
 

 

WARSAW UNIVERSITY OF TECHNOLOGY 
Faculty of Electronics and Information Technology 

 
 
 
 

The improvements of power management 
for clustered type large scope wireless 

sensor networks 
 
 
 
by 

Pedro de la Fuente Aragón 
 

Supervised by 

Daniel Paczesny, Ph.D. 
 

June 2010 

 

 

 



 

Table of contents 

1 Introduction ........................................................................................................................ 1 

1.1 Motivation ............................................................................................................................. 1 

1.2 Description ............................................................................................................................ 1 
1.2.1 What is a Wireless Sensor Network ................................................................................................ 2 
1.2.2 Benefits of Wireless Sensor Networks ............................................................................................ 2 
1.2.3 Drawbacks of Wireless Sensor Networks........................................................................................ 3 

1.3 Objectives .............................................................................................................................. 3 
1.3.1 Main objectives ............................................................................................................................... 3 
1.3.2 Secondary objectives ....................................................................................................................... 3 

1.4 Description of the document ................................................................................................ 3 

2 State of the art .................................................................................................................... 5 

2.1 Introduction .......................................................................................................................... 5 

2.2 The communication architecture ........................................................................................ 5 

2.3 Design factors and requirements ........................................................................................ 6 

2.4 The architecture of the protocol stack ................................................................................ 7 

2.5 Wireless Sensor Network protocols .................................................................................... 8 
2.5.1 The importance of the physical layer on Wireless Sensor Network protocols ................................ 8 
2.5.2 MAC protocols .............................................................................................................................. 10 
2.5.3 Routing protocols .......................................................................................................................... 16 

2.6 Conclusions ......................................................................................................................... 22 

3 WSN Simulators ............................................................................................................... 23 

3.1 Introduction ........................................................................................................................ 23 

3.2 Simulator requirements ..................................................................................................... 23 

3.3 A model for WSN simulation............................................................................................. 24 
3.3.1 Network model .............................................................................................................................. 24 
3.3.2 Node model ................................................................................................................................... 24 

3.4 Network simulators ............................................................................................................ 25 
3.4.1 The Network Simulator – ns-2 ...................................................................................................... 25 
3.4.2 OMNeT++ ..................................................................................................................................... 26 
3.4.3 TOSSIM ........................................................................................................................................ 26 
3.4.4 OPNET .......................................................................................................................................... 26 
3.4.5 Ptolemy II ...................................................................................................................................... 27 

3.5 Description of the OMNeT++ simulator .......................................................................... 27 
3.5.1 Overview ....................................................................................................................................... 27 
3.5.2 Advantages .................................................................................................................................... 34 
3.5.3 Drawbacks ..................................................................................................................................... 34 

3.6 Conclusions ......................................................................................................................... 34 

4 Evaluation of routing protocols ....................................................................................... 35 

4.1 Introduction ........................................................................................................................ 35 

4.2 Direct Transmission ........................................................................................................... 35 
4.2.1 Direct Transmission operation description .................................................................................... 35 
4.2.2 Direct Transmission protocol implementation .............................................................................. 36 

 



 

4.3 The LEACH protocol ......................................................................................................... 38 
4.3.1 LEACH algorithm’s description .................................................................................................... 38 
4.3.2 LEACH algorithm’s implementation ............................................................................................ 40 

4.4 Conclusions ......................................................................................................................... 47 

5 Simulation scenarios ........................................................................................................ 48 

5.1 Introduction ........................................................................................................................ 48 

5.2 Description of the simulation scenarios ............................................................................ 48 

5.3 Design and Implementation of the simulation scenarios ................................................ 48 
5.3.1 Implementation of a network simulation step by step ................................................................... 49 
5.3.2 Implementation of the simulation network architecture ................................................................ 50 
5.3.3 Initialization of the module network parameters ........................................................................... 52 

5.4 Conclusions ......................................................................................................................... 54 

6 Evaluation of the simulation scenarios ........................................................................... 55 

6.1 Introduction ........................................................................................................................ 55 

6.2 Radio model ........................................................................................................................ 55 

6.3 Monitoring the network’s behavior .................................................................................. 56 

6.4 Expected results .................................................................................................................. 56 
6.4.1 General results ............................................................................................................................... 56 
6.4.2 Comparison between Direct Transmission and LEACH results.................................................... 58 

6.5 Conclusions ......................................................................................................................... 58 

7 Simulation results ............................................................................................................ 59 

7.1 Introduction ........................................................................................................................ 59 

7.2 Parameters of the simulation tests .................................................................................... 59 

7.3 Direct Transmission results ............................................................................................... 60 

7.4 LEACH results ................................................................................................................... 64 

7.5 Conclusions ......................................................................................................................... 66 

8 Conclusions ...................................................................................................................... 67 

9 Future work ...................................................................................................................... 68 

10 References ........................................................................................................................ 69 

11 Appendix I. Table of Specifications of the simulation scenarios ................................... 73 



 

Index of Figures 

Figure 1. Wireless Sensor Network architecture ___________________________________ 5 

Figure 2. Comparison between OSI model and WSN’s stack protocol architecture ________ 7 

Figure 3. RF front-end and baseband processor ___________________________________ 8 

Figure 4. S-MAC Messaging Scenario [5] _______________________________________ 11 

Figure 5. Comparison between S-MAC and T-MAC schemes, where the arrows indicate 

transmitted and received messages _____________________________________________ 11 

Figure 6. DSMAC duty cycle doubling [7] _______________________________________ 12 

Figure 7. B-MAC concepts ___________________________________________________ 12 

Figure 8. WiseMAC operation ________________________________________________ 13 

Figure 9. Data gathering tree and implementation over DSMAC [10] _________________ 13 

Figure 10. A timeline of four nodes running SIFT protocol, where shaded bars indicate packet 

transmission times and node’s contention window are shown ________________________ 14 

Figure 11: CSMA operation __________________________________________________ 15 

Figure 12. Classification of routing protocols in WSNs _____________________________ 16 

Figure 13. Wireless sensor network model _______________________________________ 24 

Figure 14. Tier-based node model _____________________________________________ 25 

Figure 15. Simple and compound modules of an OMNeT++ network _________________ 27 

Figure 16. Default layout of the OMNeT++ IDE __________________________________ 29 

Figure 17. Graphical NED Editor _____________________________________________ 29 

Figure 18. The main window of the Tkenv runtime environment ______________________ 30 

Figure 19. Top level network and node component structure ________________________ 31 

Figure 20. A histogram and an output vector _____________________________________ 31 

Figure 21. A network simulation ______________________________________________ 32 

Figure 22. Node structure and NIC structure _____________________________________ 33 

Figure 23: Network interconnection in Direct Transmission protocol _________________ 35 

Figure 24: LEACH cluster type organization _____________________________________ 38 

Figure 25. Time line showing LEACH operation __________________________________ 38 

Figure 26. Network simulation structure ________________________________________ 50 

Figure 27. Node network structure _____________________________________________ 50 

Figure 28. Internal node structure _____________________________________________ 51 

Figure 29. Mobility and utility node modules _____________________________________ 52 

Figure 30. Schema of the simulation tests _______________________________________ 59 

Figure 31. Number of alive nodes with data size of 1024 bits ________________________ 60 

Figure 32. Number of alive nodes with node speed of 0 m/s _________________________ 61 

Figure 33. Number of alive nodes with node speed of 1 m/s _________________________ 62 

Figure 34. Number of transmissions per node with data size of 1024 bits and interval of data 

generation of 30 s __________________________________________________________ 63 

Figure 35. Number of transmissions per node with data size of 1024 bits and interval of data 

generation of 30 s __________________________________________________________ 63 

 



 

Index of Tables 

Table 1. Hierarchical vs. flat topologies routing __________________________________ 18 

Table 2. Classification and comparison of routing protocols in WSN [30] ______________ 21 

Table 3. Radio characteristics ________________________________________________ 55 

Table 4. Relation between results with different simulation scenarios _________________ 57 

Table 5. First and last node dies values with data size of 256 bits_____________________ 62 



INTRODUCTION 

1 

 

1 Introduction 

1.1 Motivation 

Sensors are a high developed technology integrated into very different areas like 

structures, machinery or the environment. Some of the potential benefits that they 

provide are: prevent catastrophic failures, enhance the job safety or conservation of 

natural resources. However, this sensor networks are typically wired networks and 

present high installation and maintenance costs, making more complicated their 

introduction and use in the daily life. 

Wireless Sensor Networks (WSNs) are a new kind of communication network based in 

the use of new microelectronic devices called motes with sensing and data processing 

capabilities. This kind of networks can eliminate the installation and maintenance costs 

of typical sensor monitoring, in addition of its ease of installation and elimination of 

connectors. However, wireless devices contain battery constraints which limit the 

network lifetime. Due to the energy constrains, the deployment of large scope WSNs 

will require advanced techniques to maintain low node depletion and achieve adequate 

network lifetime and efficient operation. 

The main goal of the current research is the analysis and the deployment of power 

management improvements based on the state-of-the-art of Media Access Control 

(MAC) and network protocols by means of simulation techniques. The implementation 

of power management improvements over large scope WSN will enhance the network 

lifetime without reducing the network features and capabilities. 

During this chapter, a description with the fundamentals of Wireless Sensor Networks 

has been offered, as well as the benefits that WSN provide and the drawbacks that this 

kind of networks contains. 

1.2 Description 

The aim of this document is the research about the impact of some parameter 

modification within the mobility, MAC and network modules into the sensors’ energy 

consumption. The improvements of the nodes’ power management will be found 

through the study of the network behavior with different parameter values and how they 

will affect the energy consumption. Special importance will be present on how much 

influences the node mobility with particular speed values. 

The differences in the network behavior will help to search different mechanisms to 

improve the power management and thus to reduce the energy consumption. 

For that purpose, this project expects to built a realistic simulation of a WSN with the 

own constraints and required features of some WSN specific scenarios where energy 

consumption improvements could be obtained. 

Initially, it is essential to insist not only on the capabilities of WSNs but also in their 

wide variety of applications and the benefits that provides their use. 

The simulated network will have the common features which are present on the 

majority of the up-to-date WSN implementations. Furthermore, advanced features and 
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parameters will be analyzed in order to obtain an energy consumption improvement. 

Therefore, it is essential to analyze and study the state of the art of the most common 

WSN architectures and protocols. 

After the analysis of the architectures and protocols present in the current WSNs, the 

most used simulation environments will be evaluated and the best simulation 

environment for the purpose of this project will be chosen and analyzed. 

The main job will consist on the WSN scenario creation on the chosen simulation 

environment and the study of the network behavior after the variation of some critical 

parameters in order to obtain the values which provide the best results in terms of 

energy efficiency and network’s functions. 

1.2.1 What is a Wireless Sensor Network 

According to the definition given in [1], <<A wireless sensor network (WSN) consists 

of densely distributed nodes that support sensing, signal processing, embedded 

computing, and connectivity; sensors are logically linked by self-organizing means. 

WSN typically transmit information to collecting (monitoring) stations that aggregate 

some or all of the information. WSN have unique characteristics, such as, but not 

limited to, power constraints and limited battery life for the WNs, redundant data 

acquisition, low duty cycle, and, many-to-one flows.>>. Although the development of 

this kind of networks was motivated by military applications, nowadays they are use in 

many different industrial and civilian application areas, including industrial process 

monitoring and control, healthcare applications or traffic control. 

WSN are composed of a set of sensor nodes, called “motes”, typically equipped with 

some sensors, a radio transceiver or other wireless communications device, a small 

microcontroller, and an energy source, usually a battery. Therefore, these devices make 

up a network with sensing, data processing and routing capabilities. 

1.2.2 Benefits of Wireless Sensor Networks 

To be knowledgeable about the benefits of WSNs, it is enough to be conscious of the 

wide variety of applications where WSN can be present. Typically, WSN applications 

involve some kind of monitoring, tracking, or controlling. Although wired sensor 

networks usually can develop the same function like WSNs, these last networks can be 

present in some applications where wired connections difficult the machinery function 

or are impossible to introduce, adding to the elimination of installation and maintenance 

costs. 

Some of the numerous applications and the benefits that WSN bring are: 

• Environmental Monitoring: watershed management, forest fire prediction or 

irrigation management. It helps to preserve and maintain the natural resources. 

• Structural Health and Industrial Monitoring: machinery failure detection. It 

reduces the maintenance costs and prevents from catastrophic failures. 

• Civil Structure Monitoring: health monitoring of large civil structures, like 

bridges or skyscrapers. It prevents from human catastrophes. 

• Medical Health-care: telemedicine, remote health monitoring. Allows doctors in 

remote and rural areas to consult with specialists in urban areas, remote handling 

of medical equipment (tele-surgery), etc. 
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1.2.3 Drawbacks of Wireless Sensor Networks 

Besides WSN offer several additionally advantages to wired sensor networks, they 

impose some important constraints, which will affect directly to the network’s and 

devices’ design. Into the Section 2.3 - Design factors and requirements, the main 

constraints and design requirements are described. Some of the most significant 

constraints are:  

• Power consumption: this constraint affects directly into the nodes’ lifetime. With 

energy-aware and transmitting power adjusting capacity protocols, the energy 

consumption can be highly reduced, and thus increased the network lifetime. 

• Self-configuration capability and good scalability: this issue can be solved by 

choosing and implementing the suitable network protocol. 

• Fault tolerance: if all the devices process the same signal (temperature, 

humidity, etc.), the network will offer replication in a native manner. If the 

devices do not develop the same function, the device replication can solve the 

fault tolerance problem, and this solution shouldn’t affect the scalability due to 

the nature of the network. 

1.3 Objectives 

1.3.1 Main objectives 

The main objective of the current project is the search, the development and the 

implementation of a power management improvement through the adaptation of 

existing MAC and routing protocols for specific large scope WSN scenarios by means 

of simulations of the network behavior. 

1.3.2 Secondary objectives 

Diverse secondary objectives are pursued during the development of the current project: 

• Objectives into the election of the protocols. The protocols that should 

implement the network of the current project ought to fulfill specific 

requirements. The MAC protocol should provide a restrained energy 

consumption, and the routing protocol should present a cluster-type organization 

and provide a balanced overall energy consumption, i.e., distribute the energy 

consumption along the nodes in the network. 

• Objectives into the simulation implementation. The simulation environment 

should fulfill some requirements like WSN network architecture and features, 

portability, open source development and a good and friendly user interface. 

Furthermore, the network simulation implementation should make use of 

efficiency, independence between modules and reusability principles. 

1.4 Description of the document 

In this document, ten chapters have been presented which presents the performed work. 

• In the chapter 2, the communication architecture, the architecture of the protocol 

stack and the featured design factors and requirement of WSNs are detailed. 
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Furthermore, the state of the art of the MAC and network WSN protocols is 

analyzed. 

• In the chapter 3, the requirements of a WSN simulation environment is analyzed. 

Moreover, the most common network simulation environments are analyzed. 

• In the chapter 4, the evaluation of the chosen WSN routing protocols is 

introduced through their operation description and their implementation into the 

simulation environment. 

• In the chapter 5, the network simulation scenarios are depicted, as well as the 

implementation of the network architecture, the physical environment and the 

internal node architecture. 

• In the chapter 6, the radio model adopted for the simulation tests and the 

parameters selected are described. Furthermore, a priory analysis of the results is 

given. 

• In the chapter 7, the different simulation tests made over the network are 

detailed, and the results obtained after the simulation execution of the different 

simulation scenarios are analyzed. 

• In the chapter 8, the obtained conclusions during the development of the whole 

project are detailed. 

• In the chapter 9, the possible improvements that could be implemented in future 

work are explained. 

• In the chapter 10, the external references consulted during the project 

development are listed. 
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2 State of the art 

2.1 Introduction 

WSN appear as a new and revolutionary way of communication. This communication 

method provides numerous advantages but also contains several constraints. In this 

section, the main entities of WSN communication architecture, the network 

requirements that this architecture should provide and the design factors that WSN 

constraints add in their operation are analyzed. After that, the three layers of WSN 

networks that provide the communication bases are reviewed. In MAC and routing 

protocols subsections, it is important to examine the variety of protocols which 

implement the functionality of these MAC and routing layers and provide different 

features to the network depending on a specific kind of network or the network behavior 

that it is expected to obtain. In the end, some conclusions of this review are extracted. 

2.2 The communication architecture 

A Wireless Sensor Network is composed of a set of numerous sensors with sensing, 

wireless communication and computation capabilities. These sensors are scattered in an 

unattended environment and located away from the user. 

The main entities which compose the WSN architecture [2] are: 

• Sensors which make up the network: its function is based on taking local 

measures through a discrete system, creating a wireless network in an 

unattended environment, gathering data and sending them to the final user 

through the base station. 

• Base station or gateway node: it is located near the sensor field. The data or 

information gathered by the sensor field is sent to the base station through a 

multihop infraestructureless architecture, which communicates with the user via 

Internet or satellite communication. 

• User: it is the entity interested in obtaining the information about a specific 

phenomenon by means of measuring or monitoring the environment. 

 

Figure 1. Wireless Sensor Network architecture 
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2.3 Design factors and requirements 

Wireless Sensor Networks are composed of small devices with wireless communication, 

sensing and computation capabilities. These devices consist of only a small memory, a 

short range radio and a battery. Consequently, the constraints which impose these 

devices together with the characteristics, which are typical of this kind of networks, 

establish some guidelines for the protocols or algorithms design in WSNs. Detailed 

below are the main requirements [3] of WSNs: 

• Reliability and/or fault tolerance: capacity of the WSN to operate without any 

interruption. 

• Density and scalability: the density affects the network coverage degree, and the 

size of the network affects the reliability and data processing algorithms. 

• Network topology: it concerns directly different characteristics as network 

latency and robustness. It determines the complexity of routing protocols. 

• Power consumption: the sensors’ life time depends directly on the battery life 

time. Therefore, current researches are focused on protocols and algorithms 

design which are power-aware and consider the importance of minimizing the 

power consumption. 

• Data aggregation and fusion: they have the goal of reducing the data size with 

computation methods in order to decrement the network traffic and consequently 

the network congestion. 

• Transmission media: radio, infrared, optical, etc. 

• Quality of Service (QoS): in some applications, the data time constraints can be 

critical for the correct operation of the WSN, meanwhile in other applications 

becomes more important the life time. 

• Hardware constraints: network nodes are usually composed by two subsystems: 

sensor system and ADC (Analog to Digital Converter) system. Besides the 

sensing, computation, transmission and power unit, they can contain other 

components as position/location finding systems or power generator systems. 

• Self-configuration: it is an essential issue on WSN owing to two different 

factors: the possibility of fault or addition of new nodes to the network and the 

network operation capacity in an unattended way. 

• Other requirements: security, network dynamics, connectivity, etc. 
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2.4 The architecture of the protocol stack 

The architecture of the protocol stack [4] of WSNs differs slightly from the Open 

System Interconnection Reference (OSI) model. This protocol stack integrates other 

features as power aware or data with network protocols (data aggregation/fusion). 

Meanwhile OSI model presents seven layers; WSNs’ protocol stack reduces the model 

to five levels and incorporates two planes. Detailed below are the different layers and 

planes of the WSN’s architecture: 

• Physical layer: it provides robust modulation, transmission and receiving 

techniques. 

• Data link layer: it establishes the functional and procedural means to transfer 

data between network entities and error detection techniques. 

• Network layer: it is in charge of routing the data supplied by the transport layer. 

• Transport layer: it establishes a flow data if the WSN application needs it. 

• Application layer: it depends on the phenomenon of interest and the sensing 

tasks. 

• Power management plane: it manages the power consumption of the tree main 

tasks of a sensor node: sensing, computation and communication. 

• Mobility management plane: it registers the movement and the location of all the 

nodes as a network control primitive. 

• Task management plane: it manages and schedules the sensing and detecting 

tasks in order to obtain balanced power consumption. 

  

 

 

 

 

 

Figure 2. Comparison between OSI model and WSN’s stack protocol architecture 
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2.5 Wireless Sensor Network protocols 

2.5.1 The importance of the physical layer on Wireless Sensor Network protocols 

The physical layer, as detailed in [2], takes charge of the frequency selection, carrier 

frequency generation, signal detection, modulation and demodulation of digital data and 

data encryption; and this task is carried out by transceivers. WSN transceivers show a 

common structure on Radio Frequency (RF) front-end, as illustrated on Figure 3, and 

the baseband part: 

• The RF front-end performs analog signal processing in the actual radio 

frequency band, where the Power Amplifier (PA) amplifies signals from the 

baseband part, the Low Noise Amplifier (LNA) amplifies incoming signals, and 

other elements like oscillators and mixers are used for frequency conversion. 

• The baseband processor performs all signal processing in the digital domain 

and communicates with node’s processor or other circuitry. 

 

Figure 3. RF front-end and baseband processor 

The desires of the current researches about the physical layer on WSNs are focused on 

the search of cheap, effective and simple modulation schemes and transceiver 

architectures which perform the required task. Thus, the main issue is how to transmit 

as energy efficiently as possible, taking into account all related costs (overhead, possible 

retransmissions etc.), considering scattering, shadowing, reflection, diffraction, 

multipath and fading effects typical of wireless transmissions. To do this, it's worth 

keeping in mind the problems which appear in every digital communication over 

wireless channels, as well as the problems and constraints which are added by the 

specific WSNs requirements. 

Some aspects to consider in wireless communication are: 

• Frequency allocation: it is very important to choose carefully the carrier 

frequency in a radio frequency (RF)-based system because it determines the 

propagation characteristics. The range of radio frequencies is subject to 

regulation to avoid unwanted interferences between users and systems. But 

besides the special licenses for reserved bands, there are also lisencefree bands 

(Industrial, Scientific and Medical (ISM) bands) although these ISM bands adds 
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the problems of living with interference created by other systems (as for 

example IEEE 802.11 and Bluetooth systems with the 2.4 GHz band). 

• Modulation/demodulation scheme: this is a very important point. To obtain the 

best results, several factors have to be balanced: the required and desirable data 

rate and symbol rate, the implementation complexity and the relationship 

between radiated power and target Bit Error Rate (BER). In order to maximize 

the time a transceiver can spend in sleep mode, the transmit times should be 

minimized.  

• Wave propagation effects and noise: waveforms transmitted over wireless 

channels are subject to several phenomena that all distort the original transmitted 

waveform at the receiver, like reflection or diffraction. This distortion introduces 

uncertainty at the receiver about the originally modulated data, and can result in 

bit errors. 

It is important to analyze the different kind of modulation schemes in order to select the 

minimum consumption solution. In WSN, simple modulation techniques are selected 

because of their easiness of implementation, robustness and low power consumption. 

The common used modulation schemes are: 

• Amplitude-shift keying (ASK): form of modulation that represents digital data 

as variations in the amplitude of a carrier wave. 

• Frequency-shift keying (FSK): frequency modulation scheme in which digital 

information is transmitted through discrete frequency changes of a carrier wave. 

• Binary phase-shift keying (BPSK): digital modulation scheme that conveys data 

by changing, or modulating, two phase of a carrier wave separated by 180º. 

• Quadrature amplitude modulation (QAM): a combination of both phase-shift 

keying (PSK) and amplitude-shift keying (ASK). 

With the aim of reducing the transmit time of the radio, an m-ary modulation (for 

example, 4-ASK, 4-PSK or 16-QAM) and dynamic modulation scaling (modulation 

scheme adaptation for different situations) can be used.  This modulation sends multiple 

bits per symbol, i.e., it obtains high data rates at low symbol rates. However, an m-ary 

modulation will increase the circuit complexity and power consumption of the radio. 

Furthermore, with m-ary, efficiency of the power amplifier is also reduced. Therefore, 

the optimal decision will balance properly the modulation scheme and other measures to 

increase transmission robustness. 

After the analysis of the most important aspects to consider in wireless communications, 

it is appropriate to know the most crucial points concerning physical layer design in 

wireless sensor networks, as it’s possible to see on the next list: 

• Low power consumption. 

• Small transmit power and small transmission range as a result of the previous 

characteristic. 

• Low duty cycle in order to save energy by means of switching off most 

hardware or operating in a low-power standby mode most of the time. 

• Low implementation complexity and costs. 
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2.5.2 MAC protocols 

2.5.2.1 Causes of energy waste concerning the MAC layer 

Energy waste’s main reasons are collisions, overhearing, control packet overhead, idle 

listening and overemitting. Collisions consist on the reception of more than one packet 

at the same time with the result of discarding and packet retransmission. Overhearing 

occurs when a node receives packets destined to other nodes. The control packet 

overhead or the number of control packets should be minimized as far as possible in a 

data transmission. Idle listening is produced when a node listens to an idle channel to 

receive possible traffic. And overemitting, which is caused by the transmission of a 

message when the destination node is not ready. A correctly-designed MAC protocol 

should avoid these facts in order to obtain the best performance and the minimum 

energy consumption. 

The following MAC protocols will be analyzed in order to obtain a general operation 

idea and extract their advantages and drawbacks: 

• Sensor-MAC (S-MAC): protocol based on locally managed synchronizations. 

• Timeout-MAC (T-MAC): improvement of S-MAC with variable listen periods. 

• Dynamic Sensor-MAC (DSMAC): variation of S-MAC with dynamic duty 

cycle. 

• Berkeley MAC (B-MAC): protocol based on different check intervals 

corresponding with different listening modes. 

• Wireless Sensor MAC (WiseMAC): protocol based in a preamble sampling 

technique. 

• DMAC: this protocol makes use of a convergecast communication pattern. 

• Traffic-Adaptive MAC (TRAMA): protocol based in a distributed election 

algorithm. 

• SIFT: protocol used on event-driven sensor network environments and based on 

a data priority schema. 

• CSMA: this protocol verifies the absence of other traffic before transmitting on 

a shared transmission medium. 

2.5.2.2 Description of proposed MAC protocols 

S-MAC 

The basic idea of Sensor-MAC [5] protocol consists on locally managed 

synchronizations and periodic sleep listen schedules based on these synchronizations. 

Nodes sleep and wake up periodically introducing the term of duty cycle. This protocol 

shows a drawback: when two neighbor nodes reside in two different virtual clusters 

which set up a common sleep schedule, they wake up at listen periods of both clusters. 

Synchronization is required by this exchange schedule schema, which is provided 

through SYNC packet broadcasts within a virtual cluster. Collision avoidance is 

achieved by a carrier sense, RTS/CTS packet exchanges prevent from the hidden node 

problem, and adaptative listening can be used in order to reduce the sleep relay and thus 

the overall latency. 
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The advantages of this protocol consist on its implementation simplicity and its energy 

consumption decrease through sleep schedules. But the disadvantages are the collision 

probability with broadcast data packets because of the lack of a RTS/CTS schema, the 

efficiency loss with its constant and predefined sleep and listen periods, overhearing and 

idle listening problems. 

 

Figure 4. S-MAC Messaging Scenario [5] 

T-MAC 

Timeout-MAC [6] protocol is an improvement of S-MAC protocol which tries to 

provide higher energy saving under variable traffic load through variable listen periods. 

In T-MAC, listen period finishes when a node doesn’t have messages to send or receive 

in order to save energy. After the message exchange, the node waits an activation event 

for a time threshold.  

Although T-MAC shows better results than S-MAC, it breaks the listen period’s 

synchronization and, because of this and other reasons, T-MAC protocol suffers the 

“early sleep” problem, where a node C within the same coverage area than a node B 

can’t send a message to a node D because the node B is receiving a message from a 

node A and the node D doesn’t detect any sign of activity and switches to sleep mode. 

 

Figure 5. Comparison between S-MAC and T-MAC schemes, where the arrows 

indicate transmitted and received messages 
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DSMAC 

Dynamic Sensor-MAC [7], also called DSMAC, is a protocol which adds dynamic duty 

cycle to S-MAC and attempts to decrease the latency for delay-sensitive applications. In 

this protocol all nodes start with the same duty cycle, and when a node realizes that 

average one-hop latency is high, it decides to shorten its sleep time and announces it 

within SYNC period. As a consequence, after a sender node receives this signal, it 

checks its queue for packets destined to that receiver node and decides to double its duty 

cycle when its battery level is above a specified threshold. In this manner, DSMAC 

improves the latency obtained with S-MAC and shows better average energy 

consumption. 

 

Figure 6. DSMAC duty cycle doubling [7] 

B-MAC 

Berkeley MAC [8] protocol comes from the University of California, Berkeley, and it 

achieves to decrease the idle listening. B-MAC proposes that each node must sleep 

periodically to check the channel occupation; if a node detects activity it remains in 

listening mode, otherwise it switches to sleeping mode. B-MAC defines eight different 

check intervals or time intervals between wake-up periods, and each one corresponds 

with a different listening mode. In order to assure packet delivery, packets are sent with 

a preamble whose length transmission is longer than the check interval. 

The advantages of B-MAC are the simplicity of network configuration, ease of tuning, 

no necessity of explicit sync packets and don’t use of RTS/CTS/ACK if not necessary. 

 

Figure 7. B-MAC concepts 

WiseMAC 

The Wireless Sensor MAC [9] protocol introduces a new communication schema with a 

data channel access by spatial TDMA and gives access to the control channel by 

CSMA. This protocol is based in a preamble sampling technique, where each data 

packet is preceded by a preamble in order to alert the receiver node. All network nodes 

sample with a common media period, but using independent relative schedule offsets. 
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They initialize the preamble with the same sampling period’s length. During the 

protocol’s use, after waking and sampling the media when a node reaches an it’s 

occupied, stays hearing until receives a packet or finds free the media. This protocol has 

overemitting problems when after the preamble, the receiver is not available. Also, with 

the aim of reducing the energy consumption, WiseMAC offers a dynamic length 

definition preamble method which requires sleep schedules learning neighbor nodes, 

achieving to minimize the receiver nodes’ radio working time. On the contrary, the 

difficult of broadcast communication due to the decentralized duty cycle planning and 

the hidden terminal problem apparition are the main inconvenients. 

 

Figure 8. WiseMAC operation 

DMAC 

DMAC’s [10] main objective consists on obtaining a very low latency by means of a 

energy-efficient operation. This protocol makes use of a convergecast communication 

pattern, very applied on WSNs, where unidirectional paths from the possible sources to 

the base station can be represented with data gathering trees.  DMAC can be identified 

as an improvement of slotted Aloha protocol, where slots are assigned to sets of nodes 

based on a data gathering tree similar as showed on Figure 9. In this manner, during a 

node reception period, all its son nodes have also the same transmission period and they 

compete for the media. Thus, this protocol provides low latency by assigning 

contiguous slots to the consecutive nodes along the transmission path. 

 

Figure 9. Data gathering tree and implementation over DSMAC [10] 
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One of the best features of DMAC is very good latency in comparison with other 

sleep/listen period assignment methods. Hence, this protocol becomes a very important 

candidate in time-constrained applications. On the contrary, this protocol doesn’t use 

collision avoidance. For this reason, when a considerable number of nodes on the same 

level try to send data to the same node, collisions will happen. 

TRAMA 

Traffic-Adaptive MAC [11] protocol is similar to Node Activation Multiple Access 

(NAMA) protocol which is operation is described in [11], but this increases the use of 

TDMA as an energy-efficient mode. In TRAMA protocol a distributed election 

algorithm is used in order to select a sender inside a two-hop neighborhood. By means 

of this mechanism, the hidden terminal problem is eliminated and nodes inside the one-

hop neighborhood guarantee no collision packets will be received. In this registry, time 

is divided in two different transmission periods: random-access periods, where two-hop 

topology information through contention-based channel access, and scheduled-access. 

In these last ones, slots which will be used by nodes are announced by a schedule packet 

and the bitmap message scheduled receivers.  

This protocol achieves important advantages: a sleeping mode time percentage increase 

and a collision probability decrement in comparison with CSMA based protocols. Even 

so, TRAMA duty cycle is at least of 12.5%, a considerable high value. 

SIFT 

SIFT [12] is a MAC protocol for WSN whose operation differs from the above 

described protocols. This protocol is used on event-driven sensor network environments. 

Its main idea consists on the next fact: when an event is sensed, the first R reports of N 

potential reports composes the most important communication part, and this part must 

be delivered with the minimum latency. SIFT uses a non-uniform probability 

distribution function. This function helps to the slot acquisition within the slotted 

contention window: if nodes don’t transmit on the first window slot, all nodes increment 

exponentially its transmission probability on the next slot considering limited the 

number of competitors.  

 

Figure 10. A timeline of four nodes running SIFT protocol, where shaded bars 

indicate packet transmission times and node’s contention window are shown 

This protocol reaches very low latency through a power consumption increment. This 

parameter can be set properly to the environment requirements. Thus, it could be 

possible to obtain a power consumption decrement losing some features as low latency 

when network life time is the main objective. As disadvantages, time on idle listening is 

increased due to the nodes must listen all the slots before its sending, as well an 

overhearing increment. 
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CSMA 

In Carrier Sense Multiple Access (CSMA) [13], the nodes verify the absence of other 

traffic before transmitting on a shared transmission medium. Two versions of CSMA 

exist: non-persistent CSMA and p-persistent CSMA. In non-persistent CSMA, a 

backoff is performed before attempting to transmit if the sensed channel is busy, and the 

transmission is carried out immediately if the device senses no activity on the channel. 

In p-persistent CSMA, a node continues sensing the channel if it detects activity instead 

of delaying and checking again later. When the device senses no activity on the channel, 

it transmits a message with probability p and delays the transmission with probability 

1−p.  

 

Figure 11: CSMA operation 

The channel access times and backoff delays showed on Figure 11 consist of continuous 

values for unslotted CSMA or discrete time values for slotted CSMA. These parameters 

are explained below: 

• SIFS: the minimum Inter Frame Space. It is used to separate transmissions 

belonging to a single dialog (e.g. Fragment-ACK). 

• PIFS: it is used by the Access Point to gain access to the medium before any 

other station. The value of PIFS is SIFS plus a Slot time. Not important in WSN 

operation. 

• DIFS: it is the Inter Frame Space used for a station willing to start a new 

transmission, which is calculated as PIFS plus one Slot time. 

• Slot time: it is defined in such a way that a station will always be capable of 

determining if other station has accessed the medium at the beginning of the 

previous slot. This reduces the collision probability by half. 

Backoff is method to resolve contention between different stations willing to access the 

medium. The method requires each station to choose a Random Number (n) between 0 

and a given number (Contention Window value), and wait for this number of Slots 

before accessing the medium, always checking whether a different station has accessed 

the medium before. 

The benefit of CSMA/CA techniques in sensor networks depends on the traffic 

conditions, wireless channel characteristics, and network topology, so in some cases it 

may prove beneficial and in others an unnecessary overhead. 

  



 

2.5.3 Routing protocols 

This section presents the classification of WSN routing protocols. Routing protocols 

be divided into three groups depending on the network structure: 

hierarchical-based routing, and 

protocols can also be divided into five different groups depending on the protocol 

operation: multipath-based

based routing. In addition, routing protocols can be divided into 

hybrid protocols depending on how the source fi

proactive protocols, all routes are computed before they are needed. In reactive 

protocols, on the contrary, routes are computed on demand. Hybrid protocols use a 

combination of these two techniques. 

routing protocols. Detailed below are the different routing paradigms.

Figure 12. Classification of routing protocols in WSNs

2.5.3.1 Network Structure Based 

The network structure adopts an important role in the operation of routing protocols in 

WSN. Next are exposed the different subgroups according to the diverse network 

structures. 

Flat routing 

In multihop flat routing protocols

to perform the sensing task. 

BS sends queries to certain regions and waits for data from

selected regions. This schema has been adopte

makes impossible to assign a global identifier to each node.

requested through queries. Hence, 

properties of data. In flat routing group, we can find a huge variety of protocols:

• Flooding, where data is sent to all neighbors; 

Flooding, where data is forwarded to one randomly selected neighbor. They are 

the simplest protocols, 
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This section presents the classification of WSN routing protocols. Routing protocols 

be divided into three groups depending on the network structure: flat

routing, and location-based routing. Furthermore, these same 

protocols can also be divided into five different groups depending on the protocol 

based, query-based, negotiation-based, QoS-based

. In addition, routing protocols can be divided into proactive

ls depending on how the source finds a route to the destination.

ctive protocols, all routes are computed before they are needed. In reactive 

protocols, on the contrary, routes are computed on demand. Hybrid protocols use a 

combination of these two techniques. Figure 12 shows the classification of WSN 

routing protocols. Detailed below are the different routing paradigms. 

Classification of routing protocols in WSNs

Network Structure Based Protocols 

The network structure adopts an important role in the operation of routing protocols in 

WSN. Next are exposed the different subgroups according to the diverse network 

protocols, all nodes plays the same role and collaborate together 

to perform the sensing task. They make use of a data centric routing scheme, 

BS sends queries to certain regions and waits for data from the sensors located in the 

This schema has been adopted due to the large number of nodes, which 

makes impossible to assign a global identifier to each node. In flat routing, data is 

requested through queries. Hence, attribute-based naming is necessary to specify the 

In flat routing group, we can find a huge variety of protocols:

where data is sent to all neighbors; and Gossiping

Flooding, where data is forwarded to one randomly selected neighbor. They are 

lest protocols, but contain important drawbacks 

overlapping and resource blindness) and they work in a very inefficient way.

Sensor Protocols for Information via Negotiation (SPIN) [15]

operating efficiently by sending meta-data and being aware and answering in 

view of energy resource changes. This protocol solves the problems of above 

data negotiation and resource adaptive algorithms.

, as scalability problems, and delivery not guaranteed.
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• Directed Diffusion [16]: it consists basically of naming, interests and gradients, 

data propagation along the interest’s gradient path, and paths’ reinforcement. 

This protocol saves energy by selecting good paths and performing data 

aggregation and caching. Otherwise, data aggregation requires synchronization 

techniques and increments and recording information when overhead appears. 

There are several protocols based on Directed Diffusion: 

� Rumor routing [17], whose key idea is to route the queries to the nodes 

that have observed a particular event rather than flooding the entire 

network, and if flooding is needed, it employs long-lived packets called 

agents. Rumor routing achieves energy savings but it has scalability 

problems. 

� Gradient-Based Routing (GBR) [18], where nodes calculate a parameter 

called the height of the node memorizing the number of hops when the 

interest is diffused and forward packets on links with the largest gradient 

or difference between neighbor nodes’ height. 

� Information-driven sensor querying (IDSQ) and Constrained anisotropic 

diffusion routing (CADR [19]), where queries are diffused in an isotropic 

fashion and reaching nearest neighbors first. They query sensors and 

route data by maximizing information gain and minimizing latency.  

� Energy Aware Routing [20], which maintains a set of paths instead of or 

enforcing one optimal path at higher rates. It employs a kind of 

probability whose value depends on how low is the energy consumption 

of each path. It achieves to increment network lifetime. 

• Minimum Cost Forwarding Algorithm (MCFA) [21]: in this protocol, each node 

maintains the least cost estimate from itself to the base-station. Thus, nodes only 

re-broadcast messages to their neighbors when they check that they are in the 

least cost path between the source and the base-station. 

• COUGAR [22] and ACQUIRE [23]: these protocols view the network as a huge 

distributed database system. COUGAR uses declarative queries, whereas 

ACQUIRE can divide complex queries into several sub queries. They show 

energy efficiency in situations when the generated data is huge. 

Hierarchical routing 

In WSN, the concept of hierarchical or cluster based routing is utilized to perform 

energy efficient routing. In addition, this mechanism provides good scalability and 

efficient communication. Applying hierarchical architecture to WSN, higher energy 

nodes can be used to process and send the information while low energy nodes can be 

used to perform the sensing in the proximity of the target. Thus, cluster heads can 

perform data aggregation and fusion in order to decrease the number of transmitted 

messages to the BS and increment the network lifetime. However, in WSN, routing 

techniques are not only focused on routing, but also on “who and when to send or 

process/aggregate” the information, channel allocation, etc. Detailed below are several 

proposals of hierarchical routing protocols: 
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• Low Energy Adaptive Clustering Hierarchy (LEACH [24]): is a self-organizing 

protocol that uses randomized rotation of cluster-heads to evenly distribute the 

energy load among the sensor nodes in the network. Although LEACH provides 

some added features like localized coordination and control, it can’t be applied 

to time-constrained applications and also presents the “hot-spot” [25] problem. 

• Power-Efficient Gathering in Sensor Information Systems (PEGASIS) [26]: 

based on LEACH, PEGASIS is a power efficient algorithm. In this protocol, 

each node can take turn of being a leader of the chain, where the chain is 

constructed using greedy algorithms that are deployed by the sensor nodes. 

PEGASIS outperforms LEACH in several aspects but it presents the same 

problems than LEACH and also doesn’t scale. 

• Threshold-sensitive Energy Efficient Protocols (TEEN [27] and APTEEN [28]): 

these two protocols, proposed for time-critical applications, are LEACH based 

with multi-level head clusters. They are based on two values: a hard threshold, 

with the threshold sense value, and a soft threshold, a small value that triggers 

nodes to transmit. This method reduces the number of transmissions and these 

values can be tuned to increment the accuracy. Both two protocols outperform 

LEACH, but multi-level clusters and threshold-based functions increment their 

complexity. 

• Other protocols: Small Minimum Energy Communication Network (MECN) [29], 

which computes an energy-efficient subnetwork by utilizing low power GPS; 

Sensor Aggregates Routing, whose objective is to collectively monitor target 

activity in a certain environment; Self Organizing Protocol (SOP), where 

heterogeneous sensor architecture with mobile or stationary nodes is supported; 

Virtual Grid Architecture routing (VGA), which uses a GPS-free approach to 

build clusters that are fixed, equal, adjacent, and non-overlapping with 

symmetric shapes; Hierarchical Power-aware Routing (HPAR), which divides 

the network into groups of sensors where messages are routed along the path 

which has the maximum over all the minimum of the remaining power (max-

min path); and Two-Tier Data Dissemination (TTDD), which provides data 

delivery to multiple mobile base-stations. 

As it is shown, there are many differences between flat and routing protocols. In Table 1 

extracted from [30] these two approaches are compared. 

 

Table 1. Hierarchical vs. flat topologies routing 

Hierarchical routing Flat routing 

Reservation-based scheduling Contention-based scheduling 

Collisions avoided Collision overhead present 

Reduced duty cycle due to periodic sleeping Variable duty cycle by controlling sleep time of 

nodes 

Data aggregation by cluster head Node on multihop path aggregates incoming 

data from neighbors 

Simple but non-optimal routing Routing can be made optimal but with an added 

complexity 

Requires global and local synchronization Links formed on the fly without synchronization 
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Hierarchical routing Flat routing 

Overhead of cluster formation throughout the 

network 

Routes formed only in regions that have data for 

transmission 

Lower latency as multiple hops network formed 

by cluster heads always available 

Latency in waking up intermediate nodes and 

setting up the multipath 

Energy dissipation is uniform Energy dissipation depends on traffic patterns 

Energy dissipation cannot be controlled Energy dissipation adapts to traffic pattern 

Fair channel allocation Fairness not guaranteed 

Location based routing 

Location based routing shows a different schema where nodes are by means of their 

location. In this kind of routing, the location of nodes can be obtained directly if nodes 

are equipped with a low power GPS or their relative position can be deduced by means 

of two facts: the distance between nodes estimated on the basis of incoming signal 

strengths, and relative coordinates of neighbors obtained by exchanging information 

between them. Energy savings can be obtained switching nodes to sleep mode when 

there is no activity or having as many sleeping nodes in the network as possible. Next 

are reviewed several location-based routing protocols: 

• Geographic Adaptive Fidelity (GAF) [31]: GAF divides the network area into 

fixed zones and forms a virtual grid. All nodes in each zone elect one sensor 

node responsible in its zone for monitoring and reporting data to the BS. This 

node will stay awake for a certain period of time and the rest of nodes will go to 

sleep. Thus, GAF conserves energy by turning off unnecessary nodes in the 

network without affecting the level of routing fidelity. 

• Geographic and Energy Aware Routing (GEAR) [32]: GEAR is a recursive data 

dissemination protocol. This protocol disseminates queries to appropriate 

regions whose data include geographic attributes. It achieves energy saving by 

sending the interest to certain regions rather than the whole network. On the 

contrary, GEAR is not scalable and does not support data diffusion. 

• MFR, DIR, and GEDIR [33]: these three protocols employ different mechanisms 

but they almost always obtain the same path to the destination. In MFR, the dot 

product of Euclidean distance between destination and neighbor node and 

Euclidean distance between destination an source node (i.e., ������ � ������) is 
minimized. DIR method chooses the neighbor with the minimum angular 

distance between from the imaginary line joining the current node and the 

destination. In GEDIR, packets are transmitted to the neighbor of the current 

vertex whose distance to the destination is minimized. 

• SPAN [34]: this protocol selects some nodes based on their positions that will act 

as coordinators and will form a network backbone used to forward messages. A 

node is designed as coordinator when three hop reachability between nodes is 

not accomplished, i.e., two nodes cannot reach each other directly or via one or 

two coordinators. 
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2.5.3.2 Protocol Operation Based Protocols 

In this subsection, some routing methods with different features and functionalities are 

described. Some of these methods may refer to some concrete protocol which deploys 

the main feature in their category. 

Multipath routing protocols 

Multipath routing mechanisms uses multiple paths in order to increase the fault 

tolerance of the network. These maintained alternative paths entail an increment of 

energy consumption and traffic overhead, but helps to increase the network reliability. 

Diverse researches have provided different ideas. One proposal advocates to create 

paths with the largest residual energy, change the path whenever a better path is 

discovered and switch the primary path to the backup path when the energy of the 

primary path falls to lower levels than the backup path. Another proposal suggests us to 

use a set of sub-optimal paths with the less energy consumption. This method aims to 

increase the network lifetime by choosing the paths by means a certain probability 

depending on the lower minimum energy consumption of each path. Directed diffusion 

is also a good protocol for robust multipath routing and delivery. 

Query based routing 

In query based routing, base station or destination nodes propagate a query through the 

network. These queries usually use natural or high-level query languages. All nodes 

have tables with sensing task queries that they receive and nodes having the data 

associated to this query sends the data back to the node which made the query. 

Several protocols use query based routing. For instance, in Directed Diffusion, interest 

messages are propagated through the network and gradient paths are set up and. When 

the source has data for the interest, the source sends the data along the interest gradient 

path. Another example is Rumor routing protocol, which uses a set of long-lived agents 

to create paths that are directed towards the events they encounter.  

Negotiation based routing 

Negotiation based protocols use high level data descriptors in order to eliminate 

redundant data transmissions through via negotiation. This idea aims to suppress 

duplicate information and prevent redundant data from being sent to the next sensor or 

the base-station. This is achieved by exchanging a series of negotiation messages before 

the real data transmission is carried out. One example of negotiation based routing is the 

family of SPIN protocols, which uses this mechanism and prevents from implosion and 

overlapping. 

QoS-based routing 

Networks with QoS-based routing protocols have to ensure some QoS factors, as for 

example, low delay, bandwidth, delivery, etc. when sending data to the base stations. 

However, this kind of protocols applied to WSN has to balance between energy 

consumption and data quality. 

Some routing protocols bring several QoS features to WSN. For instance, in Sequential 

Assignment Routing (SAR) [35], routing decisions are made depending on three factors: 
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energy resources, QoS on each path, and the priority level of each packet. In order to 

provide energy efficiency and fault tolerance, SAR creates a tree from the source node 

to the destination nodes. However, this protocol suffers overhead with a high number of 

nodes. Another QoS routing protocol called SPEED [36] provides congestion avoidance 

and ensures a certain speed for each packet in the network, which ensures to estimate 

the end-to-end delay for the packets. However, SPEED does not consider any further 

energy metric in its routing protocol. 

Coherent and non-coherent processing 

WSN routing protocols employ different data processing techniques. Next are shown 

two different data processing techniques: coherent and non-coherent data processing-

based routing. In non-coherent data processing routing nodes only process locally the 

raw data before sending it to other nodes, whereas in coherent data processing the 

minimum processing typically includes tasks like time stamping, duplicate suppression, 

etc. After this processing, data is forwarded to other nodes called aggregators for further 

processing. 

Some examples of non-coherent and coherent processing are Single Winner (SWE) and 

Multiple Winner (MWE) algorithms, respectively. In the Single Winner algorithm, a 

single aggregation node with the highest energy reserves and computational capability 

is elected for complex processing. By the end of the SWE process, a minimum-hop 

spanning tree will completely cover the network. On the contrary, at the end of the 

MWE process, each sensor has a set of minimum-energy paths to each source node. 

MWE process obtains longer delay, higher overhead and lower scalability than non-

coherent processing. 

2.5.3.3 Comparison of features between protocols 

Many of the described protocols fit under more than one category. The next table 

summarizes the main features of these WSN routing protocols: 

Table 2. Classification and comparison of routing protocols in WSN [30] 

 Classification Mobility 
Position 
Awarenes
s 

Power 
Usage 

Negotiation 
based 

Data 
Aggregation Localization QoS 

State 
Complexity Scalability Multipath Query based 

SPIN Flat Possible No Limited Yes Yes No No Low Limited Yes Yes 

Directed 

Diffusion 
Flat Limited No Limited Yes Yes Yes No Low Limited Yes Yes 

Rumor 

Routing 
Flat 

Very 
Limited 

No N/A No Yes No No Low Good No Yes 

GBR Flat Limited No N/A No Yes No No Low Limited No Yes 

MCFA Flat No No N/A No No No No Low Good No No 

CADR Flat No No Limited No Yes No No Low Limited No No 

COUGAR Flat No No Limited No Yes No No Low Limited No Yes 

ACQUIRE Flat Limited No N/A No Yes No No Low Limited No Yes 

EAR Flat Limited No N/A No No  No Low Limited No Yes 

LEACH Hierarchical Fixed BS No Maximum No Yes Yes No CHs Good No No 

TEEN & 

APTEEN 
Hierarchical Fixed BS No Maximum No Yes Yes No CHs Good No No 

PEGASIS Hierarchical Fixed BS No Maximum No No Yes No Low Good No No 

MECN & 

SMECN 
Hierarchical No No Maximum No No No No Low Low No No 

SOP Hierarchical No No N/A No No No No Low Low No No 

HPAR Hierarchical No No N/A No No No No Low Good No No 

Sensor 

aggregate 
Hierarchical Limited No N/A No Yes No No Low Good No Possible 

TTDD Hierarchical Yes Yes Limited No No No No Moderate Low Possible Possible 

GAF Location Limited No Limited No No No No Low Good No No 

GEAR Location Limited No Limited No No No No Low Limited No No 

SPAN Location Limited No N/A Yes No No No Low Limited No No 

MFR, GEDIR Location No No N/A No No No No Low Limited No No 

SAR QoS No No N/A Yes Yes No Yes Moderate Limited No Yes 

SPEED QoS No No N/A No No No Yes moderate Limited No Yes 
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2.6 Conclusions 

The WSN architecture introduces several limitations to the network implementation. 

For that reason, the election and the development of suitable MAC and routing 

protocols for the future application scenario is the main objective. Furthermore, the 

correct integration of physical layer, MAC layer and routing layer will contribute to 

obtain better performance and behavior. 

The diverse MAC and routing protocols described in this chapter provide different 

features and advantages. Consequently, it is very important to know the application 

scenario requirements and constraints in order to develop an adequate architecture and 

obtain appropriate results. 

This election and implementation will depend significantly on our WSN scenario and 

application. The correct integration of physical layer, MAC layer and routing layer will 

contribute to obtain better performance and behavior.  

The analysis about WSN protocols carried out during this chapter showed that the 

simplicity of CSMA, together with its well-know behavior and adequate performance, 

makes this protocol the right candidate for the simulation scenario of this project. 

Regarding the routing protocols, LEACH appears as a suitable protocol for the current 

research due to its clustered type organization, the balance of the overall energy 

consumption that it carries out and its relevance on the current researches. 
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3 WSN Simulators 

3.1 Introduction 

A network simulator is defined as a piece of software or hardware that predicts the 

behavior of a network, without a real network being present. This kind of tools help us 

to understand, predict the behavior and the results, find, correct and overcome mistakes 

in our network without the need of implementing the network and tuning it directly. 

Through the use of network simulators it is possible to obtain faster and better results 

without working with the real network, i.e., it helps us to save time, resources and costs. 

3.2 Simulator requirements 

As we mentioned on the previous chapter, WSN networks introduce new characteristics 

but also new constraints to our implementation. Hence, simulating WSN includes more 

specific properties to reflect the real behavior and obtain better results. Next are 

presented the requirements that network simulators should address. These requirements 

[37] are divided into non-functional and functional requirements. 

• Non-functional requirements: these requirements provide ease of use, comfort 

and better interactivity to the users. Some of these requirements are: 

� Open source: this allows to the user develop their own modules. 

� Platform independence: this avoids the obligation of using a specific 

platform or Operating System. 

� Visualization module: a friendly user interface which provides graphical 

and dynamic information about the scenario and graphical results helps 

the user to understand the model and interact with the simulator. 

• Functional requirements: these requirements provide more realism to our 

network model. Some of the functional requirements are: 

� Hardware simulation: it reflects the performance of sensor components 

like CPU, transceiver and sensor unit. 

� Battery and Power models: it shows the energy consumption and 

remaining energy levels. 

� Propagation modeling: a variety of propagation models like RF, optical 

communication and/or infrared results very appreciated. 

� Protocols modeling: the larger number of protocols developed the higher 

flexibility. It is also very useful and an effective approach to provide an 

API for defining new protocol in a simulator.  

� Physical environment modeling: the implementation of different 

propagation characteristics from diverse materials like soil, water or 

cement will provide more realistic results. 

� Emulation: the network emulation and the environment emulation 

provide better understanding of the network behavior and more accurate 

results. 
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3.3 A model for WSN simulation 

This subsection describes a general component model for WSN simulation tools. The 

models include new components, not present in classical network simulators. 

3.3.1 Network model 

In the network model the next components are considered. Figure 13 shows a general 

network model. 

• Nodes: each node is a physical device monitoring a set of physical variables. 

Nodes communicate with each other via a common radio channel. 

• Environment: this component models the generation and propagation of events 

that are sensed by the nodes, and trigger sensor actions, i.e. communication 

among nodes in the network. 

• Radio channel: it characterizes the propagation of radio signals among the nodes 

in the network. 

• Sink nodes: these nodes interrogate sensors about an event of interest, receive 

data from the net, and process it. 

• Agents: they are generators of events of interest for the nodes. The agent may 

cause a variation in a physical magnitude, which propagates through the 

environment and stimulates the sensor. 

 

Figure 13. Wireless sensor network model 

3.3.2 Node model 

In order to provide a better description of the node behavior and their cross-layer 

interdependencies, the node model is divided into abstract tiers. Figure 14 depicts the 

node model. 

• The protocol-tier contains the communication protocols. Two sub-components 

coexist at this tier: the protocol stack, which contains the MAC layer, and the 

routing layer, and a specific application layer component. 
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• The physical-node tier represents the hardware platform and its effects on the 

performance of the equipment. It is commonly composed of the set of physical 

sensors, the energy module and the mobility module. 

• The media-tier connects a node with the environment through a radio channel 

and one or more physical channels. 

 

Figure 14. Tier-based node model 

3.4 Network simulators 

In this subsection, the most common network simulators are reviewed. These simulators 

provide different functionalities and capabilities. 

3.4.1 The Network Simulator – ns-2  

NS-2 [38] is a very popular general purpose discrete event simulation tool for sensor 

networks. Simulations are written in combination of C++ and OTCL (Object Tool 

Command Language), an object oriented scripting language. They can be observed 

graphically by Network AniMator (NAM). C++ is used for implementing protocols and 

extending the NS-2 library. OTCL is used to create and control the simulation 

environment itself, including the selection of output data. It supports WSN features like 

mobility model, wireless channel model and basic node energy model. These features 

can be improved and incremented by means of external applications or extensions (like 

MannaSim Framework, which introduces new modules for design, development and 

analysis of different WSN applications). The main drawback consists on the fact that 

NS-2 does not have good scalability for large sensor networks since exponential 

simulation time slowdown. 
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3.4.2 OMNeT++ 

OMNeT++ [39] is a public source component-based discrete event network simulator. It 

defines a simulation in a component-based architecture. Simulation models are 

described in C++ language and then assembled into larger components using NEtwork 

Description (NED) language to represent greater systems. The simulator has graphical 

tools for simulation building and evaluating results in real time. OMNeT++ scales well 

for very large scale network topologies, but without the proper simulation model or 

framework extensions, the simulator lacks suitable protocols and proper energy 

modeling for sensor networks. There are many extensions, frameworks and simulators 

for WSN based on OMNeT++ such as MiXiM, Castalia, Mobility Framework, EYES 

and etc. MiXiM provides detailed models of wireless channel (fading, etc.), wireless 

connectivity, mobility, obstacles and MAC protocols. Castalia is another extension with 

realistic MAC, wireless channel and radio model based on measured data. Mobility 

Framework extension implements the support for node mobility, dynamic connection 

management and a wireless channel mode. EYES is written for self organizing and 

collaborative energy-efficient sensor networks, which enables two-dimensional 

definition of the simulation map with different failing and error probabilities on 

different regions. 

3.4.3 TOSSIM 

TOSSIM [40] is a discrete event simulator designed and developed to simulate TinyOS 

wireless sensor networks. The TOSSIM architecture is composed of five parts. TOSSIM 

is also an emulator, as it can run the same simulated TinyOS application code on a real 

sensor. Furthermore, TOSSIM can simulate a mote’s hardware, including digital I/O, 

ADC and sensors. Along with capability to simulate an application, operating system 

and network stack, TOSSIM is likely to provide more realistic results. With a detailed 

visualization module, results could then be easily understandable, but one drawback in 

TOSSIM is a lack of energy consumption modeling which is quite important in wireless 

sensor networks. There are few extensions for TOSSIM like TinyViz, a visualization 

tool, and PowerTOSSIM, an energy consumption modeling add-on. 

3.4.4 OPNET 

OPNET [41] is a commercial network simulator capable of simulating TinyOS 

applications. It enables scenario and statistics management which could not be found in 

TOSSIM. The models are the combination of OPNET specific code implementing 

TinyOS functionality and application specific code. This characteristic will reflect the 

interaction between the application and TinyOS. OPNET provides wide possibilities for 

wireless network simulations including WSN MAC protocols, very good accuracy on 

the radio transmission modeling and the possibility of modeling 3D outdoor scenarios. 

OPNET uses a hierarchical three level model to define each aspect of the system: the 

project editor, where network topology is designed; the node level, where individual 

network nodes and data flow models are defined; and the process editor, which uses a 

finite state machine approach to support specification of protocols, resources, 

applications and queuing policies. Finally, a simulation tool is included to support the 

three levels.  
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3.4.5 Ptolemy II 

Ptolemy II [42] is an open-source software framework supporting experimentation with 

actor-oriented design, similar to component-based design. It includes Java packages that 

support different models of simulation paradigms (e.g. continuos time, dataflow, 

discrete-event). It also addresses the modeling, simulation and design of concurrent, 

real-time, embedded systems. VisualSense [43] is a modeling and simulation 

framework for WSN built on Ptolemy II. Models can be developed by subclassing base 

classes of the framework or by combining existing Ptolemy models. Thus, Ptolemy and 

its IDE components assure a simple and intuitive graphical composition of models. 

3.5 Description of the OMNeT++ simulator 

3.5.1 Overview 

OMNeT++ with MiXiM plugin complies with the specific requirements and provides 

the required tools for the development of the project. 

3.5.1.1 Modeling concepts 

As we can look up on the OMNeT++ User Manual [44], OMNeT++ models consist of 

modules which communicate with message passing. The active modules are termed 

simple modules, and they are written in C++. Compound modules are made up of 

simple modules or other compound modules. Thus, the number of hierarchy levels is 

not limited. This architecture allows reusing the well-built modules and, moreover, 

allows implementing and customizing new modules with additional features. The whole 

model, called network, is also a compound module. The picture below shows the 

OMNeT++ network structure with different modules. Arrows connecting small boxes 

represent connections and gates. 

 

Figure 15. Simple and compound modules of an OMNeT++ network 

Modules communicate with messages, which are typically sent via gates. Gates are the 

input and output interfaces of modules. An input and an output gate can be linked with a 

connection. Connections spanning across hierarchy levels are not permitted. Messages 

typically travel through a chain of connections, to start and arrive in simple modules. 

Parameters such as propagation delay, data rate and bit error rate, can be assigned to 

connections. Connection types with specific properties (termed channels) can also be 

defined and reused them in several places. Modules can have parameters. They can take 
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different values: string, numeric or boolean, and they are mainly used to pass 

configuration data to simple modules, and to help define model topology.  

Thanks to its design and its structure, OMNeT++ provides efficient and useful tools for 

the user to describe the system. Some features of OMNeT++ are: 

• hierarchically nested modules 

• modules communicate with messages through channels 

• flexible module parameters 

• topology description language 

3.5.1.2 The OMNeT++ simulation IDE 

The OMNeT++ simulation IDE is an extension of Eclipse development platform with 

new editors, views and other functionality like tools for creating and configuring models 

and analyzing the simulation results. For further information, it’s available an 

OMNeT++ IDE User Guide [45]. 

The Workbench 

Eclipse is a very flexible system where you can manage different panels, editors and 

navigators. 

The OMNeT++ IDE provides a “Simulation Perspective” to work with simulation 

related NED, INI and MSG files. Next are explained the meaning of these file 

extensions. 

• The NED language topology description(s) (.ned files) describe the module 

structure with parameters, gates etc. 

• The Message definitions (.msg files) define different message types and add 

data fields to them. 

• The Configuration file (.ini files) contains settings that control how the 

simulation is executed, values for model parameters, etc. 

The main window showed above on  Figure 16 contains different and useful panels: 

• The Project Explorer shows the projects and their content in your workspace. 

• The Properties View contains the information on the object selected in the editor 

area 

• The Problems View references the code lines where Eclipse encounters a 

problem 

• The Module Hierarchy, NED Parameters and NED Inheritance View are with 

the network topology and its modules. 

• The Console View shows the results of the executions. 
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Figure 16. Default layout of the OMNeT++ IDE 

The manner of creating models and networks is identical to the way of creating 

programs under Eclipse platform. The workspace is the directory where all your 

projects are located and can be linked. 

Additionally, OMNeT++ provides specific editors for the simulations. The graphical 

NED editor, showed on Figure 17, helps to improve the visual network structure for a 

better understanding of the user, and INI file editor helps to edit the file with contains 

the configuration of simulation runs. 

 

Figure 17. Graphical NED Editor 
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The Graphical Runtime Environment 

The Tkend runtime environment, built in Tcl/Tk, is a portable graphical windowing user 

interface which supports interactive execution of the simulation, tracing and debugging. 

It is recommended in the development stage of a simulation since it allows one to get a 

detailed picture of the state of simulation at any point of execution and to follow what 

happens inside the network. Some important features are: 

• message flow animation 

• graphical display of statistics and output vectors during simulation execution 

• event-by-event, normal and fast execution 

• inspector windows to examine and alter objects and variables in the model 

• scheduled messages can be watched in a window as simulation progresses 

 

Figure 18. The main window of the Tkenv runtime environment 

The main window of the Tkend environment showed on Figure 18 show different parts: 

• The toolbar includes the access to the main functions of Tkenv like run, stop and 

start or finish the simulation and configure the visual appearance. 

• The status bar contains the information about the current state of the simulation 

like the current run number and network name and the current event number, 

information about the number of messages and the events processed. 

• The timeline displays the content of the FES on a logarithmic time scale. 

• The object tree displays all inspectable objects currently present in the memory. 

• The log window contains the output of the simulation. The window content can 

be filtered to include messages only from specific modules 
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Figure 19. Top level network and node component structure 

The top level network window shows the network structure. This window enables to 

explore the component hierarchy in a graphical mode. Networks and compound 

modules are represented by graphical inspectors displaying their internal structure. Each 

component can be inspected as object, as graphic or as module output and these 

different possibilities shows the component contents, its graphical internal structure and 

its output messages and events, respectively. The top level network and node 

component structure are showed above on Figure 19. 

 

Figure 20. A histogram and an output vector 

Furthermore, this environment can show output vectors in real-time as showed above on 

Figure 20. If any component contains an output vector, Tkenv will show a chart by 

double clicking on the object. 
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3.5.1.3 MiXiM 

MiXiM [46] (mixed simulator) is a simulator for wireless and mobile networks using 

the OMNeT++ simulation engine. This simulator combines various simulation 

frameworks developed for wireless and mobile simulations in OMNeT++. MiXiM 

provides detailed models of the wireless channel (fading, etc.), wireless connectivity, 

mobility models, models for obstacles and many communication protocols especially at 

the Medium Access Control (MAC) level. Thus, MiXiM provides detailed models and 

protocols, as well as a supporting infrastructure which can be divided into five groups: 

• Environment models: it reflects the relevant parts of the real world, such as 

obstacles or other elements which hinder wireless communication. 

• Connectivity and mobility: the simulator tracks the movement of nodes and the 

variations on the influence between nodes and provides an adequate graphical 

representation. 

• Reception and collision: the reception handling is responsible for modeling how 

a transmitted signal changes on its way to the receivers considering the 

movement of objects and nodes and transmissions making by other senders. 

• Experiment support: it helps the researchers to compare the results and supports 

different evaluation methods. 

• Protocol library: it enables researchers to compare and to share their ideas. 

This simulator appears as the fusion of different simulator frameworks into one. These 

frameworks contribute with different approaches to MiXiM: the Mobility Framework 

(MF) with its mobility support, connection management, and general structure; the 

CHannel SIMulator (ChSim) with their radio propagation models; and the protocol 

library from the MAC simulator and the Positif framework. 

Through its low memory consumption and its modular structure, MiXiM can support 

simulations with more than 1000 nodes. The graphical configuration interface helps to 

manage the model and it allows modifying some parameters, filtering the resulting 

information and adapting the level of detail and thus the execution time. 

 

Figure 21. A network simulation 
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The general structure of MiXiM shows two different parts [47]: 

• The simulation modules: a MiXiM network contains a “world” utility model 

which defines the environment properties like the size of the terrain, the kind of 

terrain simulation (2D or 3D) and different “objects” to model the environment 

of a simulation. The “ConnectionManager” module manages dinamically the 

connections between interfering nodes, where the signal quality is based on the 

interferences and the mobility. Finally, the “nodes” make up the network. 

MiXiM supports different kind of nodes (like Access Points and terminals) with 

different properties. An example of a MiXiM network is showed on Figure 21. 

• The node structure: the nodes contain the modules according to the ISO/OSI 

architecture, together with other sensor specific and utile modules like the 

battery module, the mobility module, the arp module and the utility module, as it 

is showed on Figure 22. The layers of an IP model can be composed by the 

application layer (appl), the network layer (netw), the MAC layer (mac) and the 

physical later (phy). The physical and MAC layer are grouped into a Network 

Interface Card (NIC) module. The mobility module is responsible for the 

movements of a node or an object. The battery module is used to simulate the 

power consumption and properties. The arp module handles the Address 

Resolution Protocol (ARP), and the utility module provides a general interface 

for collecting statistical data of a simulation and maintains parameters that need 

to be accessed by more than one module within a node. 

 

Figure 22. Node structure and NIC structure 
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3.5.2 Advantages 

The combination of OMNeT++ with MiXiM provides numerous features which allow 

implementing a very detailed simulation in comparison with other WSN simulators. 

Some of the best features of OMNeT++ with MiXiM are the differentiation between the 

network structure (implemented with NED) and the network behavior (implemented in 

C++). They also provide a set of important models like battery, power and propagation 

models, providing much more functionality and flexibility than other simulators with 

the lack of some of these modules like GloMoSim, SENS, ATEMU, Prowler and 

Shawn. 

OMNeT++ and MiXiM are Open Source, have a very useful graphical support for 

debugging, support parallel simulation and show a very good scalability to large 

networks (more than 100 nodes), overtaking other simulators like NS-2 with worse 

scalability. 

Furthermore, OMNeT++ is supported by a community site of software developers with 

several useful features like a mailing list. 

3.5.3 Drawbacks 

OMNeT++ with MiXiM show several drawbacks in comparison with other WSN 

simulators. The main drawback consists on the fact that OMNeT++ is a general purpose 

simulation framework and, for that reason, it only supports a limited emulation or Real-

time OS/SW execution time modeling, unlike specific simulation tools like ATEMU, 

EmStar or TOSSIM. Other minor drawback consists on the lack of MAC protocols and 

the inexistence of any routing protocol. This drawback can be solved by the developer 

through the implementation of the required protocols. 

OMNeT++ also doesn’t provide a huge variety of MAC or routing protocols as other 

simulators like NS-2 or OPNET do. Because of this, the users need to resort to some 

extensions or some implementations done by the community. 

3.6 Conclusions 

After this chapter, we can ensure that OMNeT++ with MiXiM appear as a very good 

solution to implement and test the behavior of large scope wireless sensor networks. 

This simulation framework meets the majority of the simulator requirements explained 

above and also provides some important features for this project like very good 

scalability unlike other simulators do. The simulation structure facilitates the design and 

the test of large scope wireless sensor networks, its graphical runtime environment helps 

the user with the debugging and tracing tasks, providing better understanding of the 

network behavior, and MiXiM extension provides the advanced and specific modules 

required to simulate our sensor network. 
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4 Evaluation of routing protocols 

4.1 Introduction 

The routing protocol is a fundamental piece for the network operation. It will determine 

the network behavior. Furthermore, the network layer will add some additional features 

depending on the protocol implementation and the network requirements 

During this section, the operation and implementation of two different protocols is 

offered. This fact will help to understand the diverse features that two different protocol 

implementations will provide. The first one, the Direct Transmission operation, is the 

simplest implementation of a routing protocol. The second one, the LEACH protocol 

has acquired great importance due to the fact that it has been the base for numerous 

network protocol improvements. In this manner, the protocol’s behavior and its main 

parameters can be studied in order to obtain any improvement. In this chapter, the two 

mentioned algorithm are described and analyzed. This analysis will help us with a better 

understanding of the protocol’s behavior for a further design and implementation into 

the chosen simulator, and therefore, to obtain a completely coherent protocol 

implementation from with the given description 

4.2 Direct Transmission 

4.2.1 Direct Transmission operation description 

The Direct Transmission protocol is the simplest routing protocol. In the Direct 

Transmission protocol, the base station serves as the destination node to all the other 

nodes in the network as showed on Figure 23, where the end user can access the sensed 

data. The nodes only remain active during the data transmission to the base station. 

Consequently, won’t spend energy on receiving the messages from the other nodes, but 

they will only spend the minimum data on listening the channel and, therefore, they will 

spend their battery capacity on sending messages to the base station. 

 

Figure 23: Network interconnection in Direct Transmission protocol 

On the other hand, when a sensor node transmits data directly to the base station, the 

energy loss incurred can be quite extensive depending on the location of the sensor 

nodes relative to the base station. As a result, the Direct Transmission protocol’s 

complexity can be negligible and its implementation quasi-trivial, but it is also the least 

energy efficient protocol in most cases. 
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4.2.2 Direct Transmission protocol implementation 

4.2.2.1 Direct Transmission NED implementation 

The Direct Transmission NED description (DirectTransmission.ned) is implemented as 

a simple module extending the BaseLayer module and implementing the 

IBaseNetwLayer interface
1
. 

 

The first parameter that contains the Direct Transmission description is a direct 

reference to the Direct Transmission C++ class. The description also contains three 

parameters required by the IBaseNetwLayer interface and used by some Direct 

Transmission superclasses (from Direct Transmission C++ implementation). 

4.2.2.2 Direct Transmission C++ implementation 

The Direct Transmission C++ implementation consists of two different files: the 

DirectTransmission.h file, which contains forward declarations of variables, structures 

and subroutines, and DirectTransmission.cc, which contains the implementation the 

Direct Transmission protocol operation. 

DirectTransmission.h file 

The Direct Transission class implementation extends from the BaseNetwLayer class. 

The implementation of this simple protocol only contains one variable declaration: 

 int droppedMsgs; 

This variable, also declared into the LEACH implementation, is a counter which 

accumulates the number of dropped messages that comes from the MAC layer. On the 

next chapter is detailed the whole utility and use of this variable. 

Next are declared the subroutines required by Direct Transmission. These are divided in 

two parts: a public subsection and a protected subsection. The public subsection only 

contains one declaration: 

virtual void finish(); 

This function performs value recording in some prefixed output files. 

Finally, the protected subsection is declared with three subroutine declarations: 

                                                 
1
 For further information, visit the MiXiM API reference: 

http://mixim.sourceforge.net/doc/doxy/main.html 

simple DirectTransmission extends BaseLayer like IBaseNetwLayer 

{ 

    parameters: 

        @class(DirectTransmission); 

 

   //Required *IBaseNetwLayer* parameters 

        bool debug; // debug switch 

        bool stats; // stats switch 

        double headerLength @unit(bit);  // length of the network 

       // packet header (in bits)  
} 
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The first declaration, handleLowerControl, handles the message that comes from the 

lower layer, i.e., the MAC layer. The second declaration, encapsMsg, is in charge of 

encapsulating a higher packet layer into a network packet with the associated header. 

And finally, a third subroutine is declared. handleHostState is in charge of handling 

the host state change when a change announce is received. As it is shown above, the 

handleHostState subroutine is fully defined and does nothing. This fact means that the 

network layer won’t be affected by any host state change, but the declaration of this 

function is required. 

DirectTransmission.cc file 

The DirectTransmission.cc file implements the functionality of Direct Transmission 

protocol. This protocol, owing to the fact that implements only one-hop message 

transmission, it doesn’t add any special routing feature and this protocol is quasi 

implemented by the BaseNetwLayer class. Therefore, it is only needed to add some 

modifications to obtain the implementation within the simulated WSN. 

The unique class needed to complete the Direct Transmission operation is: 

NetwPkt* encapsMsg(cPacket*); 

This subroutine encapsulates the packet received from the upper layer into a network 

packet ready to send to the lower layer. Because of the fact that the subroutine 

implemented into the BaseNetwLayer class doesn’t know how to discover
2
 the base 

station network and MAC address, the implemented subroutine execute the packet 

encapsulation with the knowledge of the base station network and MAC address defined 

into the class ExtendedAddress.h. 

Finally, the handleLowerControl and finish functions are described. The first one, 

handleLowerControl, handles the MAC control messages, but it develops a special 

management with the packets that indicates a packet dropped from the MAC layer: if 

handled control message kind is BaseMacLayer::PACKET_DROPPED, the droppedMsgs 

counter value will be increased by 1 in order to count the quantity of dropped MAC 

messages and measure the correct integration between the MAC and the network layer. 

The second function, finish, completes the monitor of the droppedMsgs variable by 

recording the final value into an output file at the end of the simulation.  

                                                 
2
 For further information, visit the BaseArp class at the MiXiM API reference: 

http://mixim.sourceforge.net/doc/doxy/main.html 

... 

protected: 

    /** @brief Handle control messages from lower layer */ 

    virtual void handleLowerControl(cMessage* msg); 

 

    /** @brief Encapsulate higher layer packet into an NetwPkt*/ 

    virtual NetwPkt* encapsMsg(cPacket*);   

  

    void handleHostState(const HostState& state) {} //does nothing 

}; 
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4.3 The LEACH protocol 

4.3.1 LEACH algorithm’s description 

LEACH appears as one of the first cluster-based protocols which achieve to distribute 

the energy load among the entire sensor network. The main feature of LEACH is based, 

contrary to static clustering, on the randomized rotation of local cluster base stations 

(also called cluster heads) in order to distribute the data gathering and high power 

transmission (to the base station) energy consumptions. In this manner, LEACH enables 

scalability and robustness for dynamic networks, and incorporates data fusion into the 

data gathering process to reduce the amount of data to be transmitted. 

 

Figure 24: LEACH cluster type organization 

Detailed below is a summary of LEACH algorithm description. The whole description 

of LEACH operation and further details can be found in [24] and [48]. The operation of 

LEACH is divided into rounds, and the rounds are also divided in different phases. 

Each LEACH round begins with a set-up phase, where cluster heads are randomly 

chosen and the cluster are organized as showed on Figure 24, and continues with a d 

steady-state phase, where nodes transmit their data to their respective cluster heads, and 

after that the cluster heads transmit the whole cluster “compressed” data to the base 

station. The phases that make up the algorithm operation are: Advertisement Phase, 

Cluster Set-Up Phase, Schedule Creation Phase and Data Transmission Phase (steady-

state phase). 
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Figure 25. Time line showing LEACH operation 
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4.3.1.1 Advertisement Phase 

When a new round begins, each node decides whether or not to become cluster head for 

the current round. This decision is made by the node n by choosing a random number 

between 0 and 1. The node becomes a cluster head if the randomly obtained value is 

less than a threshold T(n). The threshold is set by the next formula: 

���	 
 � �1 � � � �� ��� 1�� if  n � G
0  otherwise � 

In the above formula, P = the desired percentage of cluster heads, determined a priori 

(e.g., 0.05), r = the current round, and G is the set of nodes that have not been cluster 

head in the last 1/P rounds. Thus, using this formula, each node will be cluster head at 

some point within 1/P rounds. 

The nodes that have elected itself a cluster-head for the current round broadcasts and 

advertisement message to the rest of the nodes. This message is sent by using a CSMA 

MAC protocol and the same transmit energy (low power energy) for all the cluster-head 

nodes. The non-cluster-head nodes must keep their receivers on during this phase to 

hear the advertisements of all the cluster-head nodes. 

4.3.1.2 Cluster Set-Up Phase 

The non-cluster-head nodes decide the cluster-head to which it will belong for this 

round on the basis of the received signal strength of the advertisement message. The 

non-cluster head nodes will choose the cluster-head which sent the message with the 

largest signal strength heard. This fact means the election of the cluster-head to whom 

the minimum amount of transmitted energy is needed for communication. 

After the decision is taken, each node must inform its respective cluster-head that it will 

be a member of the cluster. This message is sent to the cluster head by using a CSMA 

MAC protocol. For that reason, all cluster-head nodes must keep their receivers on. 

4.3.1.3 Schedule Creation Phase 

When each cluster-head has received all the messages for nodes that would like to be 

included in its cluster, they create a TDMA schedule. This schedule indicates when each 

cluster member can transmit. The schedule is broadcast back to the nodes in the cluster. 

4.3.1.4 Data Transmission Phase 

Once the TDMA schedule is fixed, nodes can transmit during their allocated 

transmission time to the cluster head if they have data to send. The radio of the nodes 

which are waiting to the node’s allocated transmission time or the next round can be 

turned off in order to save energy. The cluster-head nodes must keep its receiver on to 

receive all the data from the nodes in the cluster. When all the data has been received, 

the cluster-head node performs data fusion tasks to compress the amount of data, and 

next this data is sent to the base station. 

After a certain time (determined a priori), a new round begins with the Advertisement 

Phase as described in Section 0 
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4.3.2 LEACH algorithm’s implementation 

The development of LEACH under OMNeT++ requires a NED implementation 

(module description) and a C++ implementation (functionality description) 

4.3.2.1 LEACH NED implementation 

The LEACH NED description (LEACH.ned) is implemented as a simple module 

extending the BaseLayer module and implementing the IBaseNetwLayer interface
3
. 

 

The first parameter that contains the LEACH description is a direct reference to the 

LEACH C++ class. The description also contains three parameters required by the 

IBaseNetwLayer interface and used by some LEACH superclasses (from LEACH C++ 

implementation). 

Next appear the parameters which determine the LEACH protocol’s behavior: 

• P, the percentage of cluster-head nodes, is a real value between 0 and 1. 

• roundTime, the LEACH entire round time, is a real value expressed in seconds. 

• slotTime, the time for packet transmission within the Data Transmission Phase, 

is a real value expressed in seconds. 

• compressionIndex, the index of data compression carried out by the cluster-

head nodes, is a real value between 0 and 1. 

• waitingTime, the maximum time that nodes wait to go to the next algorithm’s 

phase, is a real value expressed in seconds. 

• maxClusterSize, the maximum number of nodes that can contain a cluster, is 

an integer value. 

                                                 
3
 For further information, visit the MiXiM API reference: 

http://mixim.sourceforge.net/doc/doxy/main.html 

simple LEACH extends BaseLayer like IBaseNetwLayer 

{ 

    parameters: 

        @class(LEACH); 

 

   //Required *IBaseNetwLayer* parameters 

        bool debug; // debug switch 

        bool stats; // stats switch 

        double headerLength @unit(bit);  // length of the network  

      //packet header (in bits) 

         

        //LEACH parameters 

        double P;    //percentage of CHs [0-1] 

  double roundTime @unit(s); //LEACH whole round time (in seconds) 

  double slotTime @unit(s); //slot transmission time (in seconds) 

   double compressionIndex; //Index of compression [0-1] 

   double watingTime @unit(s); //Max time for going next stage (in s) 

   int maxClusterSize;  //Maximum number of nodes per cluster 

} 
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4.3.2.2 LEACH C++ implementation 

The LEACH C++ implementation consists of two different files: the LEACH.h file, 

which contains forward declarations of variables, structures and subroutines, and 

LEACH.cc, which contains the implementation of LEACH algorithm behavior. 

LEACH.h file 

The LEACH class implementation extends from the BaseNetwLayer class. 

 

The implementation begins with some enum structures. The first one showed above, 

SelfMessages, contains the different timers used during the operation. For instance, 

TIMER_NEW_ROUND defines the message kind when a new LEACH round starts after 

roundTime seconds, and TIMER_SEND_DATA defines the message kind when the slot to 

send data is reached. The second one, Phases, contains the different phases which 

passes the LEACH algorithm. This will help to avoid incoherences, for example, when 

a node receives a kind of message in a phase at which it shouldn’t receive. 

Next are declared the required variables for the correct implementation. The first three 

variables are headerLength, the length of the network packet header, arp, a pointer to 

the address resolution module, and myNetwAddr, the node network address. After these 

variables, common to any network layer implementation, the LEACH variables section 

begins. This section contains the needed variables to implement the LEACH algorithm. 

 

    ... 

    //------------------------------------ 

    // LEACH variables 

    //------------------------------------ 

 

    /** @brief Percentage of Cluster Heads */ 

    double P; 

 

    /** @brief Round number */ 

    int currentRound; 

    ... 

    /** @brief Timer to go to the next stage */ 

    cMessage* timerNextStage;     

    ... 

class LEACH: public BaseNetwLayer { 

public: 

 ... 

 enum SelfMessages {  //Timers to go to different phases 

  TIMER_NEW_ROUND, TIMER_JOIN_CH,  

TIMER_CREATE_TDMA_SCHEDULE, TIMER_SEND_DATA, 

 }; 

 

 enum Phases {   //LEACH phases 

  ADVERTISEMENT, CLUSTER_SETUP, 

  SCHEDULE_CREATION, DATA_TRANSMISSION, 

}; 

... 
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Detailed below are the LEACH declared variables: 

• P, MAX_CLUSTER_SIZE, compressionIndex, roundTime, waitingTime and 

slotTime are the variables to get the input parameters detailed in Section 

4.3.2.1. 

• currentRound indicates the current round number (the first round is 0), and 

lastRoundCH indicates the last round number when the node was cluster-head  

(-1 indicates never). 

• currentPhase indicates the index of the current phase (referred to the Phases 

enum structure). 

• myCH stores the address of the current cluster-head of a node. If the node is 

cluster-head during the current round, myCH will contain the BS address. 

• packetToSend is a pointer to the next packet to send to the base station, i.e., the 

last packet received from the application layer. 

• distanceToCHs is a map structure used by non-cluster-head nodes. It associates 

cluster-head node network addresses with the distance to them. This structure is 

required to choose the best cluster-head node, i.e., the nearest cluster-head node.  

• membersCH and netwQueue are two lists used by cluster-head nodes. The first 

variable contains the addresses of all the cluster members. The second variable 

stores the packets of all cluster members. After the reception of all the packets, 

the data is compressed and sent to the base station. 

• timerNextRound and timerNextStage are two pointers to message variables 

which work as timers. The first variable is employed to activate each new 

LEACH round. The second variable is employed to move a node within 

different stages when message gathering is required, e.g., when a non-cluster-

head node collects all the cluster-head announces or a cluster-head collects all 

the “join” messages from non-cluster-head nodes. 

• droppedMsgs is a counter which accumulates the number of dropped messages 

that comes from the MAC layer. 

Finally, the subroutines are declared. This section is divided into three parts: a public, a 

protected, and a private subsection. The public subsection contains only two functions: 

initialize function, which is initializes the LEACH variables and their associated 

superclasses, and finish function, which performs output value recording tasks. 

The protected subsection contains the functions related with message handling. 

 

... 

protected: 

 

    /** @brief Handle self messages */ 

    void handleSelfMsg(cMessage* msg); 

 

    /** @brief Handle messages from upper layer */ 

    virtual void handleUpperMsg(cMessage* msg); 

    ... 

    /** @brief Handle control messages from lower layer */ 

    virtual void handleLowerControl(cMessage* msg); 

    ... 
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Next are described the declared functions:  

• handleSelfMsg handles the messages sent to itself. The self message within the 

LEACH protocols work as timers, e.g., the timer used on launching a new 

LEACH round, or the timer used when the transmission slot is reached. 

• handleUpperMsg and handleLowerMsg handle the messages which comes from 

the upper and the lower layer, i.e., from the application and the MAC layer. 

• encapsMsg is in charge of encapsulating a higher packet layer into a network 

packet with the associated header. 

• handleLowerControl handles the control messages that comes from the lower 

layer, i.e., the MAC layer. 

The last subsection is the private subsection. It contains the function declarations 

associated to the LEACH operation. 

 

Below are described the mentioned functions: 

• calculateThreshold calculates the threshold for a node within the current 

stage. It is calculated on the beginning of the Advertisement Phase. 

• advertisementPhase, clusterSetUpPhase, scheduleCreation and 

dataTransmission contains the protocol operation during the different phases. 

advertisementPhase and dataTransmission contains functionality for 

cluster-head and non-cluster-head nodes but clusterSetUpPhase only contains 

functionality for non-cluster-head nodes, and scheduleCreation functionality 

for cluster-head nodes. This is due to the fact that, for example, during the luster 

Set-Up Phase, only the non-cluster-head nodes initiate the phase and prepare a 

“join” message to send to the best cluster-head. Therefore, cluster-head nodes 

only must wait for the “join” messages. That’s why their phase functionality is 

described into the handleLowerMsg function, when the message is received. In 

the case of the Schedule Creation Phase, the situation is the same but on the 

other way round with non-cluster-head and cluster-head nodes. 

• setHighTxPower sets the transmitting power to a high value in order to make a 

long-distance cluster-head – base station transmission. setLowTxPower gets 

back the normal transmitting power. 

  

... 

private: 

 

 /** @brief Calculates the threshold value to be Cluster Head */ 

 double calculateThreshold(); 

 

 /** @brief Executes the Advertisement Phase steps */ 

 void advertisementPhase(); 

      ... 

 /** @brief Sets the MAC transmission power to low range*/ 

 void setLowTxPower(); 

}; 
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LEACH.cc file 

The LEACH.cc file implements the whole functionality of LEACH protocol.  

The implementation of LEACH protocol is designed as follows: the LEACH network 

messages interchange carries out the cluster set-up, whereas the use of timers performs 

the switching between different phases or LEACH rounds. For a better understanding, 

the LEACH functionality has been divided into C++ functions with the same LEACH 

phase name. Therefore, the LEACH functionality is implemented by means of four 

functions that implement the majority of the protocol behavior, four functions that carry 

out different message handling tasks, and five functions of small functionality. 

Before the protocol operation, the LEACH class requires the call of the next function:  

void LEACH::initialize(int stage); 

This function is called two times (during two initializing stages). During the first 

initialization stage, all the parameters from the NED file are got and the addresses, 

counters and other variables are initialized. During the second initialization stage, the 

timer for the first LEACH round is activated. 

Detailed below are the functions which implement the LEACH functionality: 

• void LEACH::advertisementPhase(): this function implements the LEACH 

Advertisement Phase. The function starts with a call to the function 

calculateThreshold. If a random obtained value between 0 and 1 is less than 

the returned threshold, the node became cluster-head: it will update the 

lastRoundCH variable and will broadcast a “CH announce” message (with 

CH_STATUS_BROADCAST message kind, the node source address –myNetwAddr– 

and L3BROADCAST address as destination address). If the random value is higher, 

the node will be non-cluster-head: it will wait for “CH announces”. Here a timer 

is activated (timerNextStage). If after a waitingTime the node don’t receive 

any “CH announce”, it goes to the next phase. 

• void LEACH::clusterSetUpPhase(): this function implements the LEACH 

Cluster Set-Up Phase. Within this phase, only the non-cluster-head node’s 

behavior is implemented. Thanks to the distanceToCHs structure, the node 

chooses the nearest cluster-head node, sets myCH variable and sends it a “join 

CH” message (with JOIN_CH message kind, the node source address -

myNetwAddr– and myCH address as destination address). After sending the 

message, non-cluster-head nodes wait to the “TDMA schedule” message. The 

Cluster Set-Up Phase functionality for cluster-head nodes is implemented into 

the handleLowerMsg function. 

• void LEACH::scheduleCreation(): this function implements the LEACH 

Schedule Creation Phase. Within this phase, only the cluster-head node’s 

behavior is implemented, and they will create a “TDMA schedule” message 

(with TDMA_SCHEDULE message kind, the node source address –myNetwAddr– 

and L3BROADCAST address as destination address). This packet will contain a list 

with the cluster members’ network addresses, i.e., the transmitting slot position 

associated to each cluster member. After broadcasting this packet, cluster-head 

nodes will wait to receive all the data packets from the cluster members to 

perform data compression and send the data to the BS. The Schedule Creation 
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Phase functionality for non-cluster-head nodes is implemented into the 

handleLowerMsg function. 

• void LEACH::dataTransmission(): this function implements the LEACH 

Data Transmission Phase. For the non-cluster-head nodes, when the 

transmission slot is reached, the procedure consists on setting the packet 

addressee and sending the packetToSend stored packet if a new application 

packet has been received, and waiting for a new LEACH round. When cluster-

head nodes start to execute this function, they will have received all the non-

cluster-head node data packets. Therefore, they get all the data from the stored 

packets and apply data compression. This process is simulated by creating a data 

packet whose packet size will be the application of the compression index after 

the sum of all the cluster member stored data packet sizes. This packet will have 

the same message kind of any of the data stored packets, the cluster-head node 

source address –myNetwAddr– and L3BS address as destination address. Before 

sending the packet, the cluster-head nodes call the setHighTxPower function to 

be able to reach the BS. After sending the packet, cluster-head nodes switch to 

normal transmitting power and wait for a new LEACH round. 

Next are described the message handling functions: 

• void LEACH::handleUpperMsg(cMessage* msg): this function only calls the 

encapsMsg function with the received application packet as parameter, and 

stores the network packet resulting from the call. The message will be sent on 

the next transmission slot if the application layer doesn’t send another message 

before. In this case, the last stored message will be overwritten. 

• void LEACH::handleLowerMsg(cMessage* msg): this function handles the  

packets that comes from the MAC layer. As it was mentioned above, the 

functionality of some phases is implemented into this function. Therefore, this 

function is responsible of the correct communication between cluster-head and 

non-cluster-head nodes. The function’s behavior depends on the message kind: 

� CH_STATUS_BROADCAST messages should be managed by non-cluster-

head nodes during the Advertisement Phase. They, by means of a 

“special” class, Distance.h, calculate the distance to the message source, 

which is a cluster-head node, and stores it into the distanceToCHs 

structure. After that, they reactivate the timerNextStage with a new 

waitingTime to receive new “CH announces” or going to the Cluster 

Set-Up Phase. If a cluster-head node receives this message, it just deletes 

it. 

� JOIN_CH messages should be managed by cluster-head nodes during the 

Cluster Set-Up Phase. They save the message source into the membersCH 

address if the MAX_CLUSTER_SIZE is not reached, which means that this 

node will be a cluster member. After that, they reactivate the 

timerNextStage with a new waitingTime to receive new “Join CH” 

messages or going to the Schedule Creation Phase. If a non-cluster-head 

node receives this message, it just deletes it. 

� TDMA_SCHEDULE messages should be managed by non-cluster-head nodes 

during the Schedule Creation Phase. If the message source is it cluster-

head node, the non-cluster-head node look for its transmission slot. If it 
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doesn’t find the slot, it means that the node doesn’t belong to any cluster 

and it must wait for the next LEACH round. If the node finds its slot, it 

should switch its state to SLEEP mode and wait for its transmitting slot 

(activates the timerNextStage with my_slot*slotTime time). If the 

node has the first slot, it just calls the dataTransmission function. If a 

cluster-head node receives this message, it just deletes it. 

� The rest of the messages are supposed to be DATA_MESSAGE. Therefore, 

only cluster-head nodes will handle this kind of messages during the 

Data Transmission Phase, and they will just store the message into the 

netwQueue structure. If a non-cluster-head node receives this message, it 

just deletes it. 

• void LEACH::handleSelfMsg(cMessage* msg): this function is in charge of 

handling self messages, which are used as timers in the OMNeT++ model. 

Timers are activated by cluster-head and non-cluster-head nodes depending on 

the phase at which they are: 

� When TIMER_NEW_ROUND is received, which is activated by all the nodes, 

a new LEACH round starts. currentRound counter is increased by 1, 

host state is switched to ACTIVE, timerNextRound is activated again 

with roundTime time and the AdvertisementPhase function is called. 

� When TIMER_JOIN_CH is received, means that non-cluster-head nodes 

won’t receive any more “CH announce” message. If nodes have received 

any “CH announce”, they switch to the Cluster Set-Up Phase. 

� When TIMER_CREATE_TDMA_SCHEDULE is received, it means that non-

cluster-head nodes won’t receive any more “Join CH” message. 

Therefore, they switch to the Schedule Creation Phase with a 

scheduleCreation function call. 

� When TIMER_SEND_DATA is received, which is activated by both cluster-

head and non-cluster head nodes, means that their transmission turn has 

arrived. Host state is switched to ACTIVE mode, the transmission begins 

with the dataTransmission function call, and host state is switched 

again to SLEEP mode until the next round arrives. 

• void LEACH::handleLowerControl(cMessage* msg): this function handles 

the MAC control messages. If the handled control message kind is 

BaseMacLayer::PACKET_DROPPED, droppedMsgs counter value will be 

increased by 1. 

For the rest of the functions, the description given into the above section is enough. 

Finally, when the simulation has finished, a call to the next function is made: 

void LEACH::finish(): 

This function only records the droppedMsgs value into an output file. 
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4.4 Conclusions 

After choosing the protocols that are interesting to research about any improvement, it 

is important to study how they work and how they behave. The analysis of each 

protocol phase provides a global idea about how it works but also a near knowledge 

about the operation step by step. 

As it has been shown, the design and implementation of a new protocol is not a trivial 

task. A correct design will provide a good codification architecture, which also will help 

with a better understanding and ease of debugging. The implementation model should 

be clear and it should use the minimum required resources in order to obtain efficient 

results when the protocol operation is moved to a real implementation. 

The two different protocols presented, Direct Transmission and LEACH, show a 

completely different behavior. Whereas Direct Transmission offers simplicity, LEACH 

provides advanced features as scalability, robustness and energy savings in most cases 

at the expense of a more complex protocol implementation and network organization. 

These features of each protocol are reflected into the simulation protocol’s 

implementation: the Direct Transmission protocols requires a simply implementation, 

whereas LEACH implementation requires a more complex node organization, message 

handling and data management. 
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5 Simulation scenarios 

5.1 Introduction 

When a research requires performing any simulation, a description of the simulation 

scenario and specific requirements is needed. A description of the simulation scenario 

will help to understand the problem and address the solution in a more efficient way. 

Furthermore, a detailed description allows reproducing the simulation scenario in 

different simulation environments for any improvement or comparison study. 

The implementation of the simulation scenario of this research will be build over the 

MiXiM framework. This fact will help to reuse the framework modules, will provide a 

faster and more robust implementation and, extending the framework functionality, the 

network behavior and simulation results could be adapted to our requirements. 

5.2 Description of the simulation scenarios 

Direct Transmission is a protocol for WSN which offers simplicity and acceptable 

results in specific circumstances and scenarios, and LEACH protocol is a self-

organizing protocol which provides good scalability. For this reason, the aim of the 

present research consists on the study of the behavior of large scope WSNs with 

different routing possibilities.  

The present document will study the behavior of a network where nodes send data to the 

base station with different network protocols. In general terms, the network will be 

made up of a hundred nodes scattered randomly in a 1000×1000m area and a fixed base 

station. The network nodes will contain a battery module with a predetermined battery 

power and they will also have some constant speed mobility. The node radio 

transmitting power will be 500mW, but the data transmissions to the base stations will 

require 10W power. The MAC layer will use CSMA MAC protocol and the application 

layer will generate data in a regular manner with a predetermined data generation period 

and a prefixed data size. A further simulation scenario description can be found in 

Appendix I. Table of Specifications of the simulation scenarios. 

The simulations will obtain diverse results from two different routing protocols: Direct 

Transmission and LEACH. Furthermore, the behavior within both two protocols will be 

studied by means of changing the value of some important parameters like the data size, 

the time between two sensing acts or the speed of the nodes. 

5.3 Design and Implementation of the simulation scenarios 

The simulation scenarios have been built over the MiXiM framework. In this manner, a 

typical structure from a MiXiM example simulation has been taken.  
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5.3.1 Implementation of a network simulation step by step 

The network simulation implemented in this document follows the implementation 

architecture of MiXiM framework. Therefore, the general steps for the creation of a 

MiXiM network are detailed
1
: 

• For the creation of an OMNeT++ Project, follow the next indications from the 

menu bar: File ����  New ���� OMNeT++ Project… 

In the new window, select the desired project name and push “Finish” button. 

• For the use of the MiXiM framework in the implementation, the MiXiM 

resources should be included following the next indications from the project’s 

pop-up menu: Properties ���� Project References � Select “MiXiM” project. 

• The MiXiM framework contains a basic network implementation. This 

implementation can serve as base for specific implementations. Therefore, the 

network files should be copied from the next MiXiM folder
2
:  

. /MiXiM/examples/baseNetwork 

• For the creation of specific modules, the following files should be created: 

� Network Description File (.ned file): this file will contain the specific 

parameters, submodules, gates, etc. It can extend, and thus, specialize 

parent modules. For the file creation from the pop-up menu: 

New ���� Network Description File (ned) 

� C++ class: following the programming principles, two files should be 

created: a header class, with the variables and subroutines declaration, 

and a source file, with the codification of the behavior. For the file 

creation of these files from the pop-up menu: New ���� Class (OMNeT++) 

• For the integration of the created modules into the network simulation, the 

network description file (BaseNetwork.ned) or the node description file 

(BaseNode.ned) must be edited with the specific module inclusion. 

• The following consists on editing the content of the configuration file 

(omnetpp.ini) should be edited with the initialization of the network parameters 

and the declaration of the specific modules created for the network simulation. 

• The last step consists on running the simulation of the network created. Before 

launching the execution, the project must be built following the next indications 

from the menu bar or the pop-up menu: Project ���� Build Project 

For the simulation execution, the next steps should be followed from the 

omnetpp.ini file’s pop-up menu: Run as ���� OMNeT++ Simulation… 

The Tkenv runtime environment will appear with the created simulation. 

 

 

 

                                                 
1
 For information about the OMNeT++ operation basics and the implementation of simple networks visit: 

http://www.omnetpp.org/doc/omnetpp41/tictoc-tutorial/ 
2
 For further information about the base network MiXiM implementation visit: 

http://sourceforge.net/apps/trac/mixim/wiki/HowToStart 



 

5.3.2 Implementation of the simulation network 

Our simulation scenarios have

The network structure is defined into the 

Figure 

All the modules from the above architecture are from MiXiM framework. Next is 

described their function: 

• BaseNetwork: is the simulation parent module (the 

• ExtendedBaseWorldUtility:

like playground size

(adds some value recording at the end of the simulation

nodes during the network lifetime

• ConnectionManager:

their connections accordingly

it doesn’t mean that they can understand it.

• BatteryNode: defines the 

• Node: defines the base station’s structure.

The node structure is defined into the 

the NIC definition). The node network

Figure 

The functionality of the node network

• DataGenerator: is responsible of “sensing” and data generation. The sensing 

period (time between two sensing samples) 

must be given as input parameter

Extended-

BaseWorldUtility
ConnectionManager

DataGenerator like 

IBaseApplLayer
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Implementation of the simulation network architecture 

s have been built from the baseNetwork simulation example. 

is defined into the BaseNetwork.ned as showed below:

Figure 26. Network simulation structure 

from the above architecture are from MiXiM framework. Next is 

is the simulation parent module (the System module).

BaseWorldUtility: contains global utility methods and parameters 

like playground size. Extends from BaseWorldUtility MiXiM’s framework 

(adds some value recording at the end of the simulation, as the number of alive 

nodes during the network lifetime). 

ConnectionManager: checks if any two hosts can hear each other and updates 

s accordingly. If two hosts are connected and can hear anything, 

it doesn’t mean that they can understand it. 

defines the node’s structure of our simulation. 

defines the base station’s structure. 

The node structure is defined into the BaseNode.ned file (and the file BaseNic.ned

node network architecture is organized as follows:

Figure 27. Node network structure 

node network modules is detailed below: 

is responsible of “sensing” and data generation. The sensing 

me between two sensing samples) and other values like the data size 

must be given as input parameters. 

BaseNetwork

ConnectionManager
node[numNodes]:

BatteryNode

BatteryNode

<NetwProtocol> like 

IBaseNetwLayer
BatteryNic

BatteryCSMAMacLayer
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mulation example. 

below: 

 

from the above architecture are from MiXiM framework. Next is 

module). 

contains global utility methods and parameters 

MiXiM’s framework 

, as the number of alive 

checks if any two hosts can hear each other and updates 

. If two hosts are connected and can hear anything, 

BaseNic.ned for 

is organized as follows: 

 

is responsible of “sensing” and data generation. The sensing 

and other values like the data size 

baseStation:

Node

BatteryPhyLayer
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• <NetwProtocol>: carries out the networking functions. Into this module will be 

present two different possibilities in different simulations: DirectTransmission 

and LEACH. The complete functionality of these two possibilities within this 

module is detailed in Section 4.2 and 4.3 respectively. 

• BatteryNic: it simulates the Network Interface Controller (NIC). It is made up 

of the MAC and the PHY layer: 

� BatteryCSMAMacLayer: implements the CSMA MAC protocol. 

Extends from CSMAMacLayer MiXiM’s framework (adds some 

transmitting power switching capacity required by LEACH to make high 

power transmission to the base station). 

� BatteryPhyLayer: implements the physical layer. Extends from 

PhyLayer MiXiM’s framework (adds some parameters for energy 

consumption calculation
3
). 

The node network modules are interconnected similarly as the OSI network 

architecture. Therefore, when a message is sent, it will start from the application layer; 

will go through the network and MAC layer until it reaches the physical layer. When a 

message is received, the inverse procedure takes place. 

 

Figure 28. Internal node structure 

Internally, the MiXiM framework implements this behavior by means of the handle 

message functions. For instance, when a layer sends a packet to the lower layer through 

the sendDown call, the lower layer will handle the message by means of the 

handleUpperMsg function, and when a layer sends a packet to the upper layer through 

the sendUp call, the upper layer will handle the message by means of the 

handleLowerMsg function. For the control message interchange, the operation is the 

same, but using the sendControlDown, sendControlUp calls and the handleUpperMsg 

and handleUpperControl functions. 

  

                                                 
3
 A special importance for the evaluation of the simulation scenario has the energy consumption model. 

For further information, see Section 6.2 



 

Furthermore, the nodes contain some other functionality:

Figure 

Next is detailed the battery, 

• BaseUtility: this mandatory module

a black board like subscribe and publish feature which is used t

information. 

• BaseArp: used by BaseNetwLayer

• ExtendedConstSpeedMobility

defines current position and the movement pattern of the node.

class extends from 

linear constant speed 

• Battery and MyBatteryStats

module for collecting battery statistics.

must be given as input parameters

The base station structure is 

architecture is also made up of the application layer, the network layer, the MAC layer 

and the physical layer. The differences consist on the application and the network layer: 

the base station is only data receiver (data drain). Therefore, its application layer won’t 

generate any data (this class will be called 

route any packet: they will only handle 

class will be called BSNetwLayer

constraints. Thus, the base station will use the 

of CSMAMacLayer which recognizes the BS MAC and network addresses,

PhyLayer module. 

Owing to the base station doesn’t have battery constraints; it doesn’t implement a 

battery module and battery statistics collector module. Due to the mobility module is 

mandatory for the node implementation, the base station will use the 

ExtendedConstSpeedMobility

5.3.3 Initialization of the module network parameters

The initialization of the network parameters is made through the 

a simulation initialization file required to set the initial simulation values. Next is shown 

a brief example of the simulation’s 

BaseUtility BaseArp
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the nodes contain some other functionality: 

Figure 29. Mobility and utility node modules 

battery, mobility and utility node modules: 

his mandatory module contains node wide utility methods, mainly 

a black board like subscribe and publish feature which is used to publish statistic 

BaseNetwLayer and BaseMacLayer for address resolut

ExtendedConstSpeedMobility: IBaseMobility is a mandatory module which 

defines current position and the movement pattern of the node.

class extends from ConstSpeedMobility MiXiM’s framework, which defines 

speed mobility (adds some minor required functionality).

and MyBatteryStats: implements a simple battery module and a utile 

module for collecting battery statistics. The battery capacity and other values 

must be given as input parameters 

e is quite similar to the node structure. The base station network 

architecture is also made up of the application layer, the network layer, the MAC layer 

and the physical layer. The differences consist on the application and the network layer: 

ation is only data receiver (data drain). Therefore, its application layer won’t 

(this class will be called BSApplLayer), and its network layer won’t 

route any packet: they will only handle messages coming from the lower layer

BSNetwLayer). Furthermore, the base station doesn’t have battery 

constraints. Thus, the base station will use the BSCSMAMacLayer, a simple subclass 

which recognizes the BS MAC and network addresses,

Owing to the base station doesn’t have battery constraints; it doesn’t implement a 

battery module and battery statistics collector module. Due to the mobility module is 

mandatory for the node implementation, the base station will use the 

Mobility implementation with a speed value of 0.

Initialization of the module network parameters 

The initialization of the network parameters is made through the omnet.ini

file required to set the initial simulation values. Next is shown 

example of the simulation’s omnet.ini file: 

BatteryNode

BaseArp

Extended-

ConstSpeedMobility 

like IBaseMobility
Battery
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contains node wide utility methods, mainly 

o publish statistic 

for address resolution. 

andatory module which 

defines current position and the movement pattern of the node. The selected 

MiXiM’s framework, which defines a 

(adds some minor required functionality). 

a simple battery module and a utile 

The battery capacity and other values 

The base station network 

architecture is also made up of the application layer, the network layer, the MAC layer 

and the physical layer. The differences consist on the application and the network layer: 

ation is only data receiver (data drain). Therefore, its application layer won’t 

, and its network layer won’t 

messages coming from the lower layer (this 

. Furthermore, the base station doesn’t have battery 

, a simple subclass 

which recognizes the BS MAC and network addresses, and the 

Owing to the base station doesn’t have battery constraints; it doesn’t implement a 

battery module and battery statistics collector module. Due to the mobility module is 

mandatory for the node implementation, the base station will use the 

implementation with a speed value of 0. 

omnet.ini file. This is 

file required to set the initial simulation values. Next is shown 

MyBatteryStats



SIMULATION SCENARIOS 

53 

 

 

The omnet.ini file is divided into different sections. The first and mandatory section is 

the [General] section. This section will contain the default values for all the 

parameters of the network modules. Furthermore, the General subsection is divided into 

the next subsections
4
: 

• Simulation parameters: contains general simulation parameters for the parent 

(System) simulation module, e.g., number of random number seeds, simulation 

playground size, etc. 

• WorldUtility and Channel parameters: contains parameters that detail the node 

interconnection within the simulation scenario, like the carrier frequency of the 

channel or the signal attenuation threshold. 

• Base station and node common module parameters: contains the common values 

for the parameters that base station and nodes share. For instance, the physical 

and MAC layer specific values for a correct communication, or the MAC, 

network and application header size to make a right packet decapsulation. 

• Specific base station and node module parameters: contains values for the 

specific base station and node constraints. For instance, the base station position 

is fixed and it doesn’t send any data. Therefore, its application and network layer 

will be simpler than the node layers. The nodes have additional features and 

constraints like constant mobility and battery consumption. Furthermore, they 

perform data generation and use specific routing protocols. 

Besides the General section, the file can contain other sections. These sections would 

contain specific values to perform different simulations and tests. As a result of this, the 

network behavior after the modification of some significant parameters can be studied 

in an easier way. For instance, the omnet.ini file of this simulation contains some other 

sections to study the battery consumption by changing some parameters like the sensing 

time, the data size or the nodes speed. 

The next sections to the General section are declared as follows: 

[Config SpecificConfigName] 

                                                 
4
 These subsections, not required by the simulation environment, establish an internal file structure. 

[General] 

cmdenv-config-name = perftest 

cmdenv-express-mode = true 

ned-path = ../../../MiXiM/base;../../../MiXiM/modules; {...} 

network = baseSim 

 

########################################################## 

#   Simulation parameters                  # 

########################################################## 

num-rngs = 1 

seed-0-mt = 1200 

baseSim.playgroundSizeX = 1000m 

baseSim.playgroundSizeY = 1000m 

baseSim.playgroundSizeZ = 100m 

baseSim.numNodes = 10 

... 
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These sections don’t need to specify all the parameters like in the General section, but 

only the specific parameters of the simulation. Thus, the non-specified parameters will 

be taken from the General section and, therefore, the desired behavior with a shorter 

and better omnet.ini file structure will be managed. 

As an example, these sections are used in the automation of the simulations to obtain 

the simulation results. In the omnetpp.ini used in this project, after the General section, 

appear diverse sections for the different simulation executions.  

 

All these sections, for a fixed data size and time between two sensing acts, carry out the 

execution with different node speed values. 

5.4 Conclusions 

Making a good description of the simulation scenarios is a labor which helps 

researchers and developers to understand the problem basis and circumstances and get a 

fast problem’s knowledge. 

The design and implementation of the simulation scenarios follows the network 

construction architecture recommended by MiXiM. This fact helps to make use of the 

offered reusability principles, obtain a faster and more robust implementation and 

understand in a faster manner the network architecture for any future studio or 

development over it. Therefore, making a correct design and implementation, the 

network’s behavior monitoring task detailed on the next chapter will be simpler and 

easier. 

 

 

[Config Packet256sensing30s] 

output-scalar-file = ${resultdir}/256bits/sensing=30s/v=${runnumber}s.sca 

output-vector-file = ${resultdir}/256bits/sensing=30s/v=${runnumber}s.vec 

baseSim.*.appl.headerLength = 256bit 

baseSim.node[*].appl.sensingTime = 30 

baseSim.node[*].mobility.speed = ${0, 1, 2, 4}mps 

 

[Config Packet256sensing60s] 

... 

 

[Config Packet1024sensing120s] 

... 



EVALUATION OF THE SIMULATION SCENARIOS 

55 

 

6 Evaluation of the simulation scenarios 

6.1 Introduction 

The simulations of the described scenarios will describe how the network behaves. 

Therefore, it is very important to analyze which factors or parameters will provide a 

general idea about the protocol operation and which will also provide the specific values 

that will allow carrying out an adequate analysis of results. 

After choosing the parameters to analyze, it can be useful to hazard which kind of 

results will be obtained and why these results will be obtained. This fact will help to get 

an approximation how will operate the network and how will the results look like. 

6.2 Radio model 

For the current simulation, a simple radio model has been taken from [24]. The 

described model in the referred source assumes energy dissipation of Eelec = 50 nJ/bit to 

run the transmitter or receiver circuitry and Eamp = 100pJ/bit/m
2
 for the transmit 

amplifier to achieve an acceptable Eb/No (Signal to Noise Ratio).  

Table 3. Radio characteristics 

Operation Energy dissipated 

Transmitter Electronics(ETx-elec) 

Receiver Electronics (ERx-elec) 

(ETx-elec = ERx-elec = Eelec) 

50nJ/bit 

Transmit Amplifier (Eamp) 100pJ/bit/m
2
 

It is also assumed an r
2
 energy loss due to the channel transmission. Thus, to transmit 

and receive a k-bit message a distance d using this radio model, the radio expends:  �����, �	 
  �� �! � � " �#$% � � � �& �'���	 
  �� �! � � 
The value of these parameters makes the message transmission and reception not low 

cost operations. Therefore, the protocols should minimize the number of transmit and 

receive operations by means of switching its state between active and sleep (or even 

idle) when required in order to minimize the energy consumption. 

In order to simplify the model and measure only the routing protocol energy 

consumption, it is assumed that the rest of the modules like the mobility or the data 

sensing and processing module don’t have any energy consumption. 
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6.3 Monitoring the network’s behavior 

The quality of the obtained results will depend on the network aspects to monitor. For 

this research, it results very important to know how is carried out the energy 

consumption in the simulated network, and also why is dissipated such amount of 

energy. Therefore, it has special interest to monitor the following network aspects: 

• Number and percentage of alive nodes during the network lifetime: these 

characteristics will show when the nodes die, and hence, how many nodes are 

alive during the network lifetime. This will illustrate the routing protocol’s 

energy efficiency. 

• Number of transmissions by each node: this attribute will indicate the amount of 

data sent by nodes during their lifetime, and thus, the network’s balance. For 

instance, if there is a big difference between the total transmissions of two 

network nodes (bigger than 2 times), it would mean that the difference between 

the two nodes lifetime is significant. Therefore, if the nodes with the lower 

lifetime are located in a nearby distance between them, the data sensing from 

these areas can’t be obtained. 

• Node lifetime: this parameter will show how long will be the node, i.e., how 

much time will remain alive. This parameter is useful to do diverse comparisons, 

for example, the difference when the first or the last node dies between two 

protocols, even the difference between when the first and the last node dies into 

the same protocol. 

6.4 Expected results 

6.4.1 General results 

The simulation results will depend on the three parameters mentioned in Section 7.2 and 

the Appendix I. Table of Specifications of the simulation scenarios: the speed of the 

nodes, the size of the generated data and the frequency of the generated data. 

Amongst the simulation variables mentioned above, the most decisive parameter into 

the simulation results will be the network node speed. This parameter introduces two 

completely different scenarios in terms of node mobility: 

• Static node network: when the value of this parameter is 0, it indicates that the 

network nodes are static. In a large scope WSN, there will be a big difference 

between nodes’ lifetime depending on the distance to the base station. I.e., the 

nodes located far from the base stations will spend a large amount of energy in 

their transmission, whereas the nodes near to the base station will spend a lower 

amount of energy in the transmissions and, therefore, their lifetime will be much 

longer. Therefore, there will be a big difference between when the first node and 

the last node dies. With the use of different routing protocols, two different 

scenarios and behaviors will be obtained: 

� With Direct Transmission protocol, the simulation results should show 

that the number of alive nodes decreases in an exponential manner due to 

the fact that the node distance to the base station influences quadratically 

into the energy consumption. 
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� With LEACH protocol, the simulation results also should show that the 

number of alive nodes decreases in an exponential manner, but with a 

lower slope. This is because of in each round, only the cluster head nodes 

transmit to the base station. As the cluster head nodes store all the cluster 

members’ messages, the cluster head nodes located far from the base 

station will die much earlier than those located near to the base station. 

• Dynamic node network: when the value of the speed parameter is greater than 0, 

the network nodes have constant movement. When the speed value is increased, 

the nodes tend to travel across the entire simulation field. Hence two new 

scenarios different from the static node network are obtained again: 

� With Direct Transmission protocol, the nodes’ lifetime will become 

closer to each other because they transmit messages to the base station 

from different places. This fact involves that also the moment when the 

first node dies and the last node dies will become closer. 

� With LEACH protocol, the node’s lifetime will also become closer, but 

in a smaller manner than in Direct Transmission. This is because only the 

cluster head nodes make large distance transmissions to the base station. 

The graphical representation of the results of the number of alive nodes 

in LEACH should show a similar shape than the Direct Transmission 

results, but with a lower slope. 

With the other two variables, associated results should be found in the case of the Direct 

Transmission. Associated results should also be found with LEACH when the sensing 

time is equal to the LEACH round time. This is due to the fact that similar quantities of 

data are generated. For instance, we have two different scenarios: in the scenario A, the 

sensing time is fixed to 30 seconds and the data size to 512 bits. In the scenario B, the 

sensing time is fixed to 60 seconds and the data size to 256 bits. In both cases, the 

amount of data generated per minute is similar (512 bits per min.). Next is presented a 

table with the results association of the simulation tests: 

Table 4. Relation between results with different simulation scenarios 

Data quantity 

(in bits per min) 

Time between sensing acts 

(in seconds) 

Data size 

(in bits) 

256 
60 256 

120 512 

512 

30 256 

60 512 

120 1024 

1024 
30 512 

60 1024 
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Thus, only small differences will be found in the energy consumption between these 

associated results because of two factors: 

• The size of the packet headers: with lower data sizes, the headers overload is 

bigger, i.e., data size/headers size ratio is increased. Hence, the overload 

requires extra energy consumption. 

• The energy consumption of the transmitter circuitry: if data packets are 

generated and transmitted in more often manner, when the transmission runs the 

transmitter circuitry, it will spend more energy in the same proportion. 

On the other hand, the frequency of the data generation will depend on the application 

scenario. Therefore, the best relation between generated data and data size should be 

pursued. 

6.4.2 Comparison between Direct Transmission and LEACH results 

In a general manner, could be affirmed that the network with the LEACH routing 

protocol will present a better behavior than the network with the Direct Transmission 

routing protocol in terms of energy consumption. In some surveys as [24] and [48], is 

demonstrated that the communication energy with LEACH is a few times lower than the 

communication energy with Direct Transmission, and the moment when the first and 

the last node dies is also a few times later. 

Due to the simulation conditions are different; the obtained results could differ from the 

obtained results in the above referred surveys. However, the energy consumption with 

LEACH protocol should be lower because of diverse aspects: 

• The large distance transmissions to the base station are only made by the cluster 

head nodes. Hence, the energy consumption of the cluster members is reduced. 

• The data aggregation carried out by the cluster head node reduces the total 

amount of energy transmitted to the base station and, therefore, the total energy 

consumption per round. 

6.5 Conclusions 

In order to make a proper evaluation of the simulated network, it is very important to 

study which factors will affect to the network behavior. Due to the WSN have battery 

constraints; a good specification of the radio model and the energy consumption 

conditions is essential for the developed study.  

After comprehending that some factors such as the speed of the nodes or the quantity of 

the data generated are significant to the network results, it would be interesting to 

imagine how the variation of these parameters will affect the selected monitoring 

parameters as the number of alive nodes, node lifetime and number of transmissions per 

node. By means of the value of these parameters, the energy consumption and the 

relation between the obtained results can be analyzed. The analysis should show that the 

speed of the nodes affects completely to the energy consumption and, in general, 

LEACH obtains better results than Direct Transmission in terms of less energy 

consumption.
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7 Simulation results 

7.1 Introduction 

The simulations results are the objective evidences which demonstrates how is the 

operation of the implemented network and how the consumption of resources happens. 

Hence, a correct analysis of the obtained results with graphical representations will 

allow making some comparisons, extracting adequate conclusions and anticipating a 

preliminary search of improvements. 

Even though there hasn’t been possible to show simulation results about the LEACH 

protocol behavior, the general and specific problems are enumerated, in addition to the 

following steps into future versions of this project. This description will help to prevent 

from experiencing the same suffered problems. 

The Direct Transmission results will show its behavior depending on the data size and 

the interval of data generation. The mobility conditions will also demonstrate how 

significant the existence of node mobility into the energy consumption is. 

7.2 Parameters of the simulation tests 

In order to obtain multiples results, a series of test has been prepared for the different 

routing protocols described above. This series of test will determine how the network 

behaves with a specific routing protocol and fixed parameters. In consequence, the 

values which demonstrate the best network behavior for each protocol can be obtained. 

Furthermore, it can be compare how influence the same values into the different 

protocols. Next on Figure 30 is showed a schema with the diverse test for different 

values and the obtained network behavior. 

 

Figure 30. Schema of the simulation tests 
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The simulation variables and its values are described below: 

• Node speed: it fixes the speed of the nodes in the simulation field, in meters per 

second. The nodes will describe a constant and linear movement and, when the 

area limit is reached, it fixes a new direction. The values for the tests will be: 0 

(static nodes), 1, 2 and 4 m/s. 

• Sensing time: it defines the time between two consecutive sensing acts, in 

seconds. This value determines when a data packet is generated, but not when it 

is sent to the base station. For instance, in LEACH protocol, the time between 

different transmissions is fixed by the round time. The values for the tests will 

be: 30, 60 and 120 s. 

• Data size: it determines the size of the data sent to the base station, in bits. The 

bigger data size, the larger amount of data sent to the base station. It can be 

result obvious the fact that a bigger data size will offer worse results, but, for 

example, in several scenarios could be more interesting to increase the data size 

and also the time between two sensing acts to obtain less energy consumption. 

The values for the tests will be: 256, 512 and 1024 bits of data size. 

7.3 Direct Transmission results 

The simulation results of Direct Transmission protocol obtained from the execution of 

the simulation scenarios are shown during this subsection. 

The first analysis showed on Figure 31 consists on the study of the tendency of the 

energy consumption by means of the number of alive nodes with a fixed data size of 

1024 bits and variability in the interval of data generation and the speed of the nodes.  

 

Figure 31. Number of alive nodes with data size of 1024 bits 

The chart showed above on Figure 31 demonstrates that there is a big difference 

between the static and the dynamic simulation scenario in terms of node mobility. Into 
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the chart can be distinguished very clearly four different tendencies corresponding to the 

interval of data generation. Within these four tendencies, significant differences cannot 

be appreciated except when the speed of the nodes is 0. In these cases, the shape of the 

number of alive nodes curve is decreasing exponential. The meaning of these tendencies 

consists on the fact that, after the moment of the death of the first node, the rest of the 

nodes will continue dying in a decreasing exponential manner, i.e., the number of alive 

nodes will decrease more quickly after the death of the first node, but during the 

execution time, the number of alive node will decrease in a more and more slowly 

manner. For the rest of the tendencies with a not null mobility value, the tendency 

showed is quasi-linear. The meaning of these tendencies consists on the fact that, after 

the moment of the death of the first node, the nodes from the simulated network 

continue dying in a quasi-uniform manner. 

The next analysis consists on how much affects the interval of data generation and the 

data size for a fixed speed of the nodes. 

 

Figure 32. Number of alive nodes with node speed of 0 m/s 

The chart showed on Figure 32 illustrates the behavior of the network in different 

scenarios for a node speed of 0 meters per second. Into this chart, the shape of the curve 

of the energy consumption when the network is static can be distinguished clearly. 

Furthermore, three zones with overlapped curves can be appreciated. These zones are 

corresponded with the similar quantities of data generated per minute during the 

simulation and mentioned in Section 6.4.1. These similar zones demonstrate that the 

node energy consumption is proportional to the amount of data generated per unit of 

time. Furthermore, it can be seen that the number of alive nodes during the time is 

almost duplicated when the amount data generated per unit of time is reduced to the half 

part, and also the number of alive nodes during the time is almost quadruplicated when 

the amount data generated per unit of time is reduced a fourth of the reference value. 
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Figure 33. Number of alive nodes with node speed of 1 m/s 

The chart showed on Figure 33 illustrates the behavior of the network in different 

scenarios for a node speed of 1 meter per second. The shape of the curves within this 

chart differs notably from the shape of the curves showed on Figure 32. This difference 

comes directly from the mobility of the network as it was described above. This chart 

distinguishes once again three zones where the curves are overlapped, and they 

correspond with the quantity of data generated per minute during the simulation, with 

similar interpretation. 

Analyzing the differences between the two last charts, it is easy to recognize that the 

network lifetime in the static network is much longer than the network lifetime in the 

dynamic network. The comparison of the values shows that the network lifetime in a 

static network is around 50 times longer than in a network with node mobility of 1m/s 

for different data size and interval of data generation values as showed in Table 5. 

Nevertheless, in the dynamic network can be appreciated that the nodes die in a more 

uniform manner, whereas in the static network, the nodes die from the further zones to 

the closer zones to the base station. Furthermore, the moment when the first node dies 

into the dynamic scenarios is greater than two times than the value in comparison with 

the static scenarios is showed on Table 5. A similar behavior has been observed with 

speed values of 2 and 4 meters per second, and the rest of data size and intervals of data 

generation scenarios. 

Table 5. First and last node dies values with data size of 256 bits 

Data size = 256 bits 

sensing_time = 30 s sensing_time = 60 s sensing_time = 120 s 

v = 0 m/s v = 1 m/s v = 0 m/s v = 1 m/s v = 0 m/s v = 1 m/s 

First node 

dies (in s) 
2570.22 5450.31 5135.22 12578.34 10265.22 28146.71 

Last node 

dies (in s) 
560088.84 12172.21 1120173.84 20313.88 2240343.84 39902.11 
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Finally, the last two analyses have the purpose of demonstrate the drawbacks of the 

static scenarios in terms of energy balance in comparison with dynamic scenarios. 

The chart showed on Figure 34 illustrates the number of transmissions to the base 

station for each node for a data size of 1024 bits and an interval of data generation of 30 

seconds. As it can be appreciated, in the static network scenario, there is a big difference 

between the number of transmissions of nodes located near to the base station and nodes 

located far from the base station. Hence, even though the network lifetime is decreased, 

the node mobility influences positively to the network energy consumption balance. 

 
Figure 34. Number of transmissions per node with data size of 1024 bits and 

interval of data generation of 30 s 

The last chart showed on Figure 35 illustrates how is distributed the energy 

consumption along the network. A notably difference between the tendency of the curve 

in the static scenario and the dynamic scenarios is appreciated. Whereas the dynamic 

scenarios show a relative small difference between the average energy per transmission 

of all nodes, the difference within the static scenario between the closest and the furthest 

node to the base station greater than 20 times. 

 
Figure 35. Number of transmissions per node with data size of 1024 bits and 

interval of data generation of 30 s 
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7.4 LEACH results 

Owing to impossibility of finishing the LEACH protocol implementation, simulation 

results about the LEACH protocol operation couldn’t be obtained. During this 

subsection, the general and the specific caused of the impossibility of finishing the 

LEACH implementation are detailed. In addition, the remaining work to obtain correct 

LEACH operation results and protocol improvements is described. 

The general factors which hindered to finish successfully the research are presented 

below: 

• Insufficient time: the project’s schedule has been altered several times during the 

development of the project. The main cause has been the increment of the 

complexity because of the advent of new difficulties. 

• Insufficient personnel: the lack of information and resources and the presence of 

bugs into the simulation environment have been one of the main reasons of the 

experienced delay. A research group consisting of two or three members would 

have helped to identify the experienced problems and provide some possible 

solutions. 

The specific factors and problems that made the development of the project difficult are 

detailed below: 

• Huge protocol variety to research: due to the fact that WSN are a new 

technology, an absence of protocol standards is present This fact difficult the 

analysis of the current MAC and network protocols and also complicates the 

election of the suitable protocols for the present study. Currently there exists 

numerous MAC protocols for WSN, but the WSN constraints have caused that 

there is a big quantity of basic routing protocols and innumerable lines of 

research about specific improvements of any routing protocol. 

• Diversity of simulation environments: the variety of simulation environments, 

each one with their own features, but also with their own language syntax, made 

difficult to carry out a clear comparison between them. The general simulation 

environments required a specific framework to obtain a WSN simulation 

because they didn’t support the simulation of WSN in native manner, but these 

frameworks are relatively new and specific of specific researches. Therefore, 

outside from the framework scope, a lack of unity between modules and 

presence of bugs has been found. On the other hand, the specific simulation 

tools, which in include the simulation of the node operating system, or even 

emulation of the memory mapping, would have added an unnecessary 

complexity to the current research. 

• Instability of the simulation environment: several bugs and stability problems 

were experienced. A major bug
1
 was found and reported to the project’s 

direction. Furthermore, numerous simulation environment crashes happened 

during the architecture node construction, code implementation, debugging and 

                                                 
1
 Reported bug: imposible to make a 2

nd
 extend into the OMNeT++ hierarchy. Impossible to extend from 

BaseNetwLayer class, which extends from BaseLayer class. Solution: Ext2NetwLayer was modified to 

extend from BaseLayer. Further information can be found in: 

http://dev.omnetpp.org/bugs/view.php?id=88 
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simulation runs were experienced. These facts hampered the progressive project 

development and, therefore, retarded and hindered the LEACH results 

achieving. 

• Absence of ready-to-use protocol implementations: the lack of ready-to-use 

protocols has remarkably reduced the flexibility and the possibility of testing 

different options within the simulation environment. The whole implementation 

of the network architecture and the used protocols has been needed, and 

debugging, specific corrections and protocol operation tests have been required.  

• Complexity of the simulation architecture: the module and class hierarchy is so 

extensive and interrelated that makes extremely difficult the debugging process. 

The process of sending an airframe requires the use of numerous and 

interconnected classes from the nodes, the channel and the simulation 

environment. This fact, together with the environment instability and the bugs 

found into the used framework made extremely complex the process of finding 

the origin of the obtained errors during the execution. 

• Lack of documentation into the API of the used framework: the procedure of 

looking up into the used framework’s API showed that there is a lack of 

description in several classes and subroutines. This fact, together with the 

complexity of the simulation architecture described above, made difficult to 

understand the simulation operations and more difficult the search of specific 

functionality 

• Bugs found into the used framework: several implementation bugs where found 

into the framework implementation. The first bug
2
 made an error into the 

network address resolution through the MAC address. The second bug
3
, with 

mayor severity, blocked the energy draw process and hindered the node energy 

consumption. The process of finding and solving the errors contributed to the 

simulation development delay. 

As it has been expounded in Section 4.3.2, the full LEACH protocol operation has been 

implemented. Therefore, the remaining steps to finish the whole research are explained 

below: 

• Check the LEACH protocol correct behavior: it is necessary to check the correct 

behavior of the implemented protocol by means of error debugging, 

modification of operation problems derived from protocol understanding 

difficulties and protocol operation tests execution. 

• Results achieving: the next step consists on running the set of tests in order to 

obtain data results and prepare descriptive graphical representations of the 

obtained results. 

                                                 
2
 Reported bug: wrong information given by the getNetwAddr(const int macAddr) subroutine, line 

54, within the BaseArp.cc class: 

http://mixim.sourceforge.net/doc/doxy/a00005.html 

 
3
 Reported bug: implementation error into the DrawAmount constructor class made the value initialization 

impossible: 

http://mixim.sourceforge.net/doc/doxy/a00062.html 
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• Analysis and comparison of results: the following step consists on making a 

correct analysis with the obtained simulation results and extracting some 

conclusions about the protocol operation. 

• Design ad implementation of power management improvements: after having 

results about how the LEACH protocol behaves with specific values should 

happen one important step: to plan the design and the implementation of a 

LEACH energy consumption improvement from the obtained results. 

• Comparison and measurement of results: the last step will consist on comparing 

the results obtained from the implemented protocol improvement with the base 

protocol and measure with specific values how important has been the power 

management improvement. 

7.5 Conclusions 

During this chapter has been reflected how the mobility of the network, besides the 

network lifetime is reduced, delays the moment when the first node dies and also 

introduces uniformity during the node depletion process with Direct Transmission 

protocol. This fact represents that the network energy consumption is more balanced 

than in a static network scenario and, therefore, the nodes will die in a regular manner 

and not from the further places to the closer zones to the base station. Thus, the 

simulated network won’t have any place in the simulation field without sensing data 

while the whole network keeps alive. 

Although simulation results from the LEACH protocol couldn’t be obtained, the 

experienced problems suffered during the project development have been reflected in 

order to avoid these problems during future revisions and the guidelines for further 

versions have been specified. 
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8 Conclusions 

In the current document, the implementation of a WSN architecture in a simulation 

environment has been carried out. This implementation will evaluate different 

simulation scenarios of large scope clustered-type networks. The purpose of the 

implementation consists on the research and the obtaining of a power management 

improvement over LEACH, one of the present WSN network protocols. The search of 

the power management improvement will be performed through the analysis of the 

network behavior. This network will be obtained by means of simulation executions 

after the variation of values of specific parameters characteristic of the WSN operation. 

As a result of the WSN communication architecture, their design factors and 

requirements, the state of the art of the network and Medium Access Control WSN 

protocols, and the properties of the simulation scenarios, the election of the MAC and 

routing protocols has been carried out according to the features and the constraints of 

WSNs, as well as the features of the simulation scenarios. The analysis about the WSN 

protocols carried out showed that CSMA, with its simplicity, its well-know behavior 

and adequate performance; and LEACH, with its clustered type organization, the 

balance of the overall energy consumption that carries out and its relevance on the 

current researches, become suitable protocols suitable for the carried out research. 

The election of the simulation scenario was carried out in regard to compliance with the 

necessary requirements for the implementation of a WSN architecture, as well as other 

features which facilitate the implementation development. The analysis carried out 

about the most common WSN simulation environments showed that OMNeT++, 

together with MiXiM development framework, meet the majority of the simulation 

requirements thanks to the simulation structure, the WSN simulation capabilities and 

the graphical runtime environment, which facilitates the design, debugging and test of 

large scope wireless sensor networks. 

The evaluation of the simulation scenarios has been specified with the highest detail as 

possible. This fact will help the obtaining of simulation results and the reproduction of 

the tests in other simulation environments. These simulation tests showed about Direct 

Transmission protocol how the mobility of the network, besides the network lifetime is 

reduced, delays the moment when the first node dies and also introduces uniformity in 

during the node depletion process, providing in that manner a more balanced overall 

energy consumption. Besides it couldn’t be possible to obtain simulation results about 

the LEACH protocol operation, the experienced problems during the project 

development have been reflected and the guidelines for further versions have been 

specified. 

Therefore, it can be determined that the WSN architecture implemented perform the 

obtaining of desired results during the development of this project, and could serve as 

base implementation for future versions of the developed work. 

 

 



FUTURE WORK 

68 

 

9 Future work 

The guidelines for finishing all the objectives from the current study have been detailed 

in Section 7.4. After obtaining the results about the LEACH protocol operation, the 

design and implementation of power management improvements over the LEACH 

operation can be carried out through different alternatives or possibilities. Multiples 

lines of research are about energy consumption improvements over LEACH have been 

made and are also currently open. Some possibilities are introduced in [24]: 

• Energy-aware threshold: the inclusion of an energy level parameter into the 

calculation of the threshold during the Advertisement Phase will enable the 

election of the cluster head nodes in relation to the amount of energy of the 

nodes scattered in the simulation field. Thus, the overall energy consumption of 

the network would be more balanced. 

• Hierarchical clustering: the LEACH version implemented in this project can be 

extended to form hierarchical clusters. In this manner, a hierarchy could be built 

where the cluster head nodes would communicate with “super-cluster head” 

nodes and so until the top layer of the hierarchy, at which point the data would 

be sent to the base station. This architecture could save tremendous amount of 

energy in large networks WSN as the network scenario of the current project. 

Furthermore, there are other multiple different possibilities for the research of energy 

consumption improvements. Some possibilities are described below: 

• Better integration between MAC and network protocols: the MAC protocols 

described in this document provide different features. The correct integration of 

other MAC protocols with LEACH could provide a notably decrement of the 

overall energy consumption. Possible examples could be WiseMAC, which 

reduces the energy consumption, or TRAMA, which increases the sleeping 

mode time percentage and decrements the collision probability in comparison 

with CSMA based protocols,  

• Modification of the LEACH operation: some modifications over the LEACH 

protocol operation could provide better results in terms of overall energy 

consumption. One possible modification is described below. 

<<At the beginning of each LEACH round, the base station broadcasts a “round 

starts” message to the entire network. The nodes that have been elected themselves 

cluster head nodes broadcast its “cluster head status” message. Furthermore, in this 

message, they attach the signal strength of the base station broadcast that they received. 

At this point, if any other cluster head node listen the “cluster head status” message, it 

compares its base station received signal strength with the signal strength attached in 

the cluster head node message. If the value in the “cluster head status” message is 

smaller, it stores the source of the message as “router node”. When the Data 

Transmission Phase begins and the cluster head nodes have received all the messages 

from the cluster members, if the cluster head nodes have stored any “router node”, they 

will send their data to this node instead of sending the message directly to the base 

station>>. 

Although can be thought that this scenario could show the “hot spot” problem, can be 

considered that the network mobility can solve this problem. Furthermore, this new 

functionality can be disabled when the node energy level reaches a specific threshold. 
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11 Appendix I. Table of Specifications of the simulation 

scenarios 

 

General parameters 

Playground size (in meters) 1000 × 1000 

Number of nodes 100 

Channel parameters 

Signal attenuation threshold (in dB) -91 

Minimum path loss coefficient 3.0 

Carrier frequency of the channel (in Hz) 2.412 ×10
9 

Radio model 

Transmitter energy consumption (in J/bit) 50 × 10
-9
 

Receiver energy consumption (in J/bit) 50 × 10
-9
 

Amplifier energy consumption (in J/bit/m
2
) 0.1 × 10

-9
 

Physical layer parameters 

Strength of the thermal noise (in dBm) -100 

Sensivity (in dBm) 89 

 Switch times (in seconds) 

 Rx to Tx 0.00012 

 Rx to sleep 0.000031 

 Tx to Rx 0.00012 

 Tx to sleep 0.000032 

 Sleep to Rx 0.000102 

 Sleep to Tx 0.000203 

MAC layer parameters 

Queue length 5 

Header length (in bits) 24 

Slot duration (in seconds) 0.04 

Difs time (in seconds) 0.0005 

Maximum number of transmission attempts 14 

Bit rate (in bps) 15360 

Mobility module parameters 

Base station position ( [x, y], in meters) [10, 10] 

Node position Random 

Battery module parameters 

Capacity (in J) 5.0 
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LEACH protocol parameters 

Round time Value equal to interval of data generation 

Slot time (in seconds) 0.08 

Compression index 0.15 

Waiting time
1
 (in seconds) 0.02 

Maximum cluster size 25 nodes 

 

Variable simulation parameters 

Interval of data generation (in seconds) {30, 60, 120} 

Node speed {0, 1, 2, 4} 

Data size (in bits) {256, 512, 1024} 

 

 

                                                 
1
 Amount of time that nodes should wait to switch to the next protocol phase. 


