyanobacteria. The procedure was described in Latasa et al. (2010) 

and a complete description can be found in Sebastiá and Rodilla (2013). The final matrix used to estimate 

the contribution of the different groups to Chla stock is presented in Table 1. 

During all the experiment net primary production of the water column (mgO2 / (L·h)) was measured once 

a week, using the equation (1) proposed by Strickland (1960). Three transparent bottles were filled with 

water culture, and were left dangling to 3 cm under water surface. In each tank, average net primary 

productivity was calculated 8 hours after. Net primary productivity informs about the trophic state of the 

biofloc system, a positive net primary production indicates that the system is autotrophic, while a negative 

one indicates that the system is heterotrophic. 

Net primary production �mg O2
L·h

� = �fina lO2 light  bottle −initial O2light  bottle
time  

�  (1) 



Table 1. Matrices of pigment to Chla ratios obtained from CHEMTAX for the samples of both clusters. 

Per correspond to peridinin, 19’But to 19'butanoyloxyfucoxanthin , Fuc to fucoxanthin, 19’Hex to 

19’hexanoyloxyfucoxanthin, Neo to neoxanthin, Pras to prasinoxanthin, Viol to violaxanthin, Allo to 

alloxanthin, Lut to lutein, Zea to zeaxanthin and Chlb to chlorophyll b . 

Class / Pigment Per 19'But Fuc 19'Hex Neo Pras Viol Allo Lut Zea Chlb 

Diatoms 
           

Cluster 1 - - 0.290 - 0.001 - - - - - - 

Cluster 2 - - 0.387 - 0.001 - - - - - - 

Dinoflagellates 
          

Cluster 1 0.569 - - 0.018 - - - - - - - 

Cluster 2 0.333 - - 0.025 - - - - - - - 

Euglenophytes 
          

Cluster 1 - - - - 0.017 - - - - - 0.427 

Cluster 2 - - - - 0.030 - - - - - 0.587 

Chlorophytes 
          

Cluster 1 - - - - 0.021 - 0.018 - 0.087 0.040 0.183 

Cluster 2 - - - - 0.050 - 0.046 - 0.022 0.067 0.272 

Cryptophytes 
          

Cluster 1 - - - - - - - 0.121 - - - 

Cluster 2 - - - - - - - 0.127 - - - 

Prasinophytes 
          

Cluster 1 - - - - 0.065 0.017 0.109 0.000 0.018 0.082 0.421 

Cluster 2 - - - - 0.047 0.305 0.053 0.000 0.021 0.072 0.236 

Prymnesiophytes 
          

Cluster 1 - 0.011 0.236 0.278 - - - - - - - 

Cluster 2 - 0.012 0.243 0.257 - - - - - - - 

Cyanobacteria 
          

Cluster 1 - - - - - - - - - 0.592 - 

Cluster 2 - - - - - - - - - 0.260 - 

 

 

 

 



Statistical analysis  

Previously to statistical analysis, we calculated weekly average of environmental parameters to be able to 

compare with phytoplankton pigments data, collected weekly. Normality and homoscedasticity of all 

variables were tested before multivariate analysis. As all the variables were not normally distributed, a 

non-parametric one-way analysis of variance (Kruskal–Wallis) was performed to statistically assess 

variations in the median fraction of all monitored variables within the experimental tanks. This analysis 

was also used for comparing chemical parameters, biofloc volume and phytoplankton absolute 

composition in different lighting conditions (white awning, black awning and no awning). Spearman rank 

correlation analyses were performed on environmental parameters (pH, temperature, DO, N-TA, N-NO2
-, 

N-NO3
-, P-PO4

3- and biofloc volume) and phytoplankton groups, Chla and net primary production in 

order to examine significant relationship. 

Complementarily, the redundancy analysis (RDA) was selected from among the different multivariate 

ordination methods available (Braak and Smilauer 2002). Phytoplankton pigments, shrimp weight and net 

primary production were included in CANOCO 4.5 as dependent variables and environmental variables 

were included as independent variables. The statistical significance of the relationships was evaluated 

using Monte Carlo permutation tests with a manual forward selection procedure, under 499 permutations 

(Seoane et al. 2011). 

Results 

During the experiment no statistically significant differences were observed on physicochemical 

parameters within the experimental tanks according to Kruskal–Wallis analysis results (P > 0.05). The 

average recorded pH was 7.79 ± 0.37, whereas the average temperature and dissolved oxygen in the water 

were 27.6 ± 1.8 ºC and 5.96 ± 0.40 mg/L, respectively. The salinity was stable during all the experiment 

with an average of 22.5 ± 0.0. The values of light intensity, chemical parameters and biofloc volume, 

varied along the study period, showing statistically significant differences. The mean, standard deviation 

(SD) and Kruskal-Wallis analysis P-value are presented in Table 2, for three periods: white awning 

(beginning), black awning (middle) and no awning (end). N-NO3
-, P-PO4

3- and biofloc volume showed a 

clear increasing trend. 



Table 2 Average of light intensity, chemical parameters and biofloc volume for the three periods studied: 

white awning (beginning), black awning (middle) and no awning (end). Kruskal-Wallis analysis 

significance results are shown in P-value column. 

Variables White awning Black awning No awning P- value 

Light intensity  (lux) 3,106 ± 932 1,477 ± 1546 4,346 ± 1787 0.000 

N-TA (mg/L) 0.24 ± 0.45 0.07 ± 0.06 0.17 ± 0.05 7.7x10-11 

N-NO2
- (mg/L) 3.55 ± 4.88 10.31 ± 7.58 0.26 ± 0.13 0.000 

N-NO3
- (mg/L) 0.35 ± 0.27 12.32 ± 14.33 54.02 ± 9.52 0.000 

P-PO4
3- (mg/L) 0.48 ± 0.59 2.83 ± 2.12 9.57 ± 2.81 0.000 

BV (mL/L) 1.9 ± 3.0 9.6 ± 7.3 15.8 ±6.8 0.000 

 

The following signature pigments were detected in water samples: peridinin, fucoxanthin, neoxanthin, 

prasinoxanthin, violaxanthin, diadinoxanthin, alloxanthin, lutein, zeaxanthin and chlorophyll b. 

According to pigment analysis and microscope observations these phytoplankton groups were present: 

diatoms, dinoflagellates, chlorophytes, cryptophytes, euglenophytes, prasinophytes, prymnesiophytes and 

cyanobacteria. A Kruskal-Wallis analysis was performed to detect statistically significant differences in 

phytoplankton groups abundance (absolute contribution to chlorophyll a, µg/L) between tanks 

(statistically significant differences P-value < 0.01), the analyses are presented in Table 3. No statistically 

significant differences were found in any group abundance between experimental tanks, except for 

diatoms (P = 1·10-8). Diatom absolute abundance was significantly higher in tanks 1, 2 and 3.  The 

contribution to Chla of each one of the observed phytoplankton groups is represented in Fig. 1 along the 

study period. But, due to the observed differences, we calculated the mean concentration for tanks 1, 2 

and 3 (n = 3), Fig. 1a, and, for the rest of tanks (n = 6), Fig. 1b.  

A progressive Chla increase is observed during the first weeks (day 1 to day 52) (Fig. 1). The first two 

weeks Chla concentration was below the detection limit due to the initial disinfection process.  On day 52 

(week 8) an absolute maximum concentration of 496 ± 236 µg/L was observed. After day 59 Chla 

concentration started to decrease, and remained below 200 µg/L until day 143. Later the Chla 

concentration increased until 411 µg/L. The Kruskal-Wallis analysis showed statistically significant 

differences among periods (P-value), with significantly lower light intensity during black awning 

coverage. Thus, the temporal variation in Chla concentration could be related to lighting conditions.   



Table 3 Average of phytoplankton groups abundance (µg/L), chlorophyll a (µg/L) and net primary 

production (mgO2 / (L·h)) and standard deviation for the three periods studied: white awning (beginning), 

black awning (middle) and no awning (end). Kruskal-Wallis analysis significance results are shown in P-

value column. 

Variables White awning Black awning No awning P- value 

Diatoms 70.20 ± 64.54 91.48 ± 76.79 99.32 ± 73.69 0.087 

Dinoflagellates 15.03 ± 29.50 0.04 ± 0.15 0.10 ± 0.14 2.8x10-11 

Euglenophytes 32.86 ± 35.82 21.82 ± 22.25 84.16 ± 47.14 3.3x10-11 

Chlorophytes 67.38 ± 93.00 3.68 ± 14.77 29.04 ± 40.69 3.7x10-10 

Cryptophytes 1.29 ± 1.94 0.59 ± 1.98 0.89 ± 1.27 0.001 

Prasinophytes 4.49 ± 6.37 4.14 ± 3.54 1.39 ± 2.43 2.8x10-4 

Prymnesiophytes 0.12 ± 0.25 0.03 ± 0.09 0.17 ± 0.24 0.003 

Cyanobacteria 99.94 ± 142.45 9.43 ± 22.16 75.55 ± 65.55 8.4x10-7 

Chlorophyll a 4.49 ± 6.37 4.14 ± 3.54 1.39 ± 2.44 2.8x10-4 

Net photosynthesis 0.32± 0.36 -0.05± 0.34 -0.29 ± 0.10 0.000 

 

 

Fig. 1 Phytoplankton groups mean contribution to chlorophyll a concentration (µg/L) temporal evolution. 

a) Tanks 1, 2 and 3 b) Tanks 4, 5, 6 and 7. 



According to net primary production values, autotrophic processes predominate during the first weeks, a 

period characterized by the absence of nitrifying bacteria and high levels of T-NA. This period coincides 

with the presence of white awning (Fig. 1). Subsequently, nitrifying bacteria develop, and net 

photosynthesis decreases until reaching negative values when heterotrophy predominates in the system.   

The same temporal trend was observed in all the tanks for diatoms, however, concentration values differ 

(Fig. 1a). Tanks 1, 2 and 3 showed the higher diatoms abundance along all the study period, the average 

value was 138 ± 78 µg/L Chla. The other tanks showed an average value of 60 ± 54 µg/L Chla. 

Dinoflagellates were present only from day 17 to day 31 with an average value of 35 ± 37 µg/L Chla. The 

rest of the study period their presence were minimal (<1.8 µg/L Chla). Chlorophytes were mainly 

abundant during day 31 to day 59 with an average value of 94 ± 98 µg/L Chla. They were also present 

from day 87 to 94, and from day 143 to 164, but their abundance was lower and average value was 29 ± 

41 µg/L Chla. Euglenophytes temporal trend was similar to that observed for Chla (phytoplankton 

biomass) with two peaks. Their average abundance was 37 ± 40 µg/L Chla. Cyanobacteria also show a 

similar trend to Chla characterized by two peaks, however, they reduced their abundance to minimums 

from day 66 to 136. Their average abundance was 100 ± 142 µg/L Chla during the first peak, and 76 ± 66 

µg/L Chla during the second peak. Prasinophytes were a low abundant group, that appears on day 17 and 

has an average of 4 ± 5 µg/L Chla. Cryptophytes and prymnesiophytes are the groups less abundant with 

average values of 0.87 ± 1.88 µg/L Chla and 0.08 ± 0.20 µg/L Chla respectively.  

Spearman rank correlation analyses were performed on environmental parameters (pH, temperature, DO, 

N-TA, N-NO2
-, N-NO3

-, P-PO4
3- and biofloc volume) and phytoplankton groups, Chla and net primary 

production in order to examine significant relationship. Table 4 shows the correlation results. 

 

 

 

 

 



Table 4  Rank correlation matrix (Spearman’s) between environmental (Tª –temperature, DO – dissolved 

oxygen, N-TA - total dissolved ammonia, N-NO2
- -nitrites, N-NO3

- - nitrates, P-PO4
3- - phosphates and 

BV – biofloc volume) and biological variables (phytoplankton groups). 

 Tª DO pH N-TA N-NO2
- N-NO3

- P-PO4
3- BV 

Diatoms 0.210a -0.321a -0.329a -0.078 0.282a 0.119 0.348a 0.299a 

Dinoflagellates 0.192a 0.191a 0.212a 0.132 -0.032 -0.034 -0.135b -0.115 

Euglenophytes -0.006 -0.510a -0.492a 0.191a 0.132 0.185a 0.549a 0.509a 

Chlorophytes 0.219a -0.114 -0.049 0.186a 0.077 0.009 0.115 0.150b 

Cryptophytes 0.126 -0.053 -0.026 -0.064 0.118 0.018 0.084 0.121 

Prasinophytes 0.131 -0.110 -0.043 -0.101 0.258a -0.089 0.054 0.055 

Prymnesiophytes -0.064 -0.194a -0.260a -0.091 0.151b 0.223a 0.345a 0.386a 

Cyanobacteria 0.179a -0.427a -0.351a 0.190a 0.239a 0.086 0.433a 0.445a 

Chlorophyll a 0.302a -0.295a -0.235a 0.159b 0.208a 0.052 0.311a 0.288a 

Net Photosynthesis 0.547a 0.532a 0.735a 0.032 0.008 -0.504a -0.743a -0.650a 

a p<0.01, b p<0.05 

Complementarily, the redundancy analysis (RDA) performed with CANOCO 4.5 is showed in Fig. 2. For 

a detailed interpretation of the graphs, see Ter Braak (1994). The RDA retained five variables: DO, N-

TA, N-NO3
-, P-PO4

3-and biofloc volume. These variables together explained 39% of the variance in the 

biological variables (phytoplankton composition, phytoplankton biomass (Chla) and net primary 

production). The biological variables were classified according to their association with the 

environmental variables. Distance between sample points symbols in the diagram approximates the 

dissimilarity of their pigment composition, measured by their Euclidean distance (Ter Braak 1994). We 

observed that samples taken from day 1 to day 38 are grouped by days in the triplot chart (Fig. 2), where 

the samples of the same day are located very close. That shows that phytoplankton composition is very 

similar in all the tanks for the same day, while between different days is more diverse. Samples from the 

rest of the study period are not grouped daily. Environmental variable arrows point in the expected 

direction of the steepest increase of values of environmental variable. Axis 1 shows a gradient of the 

variables: DO increasing to the right side, and an opposite gradient of P-PO4
3- and biofloc volume. The 

acute angle between variable arrows indicates high correlations between individual environmental 



variables. For example, P-PO4
3- and biofloc volume show a positive correlation, which is confirmed by 

the Spearman rank analysis. High values of these variables are highly correlated with euglenophytes and 

cyanobacteria. In the opposite side, high DO is strongly correlated with dinoflagellates, and to a minor 

extent to net primary production (see also Spearman Rank Table 4). Axis 2 shows a gradient of N-TA and 

N-NO3
-. High concentration of N-TA is strongly correlated with chlorophytes and prasinophytes 

abundance (see also Spearman Rank Table 4). High concentration of N-NO3
- is strongly correlated with 

prymnesiophytes abundance (see also Spearman Rank, Table 4). The sample symbols can be projected 

perpendicularly onto the line overlaying the arrow of particular environmental variable. The sample 

points are in the order of predicted increase of values of the particular environmental variable, so sample 

points projecting onto the coordinate origin are predicted to correspond to samples with an average value 

of that environmental variable. For instance, at the beginning of the study period, samples from day 1 to 

day 31, we have high DO levels. Samples are grouped temporally in three groups. In the first group, we 

find samples from day 1 to day 10. This first two weeks all pigments concentration was below the 

detection limit. In the second group, we find sample from day 17 to 31. These samples are characterized 

by high increasing N-TA concentrations. On day 31 the nitrification processes started and N-NO2
- was 

detected. From day 1 to day 24 the highest DO were observed. In the third group, we include all other 

samples, these samples do not show a temporal gradient. During this period a point cloud is observed in 

the left side of the Fig. 2, Canoco graph. 

 

 

 

 

 

 

 

 



 

Fig. 2 Correlation plots of the RDA, on the relationship between the environmental variables (gray 

arrows), the biomass of the phytoplankton groups, the net primary production and total chlorophyll a 

(black arrows) and samples. Sample symbol corresponds to the sampling day detailed in the legend. 

Labels in black arrows mean: Diato - diatoms, dino - dinoflagellates, chloro - chlorophytes, crypto - 

cryptophytes, euglen - euglenophytes, prasi - prasinophytes, prym - prymnesiophytes, cyan - 

cyanobacteria, NP - net primary production and Chla - Chlorophyll a.  Labels in gray arrows mean: DO –

dissolved oxygen, BV –biofloc volum, PO4 – phosphates, NO3 – nitrates, N-TA – total dissolved 

ammonia. 



Discussion 

All the water quality parameters in the tanks remained within the recommended rate suitable for growing 

L. vannamei, specially the values of pH, temperature, dissolved oxygen and salinity (Van Wyk and 

Scarpa 1999). The biofloc systems are characterized by a peak of N-TA, followed by peak of N-NO2
- and 

finally an accumulation of N-NO3
- in the system, what coincides with the observed evolution of these 

variables (Table 2) (Azim and Little 2008; Avnimelech 2009). Also, in all biofloc system we can observe 

an accumulation of PO4
3- and biofloc volume (Ray et al. 2011; Correia et al. 2014). The levels of 

ammonia and nitrites can be toxic, but, during the experiment, these levels were maintained within the 

limits of safety determined by Lin and Chen (2001) and (2003). The accumulation of P-PO4
3- and biofloc 

volume started from the beginning of experiment and followed during all the time. P-PO4
3- and N-NO3

- 

do not have any negative effect on shrimp. The biofloc volume values were lower than maximum 

recommended by Avnimelech (2009). The succession of autotrophic processes by heterotrophs, observed 

by the reduction of net primary production (Table 3 and Fig. 1), is characteristic of the biofloc systems ( 

Vinatea et al. 2010; Marinho et al. 2016). The significant inverse correlation of net primary production 

with BV and P-PO4
3- (Table 4 and Fig. 2), is explained because these variables values increase during 

heterotrophic culture phase (Ray et al. 2011; Correia et al. 2014). 

Chlorophyll a (Chla) is commonly used as a proxy of phytoplankton biomass, also in BFT systems 

(Gaona et al. 2011). The range of Chla concentration measured is similar to the one observed in other L. 

vannamei BFT systems (Gaona et al. 2011; Baloi et al. 2013; Martins et al. 2016). At the beginning of the 

study period, from day 1 to 10, no pigments were detected. This is due to the process of initial 

chlorination of the seawater to eliminate bacteria, which also reduces the amount of phytoplankton 

(Yusoff et al. 2002). The temporal variation in Chla concentration is related to lighting conditions, as 

revealed by Kruskal-Wallis analysis (Table 3), so it is the evolution of all the phytoplankton groups 

except diatoms (Table 3). Other authors have observed a direct relationship between reduced light 

intensity and phytoplankton decrease (Gaona et al. 2011; Baloi et al. 2013; Martins et al. 2016). All 

phytoplankton groups presented significantly lower abundances (µg/L Chla) with black awning, while 

diatoms abundance showed no statistically significant differences (Fig. 1).  

Four major groups of phytoplankton, including diatoms, dinoflagellates, cyanobacteria and chlorophytes 

are usually observed in L. vannamei biofloc systems (Lukwambe et al. 2015; Martins et al. 2016). In our 



study, the major groups were diatoms, euglenophytes, cyanobacteria and chlorophytes, similar to the 

observed by Schrader et al. (2011) in other biofloc systems, while dinoflagellates were only remarkable at 

the initial period. The most abundant phytoplankton group was diatoms all along the study period (Fig. 

1). The diatom predominance is commonly observed in BFT (Schrader et al. 2011 (in some tanks); Godoy 

et al. 2012; Martins et al. 2016). However, other authors remark an abundance decrease at the end of their 

studies, and a replacement by undesired cyanobacteria (Yussoff et al. 2002; Schrader et al. 2011 (in some 

tanks)). This decrease has been related to a silica limitation and to a phosphorus enrichment. Martins et al. 

(2016) observed that silica addition was essential for the growth and maintenance of high diatom cell 

density in the biofloc system. Coastal waters used to fill the aquaculture tanks in our study are 

characterized by high silica levels. This is due to groundwater discharges rich in silica (Sospedra et al. 

2017), because of the lixiviation of biogenic silica from the wetland species of Gramineae, which are 

characterized by high silica content (Sebastiá et al. 2012; Sebastiá and Rodilla 2013). This high initial 

concentration of silica can explain the maintenance of diatom levels all time long. The predominance of 

diatoms is highly desired because of their nutritional properties, they can enhance the contents of essential 

amino acids and highly unsaturated fatty acids in shrimp tissue, and their consumption improve shrimp 

growth (Godoy et al. 2012; Brito et al. 2016; Martins et al. 2016). On the contrary, cyanobacteria are 

undesired because their nutritional value is low, are commonly responsible of noxious blooms, impart 

unpleasant flavors to cultured animals and negatively affect water quality (Paerl and Tucker 1995; Yusoff 

et al. 2002; Ju et al. 2008; Schrader et al. 2011). 

The Kruskal-Wallis analysis results revealed that cyanobacteria biomass was lower during low light 

intensity conditions (black awning). However, cyanobacteria are myxotroph organisms that can take 

advantage of different environmental conditions, by changing their trophic mode. Thus, in low light 

conditions, they can adopt heterotrophy mode and reduce their pigment content (Chla and zeaxanthin) 

(Yu et al. 2009; Lohscheider et al. 2011; Gris et al. 2017). These can explain the lower pigment 

concentrations measured by HPLC, and the lower cyanobacteria biomass estimated by CHEMTAX. But, 

microscope controls demonstrated high abundance of filamentous cyanobacteria also during low light 

conditions. Positive correlation between cyanobacteria and phosphate and biofloc volume (Table 4 and 

Fig. 2) has also been observed in other BFT studies (Yussoff et al. 2002; Green et al. 2014). Green et al. 

(2014) explained that filamentous cyanobacteria help to cohesion the different components of the floc, 

obtaining larger aggregates. 



Dinoflagellates are usually one of the dominant phytoplankton groups in biofloc cultures (Ju et al. 2008; 

Ballester et al. 2010; Manan et al. 2016; Marinho et al. 2016), which sometimes persist throughout the 

study period (Yusoff et al. 2002). In our study, peridinin, which is the signature pigment of 

dinoflagellates, was only present from day 17 to 31, when the biofloc system was not mature. This period 

was characterized by autotrophic processes, and dinoflagellates showed significant positive correlation 

with net primary production (Table 4). Although no peridinin was detected in later stages, dinoflagellates 

were observed under the microscope. Dinoflagellates are mixotrophic organisms, capable of feeding on 

various prey species, including bacteria, flagellates, diatoms, heterotrophic protists and metazoans (Ismael  

2003; Jeong et al. 2010). At the same time, they are able to perform photosynthesis, thus increasing their 

rate of growth (Li et al. 1999). It is possible that, while the system was autotrophic, the dominant 

dinoflagellates in the water were autotrophic or mixotrophic dinoflagellates, with a high rate of peridinin 

(Jeffrey et al. 1975).  As the biofloc system matures, the light and net primary production decrease, so the 

dinoflagellates present show a heterotrophic behavior. This would cause a decrease in the synthesis of 

peridinin, which is no longer detected by HPLC (Li et al. 1996). Note that, depending on the species, 

dinoflagellates presence can adversely affect the immune system of shrimp, due to production of toxins 

(Pérez-Linares et al. 2008; Campa-Córdova et al. 2009; Pérez-Morales et al. 2017). Although not all 

species are harmful, as some are used as a nutrient source in carcinoculture (Ge et al. 2016). 

Chlorophytes are usually present in biofloc systems (Yusoff et al. 2002; Manan et al. 2011; Schrader et al. 

2011). They are a desirable group as they remove ammonium (Chen 2001), and improve shrimp yield and 

survival (Ge et al. 2016). Maicá et al. (2012) observed, in their microscopic counts, that chlorophytes 

dominated biofloc systems at low salinities (2-4), but were replaced by diatoms at salinities of 25. Ju et al. 

(2008) also observed a predominance of lutein, signature pigment of chlorophytes (Schlüter et al. 2006), 

in samples with a low salinity (5-18), and an increase in fucoxanthin, signature pigment of diatoms 

(Schlüter et al. 2006), with increasing salinity. Only Martins et al. (2016) observed that chlorophytes 

dominated their biofloc culture at high salinity (37) and absence of diatoms. Our tanks have an 

intermediate salinity (22.5) in which the two groups coexist, although the diatoms are more abundant as 

shown in Fig. 1. 

Euglenophytes are one of the major groups in most biofloc systems, although they are not the most 

abundant (Green et al. 2014; El-Dahhar et al. 2015; Marinho et al. 2016). This group is able to adapt to 

waters with a wide spectrum of salinity (Figueroa et al. 1998), but they have been found in greater 



quantity in studies with freshwaters (Schrader et al. 2011) or low salinity waters (Ju et al. 2008). In our 

study, their abundance is highly correlated with biofloc volume (Fig. 2), a relationship already observed 

by Green et al (2014), and with phosphates (Horabun 1997). Kingston (1999) attributed this relation to 

their inhibition by high light intensities, showing greater abundances in highly turbid environments, as the 

one characteristic of a mature biofloc system. 

Conclusion 

Algal pigment analyses using HPLC and subsequent CHEMTAX analysis in water samples can provide 

useful information for estimating the phytoplankton community structure in the BFT systems. This 

technique is very useful for monitoring the abundance variation of beneficial as well as potentially 

harmful algae. However, we found some limitations when the BFT systems are in heterotrophic mode. 

Under these conditions, some dinoflagellates and cyanobacteria behave as heterotrophs and lose or 

decrease their biomarkers pigments. The HPLC/CHEMTAX methodology is widely applied for 

monitoring nutrient enriched waters, in both continental and marine ecosystems. But, little research has 

been developed in heterotrophic systems. So, further research is needed to increase knowledge on the 

accuracy of HPLC/CHEMTAX under these conditions. The analysis of phytoplankton evolution allowed 

us to observe the key role played by light intensity on abundance and composition of phytoplankton 

during the creation of a biofloc system. In general, a major light intensity caused an increase in 

phytoplankton biomass as indicated by Chla concentration. This increase is mainly due to higher 

abundances of euglenophytes, chlorophytes and cyanobacteria. However, diatoms and net primary 

production were not significantly affected by different light intensity. Diatoms abundance was constant 

all along the study period, while primary production followed the normal trend in biofloc system. Coastal 

waters used to fill the aquaculture tanks in our study were characterized by high silica levels, that allowed 

to maintain diatom population.  According to our results, and in agreement with other authors, light 

intensity and dissolved silica concentration are key parameters for controlling phytoplankton composition 

and abundance. 
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