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Abstract.

This paper evaluates the performance of first generation entropy metrics, featured

by the well known and widely used Approximate Entropy (ApEn) and Sample Entropy

(SampEn) metrics, and what can be considered an evolution from these, Fuzzy

Entropy (FuzzyEn), in the Electroencephalogram (EEG) signal classification context.

The study uses the commonest artifacts found in real EEGs, such as white noise,

and muscular, cardiac, and ocular artifacts. Using two different sets of publicly

available EEG records, and a realistic range of amplitudes for interfering artifacts,

this work optimises and assesses the robustness of these metrics against artifacts in

class segmentation terms probability. The results show that the qualitative behaviour

of the two datasets is similar, with SampEn and FuzzyEn performing the best, and

the noise and muscular artifacts are the most confounding factors. On the contrary,

there is a wide variability as regards initialization parameters. The poor performance

achieved by ApEn suggests that this metric should not be used in these contexts.

Keywords: Electroencephalograms , Signal Classification , Approximate Entropy ,

Sample Entropy , Fuzzy Entropy , EEG Artifacts
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1. Introduction

Electroencephalography is a very important medical monitoring technique based on

recording and analysing the brain’s electrical activity. These recordings are termed

electroencephalograms (EEGs), and are usually obtained non invasive by placing

electrodes on the surface of scalps. The resulting time series can then be used to

study the electrical activity of different brain regions and their correlation with clinical

variables [1]. This analysis, performed by skilled operators using classical signal

processing algorithms, was successfully used to assess a multitude of brain disorders,

damage or processes.

For example, the authors in [2] propose a method based on the EEG power spectrum

to estimate users’ level of alertness while they performed critical tasks. Similarly, [3]

report a method to classify states of fatigue and alertness while driving. Another field of

extensive research is the assessment of sleep or anesthesia depth. In Rodriguez et al. [4],

the authors describe an unsupervised sleep stages classification method based on pattern

recognition techniques and a feature optimisation algorithm. EEG has also been used

to evaluate the brain function after a stroke. The study [5] proposes a dense–array EEG

to capture stroke effects, with a high correlation with the NIH stroke scale by partial

least squares modelling. EEG and different types of dementia form another very active

field of research. In [6], the authors carried out a meta–analysis based on 4157 papers

to assess the correlation between abnormal EEGs and early–onset dementia (EOD).

A clear relationship was found and demonstrated the capability of EEG to become

a reliable tool for EOD diagnosis and prognosis. EEG analysis and processing can

also contribute significantly to diagnosing and managing epilepsy [7] with a number of

specific applications, such as seizure type determination or identification of epileptogenic

regions, among many more.

However, not all the information provided by EEGs can be directly extracted

because some information may be buried far down in the dynamics of the time series

itself. In order to place this information within reach of the understanding of physicians,

it is necessary to implement advanced mathematical methods and algorithms that

extract additional subclinical information efficiently and expeditiously [8]. In line with

this, one of the most successful groups of tools is the time series entropy estimation

methods.

A diverse varied collection of these methods has been proposed in the last few

decades, including Approximate Entropy, Sample Entropy, Fuzzy Entropy, Lempel–

Ziv complexity, Permutation Entropy, Distribution Entropy, Renyi Entropy, Detrended

Fluctuation Analysis, and some others, with a broad range of capabilities and

applications in mainly economy and medicine. Specifically, in the field of EEG

processing, two of the most widely used and successful entropy estimators are

Approximate Entropy (ApEn) [9] and Sample Entropy (SampEn) [10], with hundreds

of studies in the scientific literature.

ApEn quantifies the similarity probability of patterns of length m and m + 1.
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Unlike other previous non linear methods, ApEn has demonstrated its robustness against

noise and its capability to detect complexity changes using finite size datasets, and

has provided at least 1000 data values whenever available [9]. By using similarity

threshold r, defined as a fraction of the standard deviation of the input data, ApEn

is also scale-independent. ApEn has been used to find EEG differences in schizophrenia

patients [11], with lower entropy values obtained for these patients, or in comatose

patients [12]. A significant number of studies has assessed anaesthesia depth where

ApEn was the chosen tool, e.g., the work described in [13]. In that study, the ApEn

metrics was able to track EEG changes in different anesthesia stages. Other research

works have focused on measuring the effects of specific treatments or therapies on a

range of neurological conditions through quantifiable changes in EEG. For example, the

authors in [14] investigated the effect of current stimulation on aphasic patients. EEG

changes due to aging or sleep have also been assessed using ApEn, as in [15], where

ApEn was able to distinguish consciousness levels, and to find differences between age

groups.

SampEn is a similar statistic. It also measures the probability of subsequences

being close at two lengths m and m + 1 within tolerance r. However, SampEn does

not include self–comparisons and exhibits greater consistency than ApEn [16]. The

algorithm to compute SampEn is also faster than that of ApEn, but its execution time

is still O(N2), with N being the length of the time series [17]. SampEn has not yet

been used as extensively as ApEn as this was proposed later, but it is quickly catching

up given its better performance. The scope of application is very similar to that of

ApEn. So, there are works that have studied EEG differences between control subjects

and individuals with traumatic brain injury [18]. Sleep stages have also been classified

using SampEn, as in [19, 20]. Alzheimer screening using EEG and SampEn is another

promising area of research with already significant results [21].

ApEn and SampEn are very successful data entropy estimators, but they also have

their weaknesses. As stated above, ApEn is biased since it includes self–matches in the

count, and SampEn requires a relatively large r to find similar subsequences and to avoid

the log(0) problem (Table 1). They are also very sensitive to input parameters m, r,

and N . More recently, an evolution of these metrics, Fuzzy entropy (FuzzyEn), has been

proposed to mitigate these problems [22]. FuzzyEn is based on a continuous function

to compute the dissimilarity between two zero–mean subsequences and, consequently, it

is more stable in noise and parameter initialisation terms. This metrics is still scarcely

used in EEG studies, but it is expected to replace ApEn and SampEn because of its

excellent stability, mainly when applied to noisy or short records. At present, very few

studies have already demonstrated its capability to detect epileptic seizures [23], EEG

abnormalities in Alzheimer’s disease [24], or in recognizing wake or sleep stages [25, 26].

ApEn and SampEn have played, or are playing, a very important role in unveiling

hidden information in EEGs, and will still be used for some time unless a more efficient

metrics, such as FuzzyEn, completely replaces these older methods. To distinguish

between these two generations of metrics, those initially proposed, even decades ago, and
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those proposed less than 5 years ago as an evolution or improvement of the initial ones,

we coined the terms first- and second-generation metrics, which will be used throughout

this paper.

Signal classification efficiency is often assessed in relation to more robustness against

difficult processing conditions: class separability, initialisation dependence, data size or

noise. This paper focuses specifically on the effect on entropy metrics of EEG signals

noise. Biomedical records are often corrupted with artifacts and noise, and EEGs are

no exception. In general, biomedical record interferences can be of a physiological

(EEGs are corrupted with data from other biosignals) or technical (EEGs are corrupted

with noise generated by acquisition or other nearby systems) origin, with a myriad

of methods to remove, or at least, reduce these artifacts proposed in the scientific

literature [27, 28, 29, 30]. However, this is not always possible: signal and artifacts

overlap in time and/or frequency domains (they cannot be removed without degrading

the underlying valid signal), there is a high computational cost or complexity of the

required algorithms, and the parameter optimization needs of filtering or cancelling

methods cannot be addressed due to lack of time or resources.

As a result, a certain level of interference should be expected in any EEG signal, and

the methods applied must therefore be robust against it. The present study addresses

this issue by assessing of the performance of the above cited methods, ApEn, SampEn,

and FuzzyEn, in the noisy EEG signal classification context. Specifically, we analyse the

influence of the commonest physiological artifacts in EEG records: ocular artifacts [31],

cardiac artifacts [32] and muscular artifacts [33]. The study also includes technical

artifacts, such as noise and spikes [34]. The objective of the study is to improve the

understanding of the metrics’ behaviour under real conditions, and to provide practical

advice about optimal performance.

The methodology employed is based on quantitative research. The analysis involves

the collection of labelled EEG data, considered as the ground truth, since they do

not contain artifacts (intra-cranial visually inspected EEGs), and apply a correlational

research to find differences among the three entropy metrics studied (ApEn, SampEn,

and FuzzyEn), based on a statistical treatment. The ultimate goal is to support or

refute the robustness against artifacts hypothesis of each one of the metrics.

2. Materials and methods

2.1. Entropy metrics

The three entropy metrics chosen for this study are ApEn, SampEn, and FuzzyEn.

ApEn and SampEn are undoubtedly the two most widely used indices for entropy

estimations in physiological time series. FuzzyEn is an evolution of these two, where

pattern dissimilarity computation has been improved by applying the fuzzy membership

function concept instead of the Heaviside step function [35].

For a sequence x = {x1, x2, · · · , xN} of size N , these metrics are mathematically
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defined as described in Table 1:

Table 1. Mathematical definition of ApEn, SampEn, and FuzzyEn (µ(d, r):Fuzzy

membership function).

ApEn(m, r,N) SampEn(m, r,N) FuzzyEn(m, r,N)

1) Create a set of xi = {xi, xi+1, . . . , xi+m−1} xi = {xi, xi+1, . . . , xi+m−1} yi = {xi, xi+1, . . . , xi+m−1}
subsequences i = 1, . . . , N −m+ 1 i = 1, . . . , N −m+ 1 yi =mean(yi)
of length m xi = {xi − yi, xi+1 − yi, . . . , xi+m−1 − yi}

i = 1, . . . , N −m+ 1
2) Dissimilarity dij = max(|xi+k − xj+k|), dij = max(|xi+k − xj+k|), dij = max(|xi+k − xj+k|),

computation 0 ≤ k ≤ m− 1 0 ≤ k ≤ m− 1, j 6= i Dij = µ(dij , r), 0 ≤ k ≤ m− 1, j 6= i

3) Count matches Bi(r) no. of j so that d[Xm(i), Xm(j)] ≤ r Bi(r) no. of j so that d[Xm(i), Xm(j)] ≤ r φmi (r) =
1

N −m− 1

N−m∑
j=1,j 6=i

Dm
ij

Ai(r) no. of j so that d[Xm+1(i), Xm+1(j)] ≤ r Ai(r) no. of j so that d[Xm+1(i), Xm+1(j)] ≤ r
(1 ≤ j ≤ N −m+ 1) (1 ≤ j ≤ N −m, j 6= i)

4) Statistics Bm
i (r) =

1

N −m+ 1
Bi(r) Bm

i (r) =
1

N −m− 1
Bi(r) ϕm(r) =

1

N −m

N−m∑
i=1

φmi (r)

Am
i (r) =

1

N −m
Ai(r) Bm(r) =

1

N −m

N−m∑
i=1

Bm
i (r) ϕm+1(r) =

1

N −m

N−m∑
i=1

φm+1
i (r)

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

logBm
i (r) Am

i (r) =
1

N −m− 1
Ai(r)

φm+1(r) =
1

N −m

N−m∑
i=1

logAm
i (r) Am(r) =

1

N −m

N−m∑
i=1

Am
i (r)

5) Result ApEn(m, r) = lim
N→∞

[
φm(r)− φm+1(r)

]
SampEn(m, r) = lim

N→∞

(
− log

[
Am(r)

Bm(r)

])
FuzzyEn(m, r) = lim

N→∞

[
logϕm(r)− logϕm+1(r)

]
ApEn(m, r,N) =

[
φm(r)− φm+1(r)

]
SampEn(m, r,N) = − log

[
Am(r)
Bm(r)

]
FuzzyEn(m, r,N) =

[
logϕm(r)− logϕm+1(r)

]

The three metrics are computed similarly. First, the entire time data series under

study is decomposed into subsequences of length m. Then dissimilarity is computed

between subsequence xi and another xj one. While ApEn allows the case i = j (self–

matches), SampEn and FuzzyEn avoid this bias by setting i 6= j. Specifically, FuzzyEn

removes each subsequence mean before computing this dissimilarity. Next the matches

between subsequences are counted. This is an integer number for ApEn and SampEn,

whereas it is the average of distances for all the neighboring vectors for FuzzyEn. Finally,

the statistics for lengths m and m+ 1 are obtained, from which the final metrics result

can be calculated. The computational cost of ApEn and SampEn is O(N2) [17], but it

is O(N3) for FuzzyEn, because all the values in the subsequences have to be compared.

2.2. Experimental dataset

The experimental dataset was composed of the real EEG records obtained from different

databases so as to ensure a rich varied set of features and properties. In addition, they

do not contain significant acquisition artifacts to not interfere with the analysis since

they were manually inspected to ensure that they were artifact-free [36]. The chosen

databases were:

• The Bonn database [37]. This database is composed of 500 records from five

different classes (100 records each). Sets A and B correspond to the surface EEG

recordings of healthy subjects. Volunteers were awaken in a relaxed state, with

their the eyes open (set A) or closed (set B). The surface electrodes were placed

according to the standard 10–20 system [37]. Sets C, D, and E correspond to

epileptic patients, obtained using intracranial electrodes placed as described in [37].
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Set E contains seizure activity, whereas sets C and D contain only seizure-free

activity. Each record contains 4096 samples, and a sampling rate of 173.61 Hz was

used (23.6s duration). All the signals in this database were used in the experiments.

An example of records of each class is shown in Figure 1.

0 1000 2000 3000 4000
Sample number

A

B

C

D

E

Figure 1. Example of the signals included in the Bonn database from classes A, B,

C, D, and E. The 500 records are composed of 4096 samples obtained at 173.61 Hz

(duration of 23.6s).

• The Bern–Barcelona database [36]. This database is composed of 3750 intracranial

records from two classes. A surface electrode located between positions Fz and

Pz was used as a reference. Set F corresponds to focal signals and set N to non

focal records. Each series contains one pair of simultaneously recorded EEG signals

(F1, F2 and N1, N2). Each record contains 10240 samples, and a sampling rate of

512 Hz was used (20s duration). Only a subset of 50 records per class and per pair

was included in the experiments, which is also available at the database site (200

records). An example of the records of each class is shown in Figure 2.
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0 2000 4000 6000 8000 10000
Sample number

F1

F2

N1

N2

Figure 2. Example of the signals included in the Bern database from classes F (Focal,

F1 and F2 pair) and N (Non Focal, N1 and N2 pair). Only 50 records per class and

per pair of the 3750 records were used in the experiments (200 in all). Each record is

composed of 10240 samples, obtained at 512 Hz (duration of 20s).

These databases correspond to intra–cranial EEGs actually. These signals usually

exhibit a very low level of noise compared to extra–cranial EEGs, and therefore they

can be considered as the ground–truth for the experiments, avoiding introducing bias

to the results. In addition, the datasets have been classified successfully in other works

[38, 39]. Thus, we simulate real extra-cranial EEGs by adding noise to initially clearly

separable intra–cranial EEGs.

The noisy observations were obtained by linearly superimposing the synthetic

artifacts to an otherwise pure, noise–free EEG signal. The resulting time series was

normalised before computing the entropy metrics (zero mean and unit variance). The

level of interference was in accordance with the type of artifact and with what occurs in

a real clinical setting [27]. The signal to noise ratio (SNR) was 26dB, 20dB, 16dB, 12dB,

and 10dB for noise, spikes, muscular, and cardiac artifacts, respectively, and 15dB, 9dB,

6dB, 4dB, and 2dB for ocular artifacts as their amplitude is usually larger. These SNR

levels were chosen visually to resemble real cases. The length of all the records involved

in the experiment was set at N = 1000 samples (the first 1000 values), which is long

enough to ensure good entropy estimations [40]. The details of the employed artifacts

are described bellow:

• White noise. This synthetic artifact was generated by a Gaussian random process.

It accounts for possible sources in real environments, such as thermal noise or

electro–magnetic noise.

• Spikes. Spikes were synthetically generated as described in [41]. These interferences

can be of a technological (sensor movement, electrical interferences) or physiological

(mainly eye blinks) origin. The probability of appearance was kept relatively low
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(0.005), as expected in a real case. Duration was set at 1 sample. Only amplitude

varied [41].

• Muscular artifacts. Muscular artifacts were drawn from a long real electromyogram

(EMG) signal downloaded from PhysioNet [42] (https://www.physionet.org/

physiobank/database/emgdb/), and corresponds to a patient with myopathy.

Data were acquired at 50KHz and then downsampled to 4KHz. For each run,

an EMG epoch of length N was extracted from the entire record by commencing

at a random sample. These artifacts account for muscular activity during EEG

recording.

• Ocular artifacts. These artifacts were obtained similarly to that of the EMG

artifacts. From a real long electrooculogram (EOG) record processed with

the EYE–EEG extension [43] (http://www2.hu-berlin.de/eyetracking-EEG),

random segments were cut out for each experiment run. This record also includes

high frequency artifacts, and white noise. This interference mainly causes the EEG

baseline to drift, and can be of greater amplitude than that of the underlying EEG

signal [44].

• Cardiac artifacts. Synthetic electrocardiogram (ECG) records were generated

as described in [45] (https://www.physionet.org/physiotools/ecgsyn/). The

average heart rate was set at 60 bpm, and amplitude was kept lower than that of

the EEG following the above cited SNR levels. No additional noise was added.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time(s)

T
im

e
se

ri
es

(n
or

m
al

is
ed

am
p
li
tu

d
e)

EEG

Noise

Spikes

EMG

EOG

ECG

Figure 3. Example of artifacts. All the signals were amplitude-normalized for

visualisation purposes. EOG, EMG, and spike artifacts may vary depending on the

point from which they were extracted from the original record (EOG and EMG), or

on the results of the Bernouilli process than sets occurrence and amplitude of spikes.

These artifacts were resampled to match the sampling frequency of the underlying
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EEG signal. Due to the random nature of such artifacts, and their non stationarity

(except the white noise and cardiac artifacts), each EEG record was corrupted in a

slightly different manner which improved the generality of the results. An exemplary

set of artifacts is shown in Figure 3, where this non stationarity can be easily observed

for EOG, EMG, and spike artifacts.

2.3. Entropy metric parameter selection

The three entropy metrics require their input parameters m, r, and N to be initialized.

As stated above, N was set to 1000 for all the experiments. This length significantly

lowers the computational cost of the experiments, O(N2) or even O(N3), but preserves

the stability and validity of the results. This value is in accordance with the suggestions

made in [46, 47, 10, 40] (N ≥ 10m), and it is well above the minimum length required

in other cases [48, 49, 50].

General recommendations exist for the other parameters: e.g., m = 1 or m = 2,

and r in the [0.2, 0.3] range [51]. Specifically for FuzzyEn, the recommendation for the

membership function is to be continuous and convex [22]. Methods for the automatic

selection of these parameters have also been proposed [52], but no general consensus

about what method is best for each scenario has yet been reached.

We chose to find the optimal parameter configuration by maximizing the probability

of class separation of the experimental dataset by minimizing the probability of equal

EEG class means (null hypothesis) using the Student’s t–test (when no artifact was

present in the EEGs, a baseline case). A range of parameter values in the vicinity of

the recommended ones was analyzed. For the m parameter, we studied the p−values

obtained using m = 1, 2, 3. For r, performance was assessed using the values from

0.15 to 0.3 in steps of 0.05. For FuzzyEn, the chosen membership function was the

exponential function, µ(dij, r) = exp(−(dij/r)
q), as in many other works [22, 53]. In

this case, there is an additional parameter to set, q. We attempted values 1, 2, 3 and

4 for q. Other membership functions, such as that described in [54], were also tested,

but their performance was clearly lower (an equal means hypothesis accepted in more

cases).

It is noteworthy that not all input classes are separable, even without artifacts,

and such cases were not taken into account; e.g., for the Bern–Barcelona database, it is

obviously impossible to discern between records within the same pair (F1 and F2, and

N1 and N2, cases 01 and 23 of the experiments, respectively). For the Bonn database,

it is also impossible to find differences between records of healthy subjects with their

eyes open or closed [37] (A and B, case 01 of the experiments).

Table 2 shows some of the parameter optimisation stage results. As stated above,

some class combinations are impossible to distinguish because they are conceptually

and analytically too similar, as other researchers also found [37]. Such results are also

included in Table 2 to illustrate their consistency, but were omitted in the experiments

that used artifacts. There are other input parameter values that yield worse class
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separability, mainly when m = 1, and these combinations were avoided in the final

tests. The optimal configuration is selected from the parameter settings that reject the

equal mean hypothesis in all the separable cases. Some combinations yield negligible

differences in p−values, as shown in Table 2 (mainly for Bern–Barcelona database).

Those with a higher greater p−value are chosen.

Table 2. Parameter optimization results with q = 3 for FuzzyEn. An accepted

hypothesis (equal means between classes) is featured by p−values in bold.

Bern–Barcelona Bonn

m = 1, r = 0.15 m = 2, r = 0.25 m = 3, r = 0.3 m = 1, r = 0.15 m = 2, r = 0.25 m = 3, r = 0.3

ApEn p01 = 0.379732 p01 = 0.358934 p01 = 0.400093 p01 = 0.336989 p01 = 0.051005 p01 = 0.035396

p02 = 0.000087 p02 = 0.000076 p02 = 0.000090 p02 = 0.000038 p02 = 0.000026 p02 = 0.000025

p03 = 0.000064 p03 = 0.000056 p03 = 0.000062 p03 = 0.000027 p03 = 0.212683 p03 = 0.214318

p12 = 0.000515 p12 = 0.000541 p12 = 0.000547 p04 = 0.000030 p04 = 0.000025 p04 = 0.000026

p13 = 0.000234 p13 = 0.000206 p13 = 0.000228 p12 = 0.000032 p12 = 0.000025 p12 = 0.000026

p23 = 0.865867 p23 = 0.830141 p23 = 0.872516 p13 = 0.000025 p13 = 0.000199 p13 = 0.000303

p14 = 0.000026 p14 = 0.000026 p14 = 0.000025

p23 = 0.000033 p23 = 0.000026 p23 = 0.000026

p24 = 0.016003 p24 = 0.000027 p24 = 0.000027

p34 = 0.000026 p34 = 0.000026 p34 = 0.000025

SampEn p01 = 0.371318 p01 = 0.370324 p01 = 0.398312 p01 = 0.149373 p01 = 0.036537 p01 = 0.024077

p02 = 0.000067 p02 = 0.000059 p02 = 0.000630 p02 = 0.000036 p02 = 0.000026 p02 = 0.000025

p03 = 0.000057 p03 = 0.000053 p03 = 0.000055 p03 = 0.382615 p03 = 0.000196 p03 = 0.000057

p12 = 0.000282 p12 = 0.000213 p12 = 0.000202 p04 = 0.000029 p04 = 0.000025 p04 = 0.000025

p13 = 0.000149 p13 = 0.000107 p13 = 0.000113 p12 = 0.000031 p12 = 0.000025 p12 = 0.000026

p23 = 0.882336 p23 = 0.871806 p23 = 0.908126 p13 = 0.543533 p13 = 0.000025 p13 = 0.000026

p14 = 0.000026 p14 = 0.000026 p14 = 0.000026

p23 = 0.000033 p23 = 0.000026 p23 = 0.000028

p24 = 0.036623 p24 = 0.000055 p24 = 0.000031

p34 = 0.000026 p34 = 0.000026 p34 = 0.000028

FuzzyEn p01 = 0.952577 p01 = 0.502495 p01 = 0.338560 p01 = 0.402402 p01 = 0.660507 p01 = 0.875549

p02 = 0.009812 p02 = 0.000768 p02 = 0.000129 p02 = 0.000034 p02 = 0.000025 p02 = 0.000029

p03 = 0.008163 p03 = 0.000533 p03 = 0.000097 p03 = 0.000038 p03 = 0.000028 p03 = 0.000026

p12 = 0.006139 p12 = 0.002257 p12 = 0.000697 p04 = 0.000041 p04 = 0.000031 p04 = 0.000026

p13 = 0.005240 p13 = 0.001534 p13 = 0.000387 p12 = 0.000030 p12 = 0.000025 p12 = 0.000028

p23 = 0.894929 p23 = 0.891299 p23 = 0.843148 p13 = 0.000035 p13 = 0.000027 p13 = 0.000026

p14 = 0.000039 p14 = 0.000030 p14 = 0.000026

p23 = 0.000027 p23 = 0.000027 p23 = 0.000032

p24 = 0.033899 p24 = 0.004689 p24 = 0.000079

p34 = 0.000031 p34 = 0.000026 p34 = 0.000025

After analyzing the p−values obtained using all these parameter configurations, the

initialization parameters chosen for each experimental dataset were:

• Bonn database. The optimal parameter configuration found for ApEn and SampEn

was the same: m = 3 and r = 0.15. The FuzzyEn optimal parameters were

m = 3, r = 0.3, and q = 4. In this case, suboptimal configurations led to equal

means acceptance in some class combinations (e.g., p03 = 0.382615, instead of

p03 = 0.00003 in the optimal case). This occurred mainly for low m values, almost

independently of the r values, for the three metrics. This was more severe with
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FuzzyEn, with hypotheses rejected for m = 1 and m = 2 (classes not considered

different).

• Bern–Barcelona database. Both ApEn and SampEn performed best for m = 2 and

r = 0.3, and FuzzyEn with m = 3, r = 0.15, and q = 1. Differences were small,

with ApEn and SampEn achieving the full rejection of all the cases (equal means

rejected), but the optimal combination yielded higher probabilities and achieved

the same rejection threshold (e.g., p12 = 0.000282 against p12 = 0.000235 in the

optimal case). However for FuzzyEn, any combination that included a value m < 3,

with q = 4, caused the hypothesis test to fail in some class comparisons. This

suggests that FuzzyEn is very sensitive to the m parameter within this EEG analysis

framework.

As a preliminary conclusion of this study, it seems that the values of m = 1 should

be ruled out, with m = 3 being the most robust assumption as a general rule. There

is wider variability for r, depending on the experimental set, and no recommendation

can be made. As stated above, FuzzyEn seems the most parameter-sensitive metrics,

conversely to what other researchers found [22], but in different contexts. No additional

parameter values were studied since full separability (with the above-stayed exceptions)

was already achieved with the proposed optimal parameter configurations.

3. Results

The separability of all the classes from the two datasets was assessed using the optimal

parameter configuration described in the previous section. Classes were numbered as

follows: 0 (records of type A), 1 (records of type B), 2 (records of type C), 3 (records

of type D), and 4 (records of type E) for the Bonn database, and 0 (F1), 1 (F2), 2 (N1),

and 3 (N2) for the Bern–Barcelona database. All the entropy means λ̄ for all the classes

compared on a one to one basis using a Student’s t–test. The hypothesis was the equality

of means H0 : λ̄i = λ̄j (null hypothesis), where λ̄i is the average of the corresponding

entropy statistic for class i. The p−value related to the consistency of the hypothesis of

two classes i and j having the same mean was termed pij. The threshold for rejecting

the null hypothesis was set at α = 0.01. A smaller p−value rejects H0 and, therefore,

accepts the alternative hypothesis H1 : λ̄i 6= λ̄j [55]. In other words, if pij < α, then

we can consider it more likely that the means are different and, therefore, the classes

can be more easily distinguished analytically. This experimental setting has been used

in similar works, e.g. [56, 46]. No assumption about the probability distribution of the

data was necessary as the mean was the only focus of the analysis with sample sizes of

at least 50 [57].

3.1. Bern–Barcelona database

This section describes the results obtained using the Bern–Barcelona database. The

baseline results (input signals without artifacts) are included only in the case of Gaussian
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noise (Table 3) since they are the same for the other types of artifacts. The p−values

for different levels of artifacts are shown in Tables 3-6.

Table 3. The results for the Bern–Barcelona database using different levels of

Gaussian noise. The results for non separable classes (p01 and p23) are not included.An

accepted hypothesis is featured by p−values in bold.

No artifact SNR(26dB) SNR(20dB) SNR(16dB) SNR(12dB) SNR(10dB)

ApEn p02 = 0.000076 p02 = 0.000092 p02 = 0.000205 p02 = 0.001354 p02 = 0.002550 p02 = 0.011902

p03 = 0.000058 p03 = 0.000058 p03 = 0.000068 p03 = 0.000083 p03 = 0.000189 p03 = 0.000486

p12 = 0.000538 p12 = 0.000778 p12 = 0.002861 p12 = 0.020972 p12 = 0.032507 p12 = 0.106199

p13 = 0.000214 p13 = 0.000212 p13 = 0.000539 p13 = 0.001152 p13 = 0.003253 p13 = 0.009348

SampEn p02 = 0.000061 p02 = 0.000068 p02 = 0.000133 p02 = 0.000724 p02 = 0.002410 p02 = 0.015954

p03 = 0.000054 p03 = 0.000054 p03 = 0.000062 p03 = 0.000065 p03 = 0.000180 p03 = 0.000617

p12 = 0.000235 p12 = 0.000351 p12 = 0.001504 p12 = 0.012484 p12 = 0.034411 p12 = 0.085657

p13 = 0.000117 p13 = 0.000116 p13 = 0.000357 p13 = 0.000639 p13 = 0.003717 p13 = 0.006086

FuzzyEn p02 = 0.000061 p02 = 0.000068 p02 = 0.000090 p02 = 0.000320 p02 = 0.000585 p02 = 0.003072

p03 = 0.000053 p03 = 0.000054 p03 = 0.000057 p03 = 0.000060 p03 = 0.000082 p03 = 0.000101

p12 = 0.000211 p12 = 0.000342 p12 = 0.000781 p12 = 0.005157 p12 = 0.007527 p12 = 0.027387

p13 = 0.000096 p13 = 0.000111 p13 = 0.000194 p13 = 0.000390 p13 = 0.000738 p13 = 0.001026

It can be noted from the p−values shown in Table 3 that ApEn and SampEn are

very sensitive to presence of noise in EEG records. Even for levels that are barely

discernible visually (16dB), they fail to provide a robust metrics capable of maximizing

the separation between the means of most classes (except case 03, classes F1 and N2, and

case 13, classes F2 and N2). FuzzyEn appears more robust against white noise because

it does not fail until level 10dB, and also to a lesser extent (case 12). A visual example

of the white noise impact on EEG records is shown in Figure 4 for all the studied levels.

0 200 400 600 800 1000
Sample number

EEG

26dB

20dB

16dB

12dB

10dB

Figure 4. Example of the EEG signal corrupted with white noise. The artifact level

lowers from top to bottom. The length of signals is 1000 samples, approximately 2s.
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The Student’s t–test is very useful for assessing the separability of the EEG signal

groups in different scenarios, which is the main objective of the present paper. The

entropy values obtained would be the features used by a classifier. However, this test

does not quantify the correct classification rate that can be achieved or the optimal

entropy threshold that should be used.

As stated above, data size N may also influence the results of the studied entropy

metrics. Although the validity of the value employed, N = 1000, is justified in Section

2.3, and despite the fact that it is beyond the scope of the study to test a wide range

of N values, Table 4 shows the results for SNR(10dB), and N = 1000, 2000, 3000 and

4000.

Table 4. The results for Bern–Barcelona database using Gaussian noise (SNR(10dB))

and different lengths (N). The results for non separable classes (p01 and p23) are not

included. An accepted hypothesis is featured by p−values in bold.

N = 1000 N = 2000 N = 3000 N = 4000

ApEn p02 = 0.011902 p02 = 0.009883 p02 = 0.018458 p02 = 0.024699

p03 = 0.000486 p03 = 0.000922 p03 = 0.001628 p03 = 0.001784

p12 = 0.106199 p12 = 0.035246 p12 = 0.047285 p12 = 0.240016

p13 = 0.009348 p13 = 0.003384 p13 = 0.004749 p13 = 0.037036

SampEn p02 = 0.015954 p02 = 0.010447 p02 = 0.021456 p02 = 0.026582

p03 = 0.000617 p03 = 0.001145 p03 = 0.002227 p03 = 0.002083

p12 = 0.085657 p12 = 0.026117 p12 = 0.048137 p12 = 0.245755

p13 = 0.006086 p13 = 0.002632 p13 = 0.005552 p13 = 0.040598

FuzzyEn p02 = 0.003072 p02 = 0.002202 p02 = 0.004631 p02 = 0.004806

p03 = 0.000101 p03 = 0.000200 p03 = 0.000344 p03 = 0.000248

p12 = 0.027387 p12 = 0.005592 p12 = 0.010827 p12 = 0.087149

p13 = 0.001026 p13 = 0.000391 p13 = 0.000781 p13 = 0.009276

The experiment was repeated using spike artifacts. However, these results are not

included because means were assumed different in all cases (all rejected hypotheses,

pij < α,∀i, j considered). With a probability of 0.005, and a duration of 1 sample,

spikes did not seem to significantly impact the matches count and, therefore, impacted

the entropy metrics [41]. Figure 5 shows an example of an EEG record corrupted with

synthetic spikes. Further information about the influence of spikes on entropy metrics

can be found in [41].
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Figure 5. Example of the EEG signal corrupted with spikes. The artifact level lowers

from top to bottom. The length of signals is 1000 samples, approximately 2s.

The results for muscular artifacts are shown in Table 5, and a visual example of

the resulting corrupted EEG record is depicted in Figure 6. In this case, the metrics

performance is quite poor, with ApEn failing at 16dB SNR, but with complete statistical

inability to discern between means at 10dB. SampEn performance is only slightly better,

with the first pair of means considered equal at 12dB, and two at 10dB. FuzzyEn is once

again the most robust metric as it providies a full H0 rejection in all cases.

Table 5. The results for the Bern–Barcelona database using EMGs as artifacts. The

results for non separable classes (p01 and p23) are not included. An accepted hypothesis

is featured by p−values in bold.

SNR(26dB) SNR(20dB) SNR(16dB) SNR(12dB) SNR(10dB)

ApEn p02 = 0.000129 p02 = 0.000559 p02 = 0.002662 p02 = 0.007750 p02 = 0.011586

p03 = 0.000061 p03 = 0.000168 p03 = 0.001351 p03 = 0.005115 p03 = 0.011076

p12 = 0.001198 p12 = 0.004739 p12 = 0.014735 p12 = 0.034762 p12 = 0.052257

p13 = 0.000309 p13 = 0.001603 p13 = 0.008845 p13 = 0.025999 p13 = 0.053218

SampEn p02 = 0.000074 p02 = 0.000161 p02 = 0.000617 p02 = 0.001913 p02 = 0.004284

p03 = 0.000053 p03 = 0.000064 p03 = 0.000214 p03 = 0.001021 p03 = 0.003749

p12 = 0.000464 p12 = 0.001447 p12 = 0.004338 p12 = 0.010343 p12 = 0.017941

p13 = 0.000138 p13 = 0.000365 p13 = 0.001780 p13 = 0.006668 p13 = 0.017464

FuzzyEn p02 = 0.000081 p02 = 0.000162 p02 = 0.000450 p02 = 0.001184 p02 = 0.002615

p03 = 0.000054 p03 = 0.000064 p03 = 0.000129 p03 = 0.000394 p03 = 0.001160

p12 = 0.000365 p12 = 0.000930 p12 = 0.002286 p12 = 0.004739 p12 = 0.008379

p13 = 0.000102 p13 = 0.000216 p13 = 0.000641 p13 = 0.001785 p13 = 0.004185
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Figure 6. Example of the EEG signal corrupted with muscular artifacts. The artifact

level lowers from top to bottom. The length of signals is 1000 samples, approximately

2s.

The results for the ocular artifacts are shown in Table 6, and a visual example of

the resulting corrupted EEG record is depicted in Figure 7. No class combination exist

of the separable classes where the hypothesis is accepted, but the quantitative results

are included for comparative purposes as these artifacts have no influence on the Bonn

database case.

Table 6. The results for the Bern–Barcelona database using EOGs as artifacts. The

results for non separable classes (p01 and p23) are not included.

SNR(15dB) SNR(9dB) SNR(6dB) SNR(4dB) SNR(2dB)

ApEn p02 = 0.000076 p02 = 0.000081 p02 = 0.000096 p02 = 0.000141 p02 = 0.000232
p03 = 0.000059 p03 = 0.000063 p03 = 0.000068 p03 = 0.000081 p03 = 0.000106
p12 = 0.000487 p12 = 0.000430 p12 = 0.000425 p12 = 0.000512 p12 = 0.000606
p13 = 0.000210 p13 = 0.000209 p13 = 0.000200 p13 = 0.000203 p13 = 0.000214

SampEn p02 = 0.000061 p02 = 0.000063 p02 = 0.000070 p02 = 0.000076 p02 = 0.000102
p03 = 0.000055 p03 = 0.000056 p03 = 0.000058 p03 = 0.000062 p03 = 0.000072
p12 = 0.000207 p12 = 0.000200 p12 = 0.000227 p12 = 0.000233 p12 = 0.000237
p13 = 0.000116 p13 = 0.000111 p13 = 0.000107 p13 = 0.000113 p13 = 0.000117

FuzzyEn p02 = 0.000061 p02 = 0.000063 p02 = 0.000068 p02 = 0.000078 p02 = 0.000101
p03 = 0.000054 p03 = 0.000055 p03 = 0.000057 p03 = 0.000062 p03 = 0.000073
p12 = 0.000201 p12 = 0.000185 p12 = 0.000179 p12 = 0.000183 p12 = 0.000198
p13 = 0.000098 p13 = 0.000094 p13 = 0.000093 p13 = 0.000098 p13 = 0.000109
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Figure 7. Example of the EEG signal corrupted with ocular artifacts. The artifact

level lowers from top to bottom. The length of signals is 1000 samples, approximately

2s.

For the spikes case, cardiac artifacts do not significantly influence the separability of

the means. Therefore, the numerical results are not included (pij < α, ∀i, j considered).

Figure 8 shows an example of an EEG record corrupted with an underlying ECG signal.

0 200 400 600 800 1000
Sample number

EEG

26dB
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16dB
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10dB

Figure 8. Example of the EEG signal corrupted with cardiac artifacts. The artifact

level lowers from top to bottom. The length of signals is 1000 samples, approximately

2s.

3.2. Bonn database

This section describes the results achieved using the Bonn database. The baseline results

(input signals without artifacts) are included only for Gaussian noise (Table 7) as they
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are the same for the other artifact types. The p−values for the different levels of artifacts

are shown in Tables 7-10. Since the visual examples of each artifact are practically the

same for both databases, they are included only in the previous subsection.

As for the Bern–Barcelona database, the EEG records in the Bonn database also

seem quite sensitive to presence of noise. With ApEn, means are considered equal very

early, at 26dB, and performance worsens significantly at 10dB. SampEn holds until

12dB, and also fails at 10dB, and FuzzyEn enables all the means to be considered

statistically different.

Table 7. The results for the Bonn database using different levels of Gaussian noise.

Class 0 corresponds to set A, class 1 to B, 2 to C, 3 to D, and 4 to E. Case 01

(AB) is not included because it is impossible to separate the two classes. An accepted

hypothesis is featured by p−values in bold.

No artifact SNR(26dB) SNR(20dB) SNR(16dB) SNR(12dB) SNR(10dB)

ApEn p02 = 0.000039 p02 = 0.000047 p02 = 0.000032 p02 = 0.000027 p02 = 0.000026 p02 = 0.000028
p03 = 0.000031 p03 = 0.000027 p03 = 0.000025 p03 = 0.000032 p03 = 0.000025 p03 = 0.261416
p04 = 0.000039 p04 = 0.000035 p04 = 0.002387 p04 = 0.000036 p04 = 0.000027 p04 = 0.000025
p12 = 0.000036 p12 = 0.163427 p12 = 0.000025 p12 = 0.000027 p12 = 0.000025 p12 = 0.000026
p13 = 0.000026 p13 = 0.000025 p13 = 0.000033 p13 = 0.000032 p13 = 0.000025 p13 = 0.013195
p14 = 0.000033 p14 = 0.000027 p14 = 0.000034 p14 = 0.000036 p14 = 0.000028 p14 = 0.000026
p23 = 0.000030 p23 = 0.000035 p23 = 0.000034 p23 = 0.000027 p23 = 0.000026 p23 = 0.000028
p24 = 0.000025 p24 = 0.000028 p24 = 0.000196 p24 = 0.001881 p24 = 0.007121 p24 = 0.012558
p34 = 0.000030 p34 = 0.000029 p34 = 0.000025 p34 = 0.018446 p34 = 0.000027 p34 = 0.000025

SampEn p02 = 0.000025 p02 = 0.000025 p02 = 0.000025 p02 = 0.000026 p02 = 0.000025 p02 = 0.000025
p03 = 0.000030 p03 = 0.000026 p03 = 0.000025 p03 = 0.000025 p03 = 0.000026 p03 = 0.000028
p04 = 0.000026 p04 = 0.000026 p04 = 0.000025 p04 = 0.000025 p04 = 0.000026 p04 = 0.000025
p12 = 0.000025 p12 = 0.000025 p12 = 0.000025 p12 = 0.000025 p12 = 0.000025 p12 = 0.000025
p13 = 0.000028 p13 = 0.000026 p13 = 0.000026 p13 = 0.000027 p13 = 0.000027 p13 = 0.000029
p14 = 0.000025 p14 = 0.000025 p14 = 0.000025 p14 = 0.000025 p14 = 0.000025 p14 = 0.000026
p23 = 0.000030 p23 = 0.000027 p23 = 0.000025 p23 = 0.000027 p23 = 0.000025 p23 = 0.000029
p24 = 0.000026 p24 = 0.000031 p24 = 0.000046 p24 = 0.000613 p24 = 0.023369 p24 = 0.037315
p34 = 0.000028 p34 = 0.000025 p34 = 0.000025 p34 = 0.000026 p34 = 0.000028 p34 = 0.000027

FuzzyEn p02 = 0.000027 p02 = 0.000027 p02 = 0.000027 p02 = 0.000027 p02 = 0.000027 p02 = 0.000027
p03 = 0.000027 p03 = 0.000027 p03 = 0.000026 p03 = 0.000026 p03 = 0.000026 p03 = 0.000026
p04 = 0.000027 p04 = 0.000027 p04 = 0.000027 p04 = 0.000027 p04 = 0.000026 p04 = 0.000026
p12 = 0.000027 p12 = 0.000027 p12 = 0.000027 p12 = 0.000027 p12 = 0.000027 p12 = 0.000027
p13 = 0.000027 p13 = 0.000027 p13 = 0.000026 p13 = 0.000026 p13 = 0.000026 p13 = 0.000026
p14 = 0.000027 p14 = 0.000027 p14 = 0.000027 p14 = 0.000027 p14 = 0.000026 p14 = 0.000026
p23 = 0.000032 p23 = 0.000031 p23 = 0.000031 p23 = 0.000030 p23 = 0.000030 p23 = 0.000030
p24 = 0.000039 p24 = 0.000056 p24 = 0.000206 p24 = 0.000491 p24 = 0.000933 p24 = 0.002410
p34 = 0.000025 p34 = 0.000025 p34 = 0.000025 p34 = 0.000025 p34 = 0.000025 p34 = 0.000025

Figure 9 offers a ROC curve for the case linked to p13 when SNR= 10dB, with

p13 = 0.013195 for ApEn, p13 = 0.000029 for SampEn, and p13 = 0.000026 for FuzzyEn.

The ROC curve shows how FuzzyEn would achieve the highest correct classification

ratio, followed by SampEn and then by ApEn. This is numerically supported by the

Area Under Curve (AUC) value, which is 0.7796, 0.7308, and 0.5773, respectively. This

scheme could be replicated in any other case where separability between two classes

is required in quantitative terms, and a classifier should be implemented based on the

thresholds obtained in the corresponding ROC curve using the entropy results as input

features. For instance, using the threshold obtained from the optimal point in the ROC

curve (minimum distance to point (0, 1)), the classification results in this case are 75.56

% TP (True Positives) and 73.64 % TN (True Negatives) for FuzzyEn, 90.91 % TP and
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27.84 TN % for SampEn, and 57.61 % TP and 56.48 % TN for SampEn. Figure 10

depicts the same p13 case when no noise is present. In this case the AUC is 0.9039 for

FuzzyEn, 0.8959 for SampEn, and 0.885 for ApEn.
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Figure 9. ROC curve example. Representation of the case linked to p13 for

SNR= 10dB. The curves for ApEn, SampEn and FuzzyEn are included. Higher

detection accuracy corresponds to FuzzyEn.

0.2 0.4 0.6 0.8
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
p

os
it

iv
e

ra
te

1

0.2

0.4

0.6

0.8

ApEn
SampEn
FuzzyEn

Figure 10. ROC curve example. Representation of the case linked to p13 for no noise.

The curves for ApEn, SampEn and FuzzyEn are included. Higher detection accuracy

corresponds to FuzzyEn.
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Table 8 shows the results obtained for N = 1000, 2000, 3000 and 4000 using

Gaussian noise at SNR(10dB). The objective of this table is to ensure that the signal

classification performance of the three entropy metrics under study is similar, regardless

of the length of records.

Table 8. The results for the Bonn database using Gaussian noise (SNR(10dB)) and

different lengths (N). Class 0 corresponds to set A, class 1 to B, 2 to C, 3 to D, and

4 to E. Case 01 (AB) is not included as it is impossible to separate the two classes.

An accepted hypothesis is featured by p−values in bold.

N = 1000 N = 2000 N = 3000 N = 4000

ApEn p02 = 0.000028 p02 = 0.000026 p02 = 0.000025 p02 = 0.000025
p03 = 0.261416 p03 = 0.000418 p03 = 0.000027 p03 = 0.000029
p04 = 0.000025 p04 = 0.000026 p04 = 0.000027 p04 = 0.000027
p12 = 0.000026 p12 = 0.000025 p12 = 0.000026 p12 = 0.000028
p13 = 0.013195 p13 = 0.000030 p13 = 0.000031 p13 = 0.000037
p14 = 0.000026 p14 = 0.000028 p14 = 0.000032 p14 = 0.000036
p23 = 0.000028 p23 = 0.000027 p23 = 0.000028 p23 = 0.061182
p24 = 0.012558 p24 = 0.001144 p24 = 0.003696 p24 = 0.000212
p34 = 0.000025 p34 = 0.000025 p34 = 0.000501 p34 = 0.147776

SampEn p02 = 0.000025 p02 = 0.000027 p02 = 0.000027 p02 = 0.000028
p03 = 0.000028 p03 = 0.000026 p03 = 0.000028 p03 = 0.000027
p04 = 0.000025 p04 = 0.000026 p04 = 0.000027 p04 = 0.000027
p12 = 0.000025 p12 = 0.000025 p12 = 0.000026 p12 = 0.000026
p13 = 0.000029 p13 = 0.000029 p13 = 0.000029 p13 = 0.000029
p14 = 0.000026 p14 = 0.000025 p14 = 0.000026 p14 = 0.000025
p23 = 0.000029 p23 = 0.000031 p23 = 0.000033 p23 = 0.000032
p24 = 0.037315 p24 = 0.165770 p24 = 0.475905 p24 = 0.506105
p34 = 0.000027 p34 = 0.000030 p34 = 0.000032 p34 = 0.000032

FuzzyEn p02 = 0.000027 p02 = 0.000027 p02 = 0.000027 p02 = 0.000028
p03 = 0.000026 p03 = 0.000064 p03 = 0.000092 p03 = 0.001015
p04 = 0.000026 p04 = 0.000025 p04 = 0.000025 p04 = 0.000025
p12 = 0.000027 p12 = 0.000027 p12 = 0.000027 p12 = 0.000027
p13 = 0.000026 p13 = 0.000026 p13 = 0.000027 p13 = 0.000169
p14 = 0.000026 p14 = 0.000025 p14 = 0.000025 p14 = 0.000026
p23 = 0.000030 p23 = 0.000030 p23 = 0.000030 p23 = 0.000030
p24 = 0.002410 p24 = 0.000159 p24 = 0.000199 p24 = 0.000145
p34 = 0.000025 p34 = 0.000025 p34 = 0.000025 p34 = 0.000025

The spikes case is also consistent for the two datasets. Even at 10dB, no hypothesis

is accepted for any combination of classes. It is arguably possible that for a lower SNR,

the equal means hypothesis will eventually be accepted. However, such a low SNR does

not fall in line with what happens in a real case. Classes A and B are not separable in

any case. They are too similar in entropy terms even in their original form, and without

artifacts. Although class D also comes close to classes A and B when ApEn is used, the

equal means hypothesis is not analytically accepted.

The results for muscular artifacts are shown in Table 9. In this case, the

performance of the metrics is not as bad as for the Bern–Barcelona database, except

for ApEn, which still fails in many comparisons, even at 26dB. SampEn and FuzzyEn

perform much better, and no hypothesis is accepted in terms of equal means between

classes.
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Table 9. The results for the Bonn database using EMGs as artifacts. Class 0

corresponds to set A, class 1 to B, 2 to C, 3 to D, and 4 to E. Case 01 (AB) is

not included as it is impossible to separate the two classes. An accepted hypothesis is

featured by p−values in bold.

SNR(26dB) SNR(20dB) SNR(16dB) SNR(12dB) SNR(10dB)

ApEn p02 = 0.000040 p02 = 0.023474 p02 = 0.819953 p02 = 0.024763 p02 = 0.000553
p03 = 0.000028 p03 = 0.000026 p03 = 0.000025 p03 = 0.000025 p03 = 0.000025
p04 = 0.000037 p04 = 0.000032 p04 = 0.000625 p04 = 0.049641 p04 = 0.374565
p12 = 0.051204 p12 = 0.163194 p12 = 0.000030 p12 = 0.000025 p12 = 0.000025
p13 = 0.000025 p13 = 0.000026 p13 = 0.000028 p13 = 0.000028 p13 = 0.000028
p14 = 0.000031 p14 = 0.002240 p14 = 0.532845 p14 = 0.327657 p14 = 0.093265
p23 = 0.000033 p23 = 0.000036 p23 = 0.000034 p23 = 0.000029 p23 = 0.000027
p24 = 0.000026 p24 = 0.000029 p24 = 0.000029 p24 = 0.000032 p24 = 0.000062
p34 = 0.000030 p34 = 0.000028 p34 = 0.000027 p34 = 0.000025 p34 = 0.000025

SampEn p02 = 0.000025 p02 = 0.000025 p02 = 0.000025 p02 = 0.000025 p02 = 0.000025
p03 = 0.000027 p03 = 0.000026 p03 = 0.000025 p03 = 0.000025 p03 = 0.000027
p04 = 0.000026 p04 = 0.000026 p04 = 0.000025 p04 = 0.000026 p04 = 0.000026
p12 = 0.000025 p12 = 0.000025 p12 = 0.000025 p12 = 0.000025 p12 = 0.000025
p13 = 0.000026 p13 = 0.000025 p13 = 0.000025 p13 = 0.000025 p13 = 0.000025
p14 = 0.000025 p14 = 0.000025 p14 = 0.000025 p14 = 0.000025 p14 = 0.000025
p23 = 0.000028 p23 = 0.000026 p23 = 0.000025 p23 = 0.000025 p23 = 0.000025
p24 = 0.000028 p24 = 0.000032 p24 = 0.000054 p24 = 0.000104 p24 = 0.000197
p34 = 0.000025 p34 = 0.000025 p34 = 0.000025 p34 = 0.000026 p34 = 0.000026

FuzzyEn p02 = 0.000027 p02 = 0.000027 p02 = 0.000027 p02 = 0.000027 p02 = 0.000027
p03 = 0.000027 p03 = 0.000027 p03 = 0.000026 p03 = 0.000026 p03 = 0.000026
p04 = 0.000027 p04 = 0.000027 p04 = 0.000026 p04 = 0.000026 p04 = 0.000025
p12 = 0.000027 p12 = 0.000027 p12 = 0.000027 p12 = 0.000027 p12 = 0.000026
p13 = 0.000027 p13 = 0.000026 p13 = 0.000026 p13 = 0.000026 p13 = 0.000026
p14 = 0.000027 p14 = 0.000027 p14 = 0.000026 p14 = 0.000026 p14 = 0.000026
p23 = 0.000031 p23 = 0.000031 p23 = 0.000030 p23 = 0.000029 p23 = 0.000029
p24 = 0.000054 p24 = 0.000120 p24 = 0.000280 p24 = 0.000635 p24 = 0.001158
p34 = 0.000025 p34 = 0.000025 p34 = 0.000025 p34 = 0.000025 p34 = 0.000025

The results for ocular artifacts are shown in Table 10. Unlike what happens with

the ocular artifacts in the Bern–Barcelona database, in this case two of the metrics fail

at some point. ApEn and FuzzyEn fail at 10dB, whereas SampEn is the most robust

metric in this case, with no test in which H0 is accepted. Performance degradation is

not generally as severe as for muscular artifacts, but is still measurable.

Cardiac artifacts do not significantly influence the separability of the means and,

therefore, the numerical results are not included (pij < α, ∀i, j considered), as for the

previous database.
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Table 10. The results for the Bonn database using EOGs as artifacts. Class 0

corresponds to set A, class 1 to B, 2 to C, 3 to D, and 4 to E. Case 01 (AB) is

not included as it is impossible to separate the two classes. An accepted hypothesis is

featured by p−values in bold.

SNR(26dB) SNR(20dB) SNR(16dB) SNR(12dB) SNR(10dB)

ApEn p02 = 0.000040 p02 = 0.000039 p02 = 0.000039 p02 = 0.000037 p02 = 0.000035
p03 = 0.000032 p03 = 0.000035 p03 = 0.000219 p03 = 0.005070 p03 = 0.099963
p04 = 0.000041 p04 = 0.000041 p04 = 0.000041 p04 = 0.000040 p04 = 0.000038
p12 = 0.000036 p12 = 0.000034 p12 = 0.000034 p12 = 0.000034 p12 = 0.000032
p13 = 0.000027 p13 = 0.000028 p13 = 0.000028 p13 = 0.000029 p13 = 0.000030
p14 = 0.000036 p14 = 0.000037 p14 = 0.000037 p14 = 0.000037 p14 = 0.000036
p23 = 0.000029 p23 = 0.000028 p23 = 0.000027 p23 = 0.000027 p23 = 0.000026
p24 = 0.000025 p24 = 0.000026 p24 = 0.000026 p24 = 0.000026 p24 = 0.000026
p34 = 0.000030 p34 = 0.000030 p34 = 0.000030 p34 = 0.000030 p34 = 0.000028

SampEn p02 = 0.000025 p02 = 0.000025 p02 = 0.000025 p02 = 0.000025 p02 = 0.000025
p03 = 0.000030 p03 = 0.000030 p03 = 0.000033 p03 = 0.000145 p03 = 0.004188
p04 = 0.000026 p04 = 0.000025 p04 = 0.000025 p04 = 0.000025 p04 = 0.000025
p12 = 0.000025 p12 = 0.000025 p12 = 0.000025 p12 = 0.000025 p12 = 0.000025
p13 = 0.000028 p13 = 0.000028 p13 = 0.000028 p13 = 0.000028 p13 = 0.000028
p14 = 0.000025 p14 = 0.000025 p14 = 0.000025 p14 = 0.000025 p14 = 0.000025
p23 = 0.000030 p23 = 0.000030 p23 = 0.000029 p23 = 0.000028 p23 = 0.000029
p24 = 0.000026 p24 = 0.000032 p24 = 0.000036 p24 = 0.000045 p24 = 0.000269
p34 = 0.000028 p34 = 0.000028 p34 = 0.000028 p34 = 0.000028 p34 = 0.000028

FuzzyEn p02 = 0.000027 p02 = 0.000026 p02 = 0.000025 p02 = 0.000026 p02 = 0.000028
p03 = 0.000027 p03 = 0.000027 p03 = 0.000028 p03 = 0.000028 p03 = 0.000028
p04 = 0.000027 p04 = 0.000027 p04 = 0.000028 p04 = 0.000030 p04 = 0.000032
p12 = 0.000027 p12 = 0.000026 p12 = 0.000025 p12 = 0.000026 p12 = 0.000028
p13 = 0.000027 p13 = 0.000027 p13 = 0.000027 p13 = 0.000027 p13 = 0.000028
p14 = 0.000027 p14 = 0.000027 p14 = 0.000028 p14 = 0.000029 p14 = 0.000031
p23 = 0.000031 p23 = 0.000030 p23 = 0.000027 p23 = 0.000026 p23 = 0.000025
p24 = 0.000043 p24 = 0.000060 p24 = 0.000252 p24 = 0.002246 p24 = 0.014164
p34 = 0.000025 p34 = 0.000025 p34 = 0.000025 p34 = 0.000030 p34 = 0.000715

4. Discussion

The goal of this study was to find out the best entropy metrics and parameter

configuration for noisy EEG records employed in signal classification applications. The

results for the two databases exhibit the same trend, with noise and muscular artifacts

yielding the lowest rejection levels (the same mean accepted, the same class assumed),

whereas spikes and cardiac artifacts appear to not influence the separability of classes.

Performance was assessed in terms of equal means hypothesis acceptance or rejection.

First, the parameter initialization analysis confirmed what has been found in

many scientific works [35]: the m, r,N and q values may significantly influence the

results obtained using these entropy metrics. The influence of N was minimized using

a value, 1000, that meets the well–known requirement of N ≥ 10m [10] and other

similar recommendations [16]. Obviously, other N values would certainly change the

quantitative entropy results, as specifically shown in Tables 4 and 8. However, the

qualitative results remain the same; i.e., FuzzyEn performs best, whereas ApEn is the

metrics with more cases of equal means acceptance. N = 1000 keeps the computational

burden relatively low, and uniformizes the length of the two datasets. It is stressed that

in real clinical settings, it is not always possible to acquire very long time series, and

the search for entropy metrics that performs well for very short biosignals is an ongoing
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research line [58].

The rest of the parameters were studied using different combinations, which

exceeded the usually recommended ranges. In this case, they were heuristically chosen to

maximize the probability of class separability (equal means hypothesis rejection) when

no artifact was present. The m parameter varied from 1 to 3, r from 0.15 to 0.30, and

q from 1 to 4. The test with no artifacts was repeated for each case, and the p−value

was computed. The results of this analysis, some of which are shown in Table 2, reflect

the fact that the two input datasets are very likely to be separable when no artifact

is present (mainly the Bern database) and the specific values were picked from these

cases. Although differences are minor (e.g., p03 = 0.000064 for m = 1, r = 0.15, and

p03 = 0.000056 for m = 2, r = 0.25, for the first database), there is a clear trend where

pij decreases as m increases in almost each case.

There is wide variability between datasets in terms of optimal input parameters.

For the Bern database, ApEn(m = 2, r = 0.3), SampEn(m = 2, r = 0.3), FuzzyEn(m =

3, r = 0.15, q = 1) vs. ApEn(m = 3, r = 0.15), SampEn(m = 3, r = 0.15), and

FuzzyEn(m = 3, r = 0.3, q = 4) for the Bonn database. In fact, if these parameter sets

were swapped between the two databases, there would be baseline cases where the equal

means hypothesis would be accepted, or even the influence of spikes and/or cardiac

artifacts would become significant. Although FuzzyEn seems more stable, mainly as

regards m, it is not as stable as claimed in other contexts [22]. Consequently, special

care must be taken to appropriately select these parameters, and even dependency on

disturbance type can be arguably assumed. In other words, the EEG classification using

any of these metrics requires prior class knowledge, supervision and customization to

ensure optimal results.

For the two employed datasets, the results show that noise and muscular artifacts

have the strongest influence on the class separability of the input data (Tables 3, 7, 5

and 9), with rejections found even at 26dB, specifically for ApEn. Isolated spikes and

cardiac artifacts do not seem to significantly degrade the segmentation capabilities of

the studied metrics, with no acceptance found for all the studied cases. Ocular artifacts

fall in–between these two extreme cases, with a minimal, but measurable, influence

(Tables 10 and 6), that starts later at 10dB. It is also important to note that acceptance

does not only depend on the SNR level since some artifacts, especially the EMG artifacts,

are clearly non stationary. Since EMG and EOG epochs are randomly chosen for

the experiments, their influence may vary depending on their spike distribution (as

illustrated by the changes in the EMG signal at time 12s in Figure 3). Lack of consistency

for ApEn also becomes apparent in some cases, where means are considered equal at

some SNR levels, but are considered different at a lower SNR level (Table 7).

The changes in the p−values with artifacts are due to changes in the pattern that

matches the ratios of the metrics; e.g., regardless of their amplitude, isolated spikes, only

represent an extremely minor variation in the number of subsequences that match/do

not match. Consequently, the ratio is almost the same, as is the entropy metrics, and

the equal means hypothesis is rejected. The situation is similar with cardiac artifacts.
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Only QRS complexes have a significant amplitude, but are spaced time series as spikes

are, and are even more regular, so their influence on the dissimilarity computation is

minimal. Conversely, more evenly time distributed artifacts, such as noise or EMGs,

introduce variations into almost every signal sample, with a more significant variation

of the pattern matches count. Thus the ratio is very likely to be altered, as is the

entropy estimation. As a result, the distribution of entropy values notably varies, with

completely different p−values and a masking of the groups’ boundaries.

Although all the metrics provide full separability for the baseline case (no artifact)

in terms of statistically significant difference in means, ApEn is very sensitive to presence

of outliers, even for a high SNR like 26 dB. Its performance degrades rapidly with a

drop in SNR (Tables 5 and 9). FuzzyEn appears to be the most robust metrics, but in

one case (Table 10), SampEn outperforms FuzzyEn. This situation may suggest that

a more crispy dissimilarity function would be preferable for these cases, in contrast to

what is suggested in [54].

5. Conclusions

We studied the performance of ApEn, SampEn, and FuzzyEn metrics in the noisy

EEG classification context. It was based on an equal means hypothesis test, and other

performance influencing factors, such as parameter configuration, were removed by

manual optimisation. The results demonstrate that the ApEn and SampEn metrics

are sensitive to the artifacts commonly found in EEG records, mainly white Gaussian

noise and muscular artifacts. Even with the barely visible artifacts in the EEG, the

signal classification can significantly alter. These and other artifacts can be minimized

using the myriad of methods proposed in the literature [27, 34], but this is not always

possible, and special care has to be taken when deciding on the final configuration of

the metrics to employ.

The selection of input parameters r, m, N , and q is also critical. With low m values,

the performance of the three metrics is very poor. The r parameter seems more stable.

The size of the data, N , provided it is large enough to ensure a reliable estimation of the

number of matches, does not influence the results that much. We recommend using at

least N = 1000, which is in accordance with the scientific literature and provides reliable

results for larger values, e.g., 2000, 3000 and 4000, but with a much lower computational

cost. The q parameter, in conjunction with the membership function, also plays a key

role, with variations within the range [1, 4].

FuzzyEn achieves the best results. However, this metrics is not as robust to

parameters as usually claimed [22]. In addition to m and r, the fuzzy membership

function, and the q parameter, also have to be defined, and they also greatly influence

the accuracy of the results [35]. As a general rule, parameter m should be initially set at

3. The main weakness of this metrics is its computational cost. As all the comparisons

made between subsequence samples have to be computed, the algorithm burden isO(N3)

instead of O(N2). This may become a serious problem for large databases or very long
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records, and researchers should prioritize the optimization of this algorithm, as with

ApEn or SampEn [17], given its superior performance.

In summary, we conclude that broadband artifacts, such as white noise or EMG

interference, are the most influential artifacts in EEG records when processed using the

entropy measures studied herein. Regardless of their amplitude, other more infrequent

artifacts, like spikes, do not significantly modify entropy results, no the classification

statistics. Therefore, researchers or medical technology manufacturers will have to better

implement artifact removal methods and more robust entropy estimators to protect

their studies or systems against misleading results if white noise–like outliers enter

EEG acquisition systems. If complete broadband artifact removal can not be ensured,

then FuzzyEn seems the most robust metrics for EEG classification if the configuration

parameters are properly chosen. However, finding the optimal parameter configuration

when no prior knowledge of classes is available can be difficult, and unsupervised

parameter optimization methods should be investigated. These parameters could be

optimized in each particular case, and similarly to that proposed for SampEn in [59],

provided a normalization scheme takes place to make all the results comparable. In any

case, we recommend not using ApEn, but to replace it with FuzzyEn or, at least with

SampEn, if the computational cost is an issue.
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- Muscular artifacts are the most influencing artifacts in EEG records in terms of entropy calculation.  

- Approximate Entropy is very sensitive to the presence of outliers and should not be used in this 

context. 

- Fuzzy Entropy is the most robust entropy metric against the usual EEG signal artifacts. 

- There is a great input parameter variability and each case should be configured independently. 

- No need to process EEG records longer than 1000 samples. 


