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Abstract

In the context of fuzzy metrics in the sense of George and Veeramani, we
introduce the concept of stratified fuzzy metric. Many well-known fuzzy
metrics are stratified. We prove that stratified strong fuzzy metric spaces
(X,M, ∗) are completable, under the assumption that ∗ is integral (positive).
In particular, stratified fuzzy ultrametric spaces are completable.
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1. Introduction

The notion of fuzzy metric space has been presented from different points
of view. One of them, which we deal in this paper, was introduced by George
and Veeramani in [1, 3], where the authors studied this notion topologically
and showed that every fuzzy metric M on a set X generates a topology τM
on X, which is metrizable. Moreover, it was proved later in [2, 10], that the
class of topological spaces which are fuzzy metrizable agrees with the class
of metrizable spaces. So, many results on classical metric spaces have been
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stated in the fuzzy metric setting [10, 13, 17]. Nevertheless, we can find some
differences between classical metrics and fuzzy metrics, for instance in Fixed
Point Theory, which has developed a wide range of research in these last
years (see [16, 18, 20, 21, 22]).

Another topic which differs with the classical theory is the fuzzy metric
completion. Indeed, Gregori and Romaguera [11] proved that there exist
fuzzy metric spaces which are not completable. Later, the same authors
gave a characterization of those fuzzy metric spaces that are completable.
We reformulate that characterization in the following theorem, for better
observing the advances of the theory on completion of fuzzy metric spaces.

Theorem 1.1. [12] A fuzzy metric space (X,M, ∗) is completable if and only
if for each pair of Cauchy sequences {an} and {bn} in X the following three
conditions are fulfilled:

(c1) The assignment t → lim
n
M(an, bn, t) for each t > 0 is a continuous

function on ]0,∞[, provided with the usual topology of R.

(c2) Each pair of point-equivalent Cauchy sequences is equivalent, i.e.,
lim
n
M(an, bn, s) = 1 for some s > 0 implies lim

n
M(an, bn, t) = 1 for all

t > 0.

(c3) lim
n
M(an, bn, t) > 0 for all t > 0.

Since then, to find large classes of completable fuzzy metric spaces turned
an interesting question. Recently, it has been proved [6] that conditions
(c1) − (c3) constitute an independent axiomatic system, i.e., two of such
conditions do not imply the third one.

The first non-completable fuzzy metric space which appears in the liter-
ature was Example 4.2, which fulfils (c1) − (c2) but not (c3). The second
one was Example 3.4 (b), which fulfils (c1) and (c3) but not (c2). In [6]
a non-completable fuzzy metric space fulfilling (c2) − (c3) but not (c1) was
given (Example 4.1).

For getting condition (c3) in a fuzzy metric space (X,M, ∗) it suffices
(see Lemma 3.7) that ∗ be integral (Definition 1). Under this assumption a
strong (non-Archimedean) fuzzy metric (Definition 2.5) is completable if and
only if (c2) is satisfied ([6], Theorem 4.7). This result is a consequence of the
fact that condition (c1) is always satisfied in a strong fuzzy metric space ([7],
Theorem 35). Up we know no approaches on the condition (c2) have been
made until now.

2



The aim of this paper is to find a large class of fuzzy metric spaces satis-
fying condition (c2). So, we introduce the concept of stratified fuzzy metric
space (Definition 3.2). We show that the class of stratified fuzzy metric
spaces is a large class that contains many well-known fuzzy metric spaces.
We also provide examples of non-stratified fuzzy metric spaces. The main
result of this paper (Theorem 3.5) proves that condition (c2) is satisfied by
stratified fuzzy metric spaces. As a consequence, under the assumption that
∗ is integral, we can assert that a stratified fuzzy metric space is completable
if and only if it satisfies condition (c1) (Corollary 3.8), and then stratified
strong fuzzy metric spaces are completable (Theorem 3.9).

Appropriate examples illustrate our results and, in particular, that the
converse of Theorem 3.9 is not true and also that we cannot remove any
condition in this theorem.

The structure of the paper is as follows. After the preliminaries section,
in Section 3 we introduce the concept of stratified fuzzy metric space and
prove our results related to the completability of this class of fuzzy metric
spaces. In Section 4 we provide appropriate examples to illustrate the theory
and for supporting our conclusions.

2. Preliminaries

In this section, we present some results related to fuzzy metric spaces,
introduced by George and Veeramani in [1], and their completiability. We
begin recalling the the concept of t-norm, which plays an important role in
the definition of this concept.

Definition 2.1. A t-norm (as it is used today) is a binary operator T on
the unit interval [0, 1], i.e., a function T : [0, 1]2 → [0, 1], such that for all
x, y, z ∈ [0, 1] the following four axioms are satisfied:

(T1) T (x, y) = T (y, x); (Commutativity)

(T2) T (x, T (y, z)) = T (T (x, y), z); (Associativity)

(T3) T (x, y) ≥ T (x, z); (Monotonicity)

(T4) T (x, 1) = x. (Boundary Condition)
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An interesting class of t-norms, especially to the study that we will carry
out in this paper is the class of integral or positive t-norms which satisfy the
next condition:

x ∗ y > 0 whenever x, y ∈]0, 1]. (1)

Notice that the continuous t-norm minimum, denoted by ∧, and the usual
product are integral. The Lukasievicz continuous t-norm given by xLy =
max{x+ y − 1, 0} is not integral.

After recalling the concept of t-norm, we are able to present the concept
of fuzzy metric space, which we deal in this paper, since it is used to define
the transitivity.

Definition 2.2. (George and Veeramani [1]) A fuzzy metric space is an or-
dered triple (X,M, ∗) such that X is a (non-empty) set, ∗ is a continuous
t-norm and M is a fuzzy set on X ×X×]0,∞[ satisfying the following con-
ditions, for all x, y, z ∈ X, s, t > 0:

(GV1) M(x, y, t) > 0

(GV2) M(x, y, t) = 1 if and only if x = y

(GV3) M(x, y, t) = M(y, x, t)

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s)

(GV5) M(x, y, ) :]0,∞[→]0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗) is a fuzzy
metric on X. If no confusion can arise, we simply write M . Notice that if
(M, ∗) is a fuzzy metric on X and � is a continuous t-norm such that � ≤ ∗,
then (M, �) is a fuzzy metric on X.

Remark 2.3. It is well-known that the function M(x, y, ) : R+ →]0, 1] is
non-decreasing for all x, y ∈ X. From now on, it will be denoted as Mxy.

Two interesting classes of fuzzy metric spaces are presented in the next
definitions:

Definition 2.4. (Gregori and Romaguera [12]) A fuzzy metric M on X is
said to be stationary if M does not depend on t, i.e., if for each x, y ∈ X,
the function Mx,y(t) = M(x, y, t) is constant. In this case we write M(x, y)
instead of M(x, y, t).
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Definition 2.5. (Gregori et al. [7], Istrǎţescu [14]) A fuzzy metric space
(X,M, ∗) is said to be strong (non-Archimedean) if for all x, y, z ∈ X and
all t > 0 satisfies

M(x, z, t) ≥M(x, y, t) ∗M(y, z, t).

A strong fuzzy metric for the minimum t-norm is called a fuzzy ultrametric.

George and Veeramani proved in [1] that every fuzzy metric M on X
generates a topology τM on X which has as a base the family of open sets
of the form {BM(x, ε, t) : x ∈ X, 0 < ε < 1, t > 0}, where BM(x, ε, t) = {y ∈
X : M(x, y, t) > 1− ε} for all x ∈ X, ε ∈]0, 1[ and t > 0.

Let (X, d) be a metric space and let Md a fuzzy set on X × X×]0,∞[
defined by

Md(x, y, t) =
t

t+ d(x, y)

Then (X,Md, ·) is a fuzzy metric space, [1], and Md is called the standard
fuzzy metric induced by d. It is easy to check and a well-known fact that
the topology on X deduced from d agrees with τMd

.
Furthermore, in [1] the authors provided the next characterization of

convergent sequences.

Proposition 2.6. Let (X,M, ∗) be a fuzzy metric space. A sequence {xn}
in X converges to x if and only if limnM(xn, x, t) = 1, for all t > 0.

Attending to the last characterization, it was introduced in a natural way
in [1], the next concept of Cauchy sequence and the corresponding concept
of complete fuzzy metric spaces that we recall below.

Definition 2.7. A sequence {xn} in a fuzzy metric space (X,M, ∗) is said
to be M-Cauchy, or simply Cauchy, if for each ε ∈]0, 1[ and each t > 0 there
exists n0 ∈ N such that M(xn, xm, t) > 1−ε for all n,m ≥ n0 or, equivalently,
lim
n,m

M(xn, xm, t) = 1 for all t > 0. X is said to be complete if every Cauchy

sequence in X is convergent with respect to τM . In such a case M is also
said to be complete.

Remark 2.8. Notice that there exist other notions of Cauchyness in the
literature (see for example [9]).
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In the light of the preceding concepts, we are able to recall the concept of
completion of a fuzzy metric space that introduced Gregori and Romaguera
in [11].

Definition 2.9. Let (X,M, ∗) and (Y,N, �) be two fuzzy metric spaces. A
mapping f from X to Y is said to be an isometry if for each x, y ∈ X and
t > 0, M(x, y, t) = N(f(x), f(y), t) and, in this case, if f is a bijection,
X and Y are called isometric. A fuzzy metric completion of (X,M) is a
complete fuzzy metric space (X∗,M∗) such that (X,M) is isometric to a
dense subspace of X∗. X is said to be completable if it admits a fuzzy metric
completion.

Finally, we recall a concept introduced by the aforementioned authors
in [12], which they used to provide a characterization of completable fuzzy
metric spaces that we also show following the other one.

Definition 2.10. Let X,M, ∗) be a fuzzy metric space. Then a pair {an}
and {bn} of Cauchy sequences in X is called:

(a) point-equivalent if there exists s0 such that lim
n
M(an, bn, s0) = 1.

(b) equivalent if lim
n
M(an, bn, t) = 1 for all t > 0.

Theorem 2.11. (Gregori and Romaguera [12]) A fuzzy metric space (X,M, ∗)
is completable if and only if it satisfies the following conditions:

(C1) Given Cauchy sequences {an} and {bn} in X, then t→ lim
n
M(an, bn, t)

is a continuous function on ]0,+∞[ with values in ]0, 1].

(C2) Each pair of point-equivalent Cauchy sequences is equivalent.

3. Stratified fuzzy metric spaces

We start this section with the following proposition.

Proposition 3.1. Let (X,M∗) be a fuzzy metric space. The following are
equivalent:

(i) M(a, b, s) = M(a′, b′, s) implies M(a, b, t) = M(a′, b′, t) for all t > 0.

(ii) M(a, b, s) < M(a′, b′, s) implies M(a, b, t) < M(a′, b′, t) for all t > 0.
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Proof. (i)⇒ (ii) Suppose that there exists s > 0 such that M(a, b, s) <
M(a′, b′, s). If M(a, b, t0) = M(a′, b′, t0) for some t0 > 0 then M(a, b, t) =
M(a′, b′, t) for all t > 0, a contradiction. Then M(a, b, t) 6= M(a′, b′, t) for all
t > 0.

Suppose now that there exists t1 > 0 such that M(a, b, t1) > M(a′, b′, t1).
So, since the functions Mab(t) and Ma′b′(t) are continuous, then the function
Mab −Ma′b′ is also continuous. Now, we have that (Mab −Ma′b′)(s) < 0 and
(Mab −Ma′b′)(t1) > 0 and so there exists t2 ∈]s, t1[, or t2 ∈]t1, s[, such that
(Mab −Ma′b′)(t2) = 0, i.e. M(a, b, t2) = M(a′, b′, t2) and by (i) we have that
M(a, b, t) = M(a′, b′, t) for all t > 0, a contradiction.

(ii)⇒ (i) It is obvious. �

Definition 3.2. Let (X,M, ∗) be a fuzzy metric space. We will say that
(X,M, ∗) is a stratified fuzzy metric space if it satisfies one of the previous
conditions in Proposition 3.1. In this case, we say that (M, ∗) (or simply M)
is a stratified fuzzy metric on X.

Observe that in a stratified fuzzy metric space, if the graphs of the func-
tions Mxy and Mx′y′ intersect, then Mxy = Mx′y′ . Next we will show some
examples of stratified fuzzy metrics.

Example 3.3. (a) Stationary fuzzy metrics are stratified.

(b) Any fuzzy metric space (X,M, ∗) where M is defined by means of a
classical metric d on X, i.e. in which in the expression of the fuzzy
mettric appears ”explicitly” a classical distance ([8], Examples 4-6), is
stratified. In particular, the standard fuzzy metric Md and M(x, y, t) =

e
−d(x,y)

t introduced in [1] are stratified.

(c) Let (M, ∗) be a stationary fuzzy metric on a set X where ∗ is inte-
gral and let ϕ :]0,+∞[→]0, 1] be a non-decreasing continuous function.
Then the pair (N, ∗) where N is defined by

N(x, y, t) =

{
1 if x = y

M(x, y, t) ∗ ϕ(t) if x 6= y

is a stratified fuzzy metric on X.

Next example shows three non-stratified fuzzy metrics.
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Example 3.4. (a) Consider the fuzzy metric space (X,M, ∗) where X =

]0,+∞[, M(x, y, t) = min{x,y}+t
max{x,y}+t

and ∗ the usual product [23]. We have

that M(1, 2, 1) = 1+1
2+1

= 2
3

and M(3, 5, 1) = 3+1
5+1

= 2
3
. On the other

hand, M(1, 2, 2) = 1+2
2+2

= 3
4

and M(3, 5, 2) = 3+2
5+2

= 5
7

(
6= 3

4

)
. Hence M

is not stratified.

(b) Let {xn} and {yn} be two strictly increasing sequences of positive real
numbers, which converge to 1 with respect to the Euclidean metric,
with A ∩ B = ∅, where A = {xn : n ∈ N} and B = {yn : n ∈ N}. Put
X = A ∪B and define M on X by

M(xn, xn, t) = M(yn, yn, t) = 1 for all n ∈ N, t > 0,

M(xn, xm, t) = xn ∧ xm for all n,m ∈ N with n 6= m, t > 0,

M(yn, ym, t) = yn ∧ ym for all n,m ∈ N with n 6= m, t > 0,

M(xn, ym, t) = M(ym, xn, t) = xn ∧ ym for all n,m ∈ N, t ≥ 1,

M(xn, ym, t) = M(ym, xn, t) = xn ∧ ym ∧ t for all n,m ∈ N, 0 <
t < 1.

In [12] it is proved that (X,M,∧) is a fuzzy metric space. Now, let x1 <
y1 < x2, we have that M(x1, x2, 1) = x1 ∧ x2 = x1 and M(x1, y1, 1) =
x1 ∧ y1 = x1. Let t < x1 then M(x1, x2, t) = x1 ∧ x2 = x1 and
M(x1, y1, t) = x1 ∧ y1 ∧ t = t < x1. Hence M is not stratified.

(c) Let {xn} ⊂]0, 1[ be a strictly increasing sequence convergent to 1 re-
spect to the usual topology of R. Put X = {xn} ∪ {1}. Define the
function M given by

M(x, x, t) = 1 for each x ∈ X, t > 0

M(xn, xm, t) = min{xn, xm} for all m,n ∈ N, t > 0

M(xn, 1, t) = M(1, xn, t) = min{xn, t} for all n ∈ N, t > 0

In [15] it is proved that (X,M,∧) is a fuzzy metric space. Now,
M(1

2
, 1, 1

4
) = M(1

3
, 1, 1

4
) = 1

4
. Nevertheless, M(1

2
, 1, 1) = 1

2
andM(1

3
, 1, 1) =

1
3

and, in consequence, (M,∧) is not stratified.
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Theorem 3.5. Let (M, ∗) be a stratified fuzzy metric on X. Let {an} and
{bn} be two Cauchy sequences in X satisfying lim

n
M(an, bn, s) = 1 for some

s > 0. Then lim
n
M(an, bn, t) = 1 for all t > 0, that is, each pair of point-

equivalent Cauchy sequences in X is equivalent.

Proof. Let {an} and {bn} be two Cauchy sequences. If both are constant
from a certain stage n1 ∈ N then, clearly, an = bn for all n ≥ n1 and the
result is obvious.

Suppose, without loss of generality, that {an} is not constant. Consider
the subsequences {xn} and {yn} of {an} given by xn = a2n−1 and yn =
a2n, n ≥ 1. Clearly {xn} and {yn} are Cauchy and it is easy to see that

lim
n
M(xn, yn, t) = 1 for all t > 0. (2)

Now, since lim
n
M(an, bn, s) = 1 we can find n1 = min{m ∈ N : M(am, bm, s) ≥

M(x1, y1, s)} and also n2 = min{m ∈ N with m > n1 : M(am, bm, s) ≥
M(x2, y2, s)}. In this way, we can define by induction a subsequence {M(ani

, bni
, s}i

of {M(an, bn, s)}n which satisfies M(ani
, bni

, s) ≥ M(xi, yi, s) for i ≥ 1.
Since M is stratified and condition (2) is satisfied then lim

i
M(ani

, bni
, t) ≥

lim
n
M(xi, yi, t) = 1 for all t > 0.

Let t > 0 and ε ∈]0, 1[. Choose δ ∈]0, 1[ such that δ ∗ δ ∗ δ > ε. We have
that M(an, bn, t) ≥M(an, ani

, t
3
)∗M(ani

, bni
, t
3
)∗M(bni

, bn,
t
3
) and since {an}

and {bn} are Cauchy, there exists p ∈ N such that M(an, ani
, t
3
) > δ and

M(bni
, bn,

t
3
) > δ for all n, ni ≥ p. Since lim

i
M(ani

, bni
, t
3
) = 1, there exists

q ∈ N such that M(ani
, bni

, t
3
) > δ for all i ≥ q. Choose n0 = max{p, q}. We

have that M(an, bn, t) > δ ∗ δ ∗ δ > ε for all n ≥ n0 and, in consequence,
lim
n
M(an, bn, t) = 1. �

Remark 3.6. (i) The converse of Theorem 3.5 is not true. Indeed, it is
easy to verify that in the fuzzy metric space (X,M, ∗) of Example 3.4
(a) every pair of point-equivalent Cauchy sequences is equivalent and,
as it has been shown, (X,M, ∗) is not stratified.

(ii) We cannot replace stratified by strong in Theorem 3.5. Indeed, it is easy
to verify that (X,M, ∗) of Example 3.4 (b) is strong. Now, it was shown
in [12] the existence of a pair of point-equivalent Cauchy sequences in
X which are not equivalent.
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Lemma 3.7. (Gregori et. al. [7]) Let (X,M, ∗) be a fuzzy metric space
and suppose ∗ integral. Let {an} and {bn} be Cauchy sequences in X and
let t > 0. If {M(an, bn, t)} converges (in the usual topology of R) to c, then
c > 0.

As a consequence of Theorem 3.5 and Lemma 3.7, we obtain the following
corollary.

Corollary 3.8. Under the assumption that ∗ is integral, a stratified fuzzy
metric space (X,M, ∗) is completable if and only if (c1) is satisfied.

The following theorem gives a large class of completable fuzzy metric
spaces.

Theorem 3.9. Let (M, ∗) be a stratified strong fuzzy metric on X and sup-
pose that ∗ is integral. Then (X,M, ∗) is completable.

Proof. We will see that Theorem 1.1 is accomplished. Let {an} and
{bn} be two Cauchy sequences in X. From [6], Theorem 21, the assignment
t → lim

n
M(an, bn, t) is a continuous function on ]0,+∞[, equipped with the

usual topology on R, since M is strong, and so (c1) is satisfied. By Lemma
3.7 we have that lim

n
M(an, bn, t) > 0 and so (c3) is fulfilled. Finally, by

Theorem 3.5, condition (c2) is satisfied, and thus (X,M, ∗) is completable.�

Corollary 3.10. Let (M,∧) be a stratified fuzzy ultrametric on X. Then
(X,M,∧) is completable.

Remark 3.11. Notice that, in general, a fuzzy ultrametric space is not com-
pletable (see Example 4.3).

4. Examples

In this section we give appropriate examples that illustrate the results
obtained in the previous section. The following three examples prove that
we cannot remove any condition in Theorem 3.9

Example 4.1. A non-completable stratified fuzzy metric space with integral
t-norm. Let d be the usual metric on R restricted to X =]0, 1] and consider
the standard fuzzy metric Md induced by d. Define the function

M(x, y, t) =


Md(x, y, t) 0 < t ≤ d(x, y)

Md(x, y, 2t) · t−d(x,y)1−d(x,y) +Md(x, y, t) · 1−t
1−d(x,y) d(x, y) < t ≤ 1

Md(x, y, 2t) t > 1
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In [4] it is proved that (M, ·) is neither a completable nor a strong fuzzy
metric on X. As we have observed, the t-norm · is integral. Next we will see
that (M, ·) is a stratified fuzzy metric on X.

Note that if d(x, y) = d(x′, y′) then M(x, y, t) = M(x′, y′, t) for all t > 0.
Suppose that M(x, y, t0) = M(x′, y′, t0) for some t0 > 0. We will see that

M(x, y, t) = M(x′, y′, t) for all t > 0. To prove it we distinguish four cases:

1) If 0 < t0 ≤ d(x, y and 0 < t0 ≤ d(x′, y′), then we have thatM(x, y, t0) =
t0

t0+d(x,y)
= t0

t0+d(x′,y′)
= M(x′, y′, t0) and so d(x, y) = d(x′, y′). Therefore, at-

tending to the above observation, we have M(x, y, t) = M(x′, y′, t) for all
t > 0.

2) If t0 > 1 then M(x, y, t0) = 2 t0
2 t0+d(x,y)

= 2 t0
2 t0+d(x′,y′)

and so d(x, y) =

d(x′, y′). Thus, as before, M(x, y, t) = M(x′, y′, t) for all t > 0.

3) Suppose that d(x, y) < t0 ≤ 1 and d(x′, y′) < t0 ≤ 1. Obviously, if
d(x, y) = d(x′, y′), then M(x, y, t) = M(x′, y′, t) for all t > 0.

Suppose, without loss of generality, that d(x, y) < d(x′, y′). ThenMd(x, y, t) >
Md(x

′, y′, t) for all t > 0. Besides Md(x, y, 2t) ≥Md(x, y, t) for all x, y ∈]0, 1].
Now,

M(x, y, t0) = Md(x, y, 2 t0) · t0−d(x,y)1−d(x,y) + Md(x, y, t0) · 1−t0
1−d(x,y) =

= Md(x, y, 2 t0)· t0−d(x
′,y′)

1−d(x′,y′) +Md(x, y, t0)· 1−t0
1−d(x′,y′)+Md(x, y, 2 t0)·

(
t0−d(x,y)
1−d(x,y) −

t0−d(x′,y′)
1−d(x′,y′)

)
+

+Md(x, y, t0) ·
(

1−t0
1−d(x,y) −

1−t0
1−d(x′,y′)

)
>

> Md(x′, y′, 2 t0) · t0−d(x
′,y′)

1−d(x′,y′) + Md(x′, y′, t0) · 1−t0
1−d(x′,y′)+

+Md(x, y, t0) ·
(
t0−d(x,y)
1−d(x,y) −

t0−d(x′,y′)
1−d(x′,y′) + 1−t0

1−d(x,y) −
1−t0

1−d(x′,y′)

)
=

= Md(x′, y′, 2 t0) · t0−d(x
′,y′)

1−d(x′,y′) + Md(x′, y′, t0) · 1−t0
1−d(x′,y′) = M(x′, y′, t0),

a contradiction.

4) Finally, we will see that the case d(x, y) < t0 and 0 < t0 ≤ d(x′, y′)
is not possible. Indeed, in such a case d(x, y) < d(x′, y′) and, by our initial
assumption, we have that

M(x′, y′, t0) = t0
t0+d(x′,y′)

= 2 t0
2 t0+d(x,y)

· t0−d(x,y)
1−d(x,y) + t0

t0+d(x,y)
· 1−t0
1−d(x,y) = M(x, y, t0).

In this case it is easy to verify that M(x, y, t0) ≥ t0
t0+d(x,y)

and then we

have that M(x, y, t0) ≥ t0
t0+d(x,y)

> t0
t0+d(x′,y′)

= M(x′, y′, t0), a contradiction.

Example 4.2. A non-completable stratified strong fuzzy metric space [11].
Let {xn}n≥3 and {yn}n≥3 be two sequences of distinct points such that A ∩
B = ∅, where A = {xn : n ≥ 3} and B = {yn : n ≥ 3}.
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Put X = A ∪ B. Define a real valued function M on X × X×]0,∞[ as
follows:

M(xn, xm, t) = M(yn, ym, t) = 1−
[

1

n ∧m
− 1

n ∨m

]
,

M(xn, ym, t) = M(ym, xn, t) =
1

n
+

1

m
,

for all n,m ≥ 3.
In [11] it is proved that (X,M,L) is a non-completable fuzzy metric space.
It is obvious that (M,L) is a stratified strong fuzzy metric on X, since it

is stationary. Now, notice that the continuous t-norm L is not integral.

Example 4.3. A non-completable strong fuzzy metric space with an integral
t-norm [12]. Consider the fuzzy metric space (X,M,∧) given in Example
3.4. It is easy to verify that (M,∧) is strong and, clearly, ∧ is integral. In
[12] it is proved that (M,∧) is a non-completable fuzzy metric on X. Here
we have shown that (M,∧) is not a stratified fuzzy metric. Observe that
(X,M,∧) is a fuzzy ultrametric space.

Remark 4.4. Under the assumption that the continuous t-norm is integral,
the converse of Theorem 3.9 is not true. Indeed, the fuzzy metric space of
Example 3.4 (a) is strong and completable but it is not stratified. On the
other hand, if d is a metric, which is not ultrametric on X, then (X,Md,∧)
is stratified and completable [5] but it is not strong [19].

Remark 4.5. The authors in [6] have proved that the assignment t →
lim
n
M(an, bn, t), where {an} and {bn} are Cauchy sequences in a strong fuzzy

metric space, is a continuous function. This assertion is not true, in gen-
eral, for stratified fuzzy metrics (indeed, in [4] the authors have found two
Cauchy sequences in the stratified fuzzy metric space of Example 4.1 for which
the mentioned assignment is not a continuous function). Nevertheless, the
following question remains open.

Open question. Let (X,M, ∗) be a stratified fuzzy metric space and let
{an} and {bn} be two Cauchy sequences in X. Does it exist lim

n
M(an, bn, t)

for all t > 0?
Notice that this question has affirmative answer for a strong fuzzy metric

space [7].
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[9] V. Gregori, J.J. Miñana, S. Morillas, A. Sapena, Cauchyness and conver-
gence in fuzzy metric spaces, RACSAM, in press. DOI 10.1007/s13398-
015-0272-0.

[10] V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy
Sets and Systems 115 (2000) 485-489.

[11] V. Gregori, S. Romaguera, On completion of fuzzy metric spaces, Fuzzy
Sets and Systems 130 (2002) 399-404.

[12] V. Gregori, S. Romaguera, Characterizing completable fuzzy metric
spaces, Fuzzy Sets and Systems 144 (2004) 411-420.
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