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Abstract 
 
A Decision Tree (DT) is a potential method for studying traffic accident severity. One of its main 
advantages is that Decision Rules can be extracted from its structure and used to identify 
safety problems and establish certain measures of performance. However, when it used only 
one DT, the rule extraction is limited to the structure of that DT and some important 
relationships between variables cannot be extracted. This paper presents a method for 
extracting rules from a DT more effectively. The method’s effectiveness when applied to a 
particular traffic accidents dataset is shown. Specifically, our study focuses on traffic accident 
data from rural roads in Granada (Spain) from 2003 to 2009 (both included). The results show 
that we can obtain more than 70 relevant rules from our data using the new method, whereas 
with only one DT we would had extracted only 5 rules from the same dataset. 
 
Keywords: traffic accident; severity; decision trees; decision rules; road safety 
 
1. INTRODUCTION 
 
The current large number of road accidents implies an unacceptable burden on the community 
in terms of human injury and economic cost. Therefore, one of the main tasks of safety 
analysts is to make a comprehensive assessment of traffic accidents to determine what caused 
them, so measures can be taken to mitigate the severity of their consequences.  
 
Usually, an accident severity analysis is carried out to study a particular dataset of traffic 
accidents. In most countries, traffic accidents are recorded in accident reports by police 
officers, and subsequently the information is stored in a dataset. A huge amount of 
information can be obtained from such datasets. It could be said that their true potential 
consists in the knowledge that can be extracted from them.  
 
Traditionally, regression techniques such as Logit and Porbit have been used to analyse traffic 
accident severity (Kashani and Mohaymany, 2011; Mujalli and de Oña, in press; Savolainen et 
al., 2011). However, these techniques establish their own model assumptions and pre-defined 
underlying relationships between dependent and independent variables. If the assumptions 
are violated, the model can lead to erroneous estimations of injury likelihood (Chang and 
Wang, 2006).  
 
Data Mining (DM) techniques are one of the solutions used to analyze huge amounts of data 
and turn it into useful information and knowledge (Han and Kamber, 2006). DM has been 
widely used in crash severity analysis with satisfactory results. Abdel Wahab and Abdel-Aty 
(2001) investigated the use of Artificial Neural Network models for predicting injury severity in 
two-vehicle crashes at signalized intersections. Recently, Bayesian Networks have been used to 
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analyze traffic accident severity (De Oña et al., 2011; De Oña et al., 2013b; Mujalli and de Oña, 
2011). Decision Trees (DT) is another DM technique used to study crash severity (Chang and 
Wang, 2006; Chang and Chien, 2013; De Oña et al., 2013a; Montella et al., 2011; Montella et 
al., 2012). 
 
DTs, in particular, represent a very useful method for analysing traffic accidents severity 
because, normally, they are a non-parametric method that does not depend on any functional 
form and require no prior probabilistic knowledge on the phenomena under study. Moreover, 
their structure permits the extraction of Decision Rules (DR) that can be used to discover 
behaviours that occur within a specific dataset. Safety analysts could use these rules to 
understand the events leading up to a crash and identify the variables that determine how 
serious an accident will be (De Oña et al., 2013a). 
 
DTs have been largely reported in road safety literature. Specifically, the most widely used 
method in the literature on traffic accident severity is the CART method (Chang and Chien, 
2013; Chang and Wang, 2006; De Oña et al., 2013a; Kashani et al., 2011; Kashani and 
Mohaymany, 2011; Kuhnert et al., 2000; Montella et al., 2011; Montella et al., 2012; Pakgohar 
et al., 2010;). However, CART always yields binary trees, which sometimes cannot be 
summarized as efficiently for interpretation and/or presentation (Breiman et al., 1984). In the 
case of road accidents, they may not be very practical when it comes to analyzing the impact 
of a specific category of variable on crash severity. The C4.5 algorithm (Quinlan, 1993) is 
another method that is frequently used in several fields because it does not present the binary 
restriction when tree building. It has been used before to analyse traffic accident severity (De 
Oña et al., 2013a). An important difference between the two methods (CART vs. C4.5) is the 
split criterion: the CART method uses the Gini Index, based on measure of diversity; and the 
C4.5 algorithm uses the Info Gain Ratio (IGR), based on the entropy measure on probabilities 
(Shannon, 1948). 
 
However, using DRs from DTs to extract knowledge from a specific dataset also poses certain 
limitations. The extraction of knowledge is constrained by the tree’s structure, for instance, 
and the DRs are dependent on DT’s structure. The DRs are extracted from each tree branch 
from the root node to the terminal node. Therefore, knowledge is extracted only in the 
direction dictated from the root to the terminal node. However, there could be other 
important rules that depend on the root node from which the tree is built that are not 
detected by the tree’s structure. 
 
In this paper, a particular method for extracting DRs from DTs is used to extract all the 
knowledge from a particular dataset. The main characteristic of this method is that different 
DTs are built by varying the root node. Thus, every possible set of DRs is obtained from each 
tree. The useful rules could be used by road safety analyst to establish specific measures of 
performance. 

Moreover, to conduct a full analysis of the dataset using our method for extracting DRs, we 
build DTs using two different split criteria, both each with a different meaning. In fact, the two 
criteria complement each other and a previous study recommends using both for a full analysis 
(De Oña et al., 2013a). By doing so, a broader range of rules can be obtained from a single 
dataset.  
 
The paper is structured as follows: Section 2 shows the main features of the traffic accident 
data used to validate the methodology. The necessary prior knowledge on decisions trees and 
the procedure to build them is presented. It also describes the method used to obtain Decision 
Rules, and how to obtain the importance of each of the variables considered in the model. 
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Section 3 presents the main results and discussion. Finally, the last section presents the 
conclusions. 
 
2. MATERIALS AND METHODS 
 
2.1 Traffic accident data 
 
Traffic accidents where only 1 vehicle was involved, for two-lane rural highways in Granada 
(Spain), were collected from the Spanish General Traffic Accident Directorate (DGT). The study 
period was 7 years (2003–2009) and accidents at intersections were not considered. Thus, the 
total number of accidents was 1,801. 
 
In order to identify the main factors that had an impact on accident severity and taking into 
account the available variables in the original dataset, 19 variables were used (see Table 1). 
The variables described characteristics related to the driver (age and gender); accident (month, 
time, day, number of injuries, occupants involved, accident type and cause); road (safety 
barriers, pavement width, lane width, shoulder width, shoulder type, road markings and sight 
distance); vehicle (vehicle type); and environment (atmospherics factors and lighting 
conditions).  
 
The class variable was accident severity (SEV in Table 1). Following previous studies (Chang and 
Wang, 2006; De Oña et al., 2011; Kashani and Mohaymany, 2011), accident severity was 
defined according to the worst injured occupant, and two levels of severity were identified: 
accident with slightly injured (SI) and accidents with killed or seriously injured (KSI). 
 
 
2.2. Classification and Decisions Trees  
 
In the general domain of DM, a supervised classification problem is normally defined as 
follows: given a dataset of observations, called a training set, we want to obtain a set of rules 
in order to assign a value of the variable to be predicted to each new observation. To verify the 
quality of this set of rules, a different set of observations is used; this set is called the test set. 
The variable to be predicted (classified) is called class variable and the rest of variables in the 
dataset are called predictive attributes or features. There are important applications of 
classification in fields such as medicine, bioinformatics, physics, pattern recognition, 
economics, civil engineering, etc. 
 
A DT is a structure that can be used in classification and regression tasks. If the class variable 
(i.e. the variable under study) has a finite set of possible states or values, the task is called a 
classification; otherwise, it is called a regression. 
 
Within a DT, each node represents a feature and each branch represents one of the states of 
this variable. A tree leaf (or terminal node) specifies the expected value of the class variable 
depending on the information contained in the training dataset. Associated to each node is the 
most informative variable which has not already been selected in the path from the root to 
this node (as long as this variable provides more information than if it had not been included). 
In the latter case, a leaf node is added with the most probable class value for the partition of 
the dataset defined with the configuration given by the path from the root node to that leaf 
node. 
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NUM 
  SEVERITY 

VARIABLES DESCRIPTION: CODE COUNT %SI %KSI 
  Fixed objects collision: CO 19 76.47 23.53 

1 ACT: Accident type 
Collision with pedestrian: CP 152 33.33 66.67 
Other (collision with animals, etc.): OT 32 68.57 31.43 

  Rollover (in carriage without any collision): RO 118 61.86 38.14 
  Run off road (with or without collision): ROR 1480 51.77 48.23 

2 AGE: Age 

≤ 20: ≤ 20 219 52.73 47.27 
[21-27]: [21-27] 492 50 50 
[28-60]: [28-60] 948 51.76 48.24 
 ≥ 61: ≥ 61 110 59.68 40.32 
Unknown: UN 32 27.59 72.41 

3 ATF: Atmospheric 
factors 

Good weather: GW 1540 50.58 49.42 
Heavy rain: HR 43 63.16 36.84 
Light rain: LR 161 58.75 41.25 
Other: O 57 51.06 48.94 

4 BAR: Safety barriers No: N 1740 48.3 54.7 
Yes: Y 61 53.6 46.4 

5 CAU: Cause 

Driver characteristics: DC 1471 48.99 51.01 
Combination of factors: CO 262 61.16 38.84 
Other: OT 29 72.73 27.27 
Road characteristics: RC 24 84 16 
Vehicle characteristics: VC 15 63.64 36.36 

6 DAY: Day 
Working day after the weekend or public holiday: APH 131 57.62 42.38 
Working day before the weekend or public holiday:  BPH 286 52.26 47.74 
On a weekend or public holiday: PH 532 50.36 49.64 
Regular working day: WD 852 51.05 48.95 

7 LAW: Lane width 
< 3,25 m: THI 503 46.87 53.13 
[3,25-3,75] m: MED 1264 53.2 46.8 
> 3,75 m: WID 34 58.54 41.46 

8 LIG: Lighting 

Daylight: DAY 958 55.49 44.51 
Dusk: DU 103 54.29 45.71 
Insufficient (night-time): IL 131 51.15 48.85 
Sufficient (night-time): SL 66 59.72 48.28 
Without lighting (night-time): WL 543 43.1 56.9 

9 MON: Month 
Autumn: AUT 412 53.07 46.93 
Spring: SPR 440 53.64 46.36 
Summer: SUM 479 51.63 48.37 
Winter: WIN 470 47.92 52.08 

10 NOI: Number of 
injuries 

1 injury: [1] 1233 53.43 46.57 
> 1 injury: [>1] 568 47.35 52.65 

11 OI: Occupants involved 
1 occupant: [1] 1171 51.2 48.8 
2 occupants: [2] 374 51.48 48.52 
> 2 occupants: [>2] 256 53.71 46.29 

12 SHT: shoulder type 
No: N 309 49.35 50.65 
Non existent or impassable: NE 580 50.89 49.11 
Yes: Y 912 52.74 47.26 

13 PAW: Pavement width 
[6-7] m: MED 530 53.19 46.81 
< 6 m: THI 282 45.56 54.44 
> 7 m: WID 989 52.27 47.73 

14 ROM: Pavement 
markings 

Does not exist or was deleted: DME 168 52.35 47.65 
Separate margins of roadway: DMR 180 48.31 51.69 
Separate lanes and define road margins: SLD 1368 52.23 47.77 
Separate lanes only: SLO 85 46.59 53.41 

15 SEX: Gender 
Female: F 286 62.18 37.82 
Male: M 1513 49.61 50.39 
Unknown: UN 2 75 25 

16 SHW: Shoulder width 
< 1.5 m: THI 699 52.54 47.46 
[1.5-2.5] m: MED 898 50.28 49.72 
Non existent or impassable: NE 204 50.57 49.43 

17 SID: Sight distance 

Atmospheric: ATM 30 67.5 32.5 
Building: BU 6 36.36 63.64 
Other: OT 12 50 50 
Topography: TOP 420 49.39 50.61 
Vegetation: VEG 13 50 50 
Without restriction: WR 1320 51.94 48.06 

18 TIM: Time 
[00:00-05:59]: [0-6) 340 48.06 51.94 
[06:00-11:59]: [6-12) 380 58.73 41.27 
[12:00-17:59]: [12-18) 591 52.77 47.23 
[18:00-23:59]: [18-24) 490 47.22 52.78 

19 VEH: Vehicle type 
Cars: CAR 1287 47.1 52.9 
Trucks: TRU 78 53.8 46.2 
Motorbikes and motorcycles: MOT 385 35.6 64.4 
Other: OT 51 50.6 49.4 

20 SEV: Severity Accident with slightly injured: SI 929 - - Accidents with killed or seriously injured: KSI 872 

Table 1. Variable description. 
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When a new sample or instance of the test dataset is obtained, a decision or prediction about 
the state of the class variable can be made by following the path in the tree from the root to a 
leaf, using the sample values and the tree structure. 
 
A DT allows us to extract DRs directly. A DR is a logic conditional structure of the type “IF A 
THEN B”. Where A is the antecedent of the rules (in our case, a set of statuses of several 
attribute variables); and B is the consequent (in our case, it is only one state of the class 
variable). Thus, each rule starts at the root node, and each variable that intervenes in tree 
division makes an IF of the rule, which ends in leaf nodes with a value of THEN (which is 
associated with the state resulting from the leaf node). The resulting state is the status of the 
class variable that shows the highest number of cases in the leaf node analyzed. Thus, a priori, 
the number of rules can be identified with the number of terminal nodes in the tree.  
 
Figure 1 shows an example of a DT built using a dataset of accidents. The DT is formed by two 
attribute variables, and the class variable is the severity (two states) of the accidents. This 
example shows how accidents are classified by each status of the class variable (slight 
accidents vs. severe accidents). In addition, the chart shows the number of cases shown in 
each leaf or terminal node (shaded nodes in the tree), distinguishing the cases that are 
predicted correctly in each terminal node. One example of DRs is the following: IF (age≤25 
years AND speed≤80 km/h) THEN (severity = slight accident). 
 
  

  

Figure 1. Example of a DT´s structure and classification. 

 
There is a lot of information in the literature about different procedures to build DT, but 
normally they have in common the following characteristics: 
 
- The criteria used for selecting the attribute to be placed in a node and branching. This 

criterion is known as the split criterion. 
- The criteria used to stop branching the tree. 
- The method for assigning a class label or a probability distribution at the leaf nodes.  
- The pruning process (pre or post building process), which simplifies the structure of the 

tree and prevents over-fitting (i.e. the dependence of the data used to build the model). 
 

DTs started to play an important role in machine learning following publication of the CART 
method (Breiman et al., 1984) and Quinlan's ID3 algorithm (Quinlan, 1987). The former uses a 
split criterion based on the Gini Index. The Quinlan method uses a split criterion, called 
Information Gain (IG), based on the entropy measure on probabilities (Shannon, 1948). 
Subsequently, Quinlan (1993) also presented the algorithm C4.5, which is an advanced version 
of ID3 with a split criterion, called Information Gain Ratio (IGR), which is similar to the one 
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used in the ID3 procedure penalizing the variables with many states. Since then, C4.5 has been 
considered as a standard model in supervised classification. It has also been widely applied to 
very different fields as a data analysis tool. 
 
The Gini Index is a measure of diversity and for a variable C (for example, the class variable in a 
classification problem), it can be expressed as follows: 
 
 . (1) 
 
In the same line, Shannon’s entropy is a measure of information based on uncertainty that can 
be expressed as: 
 
 .  (2) 
 
The split criterion used in CART, that we call GInf, is based on the Gini Index, as follows: 
 
  ,  (3) 
 
where  and X is another known variable (for example, 
a feature variable in a classification problem). 
 
In the C4.5 procedure, the split criterion is called the Info Gain Ratio and it is a measure based 
on Shannon’s entropy. It is defined as: 
 , (4) 

 
where IG , IG is the Info Gain measure defined by Quinlan (1986) and  

 is the entropy of C. The probability of each value of the class variable is estimated in the 
training dataset. In the same way, , where , 
t=1,…,|X|, is each possible state of X; and , j=1,…,k, each possible state of C. 
 
2.3. Procedure for building Decision Trees 
 
In this section, how to build a simple DT using the above mentioned split criteria, is explained. 
The procedure of Abellán and Moral (2003) to build DTs using imprecise probabilities and 
uncertainty measures is used. The method can easily be adapted to be used with precise 
probabilities; for example, via the GInf or IGR split criteria.  
 
Each node N in a DT produces a partition D of the dataset (for the root node the entire dataset 
is considered). Also, each node N has associated a list “Г” of labels of features (features that 
are not in the path from the root node to N). The recursive procedure of Abellán and Moral 
(2003) for building DTs can be expressed in the algorithm shown in Figure 2. 
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Each Exit state in the above procedure corresponds to a leaf node. Here, the most probable 
value of the class variable, associated with the corresponding partition, is selected. 
 
2.4. Method to obtain Decision Rules: Information Root Node Variation method. 
 
When rules are obtained from a single classification tree, they are determined by the variable 
that is used as a root. In other words, the information we select from our dataset depends on 
the direction indicated by the root variable. This one is the most informative variable about 
the class variable via a split criterion.  
 
The method that we will propose for obtaining rules, which we call the Information Root Node 
Variation (IRNV) method, is based on using trees obtained by  varying the root node.  If there 
are m features, and  RXi is the feature that occupies position i in importance with regards to 
the split criterion, RXi will be used as the root to build DTi (i=1,…,m). We use the simple 
method for building trees explained in section 2.2, however now the root node is selected 
directly for each tree (the rest of the building procedure remains the same). Thus, we obtain m 
trees and m rule sets, DTi and RSi (i=1,…,m), respectively. Each RSi is checked in the test set to 
obtain the final rule set. The entire procedure is carried out using GInf and IGR criteria. 
 
The following chart gives a more systematic explanation of the entire process: 
 

1. Select Ginf as the split criterion SC for building trees. 
2. Build DTi using RXi as the root node and SC, for i=1,…,m. 
3. Extract RSi from each DTi. 
4. Check RSi in the TEST set  Selection of rules from RSi. 
5. Extract the final rule set obtained by using the SC. 
6. Use the IGR as SC and go back to step 2. Skip if IGR was used before. 
7. Join the final rule sets obtained using GInf and IGR. 

 
Figure 3 gives a graphic explanation of the procedure for each split criterion. In other words, 
the method shown in Figure 3 must be applied as many times as the split criteria used.  
  

Procedure BuildTree (N, Г) 

1. If Г =Φ, then Exit 
2. Let D be the partition associated with node N 
3. Compute the value of the maximum gain of information for  a 

feature on D (using a split criterion: SC) 
δ= max SC(C,X) 

4. If δ is lower than or equal to 0 then Exit 
5. Else 

6. Let  Xt be the variable for which the maximum δ is 
attained 

7. Remove Xt   from Г 
8. Assing Xt  to the node N 
9. For each possible value xt  of  Xt 
10. Add a node Nt 
11. Make Nt  a child of N 
12.  Call BuilTree (Nt , Г ) 

 

 

 

 

 

Figure 2. Algorithm for building DTs. 



8 

 

Figure 3. Information Root Node Variation method for each split criterion. 

 
The IRNV method allows 19 possible DTs (i.e. one DT for each one of the features) for each one 
of the split criteria (GInf and IGR) (see Table 1) to be built from our dataset. All the DRs are 
extracted for each of the DTs built.  Finally, each RSi obtained from each DTi (with each split 
criterion) is verified on the corresponding test set. 
 
It is important to point out that we use two very different split criteria that can be used to 
build different trees, despite the fact that they begin with the same root node.  
 
2.5. Significant Decision Rules 
 
In order to extract significant and useful rules (i.e. rules that could provide useful information 
for the implementation of road safety strategies in the future), of the type “AB”, the 
parameters and the minimum threshold used by Montella et al. (2011) and De Oña et al. 
(2013a) are used: 
 
- Support (S) is the percentage of the dataset where “A & B” appear. Minimum threshold is 

S≥ 0.6% 
- Population (Po) is the percentage of the dataset where “A” appears. Minimum threshold is 

Po≥1% 
- Probability (P) is the percentage of cases in which the rule is accurate (i.e. P=S/Po 

expressed as percentage). Minimum threshold is P≥60% 
 

Due to the large number of patterns considered, DTs can suffer from an extreme risk of Type-1 
error, that is, of finding patterns that appear due to chance alone to satisfy constraints on the 
sample data (Webb, 2007). To reduce this error and following other authors (Chang and Chen, 
2013; De Oña et al., 2013a; Kashani and Mohaymany, 2011; Montella et al., 2011) the rules 
extracted on the training set (with the minimum parameters) are validate using the testing set. 
 
2.6. Importance of the variables 
 
The importance of a variable in the model is defined following Eq. 5:  
 
 , (5) 
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where X is the variable with possible states {xi...xn}, C is the class variable (SEV in our case), nxi 
is the number of cases that X=xi, and n is the number of total cases; and I is the GInf or the IGR 
split criterion, i.e. an information gain measure. 
 
3. RESULTS 
 
The software used to build the DTs was Weka (Witten and Frank, 2005). The procedures for 
building the DTs based on each split criterion and the root node variation procedure were 
implemented using the method proposed by Abellán and Masegosa (2010). 
 
In order to obtain DRs that would be useful and easy to understand by the analysts, we built 
DTs with only four levels. Previous studies (Montella et al., 2011; Montella et al., 2012) used 
the same number of levels. 
 
Using the method exposed in Section 2.2 to obtain DRs we would use only one DT (DT1 in Table 
2). Using the IRNV method, by varying the root node, 19 DTs, can be used to obtain DRs, (DT1 
to DT19 in Table 2) for each one of the split criteria (GInf and IGR). Thus, the total number of 
DTs generated is 38 (19 for GInf and 19 for IGR). 
 

 
DTS 

GInf IGR 
ROOT 
NODE  

RULES 
TRAINING 

VALIDATED 
RULES 

ROOT 
NODE 

RULES 
TRAINING 

VALIDATED 
RULES 

DT1 ACT 14 5 SEX 8 6 

DT2 CAU 16 4 ACT 8 2 

DT3 SEX 8 4 CAU 12 5 

DT4 LIG 17 2 CAT 15 7 

DT5 VEH 12 4 VEH 6 1 

DT6 CAT 14 6 LIG 16 7 

DT7 PAW 10 3 NOI 5 2 

DT8 AGE 7 3 SID 10 3 

DT9 TIM 12 3 PAW 7 3 

DT10 SID 8 4 AGE 7 3 

DT11 NOI 9 3 LAW 4 3 

DT12 DAY 12 5 TIM 11 6 

DT13 LAW 14 8 DAY 11 5 

DT14 MON 16 3 BAR 6 4 

DT15 ROM 8 5 MON 10 4 

DT16 OI 12 7 ROM 7 3 

DT17 SHW 14 5 OI 5 1 

DT18 BAR 11 3 SHW 13 10 

DT19 SHT 13 1 SHT 13 6 

TOTAL  227 78  174 81 

Table 2. Number of rules obtained in the different steps of the IRNV method. 

DT1 presents a different root node depending on the split criteria: ACT is selected as root node 
when GInf is used; whereas GEN is selected when using IGR (Table 2). For this DT, 23 rules 
were extracted from the training set (15 with GInf and 8 with IGR) but only 11 rules (5 with 
GInf and 6 with IGR) were validated with the testing set. 
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Table 2 shows, for each root node, the number of the DRs obtained from each DT. Both criteria 
(GInf and IGR) generate more than 170 rules for the training set that verify the minimum 
threshold fixed for the parameters S, Po and P. The variable that generates the highest number 
of rules when they are used as root node is LIG, and depending on the criteria the number of 
rules is: 17 rules when GInf is used, and 16 rules when using IGR. 
 
When the rules are validated using the testing set, the number of rules decreases considerably 
(78 rules with GInf and 81 rules with IGR). We would like to remark that all DTs generate valid 
DRs. When GInf is used, the root node that generates the highest number of valid rules is LAW 
(8 rules). When IGR is used, the root node that generates the highest number of valid rules is 
SHW (10 rules). In both cases, the number of valid rules obtained from a single tree, using both 
criteria, is lower (5 with GInf and 6 with IGR).  
 

VARIABLE GInf (%) VARIABLE IGR (%) 

ACT 100.00 SEX 100.00 
CAU 77.89 ACT 94.51 
LIG 69.56 CAU 81.72 
SEX 69.53 ATF 69.17 
VEH 67.43 VEH 51.96 
ATF 61.21 LIG 36.30 

PAW 44.20 NOI 33.37 
TIM 41.09 SID 32.64 
AGE 40.72 PAW 27.35 
SID 35.47 AGE 21.81 
NOI 33.78 LAW 18.29 
DAY 26.60 TIM 18.25 
LAW 20.91 DAY 13.59 
MON 11.58 BAR 9.24 
ROM 4.64 MON 5.06 

OI 4.54 ROM 3.46 
SHT 3.52 OI 3.15 
BAR 2.02 SHT 2.23 
SHW 0.77 SHW 0.46 

Table 3. Normalized importance of the variables. 
 
Table 3 shows the normalized importance of the variables in the model. Six variables were 
detected as having the greatest impact on accident severity with GInf, with percentages that 
vary from 100% to 61.21%. Five variables were detected with IGR, with percentages ranging 
from 100% to 51.96%. Both split criteria identify the same variables, although with different 
orders of importance: ACT, CAU, SEX, VEH, ATF. The variable LIG is also detected with GInf 
(with a percentage higher than 50%), whereas with IGR its percentage in the model is slightly 
lower (36.3%). However, it occupies sixth place in the importance ranking.  
 
From the point of view of safety, these results are consistent with previous studies. Several 
authors (Kcoleman and Kweon, 2002; De Oña et al., 2011; De Oña et al., 2013a; 2013b) have 
pointed out that accident type is a key variable in severity. Chang and Wang (2006) stressed 
that the most important variable associated with crash severity was the vehicle type. Causes of 
the accident also match previous studies (Al-Ghamdi, 2002; Kashani and Mohyamany, 2011). 
Xie et al. (2009) and Mujalli and De Oña (2013) found that atmospheric factors have an 
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important effect on severity. Many studies have also indicated gender differences in injury 
severity (Abel-Aty, 2003; Evans 2001; Obeng, 2011; Ulfarsson and Mannering 2004). Lighting 
conditions have been also identified as a variable with effects on severity. In fact, Gray et al. 
(2008), Abel-Aty (2003) and Helai et al. (2008) found that more severe injuries are predicted 
during darkness. Pande and Abel-Aty (2009) concluded that there is a significant correlation 
between lack of illumination and high crash severity. De Oña et al. (2011) and De Oña et al. 
(2013a) also pointed that KSI accidents are associated with roadways with no lighting.   
 
In order to describe the pattern showed in the rules, only rules with the most severe 
consequent (accidents with killed or seriously injured, KSI) are extracted in Table 4. The IRNV 
method generates 4 KSI rules with GInf and 3 KSI rules with IGR (DT1); and 36 KSI rules for GInf 
and 28 for IGR (DT2-19). Due to the large number of rules obtained with each method, only rules 
with S>5% are extracted on Table 4. The support is a parameter that combines confidence and 
population. Therefore, a support higher than 5% implies that the rule is met by at least 63 
accidents in the sample under study.  
 

Num. RULES (IF…) THEN  S% Po% P% 

1 NOI=[1];OCU=[1];VEH=MOT;ACT=ROR KSI 7.62 10.79 70.59 

2 CAU=DC;VEH=MOT;ATF=GW;ACT=ROR KSI 8.10 11.59 69.86 

3 SEX=M;ACT=ROR;CAU=DC;VEH=MOT KSI 7.78 11.43 68.06 

4 ACT=ROR;CAU=DC;VEH=MOT;ATF=GW KSI 8.10 11.59 69.86 

5 ATF=GW;SEX=M;ACT=ROR;VEH=MOT KSI 8.81 12.86 68.52 

6 LIG=WL;ATF=GW;SEX=M;LAW=THI KSI 5.40 7.46 72.34 

7 SID=WR;CAU=DC;VEH=MOT;BAR=N KSI 7.06 11.67 60.54 

8 TIM=[18-24];ATF=GW;LIG=WL;BAR=N KSI 8.10 13.02 62.20 

9 BAR=N;SEX=M;ACT=CP;ATF=GW KSI 5.00 7.38 67.74 

10 SHW=NE;SEX=M;ATF=GW;LIG=WL KSI 7.06 11.35 62.24 
Note: Ruels 1 and 2 have been obtained form the  GInf criterion and rules  3-10  from  the IGR criterion. In bold are the 
rules that are repeated in both methods. 

Table 4. DRs from the IRNV method. 
 
Table 4 shows the following patterns. Using the IRNV method, we identified two rules (rules 1 
and 2) with GInf (and neither of them was obtained from DT1); and seven rules (rules 3 to 10) 
with IGR (rule 3 was obtained from DT1). 
 
Rules 1 to 5 allow the identification of one of the most important concerns for road safety in 
Spain: run-off-road for motorcycles in two-lane rural highways (DGT, 2011). Precisely, one of 
the priorities of the Spanish Road Safety Strategy 2011-2020 (DGT, 2011) is to diminish this 
type of accidents, as well as their severity.   
 
- Rule 1 identifies this kind of accident when only one occupant is involved (therefore, there 

is also only one injury). The probability of KSI in these cases is one of the highest (70.6%). 
- Rules 2 and 4 are the same. Motorcyclists’ run-off-road accidents under good weather 

conditions when the cause of the accident is due to the driver. The probability of KSI in 
these cases is 69.9%. 

- Rule 3 identifies motorcyclists’ run-off-road accidents for male drivers and due to driver 
characteristics. The probability of KSI is 68%. 

- Rule 5 shows a similar pattern: motorcyclists’ run-off-road accidents under good weather 
conditions when the driver is a male. The probability of KSI in these cases is 68.5%. 
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In this sense, the DGT is making an important effort to lower the number of accidents of this 
type (e.g. advertising campaigns that target motorcyclists; more stringent monitoring on two-
lane rural highways; lowering the maximum speed limit on two-lane rural highways; etc.). The 
DGT also tries to lower the motorcycle crash severity (e.g. with projects that target 
improvements on the shoulders of two-lane rural highways that have no safety barriers). On 
the other hand, one of the priorities in the DGT’s 2013-2016 Research Plan (DGT, 2011) is to 
identify the main factors that lead to accidents of this type (run-off-road for motorcycles on 
two-lane rural highways). 
 
Table 4 shows that three rules (rules 7 to 9) identify KSI accidents on two-lane rural highways 
with no safety barriers: 
 
- Rule 7 identifies motorcyclists’ accidents with no-restrained sight distance due to the 

driver. Even if this rule does not present a very high probability (only 60.5%), it represents 
11.7% of the population.  

- Rule 8 identifies accidents in the evening (18-24 h) under good weather conditions on 
roads with no lighting. This rule presents the highest population (13.0%). 

- Rule 9 identifies collision with pedestrian accidents under good weather conditions when 
the driver is a male. 

 
These rules show that safety barriers play a fundamental role in crash severity on two-lane 
rural highways.  
 
Finally, rules 6 and 10 share 3 variables: ACT, LIG and SEX. Thus, the pattern described for 
these rules refers to an accident on roads with no lighting, when atmospheric factors are good 
for male drivers. If the road has a lane width of < 3.25 m, rule 6 is obtained, whereas rule 10 is 
for roads where the shoulder non-existent or impassable. Thus, from the point of view of road 
safety, bad lighting conditions and bad road features increase accident severity. 
 
4. CONCLUSIONS 
 
If we use a single DT to extract knowledge based on a dataset, in the form of DRs, we are 
constrained by the DT’s structure. However, the method proposed in this paper uses one DT 
for each variable under study (variables that describe the data), which allows us to extract 
much more knowledge. If we add that our model uses 2 split criteria, the extraction is even 
more extensive.  
 
More than 70 significant validated rules were obtained from the practical study conducted on 
traffic accident data from rural roads in Granada (Spain). For the KSI rules, only one rule was 
repeated in both methods (rule 2 with rule 4); however some patterns were similar in both 
methods (rules 1 to 5). Although the criterion based on IGR detected a higher number of rules 
(with the set minimum parameters), it could be said that the two criteria complement each 
other when searching for the key factors that have an impact on accident severity, because 
each criterion detects different patterns within the same dataset.   
 
With regards to the special patterns detected for the KSI accidents analysed, we could 
highlight the high number of rules for the motorcyclists’ run-off-road accidents (rules 1 to 5). 
These results are in line with current concerns for road safety on two-lane rural highways. The 
Spanish Road Safety Strategy 2011-2020 (DGT, 2011) promotes specific studies on the factors 
associated with the highest levels of severity in run-off-road accidents on two-lane rural 
highways (i.e. KSI) when motorcyclists are involved. 
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Our study also highlights the need for studying the conditions in the environment of two-lane 
rural highways (i.e. safety barriers, shoulders, visibility, lighting, etc.), because they have a 
substantial impact on crash severity.  
 
Finally, it should be pointed out that the proposed method can be extrapolated for specific 
studies on other datasets (i.e. other infrastructure, roads and countries). This method can also 
provide DRs that would be useful and easy for road safety analysts and managers to use to 
identify problems.  
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