
Actas de las XIII Jornadas
de Ingeniería Telemática

(JITEL 2017),
Valencia (España), 27-29 de

Septiembre de 2017.

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0)

EDITORIAL UNIVERSITAT POLITÈCNICA DE VALÈNCIA

PaCoVNE: Power Consumption Aware
Coordinated VNE with Delay Constraints

Khaled Hejja, Xavier Hesselbach
Dept. Ingenierı́a Telemática

Universitat Politècnica de Catalunya
C/ Jordi Girona, 1-3 - Edif.C3 - Campus Nord - 08034 Barcelona - Spain

{khaled.hejja, xavier.hesselbach}@upc.edu

Abstract—This paper introduces a more efficient embed-
ding approach, called power consumption aware and coordi-
nated VNE heuristic, denoted as (PaCoVNE). It embeds both
virtual nodes and edges, simultaneously, and within one stage,
while satisfying CPU and BW constraints, minimizes power
consumption of the whole substrate network, and considers
end-to-end delay as a major constraint. Performance of the
new heuristic was compared to the energy aware algorithm
OCA/EA-RH, for off-line scenario using homogeneous config-
urations, with and without end-to-end delay. The paper also
presents simulation results once without end-to-end delay,
and also when it was included.

Keywords: Virtual Network Embedding, Power Consump-
tion, Coordinated, Delay

I. INTRODUCTION
Networks virtualization has become an integral component of

future Internet, offering network operators a way to overcome
ossification of the Internet, by consolidating many of their
equipments onto standardized high volume components located
at centralized data centers [2]-[4]. More specifically, the key
advantageous of network virtualization are basically related to
efficiently utilizing physical network resources through sharing
them among several virtual networks (VN), as well as provid-
ing more flexibility to manage, expand, or shrink the physical
network according to VNs’ characteristics.

However, allocating enough resources to satisfy all require-
ments of a virtual network request (VNR), on top of a substrate
network (SN) that has limited residual capacities, is a very
challenging task in network virtualization [5]. To realize that,
VNE process is usually divided into two sub-problems, the first
one is allocating virtual nodes onto physical nodes, which is
known as virtual node mapping (VNM) stage. The other one, is
virtual edge mapping (VEM), which embeds virtual edges onto
physical paths connecting corresponding nodes in the physical
network. Along such process, VNE usually trades off between
minimizing embedding costs through utilizing less SN resources,
and maximizing revenues through accepting as much as possible
VNRs, while maintaining acceptable quality of services (QoS).

Generally, VNM and VEM stages can be carried out in two
strategies, uncoordinated or coordinated [5]. Regarding the unco-
ordinated case, VNM and VEM used to be solved independently
without any coordination between the two stages, raising the
possibilities of higher VNRs rejections. This is because VEMs
could be mapped on longer physical paths, therefore, utilizing
additional resources, consuming more power, and adding more

delay due to passing through hidden hopes [6]. The other
strategy, is performing both VNM and VEM in two separate,
but coordinated stages, where VNM is performed according to
predefined VEM constraints to guide allocating the virtual nodes
[7]. However, even through there is a sort of coordinating VNM
with VEM, still, virtual nodes could be embedded at physical
nodes that could be farther away from each other, enforcing
edges to be mapped at longer physical paths, resulting on similar
disadvantageous as in the uncoordinated scenario. Furthermore,
regardless of the used strategy, VNE used to be constrained
by CPU and BW resources, but occasionally considering
power consumption, and almost very seldom adding delay as an
additional constraint. Thus, it could be possible that, the lack of
considering more constraints throughout the VNE process, would
result on a degraded QoS for the whole embedding process,
including raising operational costs, consuming more power, as
well as generating less revenues.

In view of that, this paper introduces the PaCoVNE approach,
as a fully coordinated VNE algorithm. It performs virtual nodes
and edges embeddings simultaneously and in one stage, accord-
ing to the following constraints combined: CPU, throughout,
power consumption and end-to-end delay. The core of PaCoVNE
approach is based on formulating VNR’s demands and SN paths’
resources into two separate sets, called (Segments), one for VNR
and another one for a precisely selected SN path. The VNR
segment (Segr) is defined as a set of parameters, grouped as one
entity, representing demands of virtual nodes and edges. While
SN path’s segment (SegS) is defined as a set of parameters;
also grouped as one entity, representing resources of the physical
nodes and edges belonging to a specific selected SN path. Both,
VNR and SN segments must be identical in terms of number of
nodes and edges in order to compare them element by element.
Subsequently, PaCoVNE starts VNE process to minimize total
power consumption in the whole SN, by comparing each element
in the VNR segment to its corresponding element in the SN path
segment, then deciding if SN path has enough CPU and through-
put resources to accommodate the VNR, while considering end-
to-end delay.

Main contributions:
1) PaCoVNE heuristic is introduced as a one stage coordi-

nated VNE approach constrained by CPU, BW, and end-
to-end delay to minimize total power consumption of the
whole SN.

2) Analysis of PaCoVNE was performed for off-line scenario,
using homogeneous and heterogeneous SN settings.

3) Comparison was conducted against one of the most refer-

ISBN: 978-84-9048-595-8
DOI: http://dx.doi.org/10.4995/JITEL2017.2017.6490

264

Hejja, Hesselbach, 2017.

enced energy efficient embedding algorithms, the energy
aware relocation heuristic (OCA/EA-RH) given by [9].

Rest of the paper is organized as follows: Section II provides
related work. System model is introduced in section III, followed
by ILP problem formulation in section IV. Design of the proposed
PaCoVNE heuristic is shown in section V, and performance
evaluation is presented in VI. Then results and discussion are
included in section VII, while section VIII concludes the paper
and highlights some future work.

II. RELATED WORK
One of the main benefits of network virtualization is its

ability to consolidate network resources by hosting them on
the same substrate resource, which allows for reducing energy
consumption and cost [9],[13]. In most cases, saving energy in
networks has been devoted to the reduction of energy consump-
tion in a single networking device or parts of a device, and
not power saving in the whole network, where unused resources
could be but into sleeping mode or turned off completely. Other
approaches performed VNE on small parts of the SN, then
widen the area if no sufficient power resources were found on
SN. Moreover, virtual resources can be migrated to balance the
overall load in an energy efficient way, thus reducing the total
power consumption of the network without compromising QoS
or VNRs’ acceptance ratio. More details about most related
and recent literature about energy aware VNE approaches are
summarized in the following paragraph:

A modified VNE algorithm was presented by [8], which
prefers SN nodes consuming less power and selects edges in
an energy efficient path, then in [9], they developed a scal-
able energy-aware reconfiguration heuristic approach, including
embedding cost and load balancing. The heuristic considers a
set of embedded VNRs as input to perform an energy efficient
relocation of resources, without impacting the acceptance ratio.
[10] proposed to maximize the accepted VNRs while minimiz-
ing the energy cost of the whole system. They followed two
observations, first embed VN nodes on SN nodes that has lowest
electricity price, second embed VN nodes on an already active
SN as much as possible, then put other nodes that has no load
into sleeping mode.

Moreover, [11] developed an embedding algorithm that em-
beds a subset of VNRs into a subset of cleanest SN resources
in terms of CO2 emissions resulting from the energy usage,
while satisfying the VNR constraints. They constrained the VNE
process by introducing link delay, packet loss, used energy
source, VNR priority and location. The authors showed that the
embedding guarantees reduced number of substrate resources and
cost, faster embedding time, and reduction of carbon footprint of
the VNE operation. While in [12], the authors designed an MILP
and a real time heuristic algorithm that considers granular power
consumption of all devices in an IP over WDM network. They
tried to consolidate the nodes embeddings by filling the ones with
the least residual capacity before switching on others, as well as
consolidating more than virtual node at the same data center
to minimize additional hop counts. And in [13] The authors
considered an energy efficient VNE in the IP network over the
WDM optical network, by adapting a feedback control approach
performing the embedding on a smaller set of SN resources.
A limited mappable area consisting of a selection of candidate
nodes is located first, then they check if VN embedding was
successful, if not, then a feedback control approach is triggered
to search for a wider mappable area, and the whole process
repeats again. In this way, they managed to increase number
of hibernated links and nodes, resulting on reducing energy
consumption by the SN.

III. SYSTEM MODEL
The aim of this paper is to perform coordinated VNE that

minimizes total power consumption in the whole SN. Conse-
quently, following paragraphs explain the overall design model

for VNE system, starting by defining SN model and introducing
its notations. Then VN’s model definition and notation will be
explained, as well as defining the used power consumption model
by PaCoVNE.

A. Substrate Network Model:
The physical network GS = (NS , ES) is modeled as a

weighted directed graph, where: i and j ∈ NS are SN nodes,
and (i, j) ∈ ES is an edge connecting nodes i and j. Each node
i ∈ NS is associated with pwidle

i representing average power
value when the sever is idle, PWBusy

i average power value when
the server is fully utilized, PCi total power consumption of i,
as well as cpua

i representing current available CPU capacity,
cpui consumed CPU capacity, and CPUi as the maximum
CPU capacity at node i. µi is a fractional value (consumed
to maximum CPU capacity, which could reach a value of
1 maximum) representing the processing utilization of node i
defined in the range (0-1), zero if node i is not loaded, up to 1
if its 100% loaded. Each substrate edge (i, j) is associated with
bwa

ij , representing current available bandwidth capacity, bwij as
consumed bandwidth capacity, BWij for maximum bandwidth
capacity, daij as current end-to-end delay in SN edge (i, j), while
fa
i,j is current traffic flow defined as the total throughput from

SN node i to j. PS = {(i, j)} represents a set of all directed
paths connecting all pairs of SN nodes i and j with a set of edges
{(i, j)}. And substrate path Psd = {(s, n), ..., (k, l), ..., (m, d)}
∈ PS is an end-to-end path constructed of more than one
physical edge, where (s, n) is the first physical edge connecting
the source node s to its adjacent node n, (k, l) is an intermediate
physical edges, and (m, d) is the last physical edge connecting
destination node d to its previous node m. Finally, total end-
to-end delay in Psd is the sum of delays of each edge (i, j)
between the source node s and the destination d, and is given
by dasd =

∑
∀ (i,j)∈ES

daij .

B. Virtual Network Model:
Similar to the substrate network, the virtual network is mod-

eled as a weighted directed graph GV = (NV , EV), where
u and v ∈ NV are virtual nodes, and (u, v) ∈ EV is a
virtual edge. VNRr is a virtual network request number r out
of R total VNRs. Each virtual node u ∈ NV is associated
with cpur

u, representing the demanded CPU capacity, and each
virtual edge (u, v) connecting a pair of virtual nodes u and v is
also associated with bwr

uv as the demanded bandwidth capacity.
Lastly, druv represents the maximum allowed end-to-end delay
demanded by virtual edge (u, v).

C. Power Consumption Model:
A comprehensive survey for state of the art power con-

sumption models were presented in [1]. Accordingly, this paper
identified the linear power model introduced by [14], which de-
fined a formula to estimate the power consumption of network’s
servers PC including its idle power. The model approximated
the aggregate behavior of a server system while being active,
by measuring the total power consumption of the server PCi

against it’s CPU utilization. In addition to idle power, the model
includes total power consumed by the server when loaded as
shown in Fig.(1). The formula is given as follows:

∀ i ∈ NS

PCi = pwidle
i + [PWBusy

i − pwidle
i]× µi (1)

µi =

(
cpui

CPUi
× 100

)
(2)

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0)
EDITORIAL UNIVERSITAT POLITÈCNICA DE VALÈNCIA

265

Preparación artı́culos XIII Jornadas de Ingenierı́a Telemática

Nodes are at Idle power levels

(CPU utilization is Zero)

= 1

Fig. 1. Power Consumption Model

IV. PROBLEM FORMULATION
VNE problems are traditionally modeled as an optimization

problem of objective function with positive integer and linear
variables, usually referred to as integer linear programming (ILP)
problem. However, optimal solution for the VNE as an ILP
problem, implies introducing binary constraints to connect one
edge only for each node, then, mapping all virtual nodes and
edges on their physical counterparts having enough resources to
accommodate their demands. Accordingly, virtual edges associ-
ated with bandwidth constraints is usually treated as a commodity
between pair of nodes, and therefore, embedding a virtual edge
optimally is similar to finding an optimal flow for the commodity
in any network model [6],[15],[17].

To formally introduce the VNE problem as an ILP, following
paragraphs define and formulate VNR and SN path’s segments, in
addition to the objective function and its constraints, as follows:

A. Segments formulation:
To solve VNE problem in one stage by fully coordinating

nodes and edges embedding together at the same time, segment
based formulations for the VNR and SN path are defined and
formulated as follows:

Definition: Segment is defined as a set of parameters, grouped
as one entity, for VNRs, Segr representing demands of virtual
nodes and edges in VNR number r, and for a specific SN path,
SegS represents resources of the physical nodes and edges in
the selected SN path.

1) VNR segment formulation (Segr): each VNR is re-
formulated into a segment listing its CPU , BW , and delay
demands together as a set. Eq(3) shows general design of Segr .
Starting by the processing power capacity of its virtual nodes
denoted by cpur

u for the source node, cpur
w for all intermediate

nodes, and cpur
v for the destination node. Next, the segment

lists all virtual edges’ resources, including bandwidth capacity
per each edge denoted by bwr

uo for the edge connecting source
virtual node u to next virtual node o, then it lists all bandwidth
capacities for all intermediate virtual edges including virtual edge
bwr

wx, connecting intermediate virtual node w to next virtual
node x, in addition to virtual path bwr

pv connecting destination
virtual node v to its previous virtual node p, and finally Segr lists
the demanded end-to-end delay druv between the virtual source
node u and its virtual destination node v.

Segr = {cpur
u, .., cpu

r
w, .., cpu

r
v, bw

r
uo, .., bw

r
wx, .., bw

r
pv, d

r
uv}

(3)

o, p, w, x are virtual nodes ∈ VNRr

2) SN path segment formulation (SegS): Similarly, Psd

segment is shown in eq(4). The segment lists all Psd resources,
namely: current available processing power capacities for all
nodes in the path, given as cpua

s , cpua
k, and cpua

d for source,
all intermediate, and destination physical nodes respectively. In
addition, SegS lists current available bandwidth capacities for
all of its edges starting by bwa

sn, connecting source node s to
next physical node n, all edges connecting intermediate nodes
including bwa

kl, and bwa
md connecting destination node d to its

previous physical node m. Lastly, SegS segment lists its end-to-
end current delay dasd between Psd source and destination nodes.

SegS = {cpua
s , .., cpu

a
k, .., cpu

a
d, bw

a
sn, .., bw

a
kl, .., bw

a
md, d

a
sd}

(4)

k, l, n,m are physical nodes ∈ P a
sd

B. Objective function definition and formulation:
Following the same analogy of estimating the power consump-

tion of SN nodes, formula shown in eq.(1) will be applied to
formulate the objective function as an ILP optimization problem.
The main target is to minimize overall power consumption in the
whole substrate network, by putting into sleeping mode all non
utilized SN resources that are at idle power consumption, while
accommodating VNR’s demands. The rational behind that, is that
for all SN nodes that are at idle mode, still, they are consuming
considerable amount of power, even if their consumed CPU were
zero. This is because when nodes are at idle mode, the power
consumed by chassis (backplane) and cooling systems could be
at least 40% or higher of the total power [19]. Accordingly,
setting them into sleeping mode will result on minimizing the
total substrate network’s power consumption.

1) Objective Function: To make sure that a specific SN
node is active and hosting at least one virtual node, variable xuri
is used in the ILP objective function formulation, which takes a
binary value of (1) if substrate node i is active and assigned to
host the virtual node u, and (0) otherwise. The objective function
is shown in eq.(5) as follows:

∀u ∈ NV and ∀r ∈ R

minPCi =
∑
∀i∈NS

(pwidle
i + [PWBusy

i − pwidle
i]× µi)× xuri

(5)

C. Constraints definition and formulation:
Objective function solution will be constrained by capacity,

flow and domain constraints as shown bellow. However, power
consumption constraint was intentionally omitted, since it relies
on CPU utilization of each node, nevertheless, it will be satisfied
if constraints (6) and (7) were satisfied.

1) Capacity constraints: To ensure current available CPU
processing power capacity in substrate node i is greater than or
equal to demanded capacity by virtual network node u, constraint
(6) is defined as follows:

∀ i ∈ NS cpua
i ≥ cpur

u (6)

To ensure total consumed CPU processing power capacity at
substrate network node i, is less than or equal to maximum CPU
capacity at that SN node, constraint (7) is defined as follows:

∀ u← i
∑
r∈R

cpur
u ≤ CPUi (7)

Note: u ← i means that virtual network node u is hosted at
substrate network node i.

To ensure that current available bandwidth capacity on sub-
strate network edge (i, j) is greater than or equal to demanded

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0)
EDITORIAL UNIVERSITAT POLITÈCNICA DE VALÈNCIA

266

Hejja, Hesselbach, 2017.

bandwidth capacity by virtual network edge (u, v), constraint (8)
is defined as follows:

∀ (i, j) ∈ Psd bwa
ij ≥ bwr

uv (8)

To ensure that total consumed bandwidth capacity in substrate
network edge (i, j), is less than or equal to maximum bandwidth
capacity at that edge, constraint (9) is defined as follows:

∀ (u, v)← (i, j)
∑
r∈R

bwr
uv ≤ BWij (9)

Note: (u, v) ← (i, j) means that virtual network edge (u, v) is
embedded on the substrate network edge (i, j).

To ensure that current end-to-end delay in substrate network
path Psd is less than or equal to maximum allowed delay druv
by VNRr , constraint (10) is defined as follows:

dasd ≤ druv (10)

2) Flow constraints: To ensure that a flow getting in a
substrate node must go out, the following constraints has to be
satisfied: ∑

∀n∈NS

fa
sn −

∑
∀n∈NS

fa
ns = bwr

uo (11)

∑
∀m∈NS

fa
dm −

∑
∀m∈NS

fa
md = −bwr

pv (12)

∑
∀k,l∈NS

fa
kl =

∑
∀k,l∈NS

fa
lk (13)

Constraint (11) ensures that the total flow getting out of source
node s is the demanded flow bwr

uo, while constraint (12) ensures
that total flow getting into destination node d is the forwarded
flow bwr

pv , and constraint (13) ensures that all demanded flow is
transfered from source to destination node, and nothing remains
at any intermediate node within SN path Psd.

3) Domain constraints: To solve the problem as ILP,
constraint (14) is defined as follows:

∀ i ∈ NS xuri ∈ {0, 1} (14)

To ensure each virtual node is mapped only to one substrate
node, constraint (15) is defined as follows:

∀ u ∈ NV
∑
∀i∈NS

xuri = 1, (15)

To ensure virtual nodes from the same VNR are mapped to
different substrate nodes, constraint (16) is defined as follows::

∀ i ∈ NS
∑
∀u∈NV

xuri ≤ 1, (16)

V. HEURISTIC DESIGN
Optimal solution for VNE is known to be NP-Hard and

computationally intractable, since it can be reduced to multi-
way separator problem, which is NP-Hard by itself [7]. As a
summary, [18] listed some of the main reasons highlighting why
solving VNEs is challenging, such as: randomness of the arrival
of VNRs depending on users’ demands, topology and resources
constraints by each VNR, and limited SN resources. However,
the virtual edges embedding problem is what makes the VNE
problem exceptionally an NP-hard, because it could be mapped
to one or more physical edges that are not necessarily physically
connected. Even for offline VNE case, given that all nodes were
embedded, still virtual edge embedding stage can be reduced
to the unsplittable flow problem, which is NP-hard [15],[16].
Consequently, solving VNE problem in polynomial time is not
possible.

Therefore, majority of VNE approaches followed heuristic or
meta-heuristic algorithms to solve VNE optimization problems
in a reasonable polynomial time [5]. For example, one of the

most referenced VNE heuristic approaches is the algorithm
presented by [7]. It coordinates node and edge embedding,
through mapping virtual nodes onto substrate nodes in a way that
facilitates mapping of virtual edges. Nevertheless, the authors
performed VNM and VEM in two interrelated stages. First they
designed a node embedding algorithm to embed the virtual nodes
on a suitable physical nodes, which could be separated a part
from each other. Second, once node mapping was successful,
they triggered another algorithm to embed the associated virtual
edges on substrate paths, noting that it mostly would include
hidden nodes to be used as hops. However, other ideas could be
explored to better coordinate embedding VNM and VEM stages,
and at the same time avoid including non necessary hidden hops
and edges beyond VNRs needs.

Therefore, this paper proposed the PaCoVNE algorithm as a
new heuristic methodology to solve VNE optimization problem
more efficiently. Its main strength, is that it coordinates node and
edge embedding in one step, based on matching each element
in VNRr segment, Segr , against their counterparts in the SN
path’s segment, SegS , considering the following four constrains,
namely: CPU and BW capacity constraints, in addition to
power consumption and end-to-end delay constraints.

A. Heuristic code explained:

Pseudo-code for PaCoVNE heuristic is shown in Algorithm 1
bellow, and is explained by the following main four steps:

1) Initialization: it starts by generating SN topology, lists
all its possible paths, and categorizes them into types according
to number of nodes and edges per each SN path. Notice that,
number of lists and paths per list varies depending on the
size and topology of SN. Since SN topology is physically
fixed in real life, the main elements formulating any SN path
(number and connectivity of SN nodes and edges) are also fixed
and does not change, but only their capacities varies due to
consumption. Therefore, to avoid searching for SN paths while
VNE algorithm is running, and in contrary to most available
heuristics in literature, this paper performs the initialization step
in advance ahead of VNRs’ arrival. This is one advantage behind
PaCoVNE’s speed of performing VNE in real-time, given it
mainly focuses on the actual mapping process itself. To facilitate
recalling a specific list of SN paths by PaCoVNE algorithm
whenever it receives a new VNR, these lists will be saved and
categorized per path type in a data base repository, including
number of nodes, edges, and connectivities for each path.

2) Segmentation and ranking: this is the differentiating
aspect of PaCoVNE heuristic compared to others, mainly because
it facilitates accommodating VNRs one by one and embed their
nodes and edges in one step and in full coordination between
VNM and VEM. First the heuristic formulates VNRr segment
Segr . Then, to formulate the candidate SN path segment SegS , it
recalls the appropriate list of SN paths that has similar number of
nodes and edges as that of VNRr . Next, it ranks them according
to their CPU utilization, and ends by formulating SN segment
for the top ranked path.

3) Embedding decision: compares each element in the SN
segment SegS to its counterpart in the Segr , one-by-one. Ac-
cordingly, if SN segment has enough resources to accommodate
all demands of VNRr , PaCoVNE selects the path of SN segment
SegS to host VNRr . Decision matrix for the embedding process
is shown in eq.(17) bellow:

if cpua
i − cpur

u ≥ 0 and

if bwa
ij − bwr

wx ≥ 0 and

if dasd ≤ druv (17)

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0)
EDITORIAL UNIVERSITAT POLITÈCNICA DE VALÈNCIA

267

Preparación artı́culos XIII Jornadas de Ingenierı́a Telemática

4) Updating: once a successful embedding occurs, the
heuristic updates all changed SN resources and moves to next
VNR. However, in case that SN segment does not have enough
resources to accommodate VNR demands, the heuristic jumps to
the next ranked path, and follow on from step 5. This process
keeps on going until no more VNRs to be handled.

Algorithm-1, PaCoVNE Pseudo-Code

1) Input: GV .
2) for each VNRr ∈ R do

-Formulate VNRr parameters into segment Segr

according to eq.(3).
3) For the set of all saved SN paths PS :

List all SN paths matching VNRr size.
Rank them in descending order based on µi

according to eq.(2)
4) For top ranked SN path Psd, formulate its segment Segs

according to eq.(4).
5) Compare Segr against SegS

Check for CPU , BW and Delay constraints
according to eq.(17).

6) If satisfied,
embed VNRr on Psd.
else go to next ranked SN path, step-4.

7) for all SN nodes and edges do
Update CPU and BW resources.
Remove the embedded VNRr from VNRs list.

8) for idle SN nodes do
Turn-off to save power.

9) Evaluate Metrics.
10) If VNRs list not empty, go to next VNR step-2.

B. PaCoVNE Computational Time Complexity:
In this paper, regardless the number of VNRs and based on the

adjacency matrix of SN, searching and listing all types of paths
will consume O(|NS | + |ES |) processing time, depending on
total number of nodes N and edges E formulating the SN [17].
This step is performed and saved only once before the arrival
of any VNR. Therefore, it will not have any impact on the real
computational time complexity of the VNE process.

However, the actual VNE process starts when the first VNR
arrives at the SN. Therefore, in order to evaluate computational
time complexity of PaCoVNE at worst case, the focal compu-
tational component of the heuristic is determined based on the
time consumed while sorting all listed SN paths that has the same
number of nodes and edges as the VNRr . The larger the number
of listed paths, the more computational time is consumed by the
working machine.

Accordingly, for each VNRr , the PaCoVNE adopted (Bubble
Sort) algorithm to rank all SN paths in descending order [17].
Thus, at the worst case, the PaCoVNE algorithm will have a
quadratic computational time complexity in the order of O(n2),
where n is number of paths.

C. Illustrative Example:
A detailed example to explain the proposed heuristic is shown

in fig.(2). It applies PaCoVNE on a SN of four nodes as shown in
stage A, then it evaluates how to accommodate VNR1, by sorting
all listed SN paths based on the total sum of CPU utilizations
’µ’ for each path. As shown in stage B, the PaCoVNE concludes
by embedding VNR1 on nodes 2 and 3, along path P23, which
had enough resources to accommodate its demands. In this case,
the heuristic managed to save 21% of the total consumed power
in the whole SN, by turning-off nodes 0 and 1, since they were
idle. Stage C introduced VNR2, the PaCoVNE decides that
even though P23 is still the top ranked path, based on its CPU
utilization, but since it does not have enough BW resources to
accommodate the demanded BW by VNR2, it jumps to next
ranked SN path, P02, which satisfies all demands of VNR2.

TABLE I
SIMULATION SETTINGS FOR OFF-LINE HOMOGENEOUS

Parameter SN VNR
Nodes 50 15

CPU max 100 2.1
BW max 100 2.3
Delay max 250 100− 250

PWBusy 524

pwidle PWBusy * 0.4

Loads 0.2− 0.9
Runs/load 50

α 0.6
β 0.23

pwax 0.2

Therefore, PaCoVNE assigns P02 to accommodate VNR2, then
it keeps node 1 turned-off, since its the only idle node, resulting
on saving 12% of the total consumed power by the whole SN.

VI. PERFORMANCE EVALUATION
In this paper, off-line version of PaCoVNE heuristic was tested

using homogeneous and heterogeneous settings, once with end-
to-end delay, and another time without it. The homogeneous
version was compared to one of the most referenced heuristics,
the energy aware relocating algorithm ’OCA/EA-RH’ developed
by [9]. Then, for the heterogeneous scenario, PaCoVNE was
compared to its homogeneous version.

A. Simulation Settings:
For the off-line homogeneous scenario without delay, Pa-

CoVNE was compared to OCA/EA-RH heuristic, which only
used VNRs of 15 nodes; denoted as (V NRs15), and there-
fore, the same simulation settings will be applied for Pa-
CoVNE as well [9]. Specifically, the SN will handle a set
of 80 VNRs, for different average loads, denoted by ρ
∈{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The value of each load
ρ, reflects a ratio between VNRs demands to SN capacities, and
therefore, loading the SN with X%, means this is the average
of loading each node by X% load as well. The values of SN’s
nodes cpua

i and bwa
ij resources were set to uniformly distributed

values equal to 100. For each VNR, cpur
w and bwr

wx values were
estimated from the average embedding cost figure of [9], and
are given as follows: cpur

w = 2.1 and bwr
wx = 2.3. Finally,

maximum power consumption by each SN node PWBusy
i was

set to 524 watts, while its idle power pwidle
i was set as (PWBusy

i

* 0.4) [19]. For SN edges, end-to-end delay daij , was set equal to
250ms as a limit [20],[21]. While virtual network delays drwx,
was selected pseudorandomly between 100− 250ms. Table (1)
summarizes all simulation settings to compare PaCoVNE against
OCA/EA-RH for the off-line and Homogeneous scenario.

SN topologies were generated as directed graphs, through
Waxman algorithm according to the following parameters: α =
0.6, β = 0.23, and mean probability of creating an edge between
any two SN nodes, denoted as pwax was set equal to 0.2.
Important to notice that, these parameters differ from what [9]
used, since the aforementioned parameters will provide average
edges at each SN node of 6, instead of 12 as used by [9].
This caused PaCoVNE heuristic to rank much less number of
paths, yet, it produced better results compared to OCA/RA-
EH. To overcome the probabilistic nature of Waxman topology
generation, the set of 80 VNRs were run for 50 times per each
ρ load value.

B. Heuristic work-flow:
Initialization: based on the SN adjacency matrix, the heuristic

lists all SN paths of 15 nodes, denoted as P15 ∈ PS , this is only
performed once and saved at the beginning. These paths can then
be used for any number of V NRs15. This is important, since

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0)
EDITORIAL UNIVERSITAT POLITÈCNICA DE VALÈNCIA

268

Hejja, Hesselbach, 2017.

Legend

-- All paths in SN of type 2 nodes are
{<0,1>,<0,2>,<1,3>,<2,3>}, and their CPU utilizations are:

<0,1> =
0

100
 ∗ 100 +

0

200
∗ 100 = 0 + 0 = 0 %.

<0,2> =
0

100
 ∗ 100 +

100

300
∗ 100 = 0 + 33 = 33 %.

<1,3> =
0

100
 ∗ 100 +

100

400
∗ 100 = 0 + 25 = 25 %.

<2,3> =
100

300
 ∗ 100 +

100

400
∗ 100 = 33 + 25 = 58 %.

-- Ranking the paths according to CPU utilization in
descending order, would result on: <2,3> top, then <0,2>,
<1,3>, and <0,1>
-- Since path <2,3> is the most utilized, check if it has
enough CPU, BW, and delay:
𝑐𝑝𝑢2 − 𝑐𝑝𝑢0

1 = 200 − 100 = 100 > 0 .
𝑐𝑝𝑢3 − 𝑐𝑝𝑢1

1 = 300 − 120 = 180 > 0 .
𝑏𝑤23 − 𝑏𝑤01

1 = 80 − 60 = 20 > 0 .
𝑑23 < 𝑑𝑉𝑁𝑅1 .
-- Thus path <2,3> has enough resources to
accommodate VNR-1.

i = 0,1, 2, 3
𝑷𝑾𝒊𝑩𝒖𝒔𝒚= 100, 200, 300, 400 W

𝒑𝒘𝒊𝒊𝒅𝒍𝒆 = 60 , 100, 180, 240 W.

𝑪𝑷𝑼𝒊 = 100, 200, 300, 400.
𝒄𝒑𝒖𝒊 = 0 , 0 , 200, 220.
𝒄𝒑𝒖𝒊

𝒂 =100, 200, 100, 180.

𝝁𝒊 =
0

100
 ∗ 100 ,

0

200
∗ 100 ,

200

300
∗ 100 = 66,

220

400
∗ 100 =55.

𝑃𝐶𝑖 = 𝑝𝑤𝑖𝑖𝑑𝑙𝑒 + 𝑃𝑊𝑖𝐵𝑢𝑠𝑦 − 𝑝𝑤𝑖𝑖𝑑𝑙𝑒 ∗ 𝐶𝑃𝑈𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Thus:
𝑃𝐶0 = 60 + 100 − 60 ∗ 0 = 60 Watts
𝑃𝐶1 = 100 + 200 − 100 ∗ 0 = 100 Watts
𝑃𝐶2 = 180 + 300 − 180 ∗ 0.66 = 260 Watts
𝑃𝐶3 = 240 + 400 − 240 ∗ 0.55 = 328 Watts
Nodes 1 and 2 will be turned off since they are ideal.
𝑷𝒐𝒘𝒆𝒓 𝑺𝒂𝒗𝒊𝒏𝒈 = 𝟔𝟎 + 𝟏𝟎𝟎 = 𝟏𝟔𝟎

i = 0,1, 2, 3
𝑷𝑾𝒊𝑩𝒖𝒔𝒚= 100, 200, 300, 400 W

𝒑𝒘𝒊𝒊𝒅𝒍𝒆 = 60 , 100, 180, 240 W
𝑪𝑷𝑼𝒊 = 100, 200, 300, 400.
𝒄𝒑𝒖𝒊 = 60 , 0 , 280, 220.
𝒄𝒑𝒖𝒊

𝒂 =40 , 200, 20 , 180.

𝝁𝒊 =
60

100
 ∗ 100 = 60 ,

0

200
∗ 100 ,

280

300
∗ 100 = 93,

220

400
∗ 100 =55.

𝑃𝐶𝑖 = 𝑝𝑤𝑖𝑖𝑑𝑙𝑒 + 𝑃𝑊𝑖𝐵𝑢𝑠𝑦 − 𝑝𝑤𝑖𝑖𝑑𝑙𝑒 ∗ 𝐶𝑃𝑈𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Thus:
𝑃𝐶0 = 60 + 100 − 60 ∗ 0.60 = 84 Watts
𝑃𝐶1 = 100 + 200 − 100 ∗ 0 = 100 Watts
𝑃𝐶2 = 180 + 300 − 180 ∗ 0.93 = 292 Watts
𝑃𝐶3 = 240 + 400 − 240 ∗ 0.55 = 328 Watts
Nodes 2 will be turned off since its ideal.
𝑷𝒐𝒘𝒆𝒓 𝑺𝒂𝒗𝒊𝒏𝒈 = 𝟏𝟎𝟎
𝑻𝒐𝒕𝒂𝒍 𝑷𝒐𝒘𝒆𝒓 𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 = 𝟕𝟔 + 𝟏𝟎𝟎 + 𝟐𝟗𝟐 + 𝟑𝟐𝟖 = 𝟖𝟎𝟒

Current available CPU
Current cons. Power

CPU Utilization.

Current BW
Delay

Nodes parameters

Edges parameters

All paths in SN of type 2 nodes are:
<0,1> = 0 + 0 = 0 %.
<0,2> = 0 + 66 = 66 %.
<1,3> = 0 + 55 = 55 %.
<2,3> = 66 + 55 = 121 %.
Ranking the paths according to CPU utilization in
descending order
<2,3> = 66 + 55 = 121%. Excluded, since no enough BW
<0,2> = 0 + 66 = 66 %. Selected, since next ranked.
<1,3> = 0 + 55 = 55 %.
<0,1> = 0 + 0 = 0 %.
Since path <0,2> is next in the list, check if it has enough
CPU and BW resources
𝑐𝑝𝑢0 − 𝑐𝑝𝑢0

2 = 100 − 60 = 40 𝑀𝑖𝑝𝑠 > 0 𝑂𝐾
𝑐𝑝𝑢2 − 𝑐𝑝𝑢2

2 = 100 − 80 = 20 𝑀𝑖𝑝𝑠 > 0 𝑂𝐾
𝑏𝑤02 − 𝑏𝑤01

2 = 100 − 40 = 60 𝑀𝑏𝑝𝑠 > 0 𝑂𝑘 .
𝑑02 < 𝑑𝑉𝑁𝑅2 .
Thus path <0,2> will be selected since it has enough
resources to accommodate VNR-2.

SN before embedding

0

1

2

3

100
1

100
60

0

200
100

0

100
1

300
290

25

200
220

33
100

1
80
1

0 1
60

120100

VNR-1

5

SN after VNR1

OFF

OFF

2

3

100

1

10

060

0

20

010

0

0

100

1

180
328

55

100
260

66

1
20
1

Initialization A Embedding B

SN before VNR-2

OFF

2

3

10

01

100
60

0

20

010

0

0

100
1

180
328

55

100

260

66
100

1
20
1

Re-evaluating C

0 1
40

8060

VNR-2

3

0

SN after VNR-2

OFF

2

3

100

1
40
84

60

200
100

0

100
1

180
328

55

20
292

93
60
1 20

1

Embedding D

0 1
40

8060

VNR-2

3

0

0 1
60

120100

VNR-1

5

Fig. 2. Numerical example showing basics of PaCoVNE

the heuristic will focus on the actual embedding process itself,
and not on searching for the best path at the arrival of each new
VNR, which saved PaCoVNE’s run time considerably. Moreover,
its important to mention that PaCoVNE heuristic can generate
all types of SN paths at the beginning, and accordingly, it can
handle any type of VNRs regardless of how many nodes they
may contain.

VNR segment formulation: Since OCA/EA-RH heuristic used
VNRs15, then PaCoVNE formulates Segr15 as defined in eq.(3).

SN path segment: the heuristic selects the path of highest µ,
denoted as P a ∈ P15, and formulates its segment Sega15 as
defined in eq.(4).

Ranking: For each path P a ∈ P15, PaCoVNE calculates and
sums its µs, then it ranks the paths based on the value of its µ
from highest to lowest.

Embedding: The algorithm compares both segments according
to eq.(17), if the conditions are satisfied, then it embeds VNRr15

on SN path P a.
Turning off idle SN nodes: Once VNRr15 is embedded suc-

cessfully, PaCoVNE identifies all idle SN nodes and turns them
off to save power consumption. Next it updates all SN elements
based on that.

C. Evaluation Metrics:
The PaCoVNE heuristic will be evaluated according to fol-

lowing metrics:
• Average Total power consumption, PW : defined as the total

power consumed by all SN nodes after each VNR embedding,
and averaged over the total number of VNRs R [9],

∀ρ ∈ Loads,

PW =
1

R
(
∑
∀r∈R

∑
∀i∈NS

PCi) (18)

• Average Saved Power, PS: the amount of saved power
after embedding each VNR, using the proposed power reduction
strategy. Calculated by subtracting total power consumed by all
SN nodes without power reduction strategy PW−, from total
power consumed by all active SN nodes after applying power
reduction strategy PW+. The results will be averaged over the
total number of VNRs R.

∀ρ ∈ Loads,

PS =
1

R

∑
∀r∈R

(
∑
∀i∈NS

PW− −
∑
∀i∈NS

PW+) (19)

• Average Acceptance Ratio, AR: is a ratio to represent
how PaCoVNE algorithm is performing, calculated for each load
value ρ, by dividing number of successfully embedded VNRs by
total number of VNRs R [7],[9].

∀ρ ∈ Loads,

AR =
1

R
Total Number of Embdded V NRs ∗ 100 (20)

• Average Cost of embedding VNRs, EC: is the sum of total
consumed SN resources CPU and BW while embedding each
VNR. Tuning parameters to represent relative costs per each SN
resource, denoted as α for SN nodes’ cost, and β for SN edges,
were both set equal to one [7],[9].

∀ρ ∈ Loads,

EC =
1

R

∑
∀r∈R

(
∑

∀(i,j)∈ES

(β ∗ bwij) +
∑
∀i∈NS

(α ∗ cpui)) (21)

• Average CPU utilization, CPUutil: it represents SN nodes’
utilization trend after all simulation iterations. Its defined as ratio
between consumed CPU cpui, and maximum CPU resources,
averaged overall VNRs for each load ρ [7].

∀ρ ∈ Loads,

CPUutil =
1

R

∑
∀r∈R

(
∑
∀i∈NS

(CPUi − cpua
i)

CPUi
∗ 100) (22)

• Average BW utilization, BWutil: it represents utilization
of SN edges after all simulation iterations. And is defined as
ratio between consumed bwij , and the maximum BW , averaged
overall VNRs for each load ρ [7].

∀ρ ∈ Loads,

BWutil =
1

R

∑
∀r∈R

(
∑

∀(i,j)∈ES

(BWij − bwa
ij)

BWij
∗ 100) (23)

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0)
EDITORIAL UNIVERSITAT POLITÈCNICA DE VALÈNCIA

269

Preparación artı́culos XIII Jornadas de Ingenierı́a Telemática

60

65

70

75

80

85

90

95

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

e
p

ta
n

ce
 R

at
io

in
 %

(a) Accepted VNRs Ratio

0

10

20

30

40

50

60

70

80

90

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
o

w
e

r
C

o
n

su
m

e
d

 in
 %

(b) Percentage of Power Consumed by SN

0

10

20

30

40

50

60

70

80

90

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sa
ve

d
 P

o
w

er
 in

 S
N

 in
 %

(c) Percentage of Saved Power in the SN

60

65

70

75

80

85

90

95

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

e
p

ta
n

ce
 R

at
io

 in
 %

(d) Accepted VNRs Ratio

0

10

20

30

40

50

60

70

80

90

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
o

w
e

r
C

o
n

su
m

e
d

 in
 %

(e) Perecentage of Power Consumed by SN

0

5

10

15

20

25

30

35

40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o

st
 o

f
m

ap
p

ed
 S

N
 r

es
o

u
rc

e
s

(f) Embedding Cost per Accepted VNR

0

10

20

30

40

50

60

70

80

90

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sa
ve

d
 P

o
w

e
r

in
 S

N
 in

 %

Load

(g) Percentage of Saved Power in the SN

0

5

10

15

20

25

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
P

U
 U

ti
liz

at
io

n
 o

f
SN

 N
o

d
es

 in
 %

Load

(h) CPU Utilization After Embedding

0

0.5

1

1.5

2

2.5

3

3.5

4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
W

 U
ti

liz
at

io
n

 o
f

SN
 E

d
ge

s
in

 %

Load

(i) BW Utilization After Embedding

Fig. 3. Comparison Results of PaCoVNE Homogeneous against OCA/EA-RH and PaCoVNE Heterogeneous

VII. RESULTS AND DISCUSSION

A. Off-line Homogeneous scenario:
Simulation results in fig.(3a) shows that PaCoVNE performed

similar or better than EA-RH in terms of acceptance ratio for
lower loads, and is much better for higher loads, thanks to the one
stage, full coordinated embedding and segment formulation of
PaCoVNE, which makes sure to allocate virtual nodes and their
associated edges together, and at the same time, thus, increasing
the acceptance ratio. In comparison, the OCA/EA-RH relocates
least stressed virtual nodes and their associated edges to other
suitable active SN nodes that are more stressed, using the cost-
based VNE approach of [7]. Then in a separate phase, OCA/EA-
RH relocates least stressed edges to shortest energy path.

However, in terms of power consumption at SN nodes,
PaCoVNE can not be compared to OCA/EA-RH, since both
algorithms used different formulas to calculate the consumed
power per each SN node. Nevertheless, fig.(3b) shows that SN’s
power consumption is still high, giving that PaCoVNE model
includes idle power in addition to power consumption when SN
nodes were loaded according to their CPU utilization. This
entails the importance of considering idle power as a main
component for increasing power consumption of SN’s nodes,
even if they do not process any data.

Moreover, regarding saved power results shown in fig.(3c)
clarifies that, when the load was 0.2 PaCoVNE managed to save
65% of SN’s total power, and when the load was much increased
to 0.9 it saved 49%, implying that, in a range of loads between
0.2 to 0.9, PaCoVNE would save in average 57% of SN’s
total power consumption, by putting idle nodes into sleeping
mode, while maintaining high VNE acceptance ratios across
almost all loads. These results highlights the benefits of using
PaCoVNE’s new segmentation strategy to fully coordinate VNE,
also pinpoints the obvious impact of idle power consumption
on the overall SN’s power consumption, thus, reducing it would
ultimately reduce SN costs. Indeed, important to point out that
in real life conditions, putting idle nodes into sleeping mode as

TABLE II
SIMULATION SETTINGS FOR OFF-LINE HETEROGENEOUS SCENARIO

Parameter SN VNR
Nodes 50 15

CPUmax Random 40− 100 Random 1.5 - 2.1
BWmax Random 40− 100 Random 1.6 - 2.3
Delaymax Random 100− 250 Random 100− 250
PWBusy 524
pwIdle PWBusy * 0.4

a power reduction strategy, could affect service maintainability
of SN, especially considering on-line scenarios. Therefore, other
strategies could be explored as well.

In the case of including end-to-end delay, fig.(3a, 3b, and 3c)
shows the obvious impact of end-to-end delay. In comparison
to PaCoVNE homogeneous without delay, acceptance ratio was
degraded by 24% in average for all loads, increased power
consumption by 57%, and reduced saved power by 51%. These
results implies the significance of including end-to-end delay as
a main constraint to embed VNRs, and how negatively it would
impact the whole VNE process.

B. Off-line Homogeneous against Heterogeneous:
The rational behind comparing PaCoVNE using homogeneous

to heterogeneous configuration is to give some insights about
how PaCoVNE would behave on semi-real life conditions, where
SN resources usually differ in size and capacity, in addition to in-
cluding end-to-end delay. Table-2 summarizes the heterogeneous
simulation settings.

Fig.(3d, 3g, 3h, and 3i) shows simulation results consider-
ing heterogeneous conditions, indicating the out-performance
of homogeneous-PaCoVNE in terms of acceptance ratio, saved
power, CPU and BW utilizations with and without end-to-end
delay. In terms of power consumption and embedding cost as
shown in fig.(3e and 3f), heterogeneous-PaCoVNE performed

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0)
EDITORIAL UNIVERSITAT POLITÈCNICA DE VALÈNCIA

270

Hejja, Hesselbach, 2017.

much worse than homogeneous in both of them, mainly due to
PaCoVNE’s rapid tendency to utilize the SN resources. This is
clearly translated into less accepted VNRs as loads increases.
In addition to that, almost same conclusion can be deduced
when end-to-end delay was applied, showing that the resultant
metrics for the heterogeneous performed even much worse than
the homogeneous across all metrics and loads, doubling down
the significance of including end-to-end delay as a main VNE
constraint.

VIII. CONCLUSIONS
This paper introduced the PaCoVNE heuristic, which per-

formed VNE in a more efficient methodology than other al-
gorithms in the literature. Performance of the heuristic was
evaluated using homogeneous and heterogeneous configurations,
once without considering end-to-end delay, as a constraint, and
also when delay was included. Simulation results showed that,
for the homogeneous scenario and when end-to-end delay was
not included, the new heuristic managed to save considerable
amount of substrate network’s power consumption by 57% in
average, for a range of loads between 0.2 to 0.9, through putting
idle nodes into sleeping mode, while maintaining high VNE
acceptance ratios, thanks to the new coordinated VNE approach.
However, when end-to-end delay was factored in, PaCoVNE
performance resulted on both, less saved power and acceptance
ratio in comparison to homogeneous without delay. Suggesting
that, introducing end-to-end delay, as in the real world and as a
major constraint, had clear impact on the whole VNE process.
On the other hand, when PaCoVNE in homogeneous setting was
compared to heterogeneous version, the heuristic’s performance
degraded across all evaluation metrics, and specifically when
end-to-end delay was included. Thus, doubling on the critical
importance of considering delay as a major guiding principle
to perform the VNE process in acceptable levels that could be
applicable to real world applications.

The following points are the main outcomes of this paper:
1) PaCoVNE provided a new and better strategy to fully

coordinated VNM and VEM simultaneously and in one
step, thanks to the segmentation design concept.

2) The new strategy resulted on clear enhancements on VNE
acceptance ratio in comparison to literature, fundamentally
due to the advantageous of one stage embedding.

3) Most significant, was PaCoVNE’s capabilities to save a
very considerable amount of total power consumption of
SN elements. Mainly due to the very precise embeddings,
which allowed for efficiently distributing VNRs on the
most powerful SN nodes, and consequentially, enabled a
better identification methodology for the more idle SN
nodes to turn them off.

4) However, when end-to-end delay was included, it sig-
nificantly impacted VNE process, as reflected by lower
acceptance ratios. Suggesting the importance of including
end-to-end delay as a major VNE constraint.

5) Depending on the size of the VNR, the time consumed by
the PaCoVNE heuristic to embed the VNR successfully
varies significantly. The larger the number of nodes per a
VNR, the more time it takes to embed it. This suggests
that for large networks, the PaCoVNE should partition the
VNRs and physical paths into smaller portions to speed
up the embedding time. Thus, even thought the solution
for some partitions may be sufficient, but it may not be as
sufficient when aggregating the solutions for all partitions
of the selected substrate network path.

As a future work, the authors are planning to extend the
application of PaCoVNE to work for the online scenarios. Also,
in addition to CPU utilizations to rank SN paths, other criterion
can be studied, such as: edges utilizations, or their propagation
delay. Moreover, other non linear parameters can be considered to
evaluate the performance of the PaCoVNE, namely, what would

be the impact of jitter, packet-loss, and grade of service on
the VNE process given the segmentation strategy used by the
PaCoVNE.

IX. ACKNOWLEDGMENT

This work has been partially supported by the Ministerio de
Economı́a y Competitividad of the Spanish Government under
project TEC2016-76795- C6-1-R and AEI/FEDER, UE.

REFERENCES

[1] M. Dayarathna, Y. Wen and R. Fan, ”Data Center Energy Con-
sumption Modeling: A Survey,” in IEEE Communications Surveys
and Tutorials, vol. 18, no. 1, pp. 732-794, Firstquarter 2016.

[2] ESTI, Network Functions Virtualisation, Introductory White Paper,
October,2012.

[3] 5G PPP Architecture Working Group, ”View on 5G Architecture,”
Version 1.0, 2016.

[4] Rachid El Hattachi, and Javan Erfanian, NGMN 5G White Paper,
2015.

[5] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer and X. Hesselbach,
”Virtual Network Embedding: A Survey,” in IEEE Communications
Surveys and Tutorials, vol. 15, no. 4, pp. 1888-1906, 2013.

[6] M. Yu, Y. Yi, J. Rexford, and M. Chiang, ”Rethinking virtual
network embedding: Substrate support for path splitting and mi-
gration,” ACM SIGCOMM CCR, vol. 38, noi. 2, pp. 17-29, 2008.

[7] M. Chowdhury, M. R. Rahman and R. Boutaba, ”ViNEYard: Virtual
Network Embedding Algorithms With Coordinated Node and Link
Mapping,” in IEEE/ACM Transactions on Networking, vol. 20, no.
1, pp. 206-219, Feb. 2012.

[8] J. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer,
and H. de Meer, ”Energy efficient virtual network embedding,”
Communications Letters, IEEE, vol. 16, no. 5, pp. 756-759, 2012.

[9] J. Botero, X. Hesselbach, ”Greener networking in a network
virtualization environment,” Computer Networks, vol 57, issue 9,
pp. 20121-2039, 2013.

[10] Sen Su, Zhongbao Zhang, Alex X. Liu, Xiang Cheng, Yiwen Wang,
and Xinchao Zhao, ”Energy-Aware Virtual Network Embedding,”
IEEE/ACM Transactions on Networking, vol. 22, no. 5, pp. 1607-
1620, 2014.

[11] Nizar Triki, Nadjia Kara, May El Barachi, Souad Hadjres, ”A
green energy-aware hybrid virtual network embedding,” Computer
networks, Vol. 91, pp. 712-737, 2015.

[12] Leonard Nonde, Taisir E. H. El-Gorashi, and Jaafar M. H.
Elmirghani, ”Energy Efficient Virtual Network Embedding for
Cloud Networks,” Journal of Lightwave Technology, Vol. 33, No.
9, pp. 1828-1849, 2015.

[13] Xiaohua Chen, Chunzhi Li, and Yunliang Jiang, ”A feedback
control approach for energy efficient virtual network embedding,”
Computer Communications, Vol. 80, pp. 16-32, 2016.

[14] X. Fan, W. D. Weber, and L. A. Barroso, ”Power provisioning for
a warehouse-sized computer,” in Pro. 34th Annu. ISCA, pp. 13-23,
2007.

[15] Bradley, Hax and Magnanti, ”Applied Mathematical Program-
ming,” Chapters-8 and 9, Addison-Wesley, 1977.

[16] S. G. Kolliopoulos and C. Stein, ”Improved approximation algo-
rithms for unsplittable flow problems,” Proceedings 38th Annual
Symposium on Foundations of Computer Science, Miami Beach,
FL, pp. 426-436, 1997.

[17] J. Kleinberg and E. Tardos, ”Algorithms Design,” Addison-Wesley,
2009.

[18] Ilhem Fajjari, ”Resource Allocation Algorithms for Virtual net-
works within Cloud Backbone Network,” PhD Thesis, Pierre et
Marie Curie University, France, 2012.

[19] Telecommunications Infrastructure Standard for Data Centers.
http://www.tia-942.org/.

[20] ITU, Draft new Report ITU-R M. [IMT-2020.TECH PERF REQ],
Minimum requirements related to technical performance for IMT-
2020 radio interface(s)”, ITU, Document 5.40-E, 22 February,
2017.

[21] G. Almes, S. Kalidindi, M. Zekauskas, amd A. Morton, A One-Way
Delay Metric for IP Performance Metric (IPPM), IETF, RFC-7679,
2016.

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0)
EDITORIAL UNIVERSITAT POLITÈCNICA DE VALÈNCIA

271

