
1. Introduction
The conventional modelling of the railway
vehicle, in which it is considered as a system
of rigid bodies connected by viscoelastic
elements, yields accurate enough results in the
low-frequency range (up to 20 Hz,
approximately). However, when it comes to
analysing the dynamic interaction of the
vehicle and the track in the mid- and high-
frequency ranges (when studying problems
such as corrugation) the use of these simplified
wheelset models may lead to inaccurate
results. This is due to the fact that in these
frequency ranges the structural dynamics of
the wheelset cannot be neglected. Accordingly,
in these cases a more realistic wheelset model
able to reproduce the elastic behaviour of the
rotating wheelset should be adopted.

There exist a few research works in which
the flexibility of the wheelset and the effects
associated with rotation are considered. One of
the pioneering works can be found in Ref. [1],
in which the contact force is considered as a
moving load on the perimeter of the wheel. In
that work, only one wheel is modelled as a disc,
and the results show that each peak at the FRF

function is decoupled into two resonances.
However, the inertial effects due to rotation are
neglected. The role of the inertial effects due to
rotation in beams is discussed in [2], where it is
found that these effects are more significant if
the slenderness of the beam is low, and that is
the case of the railway wheelset.

A model that considers the gyroscopic
dynamics is due to Szolc [3-5], who considers
a non-rotating beam (wheelset axle) linked
through springs to rotating rigid bodies that
represent the ring-wheels and brake discs. It is
stated that the modal properties of the non-
rotating wheelset differs from those of the
rotating one. A similar approach was done in
[6], where the dynamics of wheelsets that
mount elastic wheels is studied.

The modelling of the continuous system can
be based on general procedures of flexible
multibody systems such as the method
presented in [7-8], which uses modal
coordinates, or through the Finite Element (FE)
Method. These methods are based on
Lagrangian coordinates and their main
difficulty is the interaction with non-rotating
structures, such as the track and the axleboxes
in the case of the wheelset. The position of the
contact point is occupied by a different
material point in each time instant and
consequently, the computational cost increases.

A continuous system approach of the
wheelset was carried out in [9-10]. The method
adopts a FE model and considers the inertial
forces due to rotation. In order to solve the
problems related to the interaction with the
track, the contact forces were supposed to be
applied in the centre axle of the wheelset.

An alternative to the previous methods is
the use of Eulerian coordinates. The first
works that show results from this
methodology correspond to the Refs. [11-14].
Nevertheless, they did not publish their
method until 2007 in Ref. [15].
Simultaneously, a method that employs
Eulerian coordinates was published in [16].
The techniques are, however, very different:
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the former can be applied to solids that have
angular periodicity; the latter exploits the
modal properties of solids of revolution.

The present work studies the potential of
using a flexible wheelset model which
implements the inertial effects due to rotation
for analysing the rail corrugation problem.
Section 3 shows results that establish the
influence of the rotation on the contact point
displacements when a harmonic vertical force
is applied in the contact points of the wheels.
The wheelset model employed in the
calculations is based on the method presented
in Ref. [16]. The technique is summarised in
Subsection 2.2 of the present article. The
background of the method is the formulation
developed by Shabana and presented in [7]. In
order to make clear the method based on
Eulerian coordinates, the needed formulas
from [7] are shown in Subsection 2.2.

2. Equations of motion development
2.1 General method for flexible bodies
based on Lagrangian coordinates
Let us consider a flexible wheelset rotating
about its main axis at constant angular
velocity, Ω. Two reference systems are adopted,
one fixed (non-rotating) and the other rotating
with the undeformed wheelset. Both coincide
at the initial time. Any particle vector position
r→ can be written through the vector position of
the particle in the undeformed body u→, and the
particle displacement due to deformation u→f as
follows (see Figure 1)

(1)

The matrix expressions of the components
of the previous equation have different values
depending on whether they are expressed in
the rotating (r′, u′ and u′f) or the non-rotating
frame (r, u and uf). The transformation matrix
lets us obtain the relation between these
expressions as follows

(2)

If small deformations of the solid are
considered, the deformed shape of the solid
can be obtained as a combination of the non-
rotating mode shapes. If the modal approach
is adopted, Eq. (2) can be written as follows

(3)

where ΦΦ(u′) is the mass-normalised matrix of
the mode shapes of the non-rotating wheelset,
and p(t) contains the respective modal
coordinates. This kinematic approach permits

to obtain the following equation of motion

(4)

where K
~

is a diagonal matrix that contains the
square of the natural frequencies of the non-
rotating wheelset, and the rest of components
of Eq. (4) are

(5)

(6)

(7)

It must be highlighted that the matrices J
~
, E

~

and L
~

are constant in spite of the expressions
of matrices J and E. Taking into account that
the solid motion is a rotation around a
constant axis, then the matrices J and E are
constant and it is satisfied that

(8)

The external forces f are assumed to be
written as a product of the spatial and time
dependent functions, that is f(u′,t) = fu(u′)ft(t).
The generalised force vector Qp has the
following form

(9)
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Figure 1. Kinematic relationships.



The formulation of the generalised force
vector involves the following difficulties
inherent to the method:
- The expression into square brackets is

not constant and must be computed for
each time instant of the ODEs
integration process, thus increasing the
simulation time.

- Taking into consideration that the mode
shapes are obtained numerically, a
constant force in the contact point
produces a variable generalised force
because of the numerical errors in the
computation of the mode shapes.
Accordingly, a numerical excitation is
derived.

2.2 Method based on Eulerian
coordinates
The general method presented in the previous
Subsection involves numerical and
computational problems if the rotating solid
interacts with a non-rotating structure. In
order to solve these problems, an Eulerian
approach is proposed. In railway wheelset
dynamics we centre our attention on spatial
points (i.e. the wheel-rail contact point).
However, a spatial point is not occupied by an
only material point. The coordinate of a
spatial point in the undeformed state u will be
occupied by material points whose coordinates
depend on time

(10)

From (3), the final position of the point
that occupies the spatial position u is

(11)

Finally, the Eulerian position vector is
defined as follows

(12)

Solids with revolution geometry (such as a
wheelset) have two families of vibration
modes: modes with multiplicity 1 and modes
with multiplicity 2. The formers observe that
the deformed geometry of the mode have
revolution geometry (see Figure 2). The latters
are associated with a couple of identical
deformed mode shapes in two planes (usually
orthogonal planes) which contain the rotation
axis (see Figure 3). It is assumed that any
deformed geometry of the solid can be
obtained as a modal combination of the
nonrotating mode shapes in the non-rotating
frame. It can be mathematically expressed as

follows

(13)

being q(t) a set of Eulerian modal coordinates.
The Eulerian to Lagrangian transformation

can be defined as follows

(14)

Matrix B can be proved to be orthogonal
and quasi-diagonal. A detailed analysis shows
that rows and columns associated with modes
with multiplicity 1 have null entries except the
diagonal entry which is 1. On the other hand,
diagonal terms associated with modes with
multiplicity 2 contain rotation matrices, i.e.:

(15)

By comparing Eqs. (12) and (13), the next
relationship is fulfilled

(16)
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a)

b)

Figure 2. Examples of single multiplicity vibration
modes of the non-rotating wheelset. a) Umbrella
mode. b) First torsional mode.



If Eq. (16) is pre-multiplied by A(t)T and
post-multiplied by B(t)T, the last expression is
equivalent to

(17)

The original equation of motion (4) can be
written through Eulerian modal coordinates,
giving

(18)

The transformation matrix B does not
change the numerical value of J

~
as is proved

in the following result. From Eq. (5)

(19)

By substituting (17) in (19), and taking into
account (8)

(20)

If the change of variable u = Au′ is carried
out (the Jacobian |A| is 1), Eq. (20) becomes
(note that the integration variable is a dummy
variable)

(21)

In the same way, the next equivalences can
be proved

(22)

(23)

(24)

being G
~

the gyroscopic matrix defined as

(25)

Thus, replacing from (22) to (25) in (18),
the equation of motion in Eulerian coordinates
results

(26)

where C
~

is a matrix defined as follows

(27)

The physical meanings of the terms of the
equation (26) are:

Qq Generalised external forces
K
~

q Elastic forces
q̈ Acceleration component due to

deformation
–2ΩK

~
q· Gyroscopic term

Ω2C
~

q–Ω2L
~

Centripetal acceleration due to
rotation. The former term is
associated with the deformation
of the solid. The latter, with the
undeformed shape

Since the external forces are always applied
in the same spatial points, the term of the
generalised force can be reformulated as follows

(28)
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a) b)

Figure 3. Examples of double multiplicity vibration modes of the non-rotating wheelset. a) First bending
mode, horizontal plane. b) First bending mode, vertical plane.



and defining F
~

as 

(29)

the generalised forces can be written in this
way

(30)

The main advantage of formulating the
equation of motion in Eulerian coordinates
lies in the fact that matrices G

~
, K

~
, C

~
, F

~
and L

~

do not depend on time and consequently, they
can be computed at the beginning of the
simulation.

2.3 Computational method
The modal properties of the railway wheelset
are obtained through a FE model. Thus the
matrix ΦΦFE is calculated for the nodes of the
mesh. The modal shape function matrix can
be estimated interpolating the nodal values

(31)

being Ne(u) the shape function of the element e.
Replacing (31) in equations (5) to (7), (25)

and (29), a set of matrix expressions are
obtained through the integrals of the shape
functions

(32)

(33)

(34)

(35)

(36)

where NE is the number of elements of the
mesh and Ve is the volume of the e – th
element.

3 Results
The first result presented in Figure 4
corresponds to the Frequency Response
Function (FRF) crossed receptance: the force is
applied in the contact point, in the vertical
direction (z-axis); the displacement is
measured in the transversal direction (y-axis,
lateral direction to the track axis). The
receptance expression can be obtained from
(26) as follows

(37)

where i is the imaginary unit and I is the identity
matrix. Figure 4 shows in continuous black
trace the FRF for the non-rotating wheelset. In
the frequency range shown (from 53 to 270
Hz), the curve presents three resonances at 93.7
Hz (1st bending mode), 146.8 Hz (2nd bending
mode) and 226.7 Hz (umbrella mode, see Figure
2). These results can be foreseen through the
Classical Vibration Theory.

If the angular velocity of the wheelset is
non-zero, the peaks of the FRF associated
with modes with multiplicity 2 produce two
peaks that can be interpreted as the forward
and backward whirl modes [2] in rotating
beams. At Ω = 1000 rpm (200 km/h aprox.)
the backward mode frequency is 87 Hz and
the forward one is 107 Hz. It must be
highlighted that modes with multiplicity 1 do
not split into two peaks.

Taking into account the symmetry of
revolution of the solid, the response of the
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Figure 4. Crossed receptance modulus Hyz(ω) calculated for different
angular velocities of the wheelset.



contact point of a nonrotating wheelset in the
longitudinal direction (x-axis, or track axis
direction) will be zero if the excitation is
produced in the vertical direction. However,
Figure 5 shows non-null crossed receptance
Hxz(ω) calculated for the rotating wheelset.
The level of the response is similar to that in
the transversal direction. It can be observed in
Figure 6, where the graphic shows the orbit of
the contact point if a harmonic vertical force
is applied in the same point. The excitation
frequency (87 Hz) is very close to the
backward whirl mode associated with the 1st
bending mode of the solid.

The FRF mobility, that is

(38)

provides a clearer relation with the wear
mechanism that trigger the corrugation. Figure
7 presents the mobility Yxz(ω), where the
velocity is measured in the longitudinal
direction and the harmonic force is applied
vertically.

4. Conclusions
Most of corrugation cases that take place in the
railway tracks are related to an adverse coupling
between the wear mechanism of the rails and
the dynamics of the unsprung masses of the
vehicle and the track. In order to estimate the
corrugation pattern, some authors propose to
calculate the wear depth from the results of the
train-track dynamic simulation (see example in
Ref. [17]). However, none of the developed
methodologies take account of a realistic
wheelset model that considers its flexibility and
the inertial effects due to rotation.

The present article develops a wheelset
dynamic model that can be implemented in the
simulation of the corrugation growth. The
model is based on a general procedure for
dynamic of rotating solids of revolution
presented in [16]. The analysis of the FRF
obtained from the model lets us determine the
complex coupling in the spatial domain
(dynamic coupling between vertical, lateral
and longitudinal forces and displacements in
the wheel contact point with the rail) and in
the frequency domain (coupling of different
modes of the non-rotating wheelset); this
coupling is due to the rotation of the solid.

The appearance of the orbits in the contact
point let us consider that constant longitudinal
forces (braking, motor torque or curving) can
excite the backward or the forward mode. The
results open the possibility of self-excited
dynamics that can set off the corrugation
process.
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Figure 5. Crossed receptance modulus Hyz(ω) calculated for different
angular velocities of the wheelset.

Figure 6. In black trace, orbit of the contact point if a vertical excitation is
applied. The angular velocity of the wheelset is Ω = 500 rpm (100 km/h
aprox). The excitation frequency is 87 Hz. In grey trace, the projections on
the orthogonal planes of the orbit are drawn.
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Figure 7. Crossed mobility modulus Yyz(ω) calculated for different angular
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Noise pollution threatens animals

Noise pollution is becoming a major threat to the welfare of wildlife, according to a scientific review. Sounds
produced by vehicles, oil and gas fields and urban sprawl interfere with the way animals communicate, mate and
prey on one another. The sounds are becoming so ubiquitous that they may threaten biodiversity, say the
review’s authors. Even the animals living in protected National Parks in the US are being exposed to chronic levels
of noise. Writing in the journal Trends in Ecology and Evolution, three scientists based in Fort Collins, Colorado,
US detail the extent to which noise pollution is now harming wild animals. Dr Jesse Barber and Dr Kevin Crooks of
Colorado State University and Dr Kurt Fristrup of the US National Park Service reviewed all recent scientific
studies examining the issue. They found that man-made noise is already causing a catalogue of problems. “Many
animal species evolved hearing sensitive enough to take advantage of the quietest conditions; their hearing is
increasingly compromised by noise,” said Dr Barber. That intrusion can have a significant impact on the way wild
animals communicate. Great tits (Parsus major) sing at higher frequencies in response to urban noise, so they
are better able to hear each other. But not all animals are able to adapt in this way. Female grey tree frogs (Hyla
chrysoscelis) exposed to the sounds of passing traffic take longer to locate and find calling males, while
European tree frogs (Hyla arborea) call less overall. Crucially, both species appear unable to change their calling
habitats to overcome the din from the roads, potentially compromising their ability to reproduce. Noise pollution
can also effect the ability of many animals such as owls and bats to find and hunt their prey. Laboratory studies
have shown that gleaning bats, which locate prey by the sounds they make, avoid hunting in noisy areas. That can
place gleaning bats at a higher risk of extinction, as noise pollution increasingly corrupts once habitable areas.
For example, one gleaning bat species, the Bechstein’s bat (Myotis bechsteinii), is less likely to cross roads than
other bat species that forage in open areas, suggesting the noise of the traffic could fragment their hunting
grounds. The bat occurs across Europe including in the south of the UK. In the Amazon, terrestrial insectivores,
which also hunt using sound, especially avoid areas where roads are being constructed.

Newport News officials revised noise ordinance

For almost eight months Newport News has been without a noise ordinance. City staff stopped enforcing the
previous ordinance after the state Supreme Court ruled Virginia Beach’s ordinance, which was similar to the one
used in Newport News, unconstitutional because it was too vague. Now, interim City Manager Neil Morgan has
presented a revised ordinance the council might vote on soon. “We want to get something in place that deals
with most types of nuisances, and then tweak it as we go along,” Morgan said. The largest number of noise
complaints are about loud music – either from late-night parties or cars driving by with blaring stereo systems –
and barking dogs. The new ordinance addresses both. But the old one dealt with those problems, too. The
difference, said City Attorney Stuart Katz, is in defining the nuisance. The old ordinance deemed something a
nuisance if it bothered a reasonable person. The new ordinance defines nuisance noise by how far and where it
travels. Noise might be a nuisance if it can be heard across property boundaries or in the residence of someone
else between the hours of 10 p.m. and 8 a.m, or if it can be heard at a distance of 50 feet or more. “The court
found fault with the reasonable-person standard.” Katz said. Mayor Joe S. Frank was concerned about whether
the ordinance addressed moving vehicles with thumping stereos. “Autos are the biggest issue,” he said. “I don’t
see this as enforcement.” Morgan said the ordinance can be adjusted, and both he and Katz said moving vehicles
are addressed by the definitions of “nuisance.” The difficulty has always been catching the vehicle as it is
travelling away from the person troubled by the noise, but Katz said if the vehicle is reported and can be
stopped, the driver can be cited under the new ordinance. “For 90 percent of the circumstances where there is a
legitimate complaint, this gives you a tool,” Morgan said.


