

WARSAW UNIVERSITY OF TECHNOLOGY
Faculty of Electronics and Information Technology

The improvements of power management
for clustered type large scope wireless

sensor networks

by

Pedro de la Fuente Aragón

Supervised by

Daniel Paczesny, Ph.D.

June 2010

Table of contents

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Description .. 1
1.2.1 What is a Wireless Sensor Network .. 2
1.2.2 Benefits of Wireless Sensor Networks .. 2
1.2.3 Drawbacks of Wireless Sensor Networks.. 3

1.3 Objectives .. 3
1.3.1 Main objectives ... 3
1.3.2 Secondary objectives ... 3

1.4 Description of the document .. 3

2 State of the art .. 5

2.1 Introduction .. 5

2.2 The communication architecture .. 5

2.3 Design factors and requirements .. 6

2.4 The architecture of the protocol stack .. 7

2.5 Wireless Sensor Network protocols .. 8
2.5.1 The importance of the physical layer on Wireless Sensor Network protocols 8
2.5.2 MAC protocols .. 10
2.5.3 Routing protocols .. 16

2.6 Conclusions ... 22

3 WSN Simulators ... 23

3.1 Introduction .. 23

3.2 Simulator requirements ... 23

3.3 A model for WSN simulation... 24
3.3.1 Network model .. 24
3.3.2 Node model ... 24

3.4 Network simulators .. 25
3.4.1 The Network Simulator – ns-2 .. 25
3.4.2 OMNeT++ ... 26
3.4.3 TOSSIM .. 26
3.4.4 OPNET .. 26
3.4.5 Ptolemy II .. 27

3.5 Description of the OMNeT++ simulator .. 27
3.5.1 Overview ... 27
3.5.2 Advantages .. 34
3.5.3 Drawbacks ... 34

3.6 Conclusions ... 34

4 Evaluation of routing protocols ... 35

4.1 Introduction .. 35

4.2 Direct Transmission ... 35
4.2.1 Direct Transmission operation description .. 35
4.2.2 Direct Transmission protocol implementation .. 36

4.3 The LEACH protocol ... 38
4.3.1 LEACH algorithm’s description .. 38
4.3.2 LEACH algorithm’s implementation .. 40

4.4 Conclusions ... 47

5 Simulation scenarios .. 48

5.1 Introduction .. 48

5.2 Description of the simulation scenarios .. 48

5.3 Design and Implementation of the simulation scenarios .. 48
5.3.1 Implementation of a network simulation step by step ... 49
5.3.2 Implementation of the simulation network architecture .. 50
5.3.3 Initialization of the module network parameters ... 52

5.4 Conclusions ... 54

6 Evaluation of the simulation scenarios ... 55

6.1 Introduction .. 55

6.2 Radio model .. 55

6.3 Monitoring the network’s behavior .. 56

6.4 Expected results .. 56
6.4.1 General results ... 56
6.4.2 Comparison between Direct Transmission and LEACH results.. 58

6.5 Conclusions ... 58

7 Simulation results .. 59

7.1 Introduction .. 59

7.2 Parameters of the simulation tests .. 59

7.3 Direct Transmission results ... 60

7.4 LEACH results ... 64

7.5 Conclusions ... 66

8 Conclusions .. 67

9 Future work .. 68

10 References .. 69

11 Appendix I. Table of Specifications of the simulation scenarios 73

Index of Figures

Figure 1. Wireless Sensor Network architecture ___________________________________ 5

Figure 2. Comparison between OSI model and WSN’s stack protocol architecture ________ 7

Figure 3. RF front-end and baseband processor ___________________________________ 8

Figure 4. S-MAC Messaging Scenario [5] _______________________________________ 11

Figure 5. Comparison between S-MAC and T-MAC schemes, where the arrows indicate

transmitted and received messages ___ 11

Figure 6. DSMAC duty cycle doubling [7] _______________________________________ 12

Figure 7. B-MAC concepts ___ 12

Figure 8. WiseMAC operation __ 13

Figure 9. Data gathering tree and implementation over DSMAC [10] _________________ 13

Figure 10. A timeline of four nodes running SIFT protocol, where shaded bars indicate packet

transmission times and node’s contention window are shown ________________________ 14

Figure 11: CSMA operation __ 15

Figure 12. Classification of routing protocols in WSNs _____________________________ 16

Figure 13. Wireless sensor network model _______________________________________ 24

Figure 14. Tier-based node model ___ 25

Figure 15. Simple and compound modules of an OMNeT++ network _________________ 27

Figure 16. Default layout of the OMNeT++ IDE __________________________________ 29

Figure 17. Graphical NED Editor ___ 29

Figure 18. The main window of the Tkenv runtime environment ______________________ 30

Figure 19. Top level network and node component structure ________________________ 31

Figure 20. A histogram and an output vector _____________________________________ 31

Figure 21. A network simulation __ 32

Figure 22. Node structure and NIC structure _____________________________________ 33

Figure 23: Network interconnection in Direct Transmission protocol _________________ 35

Figure 24: LEACH cluster type organization _____________________________________ 38

Figure 25. Time line showing LEACH operation __________________________________ 38

Figure 26. Network simulation structure __ 50

Figure 27. Node network structure ___ 50

Figure 28. Internal node structure ___ 51

Figure 29. Mobility and utility node modules _____________________________________ 52

Figure 30. Schema of the simulation tests _______________________________________ 59

Figure 31. Number of alive nodes with data size of 1024 bits ________________________ 60

Figure 32. Number of alive nodes with node speed of 0 m/s _________________________ 61

Figure 33. Number of alive nodes with node speed of 1 m/s _________________________ 62

Figure 34. Number of transmissions per node with data size of 1024 bits and interval of data

generation of 30 s __ 63

Figure 35. Number of transmissions per node with data size of 1024 bits and interval of data

generation of 30 s __ 63

Index of Tables

Table 1. Hierarchical vs. flat topologies routing __________________________________ 18

Table 2. Classification and comparison of routing protocols in WSN [30] ______________ 21

Table 3. Radio characteristics __ 55

Table 4. Relation between results with different simulation scenarios _________________ 57

Table 5. First and last node dies values with data size of 256 bits_____________________ 62

INTRODUCTION

1

1 Introduction

1.1 Motivation

Sensors are a high developed technology integrated into very different areas like

structures, machinery or the environment. Some of the potential benefits that they

provide are: prevent catastrophic failures, enhance the job safety or conservation of

natural resources. However, this sensor networks are typically wired networks and

present high installation and maintenance costs, making more complicated their

introduction and use in the daily life.

Wireless Sensor Networks (WSNs) are a new kind of communication network based in

the use of new microelectronic devices called motes with sensing and data processing

capabilities. This kind of networks can eliminate the installation and maintenance costs

of typical sensor monitoring, in addition of its ease of installation and elimination of

connectors. However, wireless devices contain battery constraints which limit the

network lifetime. Due to the energy constrains, the deployment of large scope WSNs

will require advanced techniques to maintain low node depletion and achieve adequate

network lifetime and efficient operation.

The main goal of the current research is the analysis and the deployment of power

management improvements based on the state-of-the-art of Media Access Control

(MAC) and network protocols by means of simulation techniques. The implementation

of power management improvements over large scope WSN will enhance the network

lifetime without reducing the network features and capabilities.

During this chapter, a description with the fundamentals of Wireless Sensor Networks

has been offered, as well as the benefits that WSN provide and the drawbacks that this

kind of networks contains.

1.2 Description

The aim of this document is the research about the impact of some parameter

modification within the mobility, MAC and network modules into the sensors’ energy

consumption. The improvements of the nodes’ power management will be found

through the study of the network behavior with different parameter values and how they

will affect the energy consumption. Special importance will be present on how much

influences the node mobility with particular speed values.

The differences in the network behavior will help to search different mechanisms to

improve the power management and thus to reduce the energy consumption.

For that purpose, this project expects to built a realistic simulation of a WSN with the

own constraints and required features of some WSN specific scenarios where energy

consumption improvements could be obtained.

Initially, it is essential to insist not only on the capabilities of WSNs but also in their

wide variety of applications and the benefits that provides their use.

The simulated network will have the common features which are present on the

majority of the up-to-date WSN implementations. Furthermore, advanced features and

INTRODUCTION

2

parameters will be analyzed in order to obtain an energy consumption improvement.

Therefore, it is essential to analyze and study the state of the art of the most common

WSN architectures and protocols.

After the analysis of the architectures and protocols present in the current WSNs, the

most used simulation environments will be evaluated and the best simulation

environment for the purpose of this project will be chosen and analyzed.

The main job will consist on the WSN scenario creation on the chosen simulation

environment and the study of the network behavior after the variation of some critical

parameters in order to obtain the values which provide the best results in terms of

energy efficiency and network’s functions.

1.2.1 What is a Wireless Sensor Network

According to the definition given in [1], <<A wireless sensor network (WSN) consists

of densely distributed nodes that support sensing, signal processing, embedded

computing, and connectivity; sensors are logically linked by self-organizing means.

WSN typically transmit information to collecting (monitoring) stations that aggregate

some or all of the information. WSN have unique characteristics, such as, but not

limited to, power constraints and limited battery life for the WNs, redundant data

acquisition, low duty cycle, and, many-to-one flows.>>. Although the development of

this kind of networks was motivated by military applications, nowadays they are use in

many different industrial and civilian application areas, including industrial process

monitoring and control, healthcare applications or traffic control.

WSN are composed of a set of sensor nodes, called “motes”, typically equipped with

some sensors, a radio transceiver or other wireless communications device, a small

microcontroller, and an energy source, usually a battery. Therefore, these devices make

up a network with sensing, data processing and routing capabilities.

1.2.2 Benefits of Wireless Sensor Networks

To be knowledgeable about the benefits of WSNs, it is enough to be conscious of the

wide variety of applications where WSN can be present. Typically, WSN applications

involve some kind of monitoring, tracking, or controlling. Although wired sensor

networks usually can develop the same function like WSNs, these last networks can be

present in some applications where wired connections difficult the machinery function

or are impossible to introduce, adding to the elimination of installation and maintenance

costs.

Some of the numerous applications and the benefits that WSN bring are:

• Environmental Monitoring: watershed management, forest fire prediction or

irrigation management. It helps to preserve and maintain the natural resources.

• Structural Health and Industrial Monitoring: machinery failure detection. It

reduces the maintenance costs and prevents from catastrophic failures.

• Civil Structure Monitoring: health monitoring of large civil structures, like

bridges or skyscrapers. It prevents from human catastrophes.

• Medical Health-care: telemedicine, remote health monitoring. Allows doctors in

remote and rural areas to consult with specialists in urban areas, remote handling

of medical equipment (tele-surgery), etc.

INTRODUCTION

3

1.2.3 Drawbacks of Wireless Sensor Networks

Besides WSN offer several additionally advantages to wired sensor networks, they

impose some important constraints, which will affect directly to the network’s and

devices’ design. Into the Section 2.3 - Design factors and requirements, the main

constraints and design requirements are described. Some of the most significant

constraints are:

• Power consumption: this constraint affects directly into the nodes’ lifetime. With

energy-aware and transmitting power adjusting capacity protocols, the energy

consumption can be highly reduced, and thus increased the network lifetime.

• Self-configuration capability and good scalability: this issue can be solved by

choosing and implementing the suitable network protocol.

• Fault tolerance: if all the devices process the same signal (temperature,

humidity, etc.), the network will offer replication in a native manner. If the

devices do not develop the same function, the device replication can solve the

fault tolerance problem, and this solution shouldn’t affect the scalability due to

the nature of the network.

1.3 Objectives

1.3.1 Main objectives

The main objective of the current project is the search, the development and the

implementation of a power management improvement through the adaptation of

existing MAC and routing protocols for specific large scope WSN scenarios by means

of simulations of the network behavior.

1.3.2 Secondary objectives

Diverse secondary objectives are pursued during the development of the current project:

• Objectives into the election of the protocols. The protocols that should

implement the network of the current project ought to fulfill specific

requirements. The MAC protocol should provide a restrained energy

consumption, and the routing protocol should present a cluster-type organization

and provide a balanced overall energy consumption, i.e., distribute the energy

consumption along the nodes in the network.

• Objectives into the simulation implementation. The simulation environment

should fulfill some requirements like WSN network architecture and features,

portability, open source development and a good and friendly user interface.

Furthermore, the network simulation implementation should make use of

efficiency, independence between modules and reusability principles.

1.4 Description of the document

In this document, ten chapters have been presented which presents the performed work.

• In the chapter 2, the communication architecture, the architecture of the protocol

stack and the featured design factors and requirement of WSNs are detailed.

INTRODUCTION

4

Furthermore, the state of the art of the MAC and network WSN protocols is

analyzed.

• In the chapter 3, the requirements of a WSN simulation environment is analyzed.

Moreover, the most common network simulation environments are analyzed.

• In the chapter 4, the evaluation of the chosen WSN routing protocols is

introduced through their operation description and their implementation into the

simulation environment.

• In the chapter 5, the network simulation scenarios are depicted, as well as the

implementation of the network architecture, the physical environment and the

internal node architecture.

• In the chapter 6, the radio model adopted for the simulation tests and the

parameters selected are described. Furthermore, a priory analysis of the results is

given.

• In the chapter 7, the different simulation tests made over the network are

detailed, and the results obtained after the simulation execution of the different

simulation scenarios are analyzed.

• In the chapter 8, the obtained conclusions during the development of the whole

project are detailed.

• In the chapter 9, the possible improvements that could be implemented in future

work are explained.

• In the chapter 10, the external references consulted during the project

development are listed.

STATE OF THE ART

5

2 State of the art

2.1 Introduction

WSN appear as a new and revolutionary way of communication. This communication

method provides numerous advantages but also contains several constraints. In this

section, the main entities of WSN communication architecture, the network

requirements that this architecture should provide and the design factors that WSN

constraints add in their operation are analyzed. After that, the three layers of WSN

networks that provide the communication bases are reviewed. In MAC and routing

protocols subsections, it is important to examine the variety of protocols which

implement the functionality of these MAC and routing layers and provide different

features to the network depending on a specific kind of network or the network behavior

that it is expected to obtain. In the end, some conclusions of this review are extracted.

2.2 The communication architecture

A Wireless Sensor Network is composed of a set of numerous sensors with sensing,

wireless communication and computation capabilities. These sensors are scattered in an

unattended environment and located away from the user.

The main entities which compose the WSN architecture [2] are:

• Sensors which make up the network: its function is based on taking local

measures through a discrete system, creating a wireless network in an

unattended environment, gathering data and sending them to the final user

through the base station.

• Base station or gateway node: it is located near the sensor field. The data or

information gathered by the sensor field is sent to the base station through a

multihop infraestructureless architecture, which communicates with the user via

Internet or satellite communication.

• User: it is the entity interested in obtaining the information about a specific

phenomenon by means of measuring or monitoring the environment.

Figure 1. Wireless Sensor Network architecture

STATE OF THE ART

6

2.3 Design factors and requirements

Wireless Sensor Networks are composed of small devices with wireless communication,

sensing and computation capabilities. These devices consist of only a small memory, a

short range radio and a battery. Consequently, the constraints which impose these

devices together with the characteristics, which are typical of this kind of networks,

establish some guidelines for the protocols or algorithms design in WSNs. Detailed

below are the main requirements [3] of WSNs:

• Reliability and/or fault tolerance: capacity of the WSN to operate without any

interruption.

• Density and scalability: the density affects the network coverage degree, and the

size of the network affects the reliability and data processing algorithms.

• Network topology: it concerns directly different characteristics as network

latency and robustness. It determines the complexity of routing protocols.

• Power consumption: the sensors’ life time depends directly on the battery life

time. Therefore, current researches are focused on protocols and algorithms

design which are power-aware and consider the importance of minimizing the

power consumption.

• Data aggregation and fusion: they have the goal of reducing the data size with

computation methods in order to decrement the network traffic and consequently

the network congestion.

• Transmission media: radio, infrared, optical, etc.

• Quality of Service (QoS): in some applications, the data time constraints can be

critical for the correct operation of the WSN, meanwhile in other applications

becomes more important the life time.

• Hardware constraints: network nodes are usually composed by two subsystems:

sensor system and ADC (Analog to Digital Converter) system. Besides the

sensing, computation, transmission and power unit, they can contain other

components as position/location finding systems or power generator systems.

• Self-configuration: it is an essential issue on WSN owing to two different

factors: the possibility of fault or addition of new nodes to the network and the

network operation capacity in an unattended way.

• Other requirements: security, network dynamics, connectivity, etc.

STATE OF THE ART

7

2.4 The architecture of the protocol stack

The architecture of the protocol stack [4] of WSNs differs slightly from the Open

System Interconnection Reference (OSI) model. This protocol stack integrates other

features as power aware or data with network protocols (data aggregation/fusion).

Meanwhile OSI model presents seven layers; WSNs’ protocol stack reduces the model

to five levels and incorporates two planes. Detailed below are the different layers and

planes of the WSN’s architecture:

• Physical layer: it provides robust modulation, transmission and receiving

techniques.

• Data link layer: it establishes the functional and procedural means to transfer

data between network entities and error detection techniques.

• Network layer: it is in charge of routing the data supplied by the transport layer.

• Transport layer: it establishes a flow data if the WSN application needs it.

• Application layer: it depends on the phenomenon of interest and the sensing

tasks.

• Power management plane: it manages the power consumption of the tree main

tasks of a sensor node: sensing, computation and communication.

• Mobility management plane: it registers the movement and the location of all the

nodes as a network control primitive.

• Task management plane: it manages and schedules the sensing and detecting

tasks in order to obtain balanced power consumption.

Figure 2. Comparison between OSI model and WSN’s stack protocol architecture

STATE OF THE ART

8

2.5 Wireless Sensor Network protocols

2.5.1 The importance of the physical layer on Wireless Sensor Network protocols

The physical layer, as detailed in [2], takes charge of the frequency selection, carrier

frequency generation, signal detection, modulation and demodulation of digital data and

data encryption; and this task is carried out by transceivers. WSN transceivers show a

common structure on Radio Frequency (RF) front-end, as illustrated on Figure 3, and

the baseband part:

• The RF front-end performs analog signal processing in the actual radio

frequency band, where the Power Amplifier (PA) amplifies signals from the

baseband part, the Low Noise Amplifier (LNA) amplifies incoming signals, and

other elements like oscillators and mixers are used for frequency conversion.

• The baseband processor performs all signal processing in the digital domain

and communicates with node’s processor or other circuitry.

Figure 3. RF front-end and baseband processor

The desires of the current researches about the physical layer on WSNs are focused on

the search of cheap, effective and simple modulation schemes and transceiver

architectures which perform the required task. Thus, the main issue is how to transmit

as energy efficiently as possible, taking into account all related costs (overhead, possible

retransmissions etc.), considering scattering, shadowing, reflection, diffraction,

multipath and fading effects typical of wireless transmissions. To do this, it's worth

keeping in mind the problems which appear in every digital communication over

wireless channels, as well as the problems and constraints which are added by the

specific WSNs requirements.

Some aspects to consider in wireless communication are:

• Frequency allocation: it is very important to choose carefully the carrier

frequency in a radio frequency (RF)-based system because it determines the

propagation characteristics. The range of radio frequencies is subject to

regulation to avoid unwanted interferences between users and systems. But

besides the special licenses for reserved bands, there are also lisencefree bands

(Industrial, Scientific and Medical (ISM) bands) although these ISM bands adds

STATE OF THE ART

9

the problems of living with interference created by other systems (as for

example IEEE 802.11 and Bluetooth systems with the 2.4 GHz band).

• Modulation/demodulation scheme: this is a very important point. To obtain the

best results, several factors have to be balanced: the required and desirable data

rate and symbol rate, the implementation complexity and the relationship

between radiated power and target Bit Error Rate (BER). In order to maximize

the time a transceiver can spend in sleep mode, the transmit times should be

minimized.

• Wave propagation effects and noise: waveforms transmitted over wireless

channels are subject to several phenomena that all distort the original transmitted

waveform at the receiver, like reflection or diffraction. This distortion introduces

uncertainty at the receiver about the originally modulated data, and can result in

bit errors.

It is important to analyze the different kind of modulation schemes in order to select the

minimum consumption solution. In WSN, simple modulation techniques are selected

because of their easiness of implementation, robustness and low power consumption.

The common used modulation schemes are:

• Amplitude-shift keying (ASK): form of modulation that represents digital data

as variations in the amplitude of a carrier wave.

• Frequency-shift keying (FSK): frequency modulation scheme in which digital

information is transmitted through discrete frequency changes of a carrier wave.

• Binary phase-shift keying (BPSK): digital modulation scheme that conveys data

by changing, or modulating, two phase of a carrier wave separated by 180º.

• Quadrature amplitude modulation (QAM): a combination of both phase-shift

keying (PSK) and amplitude-shift keying (ASK).

With the aim of reducing the transmit time of the radio, an m-ary modulation (for

example, 4-ASK, 4-PSK or 16-QAM) and dynamic modulation scaling (modulation

scheme adaptation for different situations) can be used. This modulation sends multiple

bits per symbol, i.e., it obtains high data rates at low symbol rates. However, an m-ary

modulation will increase the circuit complexity and power consumption of the radio.

Furthermore, with m-ary, efficiency of the power amplifier is also reduced. Therefore,

the optimal decision will balance properly the modulation scheme and other measures to

increase transmission robustness.

After the analysis of the most important aspects to consider in wireless communications,

it is appropriate to know the most crucial points concerning physical layer design in

wireless sensor networks, as it’s possible to see on the next list:

• Low power consumption.

• Small transmit power and small transmission range as a result of the previous

characteristic.

• Low duty cycle in order to save energy by means of switching off most

hardware or operating in a low-power standby mode most of the time.

• Low implementation complexity and costs.

STATE OF THE ART

10

2.5.2 MAC protocols

2.5.2.1 Causes of energy waste concerning the MAC layer

Energy waste’s main reasons are collisions, overhearing, control packet overhead, idle

listening and overemitting. Collisions consist on the reception of more than one packet

at the same time with the result of discarding and packet retransmission. Overhearing

occurs when a node receives packets destined to other nodes. The control packet

overhead or the number of control packets should be minimized as far as possible in a

data transmission. Idle listening is produced when a node listens to an idle channel to

receive possible traffic. And overemitting, which is caused by the transmission of a

message when the destination node is not ready. A correctly-designed MAC protocol

should avoid these facts in order to obtain the best performance and the minimum

energy consumption.

The following MAC protocols will be analyzed in order to obtain a general operation

idea and extract their advantages and drawbacks:

• Sensor-MAC (S-MAC): protocol based on locally managed synchronizations.

• Timeout-MAC (T-MAC): improvement of S-MAC with variable listen periods.

• Dynamic Sensor-MAC (DSMAC): variation of S-MAC with dynamic duty

cycle.

• Berkeley MAC (B-MAC): protocol based on different check intervals

corresponding with different listening modes.

• Wireless Sensor MAC (WiseMAC): protocol based in a preamble sampling

technique.

• DMAC: this protocol makes use of a convergecast communication pattern.

• Traffic-Adaptive MAC (TRAMA): protocol based in a distributed election

algorithm.

• SIFT: protocol used on event-driven sensor network environments and based on

a data priority schema.

• CSMA: this protocol verifies the absence of other traffic before transmitting on

a shared transmission medium.

2.5.2.2 Description of proposed MAC protocols

S-MAC

The basic idea of Sensor-MAC [5] protocol consists on locally managed

synchronizations and periodic sleep listen schedules based on these synchronizations.

Nodes sleep and wake up periodically introducing the term of duty cycle. This protocol

shows a drawback: when two neighbor nodes reside in two different virtual clusters

which set up a common sleep schedule, they wake up at listen periods of both clusters.

Synchronization is required by this exchange schedule schema, which is provided

through SYNC packet broadcasts within a virtual cluster. Collision avoidance is

achieved by a carrier sense, RTS/CTS packet exchanges prevent from the hidden node

problem, and adaptative listening can be used in order to reduce the sleep relay and thus

the overall latency.

STATE OF THE ART

11

The advantages of this protocol consist on its implementation simplicity and its energy

consumption decrease through sleep schedules. But the disadvantages are the collision

probability with broadcast data packets because of the lack of a RTS/CTS schema, the

efficiency loss with its constant and predefined sleep and listen periods, overhearing and

idle listening problems.

Figure 4. S-MAC Messaging Scenario [5]

T-MAC

Timeout-MAC [6] protocol is an improvement of S-MAC protocol which tries to

provide higher energy saving under variable traffic load through variable listen periods.

In T-MAC, listen period finishes when a node doesn’t have messages to send or receive

in order to save energy. After the message exchange, the node waits an activation event

for a time threshold.

Although T-MAC shows better results than S-MAC, it breaks the listen period’s

synchronization and, because of this and other reasons, T-MAC protocol suffers the

“early sleep” problem, where a node C within the same coverage area than a node B

can’t send a message to a node D because the node B is receiving a message from a

node A and the node D doesn’t detect any sign of activity and switches to sleep mode.

Figure 5. Comparison between S-MAC and T-MAC schemes, where the arrows

indicate transmitted and received messages

STATE OF THE ART

12

DSMAC

Dynamic Sensor-MAC [7], also called DSMAC, is a protocol which adds dynamic duty

cycle to S-MAC and attempts to decrease the latency for delay-sensitive applications. In

this protocol all nodes start with the same duty cycle, and when a node realizes that

average one-hop latency is high, it decides to shorten its sleep time and announces it

within SYNC period. As a consequence, after a sender node receives this signal, it

checks its queue for packets destined to that receiver node and decides to double its duty

cycle when its battery level is above a specified threshold. In this manner, DSMAC

improves the latency obtained with S-MAC and shows better average energy

consumption.

Figure 6. DSMAC duty cycle doubling [7]

B-MAC

Berkeley MAC [8] protocol comes from the University of California, Berkeley, and it

achieves to decrease the idle listening. B-MAC proposes that each node must sleep

periodically to check the channel occupation; if a node detects activity it remains in

listening mode, otherwise it switches to sleeping mode. B-MAC defines eight different

check intervals or time intervals between wake-up periods, and each one corresponds

with a different listening mode. In order to assure packet delivery, packets are sent with

a preamble whose length transmission is longer than the check interval.

The advantages of B-MAC are the simplicity of network configuration, ease of tuning,

no necessity of explicit sync packets and don’t use of RTS/CTS/ACK if not necessary.

Figure 7. B-MAC concepts

WiseMAC

The Wireless Sensor MAC [9] protocol introduces a new communication schema with a

data channel access by spatial TDMA and gives access to the control channel by

CSMA. This protocol is based in a preamble sampling technique, where each data

packet is preceded by a preamble in order to alert the receiver node. All network nodes

sample with a common media period, but using independent relative schedule offsets.

STATE OF THE ART

13

They initialize the preamble with the same sampling period’s length. During the

protocol’s use, after waking and sampling the media when a node reaches an it’s

occupied, stays hearing until receives a packet or finds free the media. This protocol has

overemitting problems when after the preamble, the receiver is not available. Also, with

the aim of reducing the energy consumption, WiseMAC offers a dynamic length

definition preamble method which requires sleep schedules learning neighbor nodes,

achieving to minimize the receiver nodes’ radio working time. On the contrary, the

difficult of broadcast communication due to the decentralized duty cycle planning and

the hidden terminal problem apparition are the main inconvenients.

Figure 8. WiseMAC operation

DMAC

DMAC’s [10] main objective consists on obtaining a very low latency by means of a

energy-efficient operation. This protocol makes use of a convergecast communication

pattern, very applied on WSNs, where unidirectional paths from the possible sources to

the base station can be represented with data gathering trees. DMAC can be identified

as an improvement of slotted Aloha protocol, where slots are assigned to sets of nodes

based on a data gathering tree similar as showed on Figure 9. In this manner, during a

node reception period, all its son nodes have also the same transmission period and they

compete for the media. Thus, this protocol provides low latency by assigning

contiguous slots to the consecutive nodes along the transmission path.

Figure 9. Data gathering tree and implementation over DSMAC [10]

STATE OF THE ART

14

One of the best features of DMAC is very good latency in comparison with other

sleep/listen period assignment methods. Hence, this protocol becomes a very important

candidate in time-constrained applications. On the contrary, this protocol doesn’t use

collision avoidance. For this reason, when a considerable number of nodes on the same

level try to send data to the same node, collisions will happen.

TRAMA

Traffic-Adaptive MAC [11] protocol is similar to Node Activation Multiple Access

(NAMA) protocol which is operation is described in [11], but this increases the use of

TDMA as an energy-efficient mode. In TRAMA protocol a distributed election

algorithm is used in order to select a sender inside a two-hop neighborhood. By means

of this mechanism, the hidden terminal problem is eliminated and nodes inside the one-

hop neighborhood guarantee no collision packets will be received. In this registry, time

is divided in two different transmission periods: random-access periods, where two-hop

topology information through contention-based channel access, and scheduled-access.

In these last ones, slots which will be used by nodes are announced by a schedule packet

and the bitmap message scheduled receivers.

This protocol achieves important advantages: a sleeping mode time percentage increase

and a collision probability decrement in comparison with CSMA based protocols. Even

so, TRAMA duty cycle is at least of 12.5%, a considerable high value.

SIFT

SIFT [12] is a MAC protocol for WSN whose operation differs from the above

described protocols. This protocol is used on event-driven sensor network environments.

Its main idea consists on the next fact: when an event is sensed, the first R reports of N

potential reports composes the most important communication part, and this part must

be delivered with the minimum latency. SIFT uses a non-uniform probability

distribution function. This function helps to the slot acquisition within the slotted

contention window: if nodes don’t transmit on the first window slot, all nodes increment

exponentially its transmission probability on the next slot considering limited the

number of competitors.

Figure 10. A timeline of four nodes running SIFT protocol, where shaded bars

indicate packet transmission times and node’s contention window are shown

This protocol reaches very low latency through a power consumption increment. This

parameter can be set properly to the environment requirements. Thus, it could be

possible to obtain a power consumption decrement losing some features as low latency

when network life time is the main objective. As disadvantages, time on idle listening is

increased due to the nodes must listen all the slots before its sending, as well an

overhearing increment.

STATE OF THE ART

15

CSMA

In Carrier Sense Multiple Access (CSMA) [13], the nodes verify the absence of other

traffic before transmitting on a shared transmission medium. Two versions of CSMA

exist: non-persistent CSMA and p-persistent CSMA. In non-persistent CSMA, a

backoff is performed before attempting to transmit if the sensed channel is busy, and the

transmission is carried out immediately if the device senses no activity on the channel.

In p-persistent CSMA, a node continues sensing the channel if it detects activity instead

of delaying and checking again later. When the device senses no activity on the channel,

it transmits a message with probability p and delays the transmission with probability

1−p.

Figure 11: CSMA operation

The channel access times and backoff delays showed on Figure 11 consist of continuous

values for unslotted CSMA or discrete time values for slotted CSMA. These parameters

are explained below:

• SIFS: the minimum Inter Frame Space. It is used to separate transmissions

belonging to a single dialog (e.g. Fragment-ACK).

• PIFS: it is used by the Access Point to gain access to the medium before any

other station. The value of PIFS is SIFS plus a Slot time. Not important in WSN

operation.

• DIFS: it is the Inter Frame Space used for a station willing to start a new

transmission, which is calculated as PIFS plus one Slot time.

• Slot time: it is defined in such a way that a station will always be capable of

determining if other station has accessed the medium at the beginning of the

previous slot. This reduces the collision probability by half.

Backoff is method to resolve contention between different stations willing to access the

medium. The method requires each station to choose a Random Number (n) between 0

and a given number (Contention Window value), and wait for this number of Slots

before accessing the medium, always checking whether a different station has accessed

the medium before.

The benefit of CSMA/CA techniques in sensor networks depends on the traffic

conditions, wireless channel characteristics, and network topology, so in some cases it

may prove beneficial and in others an unnecessary overhead.

2.5.3 Routing protocols

This section presents the classification of WSN routing protocols. Routing protocols

be divided into three groups depending on the network structure:

hierarchical-based routing, and

protocols can also be divided into five different groups depending on the protocol

operation: multipath-based

based routing. In addition, routing protocols can be divided into

hybrid protocols depending on how the source fi

proactive protocols, all routes are computed before they are needed. In reactive

protocols, on the contrary, routes are computed on demand. Hybrid protocols use a

combination of these two techniques.

routing protocols. Detailed below are the different routing paradigms.

Figure 12. Classification of routing protocols in WSNs

2.5.3.1 Network Structure Based

The network structure adopts an important role in the operation of routing protocols in

WSN. Next are exposed the different subgroups according to the diverse network

structures.

Flat routing

In multihop flat routing protocols

to perform the sensing task.

BS sends queries to certain regions and waits for data from

selected regions. This schema has been adopte

makes impossible to assign a global identifier to each node.

requested through queries. Hence,

properties of data. In flat routing group, we can find a huge variety of protocols:

• Flooding, where data is sent to all neighbors;

Flooding, where data is forwarded to one randomly selected neighbor. They are

the simplest protocols,

overlapping and resource blindness) and

• Sensor Protocols for Information via Negotiation (SPIN)

operating efficiently by sending meta

view of energy resource changes. This protocol

protocols through data negotiation and resource adaptive algorithms.

some drawbacks, as scalab

Network

Structure

Flat

Networks

Routing

Hierarchical

Networks

Routing

Location

Based

Routing

STATE OF THE ART

This section presents the classification of WSN routing protocols. Routing protocols

be divided into three groups depending on the network structure: flat

routing, and location-based routing. Furthermore, these same

protocols can also be divided into five different groups depending on the protocol

based, query-based, negotiation-based, QoS-based

. In addition, routing protocols can be divided into proactive

ls depending on how the source finds a route to the destination.

ctive protocols, all routes are computed before they are needed. In reactive

protocols, on the contrary, routes are computed on demand. Hybrid protocols use a

combination of these two techniques. Figure 12 shows the classification of WSN

routing protocols. Detailed below are the different routing paradigms.

Classification of routing protocols in WSNs

Network Structure Based Protocols

The network structure adopts an important role in the operation of routing protocols in

WSN. Next are exposed the different subgroups according to the diverse network

protocols, all nodes plays the same role and collaborate together

to perform the sensing task. They make use of a data centric routing scheme,

BS sends queries to certain regions and waits for data from the sensors located in the

This schema has been adopted due to the large number of nodes, which

makes impossible to assign a global identifier to each node. In flat routing, data is

requested through queries. Hence, attribute-based naming is necessary to specify the

In flat routing group, we can find a huge variety of protocols:

where data is sent to all neighbors; and Gossiping

Flooding, where data is forwarded to one randomly selected neighbor. They are

lest protocols, but contain important drawbacks

overlapping and resource blindness) and they work in a very inefficient way.

Sensor Protocols for Information via Negotiation (SPIN) [15]

operating efficiently by sending meta-data and being aware and answering in

view of energy resource changes. This protocol solves the problems of above

data negotiation and resource adaptive algorithms.

, as scalability problems, and delivery not guaranteed.

Routing

protocols in

WSNs

Location

Based

Routing

Protocol

Operation

Negotiation

Based

Routing

Multi-Path

Based

Routing

Query

Based

Routing

16

This section presents the classification of WSN routing protocols. Routing protocols can

flat-based routing,

. Furthermore, these same

protocols can also be divided into five different groups depending on the protocol

based, and coherent-

proactive, reactive and

nds a route to the destination. In

ctive protocols, all routes are computed before they are needed. In reactive

protocols, on the contrary, routes are computed on demand. Hybrid protocols use a

shows the classification of WSN

Classification of routing protocols in WSNs

The network structure adopts an important role in the operation of routing protocols in

WSN. Next are exposed the different subgroups according to the diverse network

e same role and collaborate together

They make use of a data centric routing scheme, where the

the sensors located in the

d due to the large number of nodes, which

In flat routing, data is

based naming is necessary to specify the

In flat routing group, we can find a huge variety of protocols:

Gossiping [14], based on

Flooding, where data is forwarded to one randomly selected neighbor. They are

 (as implosion,

work in a very inefficient way.

[15]: it is based on

being aware and answering in

solves the problems of above

data negotiation and resource adaptive algorithms. SPIN has

ility problems, and delivery not guaranteed.

QoS

Based

Routing

Coherent

Based

Routing

STATE OF THE ART

17

• Directed Diffusion [16]: it consists basically of naming, interests and gradients,

data propagation along the interest’s gradient path, and paths’ reinforcement.

This protocol saves energy by selecting good paths and performing data

aggregation and caching. Otherwise, data aggregation requires synchronization

techniques and increments and recording information when overhead appears.

There are several protocols based on Directed Diffusion:

� Rumor routing [17], whose key idea is to route the queries to the nodes

that have observed a particular event rather than flooding the entire

network, and if flooding is needed, it employs long-lived packets called

agents. Rumor routing achieves energy savings but it has scalability

problems.

� Gradient-Based Routing (GBR) [18], where nodes calculate a parameter

called the height of the node memorizing the number of hops when the

interest is diffused and forward packets on links with the largest gradient

or difference between neighbor nodes’ height.

� Information-driven sensor querying (IDSQ) and Constrained anisotropic

diffusion routing (CADR [19]), where queries are diffused in an isotropic

fashion and reaching nearest neighbors first. They query sensors and

route data by maximizing information gain and minimizing latency.

� Energy Aware Routing [20], which maintains a set of paths instead of or

enforcing one optimal path at higher rates. It employs a kind of

probability whose value depends on how low is the energy consumption

of each path. It achieves to increment network lifetime.

• Minimum Cost Forwarding Algorithm (MCFA) [21]: in this protocol, each node

maintains the least cost estimate from itself to the base-station. Thus, nodes only

re-broadcast messages to their neighbors when they check that they are in the

least cost path between the source and the base-station.

• COUGAR [22] and ACQUIRE [23]: these protocols view the network as a huge

distributed database system. COUGAR uses declarative queries, whereas

ACQUIRE can divide complex queries into several sub queries. They show

energy efficiency in situations when the generated data is huge.

Hierarchical routing

In WSN, the concept of hierarchical or cluster based routing is utilized to perform

energy efficient routing. In addition, this mechanism provides good scalability and

efficient communication. Applying hierarchical architecture to WSN, higher energy

nodes can be used to process and send the information while low energy nodes can be

used to perform the sensing in the proximity of the target. Thus, cluster heads can

perform data aggregation and fusion in order to decrease the number of transmitted

messages to the BS and increment the network lifetime. However, in WSN, routing

techniques are not only focused on routing, but also on “who and when to send or

process/aggregate” the information, channel allocation, etc. Detailed below are several

proposals of hierarchical routing protocols:

STATE OF THE ART

18

• Low Energy Adaptive Clustering Hierarchy (LEACH [24]): is a self-organizing

protocol that uses randomized rotation of cluster-heads to evenly distribute the

energy load among the sensor nodes in the network. Although LEACH provides

some added features like localized coordination and control, it can’t be applied

to time-constrained applications and also presents the “hot-spot” [25] problem.

• Power-Efficient Gathering in Sensor Information Systems (PEGASIS) [26]:

based on LEACH, PEGASIS is a power efficient algorithm. In this protocol,

each node can take turn of being a leader of the chain, where the chain is

constructed using greedy algorithms that are deployed by the sensor nodes.

PEGASIS outperforms LEACH in several aspects but it presents the same

problems than LEACH and also doesn’t scale.

• Threshold-sensitive Energy Efficient Protocols (TEEN [27] and APTEEN [28]):

these two protocols, proposed for time-critical applications, are LEACH based

with multi-level head clusters. They are based on two values: a hard threshold,

with the threshold sense value, and a soft threshold, a small value that triggers

nodes to transmit. This method reduces the number of transmissions and these

values can be tuned to increment the accuracy. Both two protocols outperform

LEACH, but multi-level clusters and threshold-based functions increment their

complexity.

• Other protocols: Small Minimum Energy Communication Network (MECN) [29],

which computes an energy-efficient subnetwork by utilizing low power GPS;

Sensor Aggregates Routing, whose objective is to collectively monitor target

activity in a certain environment; Self Organizing Protocol (SOP), where

heterogeneous sensor architecture with mobile or stationary nodes is supported;

Virtual Grid Architecture routing (VGA), which uses a GPS-free approach to

build clusters that are fixed, equal, adjacent, and non-overlapping with

symmetric shapes; Hierarchical Power-aware Routing (HPAR), which divides

the network into groups of sensors where messages are routed along the path

which has the maximum over all the minimum of the remaining power (max-

min path); and Two-Tier Data Dissemination (TTDD), which provides data

delivery to multiple mobile base-stations.

As it is shown, there are many differences between flat and routing protocols. In Table 1

extracted from [30] these two approaches are compared.

Table 1. Hierarchical vs. flat topologies routing

Hierarchical routing Flat routing

Reservation-based scheduling Contention-based scheduling

Collisions avoided Collision overhead present

Reduced duty cycle due to periodic sleeping Variable duty cycle by controlling sleep time of

nodes

Data aggregation by cluster head Node on multihop path aggregates incoming

data from neighbors

Simple but non-optimal routing Routing can be made optimal but with an added

complexity

Requires global and local synchronization Links formed on the fly without synchronization

STATE OF THE ART

19

Hierarchical routing Flat routing

Overhead of cluster formation throughout the

network

Routes formed only in regions that have data for

transmission

Lower latency as multiple hops network formed

by cluster heads always available

Latency in waking up intermediate nodes and

setting up the multipath

Energy dissipation is uniform Energy dissipation depends on traffic patterns

Energy dissipation cannot be controlled Energy dissipation adapts to traffic pattern

Fair channel allocation Fairness not guaranteed

Location based routing

Location based routing shows a different schema where nodes are by means of their

location. In this kind of routing, the location of nodes can be obtained directly if nodes

are equipped with a low power GPS or their relative position can be deduced by means

of two facts: the distance between nodes estimated on the basis of incoming signal

strengths, and relative coordinates of neighbors obtained by exchanging information

between them. Energy savings can be obtained switching nodes to sleep mode when

there is no activity or having as many sleeping nodes in the network as possible. Next

are reviewed several location-based routing protocols:

• Geographic Adaptive Fidelity (GAF) [31]: GAF divides the network area into

fixed zones and forms a virtual grid. All nodes in each zone elect one sensor

node responsible in its zone for monitoring and reporting data to the BS. This

node will stay awake for a certain period of time and the rest of nodes will go to

sleep. Thus, GAF conserves energy by turning off unnecessary nodes in the

network without affecting the level of routing fidelity.

• Geographic and Energy Aware Routing (GEAR) [32]: GEAR is a recursive data

dissemination protocol. This protocol disseminates queries to appropriate

regions whose data include geographic attributes. It achieves energy saving by

sending the interest to certain regions rather than the whole network. On the

contrary, GEAR is not scalable and does not support data diffusion.

• MFR, DIR, and GEDIR [33]: these three protocols employ different mechanisms

but they almost always obtain the same path to the destination. In MFR, the dot

product of Euclidean distance between destination and neighbor node and

Euclidean distance between destination an source node (i.e., ������ � ������) is
minimized. DIR method chooses the neighbor with the minimum angular

distance between from the imaginary line joining the current node and the

destination. In GEDIR, packets are transmitted to the neighbor of the current

vertex whose distance to the destination is minimized.

• SPAN [34]: this protocol selects some nodes based on their positions that will act

as coordinators and will form a network backbone used to forward messages. A

node is designed as coordinator when three hop reachability between nodes is

not accomplished, i.e., two nodes cannot reach each other directly or via one or

two coordinators.

STATE OF THE ART

20

2.5.3.2 Protocol Operation Based Protocols

In this subsection, some routing methods with different features and functionalities are

described. Some of these methods may refer to some concrete protocol which deploys

the main feature in their category.

Multipath routing protocols

Multipath routing mechanisms uses multiple paths in order to increase the fault

tolerance of the network. These maintained alternative paths entail an increment of

energy consumption and traffic overhead, but helps to increase the network reliability.

Diverse researches have provided different ideas. One proposal advocates to create

paths with the largest residual energy, change the path whenever a better path is

discovered and switch the primary path to the backup path when the energy of the

primary path falls to lower levels than the backup path. Another proposal suggests us to

use a set of sub-optimal paths with the less energy consumption. This method aims to

increase the network lifetime by choosing the paths by means a certain probability

depending on the lower minimum energy consumption of each path. Directed diffusion

is also a good protocol for robust multipath routing and delivery.

Query based routing

In query based routing, base station or destination nodes propagate a query through the

network. These queries usually use natural or high-level query languages. All nodes

have tables with sensing task queries that they receive and nodes having the data

associated to this query sends the data back to the node which made the query.

Several protocols use query based routing. For instance, in Directed Diffusion, interest

messages are propagated through the network and gradient paths are set up and. When

the source has data for the interest, the source sends the data along the interest gradient

path. Another example is Rumor routing protocol, which uses a set of long-lived agents

to create paths that are directed towards the events they encounter.

Negotiation based routing

Negotiation based protocols use high level data descriptors in order to eliminate

redundant data transmissions through via negotiation. This idea aims to suppress

duplicate information and prevent redundant data from being sent to the next sensor or

the base-station. This is achieved by exchanging a series of negotiation messages before

the real data transmission is carried out. One example of negotiation based routing is the

family of SPIN protocols, which uses this mechanism and prevents from implosion and

overlapping.

QoS-based routing

Networks with QoS-based routing protocols have to ensure some QoS factors, as for

example, low delay, bandwidth, delivery, etc. when sending data to the base stations.

However, this kind of protocols applied to WSN has to balance between energy

consumption and data quality.

Some routing protocols bring several QoS features to WSN. For instance, in Sequential

Assignment Routing (SAR) [35], routing decisions are made depending on three factors:

STATE OF THE ART

21

energy resources, QoS on each path, and the priority level of each packet. In order to

provide energy efficiency and fault tolerance, SAR creates a tree from the source node

to the destination nodes. However, this protocol suffers overhead with a high number of

nodes. Another QoS routing protocol called SPEED [36] provides congestion avoidance

and ensures a certain speed for each packet in the network, which ensures to estimate

the end-to-end delay for the packets. However, SPEED does not consider any further

energy metric in its routing protocol.

Coherent and non-coherent processing

WSN routing protocols employ different data processing techniques. Next are shown

two different data processing techniques: coherent and non-coherent data processing-

based routing. In non-coherent data processing routing nodes only process locally the

raw data before sending it to other nodes, whereas in coherent data processing the

minimum processing typically includes tasks like time stamping, duplicate suppression,

etc. After this processing, data is forwarded to other nodes called aggregators for further

processing.

Some examples of non-coherent and coherent processing are Single Winner (SWE) and

Multiple Winner (MWE) algorithms, respectively. In the Single Winner algorithm, a

single aggregation node with the highest energy reserves and computational capability

is elected for complex processing. By the end of the SWE process, a minimum-hop

spanning tree will completely cover the network. On the contrary, at the end of the

MWE process, each sensor has a set of minimum-energy paths to each source node.

MWE process obtains longer delay, higher overhead and lower scalability than non-

coherent processing.

2.5.3.3 Comparison of features between protocols

Many of the described protocols fit under more than one category. The next table

summarizes the main features of these WSN routing protocols:

Table 2. Classification and comparison of routing protocols in WSN [30]

 Classification Mobility
Position
Awarenes
s

Power
Usage

Negotiation
based

Data
Aggregation Localization QoS

State
Complexity Scalability Multipath Query based

SPIN Flat Possible No Limited Yes Yes No No Low Limited Yes Yes

Directed

Diffusion
Flat Limited No Limited Yes Yes Yes No Low Limited Yes Yes

Rumor

Routing
Flat

Very
Limited

No N/A No Yes No No Low Good No Yes

GBR Flat Limited No N/A No Yes No No Low Limited No Yes

MCFA Flat No No N/A No No No No Low Good No No

CADR Flat No No Limited No Yes No No Low Limited No No

COUGAR Flat No No Limited No Yes No No Low Limited No Yes

ACQUIRE Flat Limited No N/A No Yes No No Low Limited No Yes

EAR Flat Limited No N/A No No No Low Limited No Yes

LEACH Hierarchical Fixed BS No Maximum No Yes Yes No CHs Good No No

TEEN &

APTEEN
Hierarchical Fixed BS No Maximum No Yes Yes No CHs Good No No

PEGASIS Hierarchical Fixed BS No Maximum No No Yes No Low Good No No

MECN &

SMECN
Hierarchical No No Maximum No No No No Low Low No No

SOP Hierarchical No No N/A No No No No Low Low No No

HPAR Hierarchical No No N/A No No No No Low Good No No

Sensor

aggregate
Hierarchical Limited No N/A No Yes No No Low Good No Possible

TTDD Hierarchical Yes Yes Limited No No No No Moderate Low Possible Possible

GAF Location Limited No Limited No No No No Low Good No No

GEAR Location Limited No Limited No No No No Low Limited No No

SPAN Location Limited No N/A Yes No No No Low Limited No No

MFR, GEDIR Location No No N/A No No No No Low Limited No No

SAR QoS No No N/A Yes Yes No Yes Moderate Limited No Yes

SPEED QoS No No N/A No No No Yes moderate Limited No Yes

STATE OF THE ART

22

2.6 Conclusions

The WSN architecture introduces several limitations to the network implementation.

For that reason, the election and the development of suitable MAC and routing

protocols for the future application scenario is the main objective. Furthermore, the

correct integration of physical layer, MAC layer and routing layer will contribute to

obtain better performance and behavior.

The diverse MAC and routing protocols described in this chapter provide different

features and advantages. Consequently, it is very important to know the application

scenario requirements and constraints in order to develop an adequate architecture and

obtain appropriate results.

This election and implementation will depend significantly on our WSN scenario and

application. The correct integration of physical layer, MAC layer and routing layer will

contribute to obtain better performance and behavior.

The analysis about WSN protocols carried out during this chapter showed that the

simplicity of CSMA, together with its well-know behavior and adequate performance,

makes this protocol the right candidate for the simulation scenario of this project.

Regarding the routing protocols, LEACH appears as a suitable protocol for the current

research due to its clustered type organization, the balance of the overall energy

consumption that it carries out and its relevance on the current researches.

WSN SIMULATORS

23

3 WSN Simulators

3.1 Introduction

A network simulator is defined as a piece of software or hardware that predicts the

behavior of a network, without a real network being present. This kind of tools help us

to understand, predict the behavior and the results, find, correct and overcome mistakes

in our network without the need of implementing the network and tuning it directly.

Through the use of network simulators it is possible to obtain faster and better results

without working with the real network, i.e., it helps us to save time, resources and costs.

3.2 Simulator requirements

As we mentioned on the previous chapter, WSN networks introduce new characteristics

but also new constraints to our implementation. Hence, simulating WSN includes more

specific properties to reflect the real behavior and obtain better results. Next are

presented the requirements that network simulators should address. These requirements

[37] are divided into non-functional and functional requirements.

• Non-functional requirements: these requirements provide ease of use, comfort

and better interactivity to the users. Some of these requirements are:

� Open source: this allows to the user develop their own modules.

� Platform independence: this avoids the obligation of using a specific

platform or Operating System.

� Visualization module: a friendly user interface which provides graphical

and dynamic information about the scenario and graphical results helps

the user to understand the model and interact with the simulator.

• Functional requirements: these requirements provide more realism to our

network model. Some of the functional requirements are:

� Hardware simulation: it reflects the performance of sensor components

like CPU, transceiver and sensor unit.

� Battery and Power models: it shows the energy consumption and

remaining energy levels.

� Propagation modeling: a variety of propagation models like RF, optical

communication and/or infrared results very appreciated.

� Protocols modeling: the larger number of protocols developed the higher

flexibility. It is also very useful and an effective approach to provide an

API for defining new protocol in a simulator.

� Physical environment modeling: the implementation of different

propagation characteristics from diverse materials like soil, water or

cement will provide more realistic results.

� Emulation: the network emulation and the environment emulation

provide better understanding of the network behavior and more accurate

results.

WSN SIMULATORS

24

3.3 A model for WSN simulation

This subsection describes a general component model for WSN simulation tools. The

models include new components, not present in classical network simulators.

3.3.1 Network model

In the network model the next components are considered. Figure 13 shows a general

network model.

• Nodes: each node is a physical device monitoring a set of physical variables.

Nodes communicate with each other via a common radio channel.

• Environment: this component models the generation and propagation of events

that are sensed by the nodes, and trigger sensor actions, i.e. communication

among nodes in the network.

• Radio channel: it characterizes the propagation of radio signals among the nodes

in the network.

• Sink nodes: these nodes interrogate sensors about an event of interest, receive

data from the net, and process it.

• Agents: they are generators of events of interest for the nodes. The agent may

cause a variation in a physical magnitude, which propagates through the

environment and stimulates the sensor.

Figure 13. Wireless sensor network model

3.3.2 Node model

In order to provide a better description of the node behavior and their cross-layer

interdependencies, the node model is divided into abstract tiers. Figure 14 depicts the

node model.

• The protocol-tier contains the communication protocols. Two sub-components

coexist at this tier: the protocol stack, which contains the MAC layer, and the

routing layer, and a specific application layer component.

WSN SIMULATORS

25

• The physical-node tier represents the hardware platform and its effects on the

performance of the equipment. It is commonly composed of the set of physical

sensors, the energy module and the mobility module.

• The media-tier connects a node with the environment through a radio channel

and one or more physical channels.

Figure 14. Tier-based node model

3.4 Network simulators

In this subsection, the most common network simulators are reviewed. These simulators

provide different functionalities and capabilities.

3.4.1 The Network Simulator – ns-2

NS-2 [38] is a very popular general purpose discrete event simulation tool for sensor

networks. Simulations are written in combination of C++ and OTCL (Object Tool

Command Language), an object oriented scripting language. They can be observed

graphically by Network AniMator (NAM). C++ is used for implementing protocols and

extending the NS-2 library. OTCL is used to create and control the simulation

environment itself, including the selection of output data. It supports WSN features like

mobility model, wireless channel model and basic node energy model. These features

can be improved and incremented by means of external applications or extensions (like

MannaSim Framework, which introduces new modules for design, development and

analysis of different WSN applications). The main drawback consists on the fact that

NS-2 does not have good scalability for large sensor networks since exponential

simulation time slowdown.

WSN SIMULATORS

26

3.4.2 OMNeT++

OMNeT++ [39] is a public source component-based discrete event network simulator. It

defines a simulation in a component-based architecture. Simulation models are

described in C++ language and then assembled into larger components using NEtwork

Description (NED) language to represent greater systems. The simulator has graphical

tools for simulation building and evaluating results in real time. OMNeT++ scales well

for very large scale network topologies, but without the proper simulation model or

framework extensions, the simulator lacks suitable protocols and proper energy

modeling for sensor networks. There are many extensions, frameworks and simulators

for WSN based on OMNeT++ such as MiXiM, Castalia, Mobility Framework, EYES

and etc. MiXiM provides detailed models of wireless channel (fading, etc.), wireless

connectivity, mobility, obstacles and MAC protocols. Castalia is another extension with

realistic MAC, wireless channel and radio model based on measured data. Mobility

Framework extension implements the support for node mobility, dynamic connection

management and a wireless channel mode. EYES is written for self organizing and

collaborative energy-efficient sensor networks, which enables two-dimensional

definition of the simulation map with different failing and error probabilities on

different regions.

3.4.3 TOSSIM

TOSSIM [40] is a discrete event simulator designed and developed to simulate TinyOS

wireless sensor networks. The TOSSIM architecture is composed of five parts. TOSSIM

is also an emulator, as it can run the same simulated TinyOS application code on a real

sensor. Furthermore, TOSSIM can simulate a mote’s hardware, including digital I/O,

ADC and sensors. Along with capability to simulate an application, operating system

and network stack, TOSSIM is likely to provide more realistic results. With a detailed

visualization module, results could then be easily understandable, but one drawback in

TOSSIM is a lack of energy consumption modeling which is quite important in wireless

sensor networks. There are few extensions for TOSSIM like TinyViz, a visualization

tool, and PowerTOSSIM, an energy consumption modeling add-on.

3.4.4 OPNET

OPNET [41] is a commercial network simulator capable of simulating TinyOS

applications. It enables scenario and statistics management which could not be found in

TOSSIM. The models are the combination of OPNET specific code implementing

TinyOS functionality and application specific code. This characteristic will reflect the

interaction between the application and TinyOS. OPNET provides wide possibilities for

wireless network simulations including WSN MAC protocols, very good accuracy on

the radio transmission modeling and the possibility of modeling 3D outdoor scenarios.

OPNET uses a hierarchical three level model to define each aspect of the system: the

project editor, where network topology is designed; the node level, where individual

network nodes and data flow models are defined; and the process editor, which uses a

finite state machine approach to support specification of protocols, resources,

applications and queuing policies. Finally, a simulation tool is included to support the

three levels.

WSN SIMULATORS

27

3.4.5 Ptolemy II

Ptolemy II [42] is an open-source software framework supporting experimentation with

actor-oriented design, similar to component-based design. It includes Java packages that

support different models of simulation paradigms (e.g. continuos time, dataflow,

discrete-event). It also addresses the modeling, simulation and design of concurrent,

real-time, embedded systems. VisualSense [43] is a modeling and simulation

framework for WSN built on Ptolemy II. Models can be developed by subclassing base

classes of the framework or by combining existing Ptolemy models. Thus, Ptolemy and

its IDE components assure a simple and intuitive graphical composition of models.

3.5 Description of the OMNeT++ simulator

3.5.1 Overview

OMNeT++ with MiXiM plugin complies with the specific requirements and provides

the required tools for the development of the project.

3.5.1.1 Modeling concepts

As we can look up on the OMNeT++ User Manual [44], OMNeT++ models consist of

modules which communicate with message passing. The active modules are termed

simple modules, and they are written in C++. Compound modules are made up of

simple modules or other compound modules. Thus, the number of hierarchy levels is

not limited. This architecture allows reusing the well-built modules and, moreover,

allows implementing and customizing new modules with additional features. The whole

model, called network, is also a compound module. The picture below shows the

OMNeT++ network structure with different modules. Arrows connecting small boxes

represent connections and gates.

Figure 15. Simple and compound modules of an OMNeT++ network

Modules communicate with messages, which are typically sent via gates. Gates are the

input and output interfaces of modules. An input and an output gate can be linked with a

connection. Connections spanning across hierarchy levels are not permitted. Messages

typically travel through a chain of connections, to start and arrive in simple modules.

Parameters such as propagation delay, data rate and bit error rate, can be assigned to

connections. Connection types with specific properties (termed channels) can also be

defined and reused them in several places. Modules can have parameters. They can take

WSN SIMULATORS

28

different values: string, numeric or boolean, and they are mainly used to pass

configuration data to simple modules, and to help define model topology.

Thanks to its design and its structure, OMNeT++ provides efficient and useful tools for

the user to describe the system. Some features of OMNeT++ are:

• hierarchically nested modules

• modules communicate with messages through channels

• flexible module parameters

• topology description language

3.5.1.2 The OMNeT++ simulation IDE

The OMNeT++ simulation IDE is an extension of Eclipse development platform with

new editors, views and other functionality like tools for creating and configuring models

and analyzing the simulation results. For further information, it’s available an

OMNeT++ IDE User Guide [45].

The Workbench

Eclipse is a very flexible system where you can manage different panels, editors and

navigators.

The OMNeT++ IDE provides a “Simulation Perspective” to work with simulation

related NED, INI and MSG files. Next are explained the meaning of these file

extensions.

• The NED language topology description(s) (.ned files) describe the module

structure with parameters, gates etc.

• The Message definitions (.msg files) define different message types and add

data fields to them.

• The Configuration file (.ini files) contains settings that control how the

simulation is executed, values for model parameters, etc.

The main window showed above on Figure 16 contains different and useful panels:

• The Project Explorer shows the projects and their content in your workspace.

• The Properties View contains the information on the object selected in the editor

area

• The Problems View references the code lines where Eclipse encounters a

problem

• The Module Hierarchy, NED Parameters and NED Inheritance View are with

the network topology and its modules.

• The Console View shows the results of the executions.

WSN SIMULATORS

29

Figure 16. Default layout of the OMNeT++ IDE

The manner of creating models and networks is identical to the way of creating

programs under Eclipse platform. The workspace is the directory where all your

projects are located and can be linked.

Additionally, OMNeT++ provides specific editors for the simulations. The graphical

NED editor, showed on Figure 17, helps to improve the visual network structure for a

better understanding of the user, and INI file editor helps to edit the file with contains

the configuration of simulation runs.

Figure 17. Graphical NED Editor

WSN SIMULATORS

30

The Graphical Runtime Environment

The Tkend runtime environment, built in Tcl/Tk, is a portable graphical windowing user

interface which supports interactive execution of the simulation, tracing and debugging.

It is recommended in the development stage of a simulation since it allows one to get a

detailed picture of the state of simulation at any point of execution and to follow what

happens inside the network. Some important features are:

• message flow animation

• graphical display of statistics and output vectors during simulation execution

• event-by-event, normal and fast execution

• inspector windows to examine and alter objects and variables in the model

• scheduled messages can be watched in a window as simulation progresses

Figure 18. The main window of the Tkenv runtime environment

The main window of the Tkend environment showed on Figure 18 show different parts:

• The toolbar includes the access to the main functions of Tkenv like run, stop and

start or finish the simulation and configure the visual appearance.

• The status bar contains the information about the current state of the simulation

like the current run number and network name and the current event number,

information about the number of messages and the events processed.

• The timeline displays the content of the FES on a logarithmic time scale.

• The object tree displays all inspectable objects currently present in the memory.

• The log window contains the output of the simulation. The window content can

be filtered to include messages only from specific modules

WSN SIMULATORS

31

Figure 19. Top level network and node component structure

The top level network window shows the network structure. This window enables to

explore the component hierarchy in a graphical mode. Networks and compound

modules are represented by graphical inspectors displaying their internal structure. Each

component can be inspected as object, as graphic or as module output and these

different possibilities shows the component contents, its graphical internal structure and

its output messages and events, respectively. The top level network and node

component structure are showed above on Figure 19.

Figure 20. A histogram and an output vector

Furthermore, this environment can show output vectors in real-time as showed above on

Figure 20. If any component contains an output vector, Tkenv will show a chart by

double clicking on the object.

WSN SIMULATORS

32

3.5.1.3 MiXiM

MiXiM [46] (mixed simulator) is a simulator for wireless and mobile networks using

the OMNeT++ simulation engine. This simulator combines various simulation

frameworks developed for wireless and mobile simulations in OMNeT++. MiXiM

provides detailed models of the wireless channel (fading, etc.), wireless connectivity,

mobility models, models for obstacles and many communication protocols especially at

the Medium Access Control (MAC) level. Thus, MiXiM provides detailed models and

protocols, as well as a supporting infrastructure which can be divided into five groups:

• Environment models: it reflects the relevant parts of the real world, such as

obstacles or other elements which hinder wireless communication.

• Connectivity and mobility: the simulator tracks the movement of nodes and the

variations on the influence between nodes and provides an adequate graphical

representation.

• Reception and collision: the reception handling is responsible for modeling how

a transmitted signal changes on its way to the receivers considering the

movement of objects and nodes and transmissions making by other senders.

• Experiment support: it helps the researchers to compare the results and supports

different evaluation methods.

• Protocol library: it enables researchers to compare and to share their ideas.

This simulator appears as the fusion of different simulator frameworks into one. These

frameworks contribute with different approaches to MiXiM: the Mobility Framework

(MF) with its mobility support, connection management, and general structure; the

CHannel SIMulator (ChSim) with their radio propagation models; and the protocol

library from the MAC simulator and the Positif framework.

Through its low memory consumption and its modular structure, MiXiM can support

simulations with more than 1000 nodes. The graphical configuration interface helps to

manage the model and it allows modifying some parameters, filtering the resulting

information and adapting the level of detail and thus the execution time.

Figure 21. A network simulation

WSN SIMULATORS

33

The general structure of MiXiM shows two different parts [47]:

• The simulation modules: a MiXiM network contains a “world” utility model

which defines the environment properties like the size of the terrain, the kind of

terrain simulation (2D or 3D) and different “objects” to model the environment

of a simulation. The “ConnectionManager” module manages dinamically the

connections between interfering nodes, where the signal quality is based on the

interferences and the mobility. Finally, the “nodes” make up the network.

MiXiM supports different kind of nodes (like Access Points and terminals) with

different properties. An example of a MiXiM network is showed on Figure 21.

• The node structure: the nodes contain the modules according to the ISO/OSI

architecture, together with other sensor specific and utile modules like the

battery module, the mobility module, the arp module and the utility module, as it

is showed on Figure 22. The layers of an IP model can be composed by the

application layer (appl), the network layer (netw), the MAC layer (mac) and the

physical later (phy). The physical and MAC layer are grouped into a Network

Interface Card (NIC) module. The mobility module is responsible for the

movements of a node or an object. The battery module is used to simulate the

power consumption and properties. The arp module handles the Address

Resolution Protocol (ARP), and the utility module provides a general interface

for collecting statistical data of a simulation and maintains parameters that need

to be accessed by more than one module within a node.

Figure 22. Node structure and NIC structure

WSN SIMULATORS

34

3.5.2 Advantages

The combination of OMNeT++ with MiXiM provides numerous features which allow

implementing a very detailed simulation in comparison with other WSN simulators.

Some of the best features of OMNeT++ with MiXiM are the differentiation between the

network structure (implemented with NED) and the network behavior (implemented in

C++). They also provide a set of important models like battery, power and propagation

models, providing much more functionality and flexibility than other simulators with

the lack of some of these modules like GloMoSim, SENS, ATEMU, Prowler and

Shawn.

OMNeT++ and MiXiM are Open Source, have a very useful graphical support for

debugging, support parallel simulation and show a very good scalability to large

networks (more than 100 nodes), overtaking other simulators like NS-2 with worse

scalability.

Furthermore, OMNeT++ is supported by a community site of software developers with

several useful features like a mailing list.

3.5.3 Drawbacks

OMNeT++ with MiXiM show several drawbacks in comparison with other WSN

simulators. The main drawback consists on the fact that OMNeT++ is a general purpose

simulation framework and, for that reason, it only supports a limited emulation or Real-

time OS/SW execution time modeling, unlike specific simulation tools like ATEMU,

EmStar or TOSSIM. Other minor drawback consists on the lack of MAC protocols and

the inexistence of any routing protocol. This drawback can be solved by the developer

through the implementation of the required protocols.

OMNeT++ also doesn’t provide a huge variety of MAC or routing protocols as other

simulators like NS-2 or OPNET do. Because of this, the users need to resort to some

extensions or some implementations done by the community.

3.6 Conclusions

After this chapter, we can ensure that OMNeT++ with MiXiM appear as a very good

solution to implement and test the behavior of large scope wireless sensor networks.

This simulation framework meets the majority of the simulator requirements explained

above and also provides some important features for this project like very good

scalability unlike other simulators do. The simulation structure facilitates the design and

the test of large scope wireless sensor networks, its graphical runtime environment helps

the user with the debugging and tracing tasks, providing better understanding of the

network behavior, and MiXiM extension provides the advanced and specific modules

required to simulate our sensor network.

EVALUATION OF ROUTING PROTOCOLS

35

4 Evaluation of routing protocols

4.1 Introduction

The routing protocol is a fundamental piece for the network operation. It will determine

the network behavior. Furthermore, the network layer will add some additional features

depending on the protocol implementation and the network requirements

During this section, the operation and implementation of two different protocols is

offered. This fact will help to understand the diverse features that two different protocol

implementations will provide. The first one, the Direct Transmission operation, is the

simplest implementation of a routing protocol. The second one, the LEACH protocol

has acquired great importance due to the fact that it has been the base for numerous

network protocol improvements. In this manner, the protocol’s behavior and its main

parameters can be studied in order to obtain any improvement. In this chapter, the two

mentioned algorithm are described and analyzed. This analysis will help us with a better

understanding of the protocol’s behavior for a further design and implementation into

the chosen simulator, and therefore, to obtain a completely coherent protocol

implementation from with the given description

4.2 Direct Transmission

4.2.1 Direct Transmission operation description

The Direct Transmission protocol is the simplest routing protocol. In the Direct

Transmission protocol, the base station serves as the destination node to all the other

nodes in the network as showed on Figure 23, where the end user can access the sensed

data. The nodes only remain active during the data transmission to the base station.

Consequently, won’t spend energy on receiving the messages from the other nodes, but

they will only spend the minimum data on listening the channel and, therefore, they will

spend their battery capacity on sending messages to the base station.

Figure 23: Network interconnection in Direct Transmission protocol

On the other hand, when a sensor node transmits data directly to the base station, the

energy loss incurred can be quite extensive depending on the location of the sensor

nodes relative to the base station. As a result, the Direct Transmission protocol’s

complexity can be negligible and its implementation quasi-trivial, but it is also the least

energy efficient protocol in most cases.

EVALUATION OF ROUTING PROTOCOLS

36

4.2.2 Direct Transmission protocol implementation

4.2.2.1 Direct Transmission NED implementation

The Direct Transmission NED description (DirectTransmission.ned) is implemented as

a simple module extending the BaseLayer module and implementing the

IBaseNetwLayer interface
1
.

The first parameter that contains the Direct Transmission description is a direct

reference to the Direct Transmission C++ class. The description also contains three

parameters required by the IBaseNetwLayer interface and used by some Direct

Transmission superclasses (from Direct Transmission C++ implementation).

4.2.2.2 Direct Transmission C++ implementation

The Direct Transmission C++ implementation consists of two different files: the

DirectTransmission.h file, which contains forward declarations of variables, structures

and subroutines, and DirectTransmission.cc, which contains the implementation the

Direct Transmission protocol operation.

DirectTransmission.h file

The Direct Transission class implementation extends from the BaseNetwLayer class.

The implementation of this simple protocol only contains one variable declaration:

 int droppedMsgs;

This variable, also declared into the LEACH implementation, is a counter which

accumulates the number of dropped messages that comes from the MAC layer. On the

next chapter is detailed the whole utility and use of this variable.

Next are declared the subroutines required by Direct Transmission. These are divided in

two parts: a public subsection and a protected subsection. The public subsection only

contains one declaration:

virtual void finish();

This function performs value recording in some prefixed output files.

Finally, the protected subsection is declared with three subroutine declarations:

1
 For further information, visit the MiXiM API reference:

http://mixim.sourceforge.net/doc/doxy/main.html

simple DirectTransmission extends BaseLayer like IBaseNetwLayer

{

 parameters:

 @class(DirectTransmission);

 //Required *IBaseNetwLayer* parameters

 bool debug; // debug switch

 bool stats; // stats switch

 double headerLength @unit(bit); // length of the network

 // packet header (in bits)
}

EVALUATION OF ROUTING PROTOCOLS

37

The first declaration, handleLowerControl, handles the message that comes from the

lower layer, i.e., the MAC layer. The second declaration, encapsMsg, is in charge of

encapsulating a higher packet layer into a network packet with the associated header.

And finally, a third subroutine is declared. handleHostState is in charge of handling

the host state change when a change announce is received. As it is shown above, the

handleHostState subroutine is fully defined and does nothing. This fact means that the

network layer won’t be affected by any host state change, but the declaration of this

function is required.

DirectTransmission.cc file

The DirectTransmission.cc file implements the functionality of Direct Transmission

protocol. This protocol, owing to the fact that implements only one-hop message

transmission, it doesn’t add any special routing feature and this protocol is quasi

implemented by the BaseNetwLayer class. Therefore, it is only needed to add some

modifications to obtain the implementation within the simulated WSN.

The unique class needed to complete the Direct Transmission operation is:

NetwPkt* encapsMsg(cPacket*);

This subroutine encapsulates the packet received from the upper layer into a network

packet ready to send to the lower layer. Because of the fact that the subroutine

implemented into the BaseNetwLayer class doesn’t know how to discover
2
 the base

station network and MAC address, the implemented subroutine execute the packet

encapsulation with the knowledge of the base station network and MAC address defined

into the class ExtendedAddress.h.

Finally, the handleLowerControl and finish functions are described. The first one,

handleLowerControl, handles the MAC control messages, but it develops a special

management with the packets that indicates a packet dropped from the MAC layer: if

handled control message kind is BaseMacLayer::PACKET_DROPPED, the droppedMsgs

counter value will be increased by 1 in order to count the quantity of dropped MAC

messages and measure the correct integration between the MAC and the network layer.

The second function, finish, completes the monitor of the droppedMsgs variable by

recording the final value into an output file at the end of the simulation.

2
 For further information, visit the BaseArp class at the MiXiM API reference:

http://mixim.sourceforge.net/doc/doxy/main.html

...

protected:

 /** @brief Handle control messages from lower layer */

 virtual void handleLowerControl(cMessage* msg);

 /** @brief Encapsulate higher layer packet into an NetwPkt*/

 virtual NetwPkt* encapsMsg(cPacket*);

 void handleHostState(const HostState& state) {} //does nothing

};

EVALUATION OF ROUTING PROTOCOLS

38

4.3 The LEACH protocol

4.3.1 LEACH algorithm’s description

LEACH appears as one of the first cluster-based protocols which achieve to distribute

the energy load among the entire sensor network. The main feature of LEACH is based,

contrary to static clustering, on the randomized rotation of local cluster base stations

(also called cluster heads) in order to distribute the data gathering and high power

transmission (to the base station) energy consumptions. In this manner, LEACH enables

scalability and robustness for dynamic networks, and incorporates data fusion into the

data gathering process to reduce the amount of data to be transmitted.

Figure 24: LEACH cluster type organization

Detailed below is a summary of LEACH algorithm description. The whole description

of LEACH operation and further details can be found in [24] and [48]. The operation of

LEACH is divided into rounds, and the rounds are also divided in different phases.

Each LEACH round begins with a set-up phase, where cluster heads are randomly

chosen and the cluster are organized as showed on Figure 24, and continues with a d

steady-state phase, where nodes transmit their data to their respective cluster heads, and

after that the cluster heads transmit the whole cluster “compressed” data to the base

station. The phases that make up the algorithm operation are: Advertisement Phase,

Cluster Set-Up Phase, Schedule Creation Phase and Data Transmission Phase (steady-

state phase).

Set-up Steady-state Set-up Steady-state

A
d

v
e

rt
is

e
m

e
n

t

C
lu

st
e

r
S

e
t-

U
p

S
ch

e
d

u
le

 C
re

a
t.

S
lo

t
1

S
lo

t
2

…

S
lo

t
n

… …

A
d

v
e

rt
is

e
m

e
n

t

C
lu

st
e

r
S

e
t-

U
p

S
ch

e
d

u
le

 C
re

a
t.

S
lo

t
1

S
lo

t
2

…

S
lo

t
n

…

Time

Round n - 1 Round n

Figure 25. Time line showing LEACH operation

EVALUATION OF ROUTING PROTOCOLS

39

4.3.1.1 Advertisement Phase

When a new round begins, each node decides whether or not to become cluster head for

the current round. This decision is made by the node n by choosing a random number

between 0 and 1. The node becomes a cluster head if the randomly obtained value is

less than a threshold T(n). The threshold is set by the next formula:

���	
 � �1 � � � �� ��� 1�� if n � G
0 otherwise �

In the above formula, P = the desired percentage of cluster heads, determined a priori

(e.g., 0.05), r = the current round, and G is the set of nodes that have not been cluster

head in the last 1/P rounds. Thus, using this formula, each node will be cluster head at

some point within 1/P rounds.

The nodes that have elected itself a cluster-head for the current round broadcasts and

advertisement message to the rest of the nodes. This message is sent by using a CSMA

MAC protocol and the same transmit energy (low power energy) for all the cluster-head

nodes. The non-cluster-head nodes must keep their receivers on during this phase to

hear the advertisements of all the cluster-head nodes.

4.3.1.2 Cluster Set-Up Phase

The non-cluster-head nodes decide the cluster-head to which it will belong for this

round on the basis of the received signal strength of the advertisement message. The

non-cluster head nodes will choose the cluster-head which sent the message with the

largest signal strength heard. This fact means the election of the cluster-head to whom

the minimum amount of transmitted energy is needed for communication.

After the decision is taken, each node must inform its respective cluster-head that it will

be a member of the cluster. This message is sent to the cluster head by using a CSMA

MAC protocol. For that reason, all cluster-head nodes must keep their receivers on.

4.3.1.3 Schedule Creation Phase

When each cluster-head has received all the messages for nodes that would like to be

included in its cluster, they create a TDMA schedule. This schedule indicates when each

cluster member can transmit. The schedule is broadcast back to the nodes in the cluster.

4.3.1.4 Data Transmission Phase

Once the TDMA schedule is fixed, nodes can transmit during their allocated

transmission time to the cluster head if they have data to send. The radio of the nodes

which are waiting to the node’s allocated transmission time or the next round can be

turned off in order to save energy. The cluster-head nodes must keep its receiver on to

receive all the data from the nodes in the cluster. When all the data has been received,

the cluster-head node performs data fusion tasks to compress the amount of data, and

next this data is sent to the base station.

After a certain time (determined a priori), a new round begins with the Advertisement

Phase as described in Section 0

EVALUATION OF ROUTING PROTOCOLS

40

4.3.2 LEACH algorithm’s implementation

The development of LEACH under OMNeT++ requires a NED implementation

(module description) and a C++ implementation (functionality description)

4.3.2.1 LEACH NED implementation

The LEACH NED description (LEACH.ned) is implemented as a simple module

extending the BaseLayer module and implementing the IBaseNetwLayer interface
3
.

The first parameter that contains the LEACH description is a direct reference to the

LEACH C++ class. The description also contains three parameters required by the

IBaseNetwLayer interface and used by some LEACH superclasses (from LEACH C++

implementation).

Next appear the parameters which determine the LEACH protocol’s behavior:

• P, the percentage of cluster-head nodes, is a real value between 0 and 1.

• roundTime, the LEACH entire round time, is a real value expressed in seconds.

• slotTime, the time for packet transmission within the Data Transmission Phase,

is a real value expressed in seconds.

• compressionIndex, the index of data compression carried out by the cluster-

head nodes, is a real value between 0 and 1.

• waitingTime, the maximum time that nodes wait to go to the next algorithm’s

phase, is a real value expressed in seconds.

• maxClusterSize, the maximum number of nodes that can contain a cluster, is

an integer value.

3
 For further information, visit the MiXiM API reference:

http://mixim.sourceforge.net/doc/doxy/main.html

simple LEACH extends BaseLayer like IBaseNetwLayer

{

 parameters:

 @class(LEACH);

 //Required *IBaseNetwLayer* parameters

 bool debug; // debug switch

 bool stats; // stats switch

 double headerLength @unit(bit); // length of the network

 //packet header (in bits)

 //LEACH parameters

 double P; //percentage of CHs [0-1]

 double roundTime @unit(s); //LEACH whole round time (in seconds)

 double slotTime @unit(s); //slot transmission time (in seconds)

 double compressionIndex; //Index of compression [0-1]

 double watingTime @unit(s); //Max time for going next stage (in s)

 int maxClusterSize; //Maximum number of nodes per cluster

}

EVALUATION OF ROUTING PROTOCOLS

41

4.3.2.2 LEACH C++ implementation

The LEACH C++ implementation consists of two different files: the LEACH.h file,

which contains forward declarations of variables, structures and subroutines, and

LEACH.cc, which contains the implementation of LEACH algorithm behavior.

LEACH.h file

The LEACH class implementation extends from the BaseNetwLayer class.

The implementation begins with some enum structures. The first one showed above,

SelfMessages, contains the different timers used during the operation. For instance,

TIMER_NEW_ROUND defines the message kind when a new LEACH round starts after

roundTime seconds, and TIMER_SEND_DATA defines the message kind when the slot to

send data is reached. The second one, Phases, contains the different phases which

passes the LEACH algorithm. This will help to avoid incoherences, for example, when

a node receives a kind of message in a phase at which it shouldn’t receive.

Next are declared the required variables for the correct implementation. The first three

variables are headerLength, the length of the network packet header, arp, a pointer to

the address resolution module, and myNetwAddr, the node network address. After these

variables, common to any network layer implementation, the LEACH variables section

begins. This section contains the needed variables to implement the LEACH algorithm.

 ...

 //------------------------------------

 // LEACH variables

 //------------------------------------

 /** @brief Percentage of Cluster Heads */

 double P;

 /** @brief Round number */

 int currentRound;

 ...

 /** @brief Timer to go to the next stage */

 cMessage* timerNextStage;

 ...

class LEACH: public BaseNetwLayer {

public:

 ...

 enum SelfMessages { //Timers to go to different phases

 TIMER_NEW_ROUND, TIMER_JOIN_CH,

TIMER_CREATE_TDMA_SCHEDULE, TIMER_SEND_DATA,

 };

 enum Phases { //LEACH phases

 ADVERTISEMENT, CLUSTER_SETUP,

 SCHEDULE_CREATION, DATA_TRANSMISSION,

};

...

EVALUATION OF ROUTING PROTOCOLS

42

Detailed below are the LEACH declared variables:

• P, MAX_CLUSTER_SIZE, compressionIndex, roundTime, waitingTime and

slotTime are the variables to get the input parameters detailed in Section

4.3.2.1.

• currentRound indicates the current round number (the first round is 0), and

lastRoundCH indicates the last round number when the node was cluster-head

(-1 indicates never).

• currentPhase indicates the index of the current phase (referred to the Phases

enum structure).

• myCH stores the address of the current cluster-head of a node. If the node is

cluster-head during the current round, myCH will contain the BS address.

• packetToSend is a pointer to the next packet to send to the base station, i.e., the

last packet received from the application layer.

• distanceToCHs is a map structure used by non-cluster-head nodes. It associates

cluster-head node network addresses with the distance to them. This structure is

required to choose the best cluster-head node, i.e., the nearest cluster-head node.

• membersCH and netwQueue are two lists used by cluster-head nodes. The first

variable contains the addresses of all the cluster members. The second variable

stores the packets of all cluster members. After the reception of all the packets,

the data is compressed and sent to the base station.

• timerNextRound and timerNextStage are two pointers to message variables

which work as timers. The first variable is employed to activate each new

LEACH round. The second variable is employed to move a node within

different stages when message gathering is required, e.g., when a non-cluster-

head node collects all the cluster-head announces or a cluster-head collects all

the “join” messages from non-cluster-head nodes.

• droppedMsgs is a counter which accumulates the number of dropped messages

that comes from the MAC layer.

Finally, the subroutines are declared. This section is divided into three parts: a public, a

protected, and a private subsection. The public subsection contains only two functions:

initialize function, which is initializes the LEACH variables and their associated

superclasses, and finish function, which performs output value recording tasks.

The protected subsection contains the functions related with message handling.

...

protected:

 /** @brief Handle self messages */

 void handleSelfMsg(cMessage* msg);

 /** @brief Handle messages from upper layer */

 virtual void handleUpperMsg(cMessage* msg);

 ...

 /** @brief Handle control messages from lower layer */

 virtual void handleLowerControl(cMessage* msg);

 ...

EVALUATION OF ROUTING PROTOCOLS

43

Next are described the declared functions:

• handleSelfMsg handles the messages sent to itself. The self message within the

LEACH protocols work as timers, e.g., the timer used on launching a new

LEACH round, or the timer used when the transmission slot is reached.

• handleUpperMsg and handleLowerMsg handle the messages which comes from

the upper and the lower layer, i.e., from the application and the MAC layer.

• encapsMsg is in charge of encapsulating a higher packet layer into a network

packet with the associated header.

• handleLowerControl handles the control messages that comes from the lower

layer, i.e., the MAC layer.

The last subsection is the private subsection. It contains the function declarations

associated to the LEACH operation.

Below are described the mentioned functions:

• calculateThreshold calculates the threshold for a node within the current

stage. It is calculated on the beginning of the Advertisement Phase.

• advertisementPhase, clusterSetUpPhase, scheduleCreation and

dataTransmission contains the protocol operation during the different phases.

advertisementPhase and dataTransmission contains functionality for

cluster-head and non-cluster-head nodes but clusterSetUpPhase only contains

functionality for non-cluster-head nodes, and scheduleCreation functionality

for cluster-head nodes. This is due to the fact that, for example, during the luster

Set-Up Phase, only the non-cluster-head nodes initiate the phase and prepare a

“join” message to send to the best cluster-head. Therefore, cluster-head nodes

only must wait for the “join” messages. That’s why their phase functionality is

described into the handleLowerMsg function, when the message is received. In

the case of the Schedule Creation Phase, the situation is the same but on the

other way round with non-cluster-head and cluster-head nodes.

• setHighTxPower sets the transmitting power to a high value in order to make a

long-distance cluster-head – base station transmission. setLowTxPower gets

back the normal transmitting power.

...

private:

 /** @brief Calculates the threshold value to be Cluster Head */

 double calculateThreshold();

 /** @brief Executes the Advertisement Phase steps */

 void advertisementPhase();

 ...

 /** @brief Sets the MAC transmission power to low range*/

 void setLowTxPower();

};

EVALUATION OF ROUTING PROTOCOLS

44

LEACH.cc file

The LEACH.cc file implements the whole functionality of LEACH protocol.

The implementation of LEACH protocol is designed as follows: the LEACH network

messages interchange carries out the cluster set-up, whereas the use of timers performs

the switching between different phases or LEACH rounds. For a better understanding,

the LEACH functionality has been divided into C++ functions with the same LEACH

phase name. Therefore, the LEACH functionality is implemented by means of four

functions that implement the majority of the protocol behavior, four functions that carry

out different message handling tasks, and five functions of small functionality.

Before the protocol operation, the LEACH class requires the call of the next function:

void LEACH::initialize(int stage);

This function is called two times (during two initializing stages). During the first

initialization stage, all the parameters from the NED file are got and the addresses,

counters and other variables are initialized. During the second initialization stage, the

timer for the first LEACH round is activated.

Detailed below are the functions which implement the LEACH functionality:

• void LEACH::advertisementPhase(): this function implements the LEACH

Advertisement Phase. The function starts with a call to the function

calculateThreshold. If a random obtained value between 0 and 1 is less than

the returned threshold, the node became cluster-head: it will update the

lastRoundCH variable and will broadcast a “CH announce” message (with

CH_STATUS_BROADCAST message kind, the node source address –myNetwAddr–

and L3BROADCAST address as destination address). If the random value is higher,

the node will be non-cluster-head: it will wait for “CH announces”. Here a timer

is activated (timerNextStage). If after a waitingTime the node don’t receive

any “CH announce”, it goes to the next phase.

• void LEACH::clusterSetUpPhase(): this function implements the LEACH

Cluster Set-Up Phase. Within this phase, only the non-cluster-head node’s

behavior is implemented. Thanks to the distanceToCHs structure, the node

chooses the nearest cluster-head node, sets myCH variable and sends it a “join

CH” message (with JOIN_CH message kind, the node source address -

myNetwAddr– and myCH address as destination address). After sending the

message, non-cluster-head nodes wait to the “TDMA schedule” message. The

Cluster Set-Up Phase functionality for cluster-head nodes is implemented into

the handleLowerMsg function.

• void LEACH::scheduleCreation(): this function implements the LEACH

Schedule Creation Phase. Within this phase, only the cluster-head node’s

behavior is implemented, and they will create a “TDMA schedule” message

(with TDMA_SCHEDULE message kind, the node source address –myNetwAddr–

and L3BROADCAST address as destination address). This packet will contain a list

with the cluster members’ network addresses, i.e., the transmitting slot position

associated to each cluster member. After broadcasting this packet, cluster-head

nodes will wait to receive all the data packets from the cluster members to

perform data compression and send the data to the BS. The Schedule Creation

EVALUATION OF ROUTING PROTOCOLS

45

Phase functionality for non-cluster-head nodes is implemented into the

handleLowerMsg function.

• void LEACH::dataTransmission(): this function implements the LEACH

Data Transmission Phase. For the non-cluster-head nodes, when the

transmission slot is reached, the procedure consists on setting the packet

addressee and sending the packetToSend stored packet if a new application

packet has been received, and waiting for a new LEACH round. When cluster-

head nodes start to execute this function, they will have received all the non-

cluster-head node data packets. Therefore, they get all the data from the stored

packets and apply data compression. This process is simulated by creating a data

packet whose packet size will be the application of the compression index after

the sum of all the cluster member stored data packet sizes. This packet will have

the same message kind of any of the data stored packets, the cluster-head node

source address –myNetwAddr– and L3BS address as destination address. Before

sending the packet, the cluster-head nodes call the setHighTxPower function to

be able to reach the BS. After sending the packet, cluster-head nodes switch to

normal transmitting power and wait for a new LEACH round.

Next are described the message handling functions:

• void LEACH::handleUpperMsg(cMessage* msg): this function only calls the

encapsMsg function with the received application packet as parameter, and

stores the network packet resulting from the call. The message will be sent on

the next transmission slot if the application layer doesn’t send another message

before. In this case, the last stored message will be overwritten.

• void LEACH::handleLowerMsg(cMessage* msg): this function handles the

packets that comes from the MAC layer. As it was mentioned above, the

functionality of some phases is implemented into this function. Therefore, this

function is responsible of the correct communication between cluster-head and

non-cluster-head nodes. The function’s behavior depends on the message kind:

� CH_STATUS_BROADCAST messages should be managed by non-cluster-

head nodes during the Advertisement Phase. They, by means of a

“special” class, Distance.h, calculate the distance to the message source,

which is a cluster-head node, and stores it into the distanceToCHs

structure. After that, they reactivate the timerNextStage with a new

waitingTime to receive new “CH announces” or going to the Cluster

Set-Up Phase. If a cluster-head node receives this message, it just deletes

it.

� JOIN_CH messages should be managed by cluster-head nodes during the

Cluster Set-Up Phase. They save the message source into the membersCH

address if the MAX_CLUSTER_SIZE is not reached, which means that this

node will be a cluster member. After that, they reactivate the

timerNextStage with a new waitingTime to receive new “Join CH”

messages or going to the Schedule Creation Phase. If a non-cluster-head

node receives this message, it just deletes it.

� TDMA_SCHEDULE messages should be managed by non-cluster-head nodes

during the Schedule Creation Phase. If the message source is it cluster-

head node, the non-cluster-head node look for its transmission slot. If it

EVALUATION OF ROUTING PROTOCOLS

46

doesn’t find the slot, it means that the node doesn’t belong to any cluster

and it must wait for the next LEACH round. If the node finds its slot, it

should switch its state to SLEEP mode and wait for its transmitting slot

(activates the timerNextStage with my_slot*slotTime time). If the

node has the first slot, it just calls the dataTransmission function. If a

cluster-head node receives this message, it just deletes it.

� The rest of the messages are supposed to be DATA_MESSAGE. Therefore,

only cluster-head nodes will handle this kind of messages during the

Data Transmission Phase, and they will just store the message into the

netwQueue structure. If a non-cluster-head node receives this message, it

just deletes it.

• void LEACH::handleSelfMsg(cMessage* msg): this function is in charge of

handling self messages, which are used as timers in the OMNeT++ model.

Timers are activated by cluster-head and non-cluster-head nodes depending on

the phase at which they are:

� When TIMER_NEW_ROUND is received, which is activated by all the nodes,

a new LEACH round starts. currentRound counter is increased by 1,

host state is switched to ACTIVE, timerNextRound is activated again

with roundTime time and the AdvertisementPhase function is called.

� When TIMER_JOIN_CH is received, means that non-cluster-head nodes

won’t receive any more “CH announce” message. If nodes have received

any “CH announce”, they switch to the Cluster Set-Up Phase.

� When TIMER_CREATE_TDMA_SCHEDULE is received, it means that non-

cluster-head nodes won’t receive any more “Join CH” message.

Therefore, they switch to the Schedule Creation Phase with a

scheduleCreation function call.

� When TIMER_SEND_DATA is received, which is activated by both cluster-

head and non-cluster head nodes, means that their transmission turn has

arrived. Host state is switched to ACTIVE mode, the transmission begins

with the dataTransmission function call, and host state is switched

again to SLEEP mode until the next round arrives.

• void LEACH::handleLowerControl(cMessage* msg): this function handles

the MAC control messages. If the handled control message kind is

BaseMacLayer::PACKET_DROPPED, droppedMsgs counter value will be

increased by 1.

For the rest of the functions, the description given into the above section is enough.

Finally, when the simulation has finished, a call to the next function is made:

void LEACH::finish():

This function only records the droppedMsgs value into an output file.

EVALUATION OF ROUTING PROTOCOLS

47

4.4 Conclusions

After choosing the protocols that are interesting to research about any improvement, it

is important to study how they work and how they behave. The analysis of each

protocol phase provides a global idea about how it works but also a near knowledge

about the operation step by step.

As it has been shown, the design and implementation of a new protocol is not a trivial

task. A correct design will provide a good codification architecture, which also will help

with a better understanding and ease of debugging. The implementation model should

be clear and it should use the minimum required resources in order to obtain efficient

results when the protocol operation is moved to a real implementation.

The two different protocols presented, Direct Transmission and LEACH, show a

completely different behavior. Whereas Direct Transmission offers simplicity, LEACH

provides advanced features as scalability, robustness and energy savings in most cases

at the expense of a more complex protocol implementation and network organization.

These features of each protocol are reflected into the simulation protocol’s

implementation: the Direct Transmission protocols requires a simply implementation,

whereas LEACH implementation requires a more complex node organization, message

handling and data management.

SIMULATION SCENARIOS

48

5 Simulation scenarios

5.1 Introduction

When a research requires performing any simulation, a description of the simulation

scenario and specific requirements is needed. A description of the simulation scenario

will help to understand the problem and address the solution in a more efficient way.

Furthermore, a detailed description allows reproducing the simulation scenario in

different simulation environments for any improvement or comparison study.

The implementation of the simulation scenario of this research will be build over the

MiXiM framework. This fact will help to reuse the framework modules, will provide a

faster and more robust implementation and, extending the framework functionality, the

network behavior and simulation results could be adapted to our requirements.

5.2 Description of the simulation scenarios

Direct Transmission is a protocol for WSN which offers simplicity and acceptable

results in specific circumstances and scenarios, and LEACH protocol is a self-

organizing protocol which provides good scalability. For this reason, the aim of the

present research consists on the study of the behavior of large scope WSNs with

different routing possibilities.

The present document will study the behavior of a network where nodes send data to the

base station with different network protocols. In general terms, the network will be

made up of a hundred nodes scattered randomly in a 1000×1000m area and a fixed base

station. The network nodes will contain a battery module with a predetermined battery

power and they will also have some constant speed mobility. The node radio

transmitting power will be 500mW, but the data transmissions to the base stations will

require 10W power. The MAC layer will use CSMA MAC protocol and the application

layer will generate data in a regular manner with a predetermined data generation period

and a prefixed data size. A further simulation scenario description can be found in

Appendix I. Table of Specifications of the simulation scenarios.

The simulations will obtain diverse results from two different routing protocols: Direct

Transmission and LEACH. Furthermore, the behavior within both two protocols will be

studied by means of changing the value of some important parameters like the data size,

the time between two sensing acts or the speed of the nodes.

5.3 Design and Implementation of the simulation scenarios

The simulation scenarios have been built over the MiXiM framework. In this manner, a

typical structure from a MiXiM example simulation has been taken.

SIMULATION SCENARIOS

49

5.3.1 Implementation of a network simulation step by step

The network simulation implemented in this document follows the implementation

architecture of MiXiM framework. Therefore, the general steps for the creation of a

MiXiM network are detailed
1
:

• For the creation of an OMNeT++ Project, follow the next indications from the

menu bar: File ���� New ���� OMNeT++ Project…

In the new window, select the desired project name and push “Finish” button.

• For the use of the MiXiM framework in the implementation, the MiXiM

resources should be included following the next indications from the project’s

pop-up menu: Properties ���� Project References � Select “MiXiM” project.

• The MiXiM framework contains a basic network implementation. This

implementation can serve as base for specific implementations. Therefore, the

network files should be copied from the next MiXiM folder
2
:

. /MiXiM/examples/baseNetwork

• For the creation of specific modules, the following files should be created:

� Network Description File (.ned file): this file will contain the specific

parameters, submodules, gates, etc. It can extend, and thus, specialize

parent modules. For the file creation from the pop-up menu:

New ���� Network Description File (ned)

� C++ class: following the programming principles, two files should be

created: a header class, with the variables and subroutines declaration,

and a source file, with the codification of the behavior. For the file

creation of these files from the pop-up menu: New ���� Class (OMNeT++)

• For the integration of the created modules into the network simulation, the

network description file (BaseNetwork.ned) or the node description file

(BaseNode.ned) must be edited with the specific module inclusion.

• The following consists on editing the content of the configuration file

(omnetpp.ini) should be edited with the initialization of the network parameters

and the declaration of the specific modules created for the network simulation.

• The last step consists on running the simulation of the network created. Before

launching the execution, the project must be built following the next indications

from the menu bar or the pop-up menu: Project ���� Build Project

For the simulation execution, the next steps should be followed from the

omnetpp.ini file’s pop-up menu: Run as ���� OMNeT++ Simulation…

The Tkenv runtime environment will appear with the created simulation.

1
 For information about the OMNeT++ operation basics and the implementation of simple networks visit:

http://www.omnetpp.org/doc/omnetpp41/tictoc-tutorial/
2
 For further information about the base network MiXiM implementation visit:

http://sourceforge.net/apps/trac/mixim/wiki/HowToStart

5.3.2 Implementation of the simulation network

Our simulation scenarios have

The network structure is defined into the

Figure

All the modules from the above architecture are from MiXiM framework. Next is

described their function:

• BaseNetwork: is the simulation parent module (the

• ExtendedBaseWorldUtility:

like playground size

(adds some value recording at the end of the simulation

nodes during the network lifetime

• ConnectionManager:

their connections accordingly

it doesn’t mean that they can understand it.

• BatteryNode: defines the

• Node: defines the base station’s structure.

The node structure is defined into the

the NIC definition). The node network

Figure

The functionality of the node network

• DataGenerator: is responsible of “sensing” and data generation. The sensing

period (time between two sensing samples)

must be given as input parameter

Extended-

BaseWorldUtility
ConnectionManager

DataGenerator like

IBaseApplLayer

SIMULATION SCENARIOS

Implementation of the simulation network architecture

s have been built from the baseNetwork simulation example.

is defined into the BaseNetwork.ned as showed below:

Figure 26. Network simulation structure

from the above architecture are from MiXiM framework. Next is

is the simulation parent module (the System module).

BaseWorldUtility: contains global utility methods and parameters

like playground size. Extends from BaseWorldUtility MiXiM’s framework

(adds some value recording at the end of the simulation, as the number of alive

nodes during the network lifetime).

ConnectionManager: checks if any two hosts can hear each other and updates

s accordingly. If two hosts are connected and can hear anything,

it doesn’t mean that they can understand it.

defines the node’s structure of our simulation.

defines the base station’s structure.

The node structure is defined into the BaseNode.ned file (and the file BaseNic.ned

node network architecture is organized as follows:

Figure 27. Node network structure

node network modules is detailed below:

is responsible of “sensing” and data generation. The sensing

me between two sensing samples) and other values like the data size

must be given as input parameters.

BaseNetwork

ConnectionManager
node[numNodes]:

BatteryNode

BatteryNode

<NetwProtocol> like

IBaseNetwLayer
BatteryNic

BatteryCSMAMacLayer

50

mulation example.

below:

from the above architecture are from MiXiM framework. Next is

module).

contains global utility methods and parameters

MiXiM’s framework

, as the number of alive

checks if any two hosts can hear each other and updates

. If two hosts are connected and can hear anything,

BaseNic.ned for

is organized as follows:

is responsible of “sensing” and data generation. The sensing

and other values like the data size

baseStation:

Node

BatteryPhyLayer

SIMULATION SCENARIOS

51

• <NetwProtocol>: carries out the networking functions. Into this module will be

present two different possibilities in different simulations: DirectTransmission

and LEACH. The complete functionality of these two possibilities within this

module is detailed in Section 4.2 and 4.3 respectively.

• BatteryNic: it simulates the Network Interface Controller (NIC). It is made up

of the MAC and the PHY layer:

� BatteryCSMAMacLayer: implements the CSMA MAC protocol.

Extends from CSMAMacLayer MiXiM’s framework (adds some

transmitting power switching capacity required by LEACH to make high

power transmission to the base station).

� BatteryPhyLayer: implements the physical layer. Extends from

PhyLayer MiXiM’s framework (adds some parameters for energy

consumption calculation
3
).

The node network modules are interconnected similarly as the OSI network

architecture. Therefore, when a message is sent, it will start from the application layer;

will go through the network and MAC layer until it reaches the physical layer. When a

message is received, the inverse procedure takes place.

Figure 28. Internal node structure

Internally, the MiXiM framework implements this behavior by means of the handle

message functions. For instance, when a layer sends a packet to the lower layer through

the sendDown call, the lower layer will handle the message by means of the

handleUpperMsg function, and when a layer sends a packet to the upper layer through

the sendUp call, the upper layer will handle the message by means of the

handleLowerMsg function. For the control message interchange, the operation is the

same, but using the sendControlDown, sendControlUp calls and the handleUpperMsg

and handleUpperControl functions.

3
 A special importance for the evaluation of the simulation scenario has the energy consumption model.

For further information, see Section 6.2

Furthermore, the nodes contain some other functionality:

Figure

Next is detailed the battery,

• BaseUtility: this mandatory module

a black board like subscribe and publish feature which is used t

information.

• BaseArp: used by BaseNetwLayer

• ExtendedConstSpeedMobility

defines current position and the movement pattern of the node.

class extends from

linear constant speed

• Battery and MyBatteryStats

module for collecting battery statistics.

must be given as input parameters

The base station structure is

architecture is also made up of the application layer, the network layer, the MAC layer

and the physical layer. The differences consist on the application and the network layer:

the base station is only data receiver (data drain). Therefore, its application layer won’t

generate any data (this class will be called

route any packet: they will only handle

class will be called BSNetwLayer

constraints. Thus, the base station will use the

of CSMAMacLayer which recognizes the BS MAC and network addresses,

PhyLayer module.

Owing to the base station doesn’t have battery constraints; it doesn’t implement a

battery module and battery statistics collector module. Due to the mobility module is

mandatory for the node implementation, the base station will use the

ExtendedConstSpeedMobility

5.3.3 Initialization of the module network parameters

The initialization of the network parameters is made through the

a simulation initialization file required to set the initial simulation values. Next is shown

a brief example of the simulation’s

BaseUtility BaseArp

SIMULATION SCENARIOS

the nodes contain some other functionality:

Figure 29. Mobility and utility node modules

battery, mobility and utility node modules:

his mandatory module contains node wide utility methods, mainly

a black board like subscribe and publish feature which is used to publish statistic

BaseNetwLayer and BaseMacLayer for address resolut

ExtendedConstSpeedMobility: IBaseMobility is a mandatory module which

defines current position and the movement pattern of the node.

class extends from ConstSpeedMobility MiXiM’s framework, which defines

speed mobility (adds some minor required functionality).

and MyBatteryStats: implements a simple battery module and a utile

module for collecting battery statistics. The battery capacity and other values

must be given as input parameters

e is quite similar to the node structure. The base station network

architecture is also made up of the application layer, the network layer, the MAC layer

and the physical layer. The differences consist on the application and the network layer:

ation is only data receiver (data drain). Therefore, its application layer won’t

(this class will be called BSApplLayer), and its network layer won’t

route any packet: they will only handle messages coming from the lower layer

BSNetwLayer). Furthermore, the base station doesn’t have battery

constraints. Thus, the base station will use the BSCSMAMacLayer, a simple subclass

which recognizes the BS MAC and network addresses,

Owing to the base station doesn’t have battery constraints; it doesn’t implement a

battery module and battery statistics collector module. Due to the mobility module is

mandatory for the node implementation, the base station will use the

Mobility implementation with a speed value of 0.

Initialization of the module network parameters

The initialization of the network parameters is made through the omnet.ini

file required to set the initial simulation values. Next is shown

example of the simulation’s omnet.ini file:

BatteryNode

BaseArp

Extended-

ConstSpeedMobility

like IBaseMobility
Battery

52

contains node wide utility methods, mainly

o publish statistic

for address resolution.

andatory module which

defines current position and the movement pattern of the node. The selected

MiXiM’s framework, which defines a

(adds some minor required functionality).

a simple battery module and a utile

The battery capacity and other values

The base station network

architecture is also made up of the application layer, the network layer, the MAC layer

and the physical layer. The differences consist on the application and the network layer:

ation is only data receiver (data drain). Therefore, its application layer won’t

, and its network layer won’t

messages coming from the lower layer (this

. Furthermore, the base station doesn’t have battery

, a simple subclass

which recognizes the BS MAC and network addresses, and the

Owing to the base station doesn’t have battery constraints; it doesn’t implement a

battery module and battery statistics collector module. Due to the mobility module is

mandatory for the node implementation, the base station will use the

implementation with a speed value of 0.

omnet.ini file. This is

file required to set the initial simulation values. Next is shown

MyBatteryStats

SIMULATION SCENARIOS

53

The omnet.ini file is divided into different sections. The first and mandatory section is

the [General] section. This section will contain the default values for all the

parameters of the network modules. Furthermore, the General subsection is divided into

the next subsections
4
:

• Simulation parameters: contains general simulation parameters for the parent

(System) simulation module, e.g., number of random number seeds, simulation

playground size, etc.

• WorldUtility and Channel parameters: contains parameters that detail the node

interconnection within the simulation scenario, like the carrier frequency of the

channel or the signal attenuation threshold.

• Base station and node common module parameters: contains the common values

for the parameters that base station and nodes share. For instance, the physical

and MAC layer specific values for a correct communication, or the MAC,

network and application header size to make a right packet decapsulation.

• Specific base station and node module parameters: contains values for the

specific base station and node constraints. For instance, the base station position

is fixed and it doesn’t send any data. Therefore, its application and network layer

will be simpler than the node layers. The nodes have additional features and

constraints like constant mobility and battery consumption. Furthermore, they

perform data generation and use specific routing protocols.

Besides the General section, the file can contain other sections. These sections would

contain specific values to perform different simulations and tests. As a result of this, the

network behavior after the modification of some significant parameters can be studied

in an easier way. For instance, the omnet.ini file of this simulation contains some other

sections to study the battery consumption by changing some parameters like the sensing

time, the data size or the nodes speed.

The next sections to the General section are declared as follows:

[Config SpecificConfigName]

4
 These subsections, not required by the simulation environment, establish an internal file structure.

[General]

cmdenv-config-name = perftest

cmdenv-express-mode = true

ned-path = ../../../MiXiM/base;../../../MiXiM/modules; {...}

network = baseSim

Simulation parameters #

num-rngs = 1

seed-0-mt = 1200

baseSim.playgroundSizeX = 1000m

baseSim.playgroundSizeY = 1000m

baseSim.playgroundSizeZ = 100m

baseSim.numNodes = 10

...

SIMULATION SCENARIOS

54

These sections don’t need to specify all the parameters like in the General section, but

only the specific parameters of the simulation. Thus, the non-specified parameters will

be taken from the General section and, therefore, the desired behavior with a shorter

and better omnet.ini file structure will be managed.

As an example, these sections are used in the automation of the simulations to obtain

the simulation results. In the omnetpp.ini used in this project, after the General section,

appear diverse sections for the different simulation executions.

All these sections, for a fixed data size and time between two sensing acts, carry out the

execution with different node speed values.

5.4 Conclusions

Making a good description of the simulation scenarios is a labor which helps

researchers and developers to understand the problem basis and circumstances and get a

fast problem’s knowledge.

The design and implementation of the simulation scenarios follows the network

construction architecture recommended by MiXiM. This fact helps to make use of the

offered reusability principles, obtain a faster and more robust implementation and

understand in a faster manner the network architecture for any future studio or

development over it. Therefore, making a correct design and implementation, the

network’s behavior monitoring task detailed on the next chapter will be simpler and

easier.

[Config Packet256sensing30s]

output-scalar-file = ${resultdir}/256bits/sensing=30s/v=${runnumber}s.sca

output-vector-file = ${resultdir}/256bits/sensing=30s/v=${runnumber}s.vec

baseSim.*.appl.headerLength = 256bit

baseSim.node[*].appl.sensingTime = 30

baseSim.node[*].mobility.speed = ${0, 1, 2, 4}mps

[Config Packet256sensing60s]

...

[Config Packet1024sensing120s]

...

EVALUATION OF THE SIMULATION SCENARIOS

55

6 Evaluation of the simulation scenarios

6.1 Introduction

The simulations of the described scenarios will describe how the network behaves.

Therefore, it is very important to analyze which factors or parameters will provide a

general idea about the protocol operation and which will also provide the specific values

that will allow carrying out an adequate analysis of results.

After choosing the parameters to analyze, it can be useful to hazard which kind of

results will be obtained and why these results will be obtained. This fact will help to get

an approximation how will operate the network and how will the results look like.

6.2 Radio model

For the current simulation, a simple radio model has been taken from [24]. The

described model in the referred source assumes energy dissipation of Eelec = 50 nJ/bit to

run the transmitter or receiver circuitry and Eamp = 100pJ/bit/m
2
 for the transmit

amplifier to achieve an acceptable Eb/No (Signal to Noise Ratio).

Table 3. Radio characteristics

Operation Energy dissipated

Transmitter Electronics(ETx-elec)

Receiver Electronics (ERx-elec)

(ETx-elec = ERx-elec = Eelec)

50nJ/bit

Transmit Amplifier (Eamp) 100pJ/bit/m
2

It is also assumed an r
2
 energy loss due to the channel transmission. Thus, to transmit

and receive a k-bit message a distance d using this radio model, the radio expends: �����, �	
 �� �! � � " �#$% � � � �& �'���	
 �� �! � �
The value of these parameters makes the message transmission and reception not low

cost operations. Therefore, the protocols should minimize the number of transmit and

receive operations by means of switching its state between active and sleep (or even

idle) when required in order to minimize the energy consumption.

In order to simplify the model and measure only the routing protocol energy

consumption, it is assumed that the rest of the modules like the mobility or the data

sensing and processing module don’t have any energy consumption.

EVALUATION OF THE SIMULATION SCENARIOS

56

6.3 Monitoring the network’s behavior

The quality of the obtained results will depend on the network aspects to monitor. For

this research, it results very important to know how is carried out the energy

consumption in the simulated network, and also why is dissipated such amount of

energy. Therefore, it has special interest to monitor the following network aspects:

• Number and percentage of alive nodes during the network lifetime: these

characteristics will show when the nodes die, and hence, how many nodes are

alive during the network lifetime. This will illustrate the routing protocol’s

energy efficiency.

• Number of transmissions by each node: this attribute will indicate the amount of

data sent by nodes during their lifetime, and thus, the network’s balance. For

instance, if there is a big difference between the total transmissions of two

network nodes (bigger than 2 times), it would mean that the difference between

the two nodes lifetime is significant. Therefore, if the nodes with the lower

lifetime are located in a nearby distance between them, the data sensing from

these areas can’t be obtained.

• Node lifetime: this parameter will show how long will be the node, i.e., how

much time will remain alive. This parameter is useful to do diverse comparisons,

for example, the difference when the first or the last node dies between two

protocols, even the difference between when the first and the last node dies into

the same protocol.

6.4 Expected results

6.4.1 General results

The simulation results will depend on the three parameters mentioned in Section 7.2 and

the Appendix I. Table of Specifications of the simulation scenarios: the speed of the

nodes, the size of the generated data and the frequency of the generated data.

Amongst the simulation variables mentioned above, the most decisive parameter into

the simulation results will be the network node speed. This parameter introduces two

completely different scenarios in terms of node mobility:

• Static node network: when the value of this parameter is 0, it indicates that the

network nodes are static. In a large scope WSN, there will be a big difference

between nodes’ lifetime depending on the distance to the base station. I.e., the

nodes located far from the base stations will spend a large amount of energy in

their transmission, whereas the nodes near to the base station will spend a lower

amount of energy in the transmissions and, therefore, their lifetime will be much

longer. Therefore, there will be a big difference between when the first node and

the last node dies. With the use of different routing protocols, two different

scenarios and behaviors will be obtained:

� With Direct Transmission protocol, the simulation results should show

that the number of alive nodes decreases in an exponential manner due to

the fact that the node distance to the base station influences quadratically

into the energy consumption.

EVALUATION OF THE SIMULATION SCENARIOS

57

� With LEACH protocol, the simulation results also should show that the

number of alive nodes decreases in an exponential manner, but with a

lower slope. This is because of in each round, only the cluster head nodes

transmit to the base station. As the cluster head nodes store all the cluster

members’ messages, the cluster head nodes located far from the base

station will die much earlier than those located near to the base station.

• Dynamic node network: when the value of the speed parameter is greater than 0,

the network nodes have constant movement. When the speed value is increased,

the nodes tend to travel across the entire simulation field. Hence two new

scenarios different from the static node network are obtained again:

� With Direct Transmission protocol, the nodes’ lifetime will become

closer to each other because they transmit messages to the base station

from different places. This fact involves that also the moment when the

first node dies and the last node dies will become closer.

� With LEACH protocol, the node’s lifetime will also become closer, but

in a smaller manner than in Direct Transmission. This is because only the

cluster head nodes make large distance transmissions to the base station.

The graphical representation of the results of the number of alive nodes

in LEACH should show a similar shape than the Direct Transmission

results, but with a lower slope.

With the other two variables, associated results should be found in the case of the Direct

Transmission. Associated results should also be found with LEACH when the sensing

time is equal to the LEACH round time. This is due to the fact that similar quantities of

data are generated. For instance, we have two different scenarios: in the scenario A, the

sensing time is fixed to 30 seconds and the data size to 512 bits. In the scenario B, the

sensing time is fixed to 60 seconds and the data size to 256 bits. In both cases, the

amount of data generated per minute is similar (512 bits per min.). Next is presented a

table with the results association of the simulation tests:

Table 4. Relation between results with different simulation scenarios

Data quantity

(in bits per min)

Time between sensing acts

(in seconds)

Data size

(in bits)

256
60 256

120 512

512

30 256

60 512

120 1024

1024
30 512

60 1024

EVALUATION OF THE SIMULATION SCENARIOS

58

Thus, only small differences will be found in the energy consumption between these

associated results because of two factors:

• The size of the packet headers: with lower data sizes, the headers overload is

bigger, i.e., data size/headers size ratio is increased. Hence, the overload

requires extra energy consumption.

• The energy consumption of the transmitter circuitry: if data packets are

generated and transmitted in more often manner, when the transmission runs the

transmitter circuitry, it will spend more energy in the same proportion.

On the other hand, the frequency of the data generation will depend on the application

scenario. Therefore, the best relation between generated data and data size should be

pursued.

6.4.2 Comparison between Direct Transmission and LEACH results

In a general manner, could be affirmed that the network with the LEACH routing

protocol will present a better behavior than the network with the Direct Transmission

routing protocol in terms of energy consumption. In some surveys as [24] and [48], is

demonstrated that the communication energy with LEACH is a few times lower than the

communication energy with Direct Transmission, and the moment when the first and

the last node dies is also a few times later.

Due to the simulation conditions are different; the obtained results could differ from the

obtained results in the above referred surveys. However, the energy consumption with

LEACH protocol should be lower because of diverse aspects:

• The large distance transmissions to the base station are only made by the cluster

head nodes. Hence, the energy consumption of the cluster members is reduced.

• The data aggregation carried out by the cluster head node reduces the total

amount of energy transmitted to the base station and, therefore, the total energy

consumption per round.

6.5 Conclusions

In order to make a proper evaluation of the simulated network, it is very important to

study which factors will affect to the network behavior. Due to the WSN have battery

constraints; a good specification of the radio model and the energy consumption

conditions is essential for the developed study.

After comprehending that some factors such as the speed of the nodes or the quantity of

the data generated are significant to the network results, it would be interesting to

imagine how the variation of these parameters will affect the selected monitoring

parameters as the number of alive nodes, node lifetime and number of transmissions per

node. By means of the value of these parameters, the energy consumption and the

relation between the obtained results can be analyzed. The analysis should show that the

speed of the nodes affects completely to the energy consumption and, in general,

LEACH obtains better results than Direct Transmission in terms of less energy

consumption.

SIMULATION RESULTS

59

7 Simulation results

7.1 Introduction

The simulations results are the objective evidences which demonstrates how is the

operation of the implemented network and how the consumption of resources happens.

Hence, a correct analysis of the obtained results with graphical representations will

allow making some comparisons, extracting adequate conclusions and anticipating a

preliminary search of improvements.

Even though there hasn’t been possible to show simulation results about the LEACH

protocol behavior, the general and specific problems are enumerated, in addition to the

following steps into future versions of this project. This description will help to prevent

from experiencing the same suffered problems.

The Direct Transmission results will show its behavior depending on the data size and

the interval of data generation. The mobility conditions will also demonstrate how

significant the existence of node mobility into the energy consumption is.

7.2 Parameters of the simulation tests

In order to obtain multiples results, a series of test has been prepared for the different

routing protocols described above. This series of test will determine how the network

behaves with a specific routing protocol and fixed parameters. In consequence, the

values which demonstrate the best network behavior for each protocol can be obtained.

Furthermore, it can be compare how influence the same values into the different

protocols. Next on Figure 30 is showed a schema with the diverse test for different

values and the obtained network behavior.

Figure 30. Schema of the simulation tests

SIMULATION RESULTS

60

The simulation variables and its values are described below:

• Node speed: it fixes the speed of the nodes in the simulation field, in meters per

second. The nodes will describe a constant and linear movement and, when the

area limit is reached, it fixes a new direction. The values for the tests will be: 0

(static nodes), 1, 2 and 4 m/s.

• Sensing time: it defines the time between two consecutive sensing acts, in

seconds. This value determines when a data packet is generated, but not when it

is sent to the base station. For instance, in LEACH protocol, the time between

different transmissions is fixed by the round time. The values for the tests will

be: 30, 60 and 120 s.

• Data size: it determines the size of the data sent to the base station, in bits. The

bigger data size, the larger amount of data sent to the base station. It can be

result obvious the fact that a bigger data size will offer worse results, but, for

example, in several scenarios could be more interesting to increase the data size

and also the time between two sensing acts to obtain less energy consumption.

The values for the tests will be: 256, 512 and 1024 bits of data size.

7.3 Direct Transmission results

The simulation results of Direct Transmission protocol obtained from the execution of

the simulation scenarios are shown during this subsection.

The first analysis showed on Figure 31 consists on the study of the tendency of the

energy consumption by means of the number of alive nodes with a fixed data size of

1024 bits and variability in the interval of data generation and the speed of the nodes.

Figure 31. Number of alive nodes with data size of 1024 bits

The chart showed above on Figure 31 demonstrates that there is a big difference

between the static and the dynamic simulation scenario in terms of node mobility. Into

SIMULATION RESULTS

61

the chart can be distinguished very clearly four different tendencies corresponding to the

interval of data generation. Within these four tendencies, significant differences cannot

be appreciated except when the speed of the nodes is 0. In these cases, the shape of the

number of alive nodes curve is decreasing exponential. The meaning of these tendencies

consists on the fact that, after the moment of the death of the first node, the rest of the

nodes will continue dying in a decreasing exponential manner, i.e., the number of alive

nodes will decrease more quickly after the death of the first node, but during the

execution time, the number of alive node will decrease in a more and more slowly

manner. For the rest of the tendencies with a not null mobility value, the tendency

showed is quasi-linear. The meaning of these tendencies consists on the fact that, after

the moment of the death of the first node, the nodes from the simulated network

continue dying in a quasi-uniform manner.

The next analysis consists on how much affects the interval of data generation and the

data size for a fixed speed of the nodes.

Figure 32. Number of alive nodes with node speed of 0 m/s

The chart showed on Figure 32 illustrates the behavior of the network in different

scenarios for a node speed of 0 meters per second. Into this chart, the shape of the curve

of the energy consumption when the network is static can be distinguished clearly.

Furthermore, three zones with overlapped curves can be appreciated. These zones are

corresponded with the similar quantities of data generated per minute during the

simulation and mentioned in Section 6.4.1. These similar zones demonstrate that the

node energy consumption is proportional to the amount of data generated per unit of

time. Furthermore, it can be seen that the number of alive nodes during the time is

almost duplicated when the amount data generated per unit of time is reduced to the half

part, and also the number of alive nodes during the time is almost quadruplicated when

the amount data generated per unit of time is reduced a fourth of the reference value.

SIMULATION RESULTS

62

Figure 33. Number of alive nodes with node speed of 1 m/s

The chart showed on Figure 33 illustrates the behavior of the network in different

scenarios for a node speed of 1 meter per second. The shape of the curves within this

chart differs notably from the shape of the curves showed on Figure 32. This difference

comes directly from the mobility of the network as it was described above. This chart

distinguishes once again three zones where the curves are overlapped, and they

correspond with the quantity of data generated per minute during the simulation, with

similar interpretation.

Analyzing the differences between the two last charts, it is easy to recognize that the

network lifetime in the static network is much longer than the network lifetime in the

dynamic network. The comparison of the values shows that the network lifetime in a

static network is around 50 times longer than in a network with node mobility of 1m/s

for different data size and interval of data generation values as showed in Table 5.

Nevertheless, in the dynamic network can be appreciated that the nodes die in a more

uniform manner, whereas in the static network, the nodes die from the further zones to

the closer zones to the base station. Furthermore, the moment when the first node dies

into the dynamic scenarios is greater than two times than the value in comparison with

the static scenarios is showed on Table 5. A similar behavior has been observed with

speed values of 2 and 4 meters per second, and the rest of data size and intervals of data

generation scenarios.

Table 5. First and last node dies values with data size of 256 bits

Data size = 256 bits

sensing_time = 30 s sensing_time = 60 s sensing_time = 120 s

v = 0 m/s v = 1 m/s v = 0 m/s v = 1 m/s v = 0 m/s v = 1 m/s

First node

dies (in s)
2570.22 5450.31 5135.22 12578.34 10265.22 28146.71

Last node

dies (in s)
560088.84 12172.21 1120173.84 20313.88 2240343.84 39902.11

SIMULATION RESULTS

63

Finally, the last two analyses have the purpose of demonstrate the drawbacks of the

static scenarios in terms of energy balance in comparison with dynamic scenarios.

The chart showed on Figure 34 illustrates the number of transmissions to the base

station for each node for a data size of 1024 bits and an interval of data generation of 30

seconds. As it can be appreciated, in the static network scenario, there is a big difference

between the number of transmissions of nodes located near to the base station and nodes

located far from the base station. Hence, even though the network lifetime is decreased,

the node mobility influences positively to the network energy consumption balance.

Figure 34. Number of transmissions per node with data size of 1024 bits and

interval of data generation of 30 s

The last chart showed on Figure 35 illustrates how is distributed the energy

consumption along the network. A notably difference between the tendency of the curve

in the static scenario and the dynamic scenarios is appreciated. Whereas the dynamic

scenarios show a relative small difference between the average energy per transmission

of all nodes, the difference within the static scenario between the closest and the furthest

node to the base station greater than 20 times.

Figure 35. Number of transmissions per node with data size of 1024 bits and

interval of data generation of 30 s

0

1000

2000

3000

4000

5000

6000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

N
u
m

b
e
r

o
f

tr
a
n
s
m

is
s
io

n
s

Nodes ordered by distance to the base station

Number of transmissions per node with data size of
1024 bits and sensing 30 s

v = 0 m/s v = 1 m/s v = 2 m/s v = 4 m/s

v = 0 m/s v = 1 m/s v = 2 m/s v = 4 m/s

0

0,005

0,01

0,015

0,02

0,025

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

A
v
e
ra

g
e
 e

n
e
rg

y
p
e
r

tr
a
n
s
m

is
s
io

n
 (

in
 J

o
u
le

s
)

Nodes ordered by distance to the base station

Average energy per transmission with data size of
1024 bits and sensing 30 s

v = 0 m/s v = 1 m/s v = 2 m/s v = 4 m/s

SIMULATION RESULTS

64

7.4 LEACH results

Owing to impossibility of finishing the LEACH protocol implementation, simulation

results about the LEACH protocol operation couldn’t be obtained. During this

subsection, the general and the specific caused of the impossibility of finishing the

LEACH implementation are detailed. In addition, the remaining work to obtain correct

LEACH operation results and protocol improvements is described.

The general factors which hindered to finish successfully the research are presented

below:

• Insufficient time: the project’s schedule has been altered several times during the

development of the project. The main cause has been the increment of the

complexity because of the advent of new difficulties.

• Insufficient personnel: the lack of information and resources and the presence of

bugs into the simulation environment have been one of the main reasons of the

experienced delay. A research group consisting of two or three members would

have helped to identify the experienced problems and provide some possible

solutions.

The specific factors and problems that made the development of the project difficult are

detailed below:

• Huge protocol variety to research: due to the fact that WSN are a new

technology, an absence of protocol standards is present This fact difficult the

analysis of the current MAC and network protocols and also complicates the

election of the suitable protocols for the present study. Currently there exists

numerous MAC protocols for WSN, but the WSN constraints have caused that

there is a big quantity of basic routing protocols and innumerable lines of

research about specific improvements of any routing protocol.

• Diversity of simulation environments: the variety of simulation environments,

each one with their own features, but also with their own language syntax, made

difficult to carry out a clear comparison between them. The general simulation

environments required a specific framework to obtain a WSN simulation

because they didn’t support the simulation of WSN in native manner, but these

frameworks are relatively new and specific of specific researches. Therefore,

outside from the framework scope, a lack of unity between modules and

presence of bugs has been found. On the other hand, the specific simulation

tools, which in include the simulation of the node operating system, or even

emulation of the memory mapping, would have added an unnecessary

complexity to the current research.

• Instability of the simulation environment: several bugs and stability problems

were experienced. A major bug
1
 was found and reported to the project’s

direction. Furthermore, numerous simulation environment crashes happened

during the architecture node construction, code implementation, debugging and

1
 Reported bug: imposible to make a 2

nd
 extend into the OMNeT++ hierarchy. Impossible to extend from

BaseNetwLayer class, which extends from BaseLayer class. Solution: Ext2NetwLayer was modified to

extend from BaseLayer. Further information can be found in:

http://dev.omnetpp.org/bugs/view.php?id=88

SIMULATION RESULTS

65

simulation runs were experienced. These facts hampered the progressive project

development and, therefore, retarded and hindered the LEACH results

achieving.

• Absence of ready-to-use protocol implementations: the lack of ready-to-use

protocols has remarkably reduced the flexibility and the possibility of testing

different options within the simulation environment. The whole implementation

of the network architecture and the used protocols has been needed, and

debugging, specific corrections and protocol operation tests have been required.

• Complexity of the simulation architecture: the module and class hierarchy is so

extensive and interrelated that makes extremely difficult the debugging process.

The process of sending an airframe requires the use of numerous and

interconnected classes from the nodes, the channel and the simulation

environment. This fact, together with the environment instability and the bugs

found into the used framework made extremely complex the process of finding

the origin of the obtained errors during the execution.

• Lack of documentation into the API of the used framework: the procedure of

looking up into the used framework’s API showed that there is a lack of

description in several classes and subroutines. This fact, together with the

complexity of the simulation architecture described above, made difficult to

understand the simulation operations and more difficult the search of specific

functionality

• Bugs found into the used framework: several implementation bugs where found

into the framework implementation. The first bug
2
 made an error into the

network address resolution through the MAC address. The second bug
3
, with

mayor severity, blocked the energy draw process and hindered the node energy

consumption. The process of finding and solving the errors contributed to the

simulation development delay.

As it has been expounded in Section 4.3.2, the full LEACH protocol operation has been

implemented. Therefore, the remaining steps to finish the whole research are explained

below:

• Check the LEACH protocol correct behavior: it is necessary to check the correct

behavior of the implemented protocol by means of error debugging,

modification of operation problems derived from protocol understanding

difficulties and protocol operation tests execution.

• Results achieving: the next step consists on running the set of tests in order to

obtain data results and prepare descriptive graphical representations of the

obtained results.

2
 Reported bug: wrong information given by the getNetwAddr(const int macAddr) subroutine, line

54, within the BaseArp.cc class:

http://mixim.sourceforge.net/doc/doxy/a00005.html

3
 Reported bug: implementation error into the DrawAmount constructor class made the value initialization

impossible:

http://mixim.sourceforge.net/doc/doxy/a00062.html

SIMULATION RESULTS

66

• Analysis and comparison of results: the following step consists on making a

correct analysis with the obtained simulation results and extracting some

conclusions about the protocol operation.

• Design ad implementation of power management improvements: after having

results about how the LEACH protocol behaves with specific values should

happen one important step: to plan the design and the implementation of a

LEACH energy consumption improvement from the obtained results.

• Comparison and measurement of results: the last step will consist on comparing

the results obtained from the implemented protocol improvement with the base

protocol and measure with specific values how important has been the power

management improvement.

7.5 Conclusions

During this chapter has been reflected how the mobility of the network, besides the

network lifetime is reduced, delays the moment when the first node dies and also

introduces uniformity during the node depletion process with Direct Transmission

protocol. This fact represents that the network energy consumption is more balanced

than in a static network scenario and, therefore, the nodes will die in a regular manner

and not from the further places to the closer zones to the base station. Thus, the

simulated network won’t have any place in the simulation field without sensing data

while the whole network keeps alive.

Although simulation results from the LEACH protocol couldn’t be obtained, the

experienced problems suffered during the project development have been reflected in

order to avoid these problems during future revisions and the guidelines for further

versions have been specified.

CONCLUSIONS

67

8 Conclusions

In the current document, the implementation of a WSN architecture in a simulation

environment has been carried out. This implementation will evaluate different

simulation scenarios of large scope clustered-type networks. The purpose of the

implementation consists on the research and the obtaining of a power management

improvement over LEACH, one of the present WSN network protocols. The search of

the power management improvement will be performed through the analysis of the

network behavior. This network will be obtained by means of simulation executions

after the variation of values of specific parameters characteristic of the WSN operation.

As a result of the WSN communication architecture, their design factors and

requirements, the state of the art of the network and Medium Access Control WSN

protocols, and the properties of the simulation scenarios, the election of the MAC and

routing protocols has been carried out according to the features and the constraints of

WSNs, as well as the features of the simulation scenarios. The analysis about the WSN

protocols carried out showed that CSMA, with its simplicity, its well-know behavior

and adequate performance; and LEACH, with its clustered type organization, the

balance of the overall energy consumption that carries out and its relevance on the

current researches, become suitable protocols suitable for the carried out research.

The election of the simulation scenario was carried out in regard to compliance with the

necessary requirements for the implementation of a WSN architecture, as well as other

features which facilitate the implementation development. The analysis carried out

about the most common WSN simulation environments showed that OMNeT++,

together with MiXiM development framework, meet the majority of the simulation

requirements thanks to the simulation structure, the WSN simulation capabilities and

the graphical runtime environment, which facilitates the design, debugging and test of

large scope wireless sensor networks.

The evaluation of the simulation scenarios has been specified with the highest detail as

possible. This fact will help the obtaining of simulation results and the reproduction of

the tests in other simulation environments. These simulation tests showed about Direct

Transmission protocol how the mobility of the network, besides the network lifetime is

reduced, delays the moment when the first node dies and also introduces uniformity in

during the node depletion process, providing in that manner a more balanced overall

energy consumption. Besides it couldn’t be possible to obtain simulation results about

the LEACH protocol operation, the experienced problems during the project

development have been reflected and the guidelines for further versions have been

specified.

Therefore, it can be determined that the WSN architecture implemented perform the

obtaining of desired results during the development of this project, and could serve as

base implementation for future versions of the developed work.

FUTURE WORK

68

9 Future work

The guidelines for finishing all the objectives from the current study have been detailed

in Section 7.4. After obtaining the results about the LEACH protocol operation, the

design and implementation of power management improvements over the LEACH

operation can be carried out through different alternatives or possibilities. Multiples

lines of research are about energy consumption improvements over LEACH have been

made and are also currently open. Some possibilities are introduced in [24]:

• Energy-aware threshold: the inclusion of an energy level parameter into the

calculation of the threshold during the Advertisement Phase will enable the

election of the cluster head nodes in relation to the amount of energy of the

nodes scattered in the simulation field. Thus, the overall energy consumption of

the network would be more balanced.

• Hierarchical clustering: the LEACH version implemented in this project can be

extended to form hierarchical clusters. In this manner, a hierarchy could be built

where the cluster head nodes would communicate with “super-cluster head”

nodes and so until the top layer of the hierarchy, at which point the data would

be sent to the base station. This architecture could save tremendous amount of

energy in large networks WSN as the network scenario of the current project.

Furthermore, there are other multiple different possibilities for the research of energy

consumption improvements. Some possibilities are described below:

• Better integration between MAC and network protocols: the MAC protocols

described in this document provide different features. The correct integration of

other MAC protocols with LEACH could provide a notably decrement of the

overall energy consumption. Possible examples could be WiseMAC, which

reduces the energy consumption, or TRAMA, which increases the sleeping

mode time percentage and decrements the collision probability in comparison

with CSMA based protocols,

• Modification of the LEACH operation: some modifications over the LEACH

protocol operation could provide better results in terms of overall energy

consumption. One possible modification is described below.

<<At the beginning of each LEACH round, the base station broadcasts a “round

starts” message to the entire network. The nodes that have been elected themselves

cluster head nodes broadcast its “cluster head status” message. Furthermore, in this

message, they attach the signal strength of the base station broadcast that they received.

At this point, if any other cluster head node listen the “cluster head status” message, it

compares its base station received signal strength with the signal strength attached in

the cluster head node message. If the value in the “cluster head status” message is

smaller, it stores the source of the message as “router node”. When the Data

Transmission Phase begins and the cluster head nodes have received all the messages

from the cluster members, if the cluster head nodes have stored any “router node”, they

will send their data to this node instead of sending the message directly to the base

station>>.

Although can be thought that this scenario could show the “hot spot” problem, can be

considered that the network mobility can solve this problem. Furthermore, this new

functionality can be disabled when the node energy level reaches a specific threshold.

REFERENCES

69

10 References

1. Sohraby, Kazem, Minoli, Daniel and Znati, Taieb. Wireless Sensor Networks:

Technology, Protocols, and Applications. s.l. : Wiley-Interscience, 2007.

2. Karl, Holger and Willig, Andreas. Protocols and Architectures for Wireless Sensor

Networks. 1. s.l. : Wiley, 2005.

3. Energy-efficient wireless sensor network design and implementation for condition-

based maintenance. Tiwari, Ankit, Ballal, Prasanna and Lewis, Frank L. s.l. : ACM,

2007, ACM Trans. Sen. Netw., Vol. 3, p. 1.

4. A Distributed Efficient Architecture for Wireless Sensor Networks. Lin, Chuan, et al.

2007. Proc. 21st International Conference on Advanced Information Networking. Vol.

2, pp. 429-434.

5. An energy-efficient MAC protocol for wireless sensor networks. Ye, Wei,

Heidemann, J. and Estrin, D. 2002. SenSys '03: Proceedings of the 1st international

conference on Embedded. Vol. 3, pp. 1567-1576.

6. An adaptive energy-efficient MAC protocol for wireless sensor networks. Dam, Tijs

van and Langendoen, Koen. s.l. : ACM, 2003. Proc. IEEE Twenty-First Annual Joint

Conference of the IEEE Computer. pp. 171-180.

7. networks, Medium access control with a dynamic duty cycle for sensor. 2004.

Wireless Communications and Networking Conference, 2004. WCNC. 2004 IEEE. Vol.

3.

8. Versatile low power media access for wireless sensor networks. Polastre, Joseph,

Hill, Jason and Culler, David. s.l. : ACM Press, 2004. SenSys '04: Proceedings of the

2nd international conference on Embedded. pp. 95-107.

9. Spatial TDMA and CSMA with preamble sampling for low power ad hoc wireless

sensor networks. El-Hoiydi, Amre. 2002. Proc. Seventh International Symposium on

Computers and Communications. pp. 685-692.

10. An Adaptive Energy-Efficient and Low-Latency MAC for Data Gathering in

Wireless Sensor Networks. Lu, Gang, Krishnamachari, Bhaskar and Raghavendra,

Cauligi S. s.l. : IEEE Computer Society, 2004, Parallel and Distributed Processing

Symposium, International, Vol. 13, p. 224a.

11. Energy-Efficient, Collision-Free Medium Access Control for Wireless Sensor

Networks. Rajendran, Venkatesh, Obraczka, Katia and Garcia-Luna-Aceves, J.

s.l. : Springer, 2006, Wireless Networks, Vol. 12, pp. 63-78.

12. Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks}. Jamieson, Kyle

and Balakrishnan, Hari and Tay, Y. C. 2006. Wireless Sensor Networks. pp. 260--

275.

13. Carrier sense multiple-access modes and their throughput-delay characteristics.

Kleinrock, Leonard, Fouad and Tobagi, A. 1983, IEEE Trans. Comm, Vol. 23, pp.

1400-1416.

REFERENCES

70

14. A Survey of Gossiping and Broadcasting in Communication Networks. Hedetniemi,

Hedetniemi and Liestman. 1988, Networks: An International Journal, Vol. 18.

15. Negotiation-based protocols for disseminating information in wireless sensor

networks. Kulik, Joanna, Heinzelman, Wendi and Balakrishnan, Hari. s.l. : Kluwer

Academic Publishers, 2002, Wirel. Netw., Vol. 8, pp. 169-185.

16. Directed diffusion: a scalable and robust communication paradigm for sensor

networks. C., R. Govindan and Estrin, D. 2000. Proceedings of the sixth annual

international conference on Mobile computing and networking. pp. 56-67.

17. Rumor Routing Algorithm For Sensor Networks. Estrin, David Braginsky and

Deborah. 2002. In Proceedings of the First Workshop on Sensor Networks and

Applications (WSNA).

18. Energy efficient routing in wireless sensor networks. Schurgers, C. and

Srivastava, M. s.l. : IEEE, 2001. Proceedings of MILCOM 2001. pp. 357-361.

19. Scalable information-driven sensor querying and routing for ad hoc heterogeneous

sensor networks. Chu, M., Haussecker, H. and Zhao, F. 2002, International Journal

on High Performance Computing Applications.

20. Energy Aware Routing for Low Energy Ad Hoc Sensor Networks. Shah, Rahul C.

and Rabaey, Jan M. 2002. IEEE Wireless Communications and Networking

Conference (WCNC).

21. A Scalable Solution to Minimum Cost Forwarding in Large Sensor Networks. Ye,

F., et al. 2001. 10th IEEE International Conference on Computer Communications and

Networks (ICCCN).

22. The Cougar approach to in-network query processing in sensor networks. Yao,

Yong and Gehrke, Johannes. 2002, SIGMOD Record, Vol. 31.

23. The ACQUIRE Mechanism for Efficient Querying in Sensor Networks. Sadagopan,

Narayanan, Krishnamachari, Bhaskar and Helmy, Ahmed. 2003. In IEEE

International Workshop on Sensor Network Protocols and Applications (SNPA’03). pp.

149-155.

24. Energy-Efficient Communication Protocol for Wireless Microsensor Networks.

Heinzelman, Wendi Rabiner, Chandrakasan, Anantha and Balakrishnan, Hari.
s.l. : IEEE Computer Society, 2000. p. 8020.

25. Proactive Context-Aware Sensor Networks. Ahn, Sungjin and Kim, Daeyoung.

2006. EWSN. pp. 38-53.

26. PEGASIS: Power-efficient gathering in sensor information systems. Lindsey, S.

and Raghavendra, C. S. 2002. Aerospace Conference Proceedings, 2002. IEEE. Vol.

3, pp. 3-1125--3-1130 vol.3.

27. TEEN: a routing protocol for enhanced efficiency in wireless sensor networks.

Manjeshwar, A. and Agrawal, D. P. 2001. Parallel and Distributed Processing

Symposium., Proceedings 15th International. pp. 2009-2015.

28. APTEEN: a hybrid protocol for efficient routing and comprehensive information

retrieval in wireless sensor networks. Manjeshwar, A. and Agrawal, D. P. 2002.

REFERENCES

71

Parallel and Distributed Processing Symposium., Proceedings International, IPDPS

2002. pp. 195-202.

29. Minimum energy mobile wireless networks. Rodoplu, V. and Meng, T. H. 1999,

Selected Areas in Communications, IEEE Journal on, Vol. 17, pp. 1333-1344.

30. Routing techniques in wireless sensor networks: a survey. Al-Karaki, J. N. and

Kamal, A. E. 2004, IEEE Wireless Communications, Vol. 11, pp. 6-28.

31. Geography-informed energy conservation for Ad Hoc routing. Xu, Ya, Heidemann,

John and Estrin, Deborah. s.l. : ACM, 2001. MobiCom '01: Proceedings of the 7th

annual international conference on Mobile computing and networking. pp. 70-84.

32. Yu, Yan, Govindan, Ramesh and Estrin, Deborah. Geographical and Energy

Aware Routing: a recursive data dissemination protocol for wireless sensor networks.

UCLA Computer Science Department, Technical Report UCLA/CSD-TR-01-0023.

2001.

33. GEDIR: Loop-free location based routing in wireless networks. Stojmenovic, Ivan

and Lin, Xu. 1999. IASTED International Conference on Parallel and Distributed

Computing and Systems. pp. 1025-1028.

34. Span: An Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad

Hoc Wireless Networks. Chen, Benjie, et al. 2001. Proceedings of the 7th ACM

International Conference on Mobile Computing and Networking. pp. 85-96.

35. Protocols for self-organization of a wireless sensor network. Sohrabi, K., et al.

2000, IEEE Personal Communications, Vol. 7, pp. 16-27.

36. SPEED: a stateless protocol for real-time communication in sensor networks. He,

Tian, et al. 2003. Proc. 23rd International Conference on Distributed Computing

Systems. pp. 46-55.

37. Simulation tools for wireless sensor networks. E. Egea-López, J. Vales-Alonso, A.

Martínez-Sala, P. Pavón-Marñio, and J. García-Haro. Philadelphia, Pa, USA. : s.n.,

2005. Proceedings of the International Symposium on Performance Evaluation of

Computer and Telecommunication Systems (SPECTS '05).

38. The Network Simulator, NS–2. [Online] http://www.isi.edu/nsnam/ns/.

39. OMNET++ discrete event simulator. [Online] http://www.omnetpp.org/.

40. TOSSIM: accurate and scalable simulation of entire TinyOS applications. Levis,

Philip, et al. s.l. : ACM, 2003. SenSys '03: Proceedings of the 1st international

conference on Embedded networked sensor systems. pp. 126-137.

41. Simulation of TinyOS Wireless Sensor Networks Using OPNET. Sumorok, Daniel,

Starobinski, David and Trachtenberg, Ari. 2008. OPNETWORK 2004.

42. Ptolemy II. Heterogeneous model and design. [Online]

http://ptolemy.berkeley.edu/ptolemyII/.

43. Modeling of sensor nets in Ptolemy II. Baldwin, Philip, et al. 2004. IPSN'04. pp.

359-368.

REFERENCES

72

44. OMNeT++ User Manual. [Online]

http://www.omnetpp.org/doc/omnetpp40/Manual.pdf.

45. OMNeT++ IDE User Guide. [Online]

 http://www.omnetpp.org/doc/omnetpp40/UserGuide.pdf.

46. MiXiM (mixed simulator) for OMNeT++. [Online]

 http://sourceforge.net/apps/trac/mixim/

47. Simulating Wireless Sensor Networks with OMNeT++. Mallanda, C., et al. IEEE

Computer, 2005.

48. An application-specific protocol architecture for wireless microsensor networks.

Chandrakasan, Anantha P., et al. 2002, IEEE Transactions on Wireless

Communications, Vol. 1, pp. 660-670.

APPENDIX I. TABLE OF SPECIFICATIONS OF THE SIMULATION SCENARIOS

73

11 Appendix I. Table of Specifications of the simulation

scenarios

General parameters

Playground size (in meters) 1000 × 1000

Number of nodes 100

Channel parameters

Signal attenuation threshold (in dB) -91

Minimum path loss coefficient 3.0

Carrier frequency of the channel (in Hz) 2.412 ×10
9

Radio model

Transmitter energy consumption (in J/bit) 50 × 10
-9

Receiver energy consumption (in J/bit) 50 × 10
-9

Amplifier energy consumption (in J/bit/m
2
) 0.1 × 10

-9

Physical layer parameters

Strength of the thermal noise (in dBm) -100

Sensivity (in dBm) 89

 Switch times (in seconds)

 Rx to Tx 0.00012

 Rx to sleep 0.000031

 Tx to Rx 0.00012

 Tx to sleep 0.000032

 Sleep to Rx 0.000102

 Sleep to Tx 0.000203

MAC layer parameters

Queue length 5

Header length (in bits) 24

Slot duration (in seconds) 0.04

Difs time (in seconds) 0.0005

Maximum number of transmission attempts 14

Bit rate (in bps) 15360

Mobility module parameters

Base station position ([x, y], in meters) [10, 10]

Node position Random

Battery module parameters

Capacity (in J) 5.0

APPENDIX I. TABLE OF SPECIFICATIONS OF THE SIMULATION SCENARIOS

74

LEACH protocol parameters

Round time Value equal to interval of data generation

Slot time (in seconds) 0.08

Compression index 0.15

Waiting time
1
 (in seconds) 0.02

Maximum cluster size 25 nodes

Variable simulation parameters

Interval of data generation (in seconds) {30, 60, 120}

Node speed {0, 1, 2, 4}

Data size (in bits) {256, 512, 1024}

1
 Amount of time that nodes should wait to switch to the next protocol phase.

