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Abstract

Because of their ability to naturally float in the air, indoor airships (often called blimps) con-
stitute an appealing platform for research in aerial robotics. However, when confronted to long
lasting experiments such as those involving learning or evolutionary techniques, blimps present the
disadvantage that they cannot be linked to external power sources and tend to have little mechan-
ical resistance due to their low weight budget. One solution to this problem is to use a realistic
flight simulator, which can also significantly reduce experimental duration by running faster than
real time. This requires an efficient physical dynamic modelling and parameter identification pro-
cedure, which are complicated to develop and usually rely on costly facilities such as wind tunnels.
In this paper, we present a simple and efficient physics-based dynamic modelling of indoor airships
including a pragmatic methodology for parameter identification without the need for complex or
costly test facilities. Our approach is tested with an existing blimp in a vision-based navigation
task. Neuronal controllers are evolved in simulation to map visual input into motor commands in
order to steer the flying robot forward as fast as possible while avoiding collisions. After evolu-
tion, the best individuals are successfully transferred to the physical blimp, which experimentally
demonstrates the efficiency of the proposed approach.

1 Introduction
Because of their ability to naturally float in the air, indoor airships (blimps) are widely used as research
platform in aerial robotics. Many laboratories rely on such platforms for experiments in visual servoing
[da Silva Metelo and Garcia Campos, 2003, van der Zwaan et al., 2002, Zhang and Ostrowski, 1998],
collective intelligence [Melhuish and Welsby, 2002], bioinspired robotics [Iida, 2003, Planta et al., 2002,
Bermúdez i Badia et al., 2005], or evolutionary robotics [Zufferey et al., 2002, Zufferey, 2005], but none
of them propose a concise and pragmatic way of modelling and simulating such flying robots. However,
a realistic and efficient simulator is crucial for long-lasting experiments such as those involving learning
or artificial evolution. This transfer constitutes a major issue in learning and evolutionary approaches,
which is often referred to as the ”reality gap” (for a review see Nolfi and Floreano, 2000, section 3.3).

This article is structured in two parts. The first part presents the dynamic modelling together with
the procedure for identifying its parameters without relying on costly facilities like wind tunnels. Our

∗The original publication is available at www.springerlink.com
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Figure 1: Inertial frame FE and body-fixed frame FB . The origin of FE is an arbitrary point on Earth
surface, whose acceleration is neglected. Note that the zE-axis is pointing downward. The origin of
the body-fixed frame FB is the center of buoyancy (CB), which corresponds to the center of the hull.
Its orientation coincides with the orientation of the airship and its axes correspond to principal axes
of the rigid body.

model is generic in the sense that it can virtually be used for any indoor airship with hull-shaped envelop
flying at relatively low speed. The novelty in this first part does not lie in the mathematics of the
model itself, which has been mainly adapted from fluid dynamics theory, but rather in the pragmatic
methodology for swift identification of the different constitutive parameters of the model. In the second
part, the dynamic model is validated by analysing the performance of airship controllers evolved in
simulation and tested in reality. A well-studied task consisting of simple vision-based navigation (2D
course stabilization and obstacle avoidance) in a randomly textured environment [Zufferey, 2005] has
been chosen in order to demonstrate the usefulness of the proposed modelling approach in a practical
situation. Actually, this methodology allowed us to dramatically speed-up the evolution process, which
provided the basis for efficiently exploring different sets of control parameters that eventually led to
significantly improved solutions with respect to the one described previously [Zufferey et al., 2002].
Furthermore, it is the first time, to the best of the author’s knowledge, that such a simulation-reality
transfer is successfully employed with a flying robot.

2 Airship Dynamic Model
Our dynamic model is specifically designed for hull-shaped indoor airships that can be approximated
by an ellipsoid of revolution. The steering and propulsion is ensured by means of thrusters (e.g., DC
motor with propeller), whose number, orientation and location can be freely chosen1. The typical
maximum velocity of such aerial vehicles reaches 1m/s whereas their length is usually in the range of
1 to 3m. The hull and gondola distortions are assumed to be small and to have a negligible impact
on the trajectory, allowing for considering the whole airship as a rigid body. The airship has two
vertical planes of symmetry, in the intersection of which is located the center of gravity (CG) as
well as the center of buoyancy (CB). These assumptions apply generally well to small airships with
inflated envelope and lightweight gondola. Furthermore, they generate significant simplifications in
the equation of motion and allow easier parameter identification.

In order to describe the motion of the airship in the 6 degrees of freedom (DOF) and the forces
and moments acting on it, we define two reference frames: an earth inertial reference frame FE and a
body-fixed frame FB (Fig. 1). The CG is located by the vector r = (0, 0, rz)T in FB .

1No control surfaces have been taken into account in our modelling because small indoor airships are rarely equipped
with such steering means featuring poor efficiency at low velocity. However, it would not be an issue to model them
similarly to aircraft wings and add their effects to our model.
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Translational and rotational velocities ν := (vT ,ωT )T = (vx, vy, vz, ωx, ωy, ωz)T are described in
FB , whereas the position and orientation of the vehicle η := (xE , yE , zE , φ, θ, ψ)T are expressed in FE .
The 3 last terms of η are the aeronautical Euler angles, namely roll φ, pitch θ, and yaw ψ.

The Newton-Euler equation of motion links the acceleration of the airship to the forces and moments
acting on it. This non-linear equation is written using a vector representation for 6 DOF in FB :

Mν̇ =
∑

Fexternal = FR + FP + FD + FC , (1)

where the five main elements are listed below, following the order in which they will be presented:

FR: restoring forces (Section 2.1) containing gravity and buoyancy, which coun-
teract each other and are responsible for maintaining the airship uright;

FP : propelling forces (Section 2.2), which are directly related to motor com-
mands;

FD: damping forces (Section 2.3) due to air friction;

M: inertia matrix (Section 2.4) containing rigid-body inertia and added mass
terms;

FC : Coriolis and centripetal effects (Section 2.5), which are fictitious forces
appearing in non-inertial frames such as FB .

The presentation order of those elements is motivated by both the identification process, which some-
times requires the value of previous components to be determined first (e.g. propelling thrusts are
needed for the measurement of damping forces), and the fact that we use the inertia matrix as a basis
for the derivation of the Coriolis matrix (Section 2.5).

2.1 Restoring Forces
Unlike airplanes, the aerostatic lift force (buoyancy) acting on an airship is independent of flight
speed. The buoyant force is explained by the Archimedes’ principle and is equal to the weight of the
air displaced by the airship. Gravity and buoyancy together are called restoring forces because they
are responsible for keeping the airship upright. Their amplitudes are expressed by:

Fg = mg and Fb = ρV g, with V =
4
3
πab2, (2)

where m is the mass of the airship, g is the Earth gravitational acceleration, ρ is the air density,
and V the volume of the ellipsoidal hull with semi-axes a and b. The restoring forces are expressed in
the body-fixed frame FB :

FR(η) =


−(Fg − Fb) sin(θ)

(Fg − Fb) cos(θ) sin(φ)
(Fg − Fb) cos(θ) cos(φ)
−rzFg cos(θ) sin(φ)

−rzFg sin(θ)
0

 . (3)

The distance rz (between CB and CG) can be identified by temporarily modifying the mass dis-
tribution along the x-axis and measuring the resulting static pitching angle. To do so, one can simply
displace a subpart of the ballast, let say of a mass m1, along the x-axis, at a distance x1 from CB
(Fig. 2). Then the resulting pitching angle θ1 allows for deriving rz using the following formula based
on simple geometric considerations:

rz =
m1

m

x1

tan(θ1)
. (4)
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Figure 2: Procedure for the localization of the center of gravity. The mass distribution along the x-axis
is temporarily modified, resulting in a pitch angle θ1

2.2 Propulsion
In our model, engines are assumed to be ideal thrusters, whose effect are directly proportional to the
motor commands, and neither propeller fluxes nor motor torques are taken into account. Therefore, the
propulsion matrix FP depends only on motor commands together with the location and orientation of
the engines. The identification procedure is thus limited to the determination of the thrust amplitude
as a function of motor commands. The static thrust of each thruster can easily be measured for
different motor commands, using a force sensor or a scale.

2.3 Damping
Aerodynamic damping is due to air friction, which depends on the velocity of the airship.2 In general,
there are two different regimes that can be distinguished: linear friction due to laminar boundary layers
and quadratic friction due to turbulent boundary layers. Since it is difficult to know in advance in which
regime the airship is operating, we model the damping as a second order Taylor series, accounting for
both effects.

FD = D(ν)ν, with D(ν) = −diag



Dvx
+Dv2

x
|vx|

Dvy
+Dv2

y
|vy|

Dvz
+Dv2

z
|vz|

Dωx
+Dω2

x
|ωx|

Dωy +Dω2
y
|ωy|

Dωz
+Dω2

z
|ωz|

 , (5)

where D(ν) is the damping matrix, Dvx , Dvy , Dvz , Dωx , Dωy , Dωz are the linear damping co-
efficients, and Dv2

x
, Dv2

y
, Dv2

z
, Dω2

x
, Dω2

y
, Dω2

z
the quadratic damping coefficients. This uncoupled

model of damping is a rough approximation that works sufficiently well in case of low speed and highly
symmetrical ellipsoid hull [Fossen, 1995].

The 12 damping coefficients can be identified by measuring stationary velocities reached by the
airship subjected to different constant forces. For instance, a known thrust FPx is applied in the
forward direction by means of one or several engines with constant thrust (Fig. 3). When the blimp
reaches a constant forward velocity, inertial and Coriolis effects are null and the following part of the
equation of motion is used to identify the two damping coefficients related to the x-axis:

FPx −Dvxvx −Dv2
x
v2

x = 0, with vx > 0. (6)

2This damping effect also account for apparent aerodynamic lift forces occurring when the airship is translating with
a non-zero attitude.
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Figure 3: Identification of damping coefficients. At constant forward velocity, the propulsion force
exactly counteracts the damping force.

This experiment must be run for different values of FPx , which can be known from Section 2.2
and the related constant velocities vx is measured using a stopwatch while the airship is traveling
along a known distance. The linear and quadratic damping coefficients are determined such that the
curve vx(FPx

) defined by Eq. 6 best fits measured data. The same method is used for the z-axis and
symmetrical considerations imply that Dvy

=̃Dvz
and Dv2

y
=̃Dv2

z
.

The rotational coefficients Dωz
and Dω2

z
are identified using a similar approach. The airship is

accelerated around the yaw axis using a constant thrust until it reaches a stationary velocity, which can
be measured by counting the number of revolutions per time unit.3 Using symmetrical considerations,
we also have Dωy

=̃Dωz
and Dω2

y
=̃Dω2

z
, whereas the restoring momentum prevents from using the same

method to identify Dωx
and Dω2

x
. However, these parameters can be theoretically determined using

Schlichting and Truckenbrodt [2001]:

Dωx
= 0 and Dω2

x
= Cr

ρ

2
32
15
πab2,

where Cr typical value is in the range 0.002 and 0.006.

2.4 Inertia
Using the notations from Fossen [1995], the rigid-body inertia matrix can readily be written as follows:

MRB =
(
mI3×3 −mS(r)
mS(r) IRB

)
, with S(a) :=

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 , (7)

where I3×3 is the identity matrix, S is the skew-symmetric matrix operator (a ∈ R3) and IRB

is the inertia tensor with respect to CB. Taking into account that the axes of FB correspond to the
principal axes (Fig. 1) yields to a diagonal inertia tensor. The explicit description of the rigid-body
inertia matrix is:

MRB =


m 0 0 0 mrz 0
0 m 0 −mrz 0 0
0 0 m 0 0 0
0 −mrz 0 Ix 0 0
mrz 0 0 0 Iy 0
0 0 0 0 0 Iz

 . (8)

3In order to get the rotational drag coefficients, you need to obtain a clean rotation on the spot. This can be achieved
with two yaw thrusters equally distributed around the center of gravity.
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This representation of inertia is however not sufficient because a bulky body in motion displaces a
large amount of air particles. This phenomenon has a noticeable impact on buoyant vehicles, which
have a similar density as their surrounding fluid. Therefore, the airship body experiences a resistance to
its motion, which is not accounted for by the standard rigid-body inertia matrix described above. This
additional effect is modeled by including added mass and inertia terms into both inertia and Coriolis
matrices (Section 2.5). More precisely, the term ”added-mass” (sometimes also called ”virtual mass”)
refers to the additional inertia created by surrounding air accompanying the airship. As in Fossen
[1995], we propose a simple modelling of the added-mass effect by introducing a diagonal added-mass
inertia matrix4:

MA = diag(mAx ,mAy ,mAz , IAx , IAy , IAz ). (9)

We then derive the global inertia matrix M as the sum of rigid-body inertia and added-mass
matrices:

M = MRB + MA =


m′

x 0 0 0 mrz 0
0 m′

y 0 −mrz 0 0
0 0 m′

z 0 0 0
0 −mrz 0 I ′x 0 0
mrz 0 0 0 I ′y 0
0 0 0 0 0 I ′z

 , (10)

where m′
x := m + mAx

, m′
y := m + mAy

, m′
z := m + mAz

, I ′x := Ix + IAx
, I ′y := Iy + IAy

, and
I ′z := Iz + IAz are respectively the apparent masses and moments. Note that the shape of the envelope
readily suggests that mAx < mAy =̃mAz , IAx=̃0 and IAy =̃IAz [Munk, 1934]. At this point, it could
be tempting to neglect the added mass and inertia, but one should be aware that this phenomenon is
responsible for an intrinsic instability of airships (see Section 2.5) and omitting it would hardly lead
to realistic behaviour in simulation (as further demonstrated in the experimental part of this article).

Since the static mass is known and the distance rz has been determined in Section 2.1, the identifi-
cation procedure for M concerns only the six diagonal elements. The inertia tensor can be calculated
based on the distribution of the masses on the airship (be aware not to forget the inertia of the helium
mass in the hull) and from it the entire MRB matrix can be derived. Added-mass factors populating
MA can be estimated from a geometrical method based on the kinetic energy of an ideal unbounded
liquid around the ellipsoid in motion. The kinetic energy and the force necessary to accelerate the
airship can be computed by adding to the actual mass of the solid a fictitious mass. This added-mass
is equal to the density of the fluid multiplied by a volume, which volume depends on the geometric
outlines of the airship only [Munk, 1934]. These considerations result in the Lamb’s k-factors [Lamb,
1932], where k1 and k2 are the inertia coefficients representing the fraction of the mass displaced by
the hull (which is in turn equal to the physical mass m of the airship if we assume that gravity and
buoyancy are balancing each other, see Section 2.1), and k′ is the ratio of apparent moment of inertia
to the moment of inertia of the displaced air Izh

. In the case of an ellipsoid of revolution with semi-axes
a and b (with a ≥ b), this moment of inertia is given by:

Izh
=

4
15
πρab2(a2 + b2). (11)

The added-mass terms can then be calculated using the Lamb’s k-factors as follows:

mAx
= k1m and mAy

= mAz
= k2m,

IAx = 0 and IAy = IAz = k′Izh
.

(12)

4This is tenable in our case since indoor blimps are moving at very low speed and we assume three planes of symmetry
for the ellipsoidal hull. This reduction is also supported by the fact that off-diagonal elements are difficult to determine
from experiments as well as from theory [Fossen, 1995]. Note however that in general, for higher speed and more complex
shapes, coupling terms should be taken into account.
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Figure 4: Lamb factors as a function of the ellipsoidal hull aspect ratio (adapted from Munk, 1936).
With k1 the longitudinal coefficient (x-axis), k2 the lateral coefficient (y-axis) and k′ the rotational
one (for yaw and pitch axes).

The Lamb’s k-factors are in turn defined using two constant α0 and β0:

k1 = α0
2−α0

, α0 = 2(1−e2)
e3

(
1
2 ln

1+e
1−e − e

)
,

k2 = β0
2−β0

, β0 = 1
e2 − 1−e2

2e3 ln
1+e
1−e ,

k′ = e4(β0−α0)
(2−e2)[2e2−(2−e2)(β0−α0)]

,

(13)

where e designates the eccentricity of the ellipsoid:

e =

√
1−

(
b

a

)2

. (14)

Fig. 4 displays these k-factors as a function of the ellipsoid aspect ratio, starting from the spherical
case (a = b), ending with a very slender hull having the long axis up to ten times the radius (a = 10b).
Interestingly, a spherical hull has already 50% added-mass in all directions and no additional moment
of inertia (k′ = 0). With the increase in aspect ratio, the longitudinal added-mass (x-axis) tend to
decrease, whereas it augments in the lateral direction (y-axis).5

2.5 Coriolis and Centripetal Effects
Coriolis and centripetal effects are fictitious forces exerted on a body in motion when the referential
frame is not inertial, which is the case for FB . The Coriolis force is expressed as ω × v and occurs
when the motion is composed of linear and rotational velocities. It accounts for the apparent force
acting perpendicularly to the linear velocity vector and rotation axis, and tending to maintain the
initial direction of motion without taking care of the body rotation. The centripetal force is given by
ω× (ω× r) and is present in a rotating body when the origin of the referential frame is not CG, which
is the case of FB . Since those fictitious forces are similar and both function of ν, they are generally
put together in the form:

FC = C(ν)ν, (15)
5An alternative representation of added-mass terms can be found in Fossen [1995] or Khoury and Gillet [1999] and

are equivalent to the one originally proposed by Lamb. Further developments for generic ellipsoids are also given in
Lamb [1932] and Munk [1934].
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where C(ν) is the so-called Coriolis matrix. After Sagatun and Fossen [1991], it is possible to
directly derive the Coriolis matrix from the inertia matrix as follows:

C(ν) =

„
O3×3 S(M11v + M12ω)

S(M11v + M12ω) S(M21v + M22ω)

«
, (16)

where O3×3 is the null matrix and Mij (i, j = 1, 2) are the four 3×3 submatrices of the global inertia
matrix M indexed with row and column. For sake of clarity, C(ν) is given explicitly in footnote6. Using
this theorem (based on Kirchhoff’s equations, Theorem 2.2 in Fossen, 1995) releases from the burden of
deriving and identifying every Coriolis and centripetal terms for each of the 6 DOF. Moreover, because
the inertia matrix M includes the added-mass terms, C(ν) will include them automatically. This is
of utmost importance since it explains, e.g., why an axial motion of hull shaped solid is intrinsically
unstable. Any small angle between the x-axis and the direction of motion will indeed tend to increase
[Munk, 1934]. The difference between m′

x and m′
y is responsible for (not cancelling) the yaw moment

induced by the Coriolis effects modeled in FC . This resultant unstable moment is proportional to
difference (k2 − k1) of the lateral and longitudinal k-factors given in Eq. 13 and shown in Fig. 4. In
other words, the added-mass phenomenon not only explains why the apparent inertia of the airship
is higher than that predicted by MRB but is also responsible for unintuitive behaviours such as those
yawing movements occurring during forward motion. The Coriolis matrix also accounts for a number
of other phenomena like slight roll inclination appearing during curved trajectories and due to the
centripetal force.

3 Evolutionary Experiments
We evolve simple neuromorphic controllers [Nolfi and Floreano, 2000], which are asked to steer our
blimp (Fig. 5) in a square room (Fig. 6) using only visual and inertial information available from
on-board sensors.7 The visual input comes from a frontal 1D camera and is preprocessed in order
to feed the neuromorphic circuit with only 4 values corresponding to the contrast level in 4 parts of
the field of view. Inertial information is provided by a rate gyro, which output is proportional to the
rotation rate ωz about the yaw axis.

The performance criterion (fitness function) is the mean forward velocity of the robot (measured by
means of an anemometer) during a fixed period of time of 2 minutes. This fitness criterion is interesting
in the sense that it does not impose a specific trajectory or behaviour, as it would be the case if an
engineer would have hand-crafted the control system (see Zufferey [2005] for further discussion). It also
constitutes a challenging assessment for the transfer to reality, since the evolution in simulation might
well capitalize upon features of the dynamic model that are different from what happens in reality. If
that were the case, evolved controllers would display lower fitness when tested on the physical robot.

3.1 Neuromorphic Controllers and Evolutionary Technique
The robot controller is an artificial neural network running in a tiny embedded 8-bit microcontroller
(Fig. 5), which has no floating-point instructions. Activation values are restricted to integers in
the range [-127,+127] and the transfer function is an hyperbolic tangent (tanh), which is stored in
a lookup table in order to release the microcontroller from computing it. The connections between
neurons multiply incoming activation values by a factor in the range [-7,+7]. These integer synaptic
strengths are encoded on 4 bits. The whole network is genetically represented by a binary string

6
C(ν) =

0BBBBBBBB@

0 0 0 0 −m′
zvz m′

yvy − mrzωx

0 0 0 m′
zvz 0 −m′

xvx − mrzωy
0 0 0 −m′

yvy + mrzωx m′
xvx + mrzωy 0

0 −m′
zvz m′

yvy − mrzωx 0 −I′zωz mrzvx + I′yωy

m′
zvz 0 −m′

xvx − mrzωy I′zωz 0 mrzvy − I′xωx
−m′

yvy + mrzωx m′
xvx + mrzωy 0 −mrzvx − I′yωy −mrzvy + I′xωx 0

1CCCCCCCCA
7In these experiment, altitude is not under evolutionary control, but is automatically regulated using distance infor-

mation from the ventral infra-red sensor.
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Front thruster

Anemometer

Yaw thruster

Vertical thrusterAltitude sensorBattery Microcontroller board with radio module and yaw gyroscope

1D camera

Helium-filled envelope

Figure 5: The physical flying platform, named Blimp2b. The envelope measures 110x60x60cm and
provides a lift capacity of about 200g. The underneath gondola is made of thin carbon rods sup-
porting several electronic components: three thrusters (8mm DC motors, gear and propellers from
DIDELTM), a forward-looking 1D camera (Taos inc. TSL3301) with 50 active pixels covering an
horizontal field of view of 70◦, an anemometer (free rotating propeller mounted on a shaft with an
optical encoder whose rotation rate is roughly proportional to the forward velocity of the blimp, devel-
oped by DIDELTM), a vertical distance sensor (SharpTM GP2Y0A02YK), a MEMS piezoelectric rate
gyro (AnalogDevicesTM ADXRS300) measuring yaw rotation, and an electronic board featuring an
8-bit microcontroller running at 20MHz (MicrochipTM PIC18F452) together with a Bluetooth mod-
ule (MitsumiTM WML-C10-AHR) for bidirectional wireless communication with a ground station.
On-board energy is provided by a 1200mAh Lithium-polymer battery, which is sufficient for 2-3 hours
autonomy. Further details on the microcontroller board, wireless link, and camera can be found in
Zufferey et al. [2003].

Figure 6: Real (left) and simulated (right) robots and environments. The square room measures
5x5m by 3m high and features randomly contrasted walls. The patterns in the simulator are exactly
reproduced from the real ones that have been painted on the walls. Note that spatial frequency of
pattern can vary substantially among the walls. The simulated Blimp2b has the same sensors as the
real one: 1D camera, anemometer and yaw rate gyro, and vertical distance sensor. Sensor values are
disturbed with noise as observed from measurements with the real sensors.
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Figure 7: Left: Outline of the blimp sensory inputs and actuators. Right: Neural network architecture
and input preprocessing.

composed of a series of 4-bit blocks, each corresponding to one synapse. In these experiments, only
the synaptic strengths are evolved. The neural network (Fig. 7) has 4 input units receiving visual
information, 1 input neuron connected to the rate gyro, 1 bias unit (not shown), 2 hidden units, and
2 output neurons driving the frontal and yaw thrusters. Output neurons have recurrent and lateral
connections (with a fixed time delay of 1 sensory-motor cycle).

A population of 60 individuals (corresponding to 60 88-bit genetic strings) is evolved using rank-
based truncated selection, one-point crossover, bit mutation, and elitism [Nolfi and Floreano, 2000].
The genetic strings of the first generation are initialised randomly. After ranking the individuals
according to their measured fitness values, the top 15 individuals produce 4 copies each to create a
new population of the same size and are randomly paired for crossover. One-point crossover is applied
to each pair with probability 0.1 and each individual is then mutated by switching the value of a bit
with probability 0.05 per bit. Finally, a randomly selected individual is substituted by the original
copy of the best individual of the previous generation (elitism).

Each individual of the population is evaluated on the robot two times for 1200 sensory-motor
cycles (corresponding to 2 minutes real time). After each evaluation period, a backward movement of
4 seconds with random yaw commands is executed to create a . initial situation for the next evaluation.
The behaviour of an individual is evaluated by means of the anemometer (Fig. 5), whose rotation speed
to the left is proportional to forward displacement of the blimp. The fitness is thus computed as the
average forward velocity over the entire evaluation period of the individual. In contrast to previous
experiments entirely run in reality [Zufferey et al., 2002], simulation enables to put additional pressure
against behaviours that are not desirable. In order to evolve not only efficient navigation in the sense of
high average forward velocity, but also reliable collision avoidance, a series of virtual proximity sensors
have been implemented all around the hull of the simulated robot. Whenever one of these sensors
is active (i.e., when the hull is closer than 25cm from a wall), the current velocity indicated by the
anemometer is forced to zero. In addition, individuals that display poor behaviours (low fitness) are
interrupted prematurely (100 cycles) in order to reduce simulation time. This procedure encourages
evolution to select individuals that are not only able to move forward at high velocity, but also to
quickly escape from difficult initial positions such as, e.g., facing a wall.
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3.2 Evolution Management and Simulator Implementation
To run our evolutionary experiments, we employ a framework consisting of two pieces of software. The
first one, goevo8, is custom software that manages evolution, creates neuromorphic circuits, provides
sensor display facilities, and can connect to a range of physical or simulated robots, included the
Blimp2b via a wireless connection (using Bluetooth) or its simulated version over TCP/IP. The second
is the simulator itself, WebotsTM [Michel, 2004], which is a convenient program allowing to create
and run mobile robot simulations in 3D environments (based on OpenGL) with a number of built-in
sensors like bumpers, range finders, or cameras. Fig. 6 illustrates the Blimp2b in its real environment
(on the left) and its simulated counterpart in Webots (on the right).

Webots also features rigid-body dynamics (based on ODE9). This dynamics engine provides libraries
for kinematics transformations, collision handling, friction and bouncing forces, etc. However, it does
not yet support non-rigid-body effects such as aerodynamic or added-mass effects. Therefore, we
implemented the dynamic model of our blimp as custom library, while leaving to ODE the emulation
of friction and bouncing forces. The dynamics implementation takes the current orientation and
velocities as input and provides force vectors that are passed to ODE, which computes the resulting
new state after a simulation step. 10

In order to make sure that the simulated behaviour is as close as possible to reality, we carefully
followed the parameter identification procedure described above. Sensors were modeled using exper-
imentally recorded data. Since it has been shown that appropriate levels of noise in sensor models
is a prerequisite to facilitate the transfer to reality [Jakobi et al., 1995], noise level and envelope is
reproduced in the sensor model so to match as closely as possible real data.

The simulation rate with all sensors enabled and full 3D physics (ODE and custom blimp model)
is 40 to 50 times faster than real-time when running on current computers (e.g., Intel(R) Pentium IV
at 2.5GHz with 512MB RAM and nVidia(R) GeForce4 graphic accelerator).

3.3 Results
3.3.1 Evolution in Simulation

We performed five evolutionary runs, each starting with a different random initialization (Fig. 8.A).
The best evolved individuals of the five runs developed efficient behaviours in less than 50 generations
to navigate in the room in the forward direction while actively avoiding walls. Fig. 8.B illustrates the
typical preferred behaviour of the best evolved individual. The resulting circular trajectory is close to
optimal because it well fits the available space (the back of the blimp sometimes gets very close to a
wall without touching it). It is to notice however that the trajectory is not centered in the room and
this is probably due to the spatial frequency discrepancy between walls (top and right sides have less
vertical stripes than the two others). The non-zero angle between the heading direction of the blimp
(indicated by the small segments) and its trajectory indicates that the simulated flying robot is always
side-slipping and thus evolved controllers have to take into account the quite complex dynamics by
relying on air drag to compensate the centripetal force.

In order to further assess the wall-avoidance capability of the evolved robots, we artificially reduced
the size of the room and tested the same best individual in the tighter environment. As a result, the
blimp modified its trajectory into a more elliptic one (Fig. 8.C). In another test, we deliberately
positioned the best individual frontally against a wall (Fig. 8.D). In this situation, it actively reversed
its front thruster, backing away from the wall while rotating about its yaw axis in order to recover its
preferred circular trajectory and accumulate fitness points.

8Goevo website: http://lis.epfl.ch/resources/evo/
9Open Dynamics Engine: http://opende.sourceforge.net

10The model of our Blimp2b is freely available under GPL in the current distribution of Webots and can be downloaded
from our website as well: http://lis.epfl.ch/software.php
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Figure 8: Results in simulation. A) Average fitness values and standard deviations, over a set of
five evolutionary runs, of the fittest individuals on each evaluation. B) Top-down view of the typical
trajectory of the fittest evolved individual during 1200 sensory-motor cycles. The black continuous
line is the trajectory plotted with a time resolution of 100ms. The small segments indicate the heading
direction every second. Light-gray ellipses represent the envelope of the blimp also plotted every
second. C) Trajectory of the fittest individual when tested during 1200 sensory-motor cycles in a room
that has been artificially shrunk by 1.5m. D) When the same best individual is started against a
wall, it first reverses its front thruster while quickly rotating clockwise before resuming its preferred
behaviour. The ellipse surrounded with bold black line indicates the starting position. The following
ones with black outline indicates the envelope when the robot is in backward motion. Arrows indicate
frontal direction irrespective of forward or backward movement.
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Figure 9: Left: Navigational performance: from simulation to reality. Fitness results of 10 trials of
best evolved individual, once when evolution is carried out with the full dynamics model, and once
when the model has been simplified (no Coriolis effects due to added-mass). Right: Fitness graph of
the evolution in simulation with the simplified dynamics model. The dashed line is the fitness graph
replotted from Fig. 8.A, for sake of comparison.

3.3.2 Transfer to Reality

A series of experiments were carried out in order to evaluate the quality of the transfer from simulation
to reality. The first one consisted of testing in reality the fittest controller evolved in simulation. When
directly transferred to the real airship, without further evolution, the physical robot behaviour was
very similar to the simulated one.11 After random initialization in its environment, the robot was
able to quickly drive itself on its preferred circular trajectory, while reliably avoiding contact with
surrounding walls. We measured the transfer performance based on a slightly modified version of the
fitness function. Since no proximity sensors were mounted on the physical robot, we simply cancelled
their effect on the fitness function. The fittest individual was tested 10 times in simulation and 10
times in reality during 1200 sensory-motor cycles (2 minutes in reality). The results of these tests
(left side of the histogram in Fig. 9) show that controllers evolved in simulation obtain very similar
performance in reality.

A second experiment was carried out in order to check the necessity of a realistic dynamic model.
To this aim, we run a set of five evolutionary experiments in simulation with a modified equation of
motion (Eq. 1) where the added-mass Coriolis effects were cancelled. This modification eliminates
the spontaneous rotational effects described in Section 2.5, making the piloting of the simulated blimp
easier, but less realistic. The final fitness values obtained in simulation (Fig. 9, right) were very similar
to those obtained with the full model. However, when the fittest controller was transferred to the real
robot, the performance significantly dropped (Fig. 9, right side of the histogram), attesting for the
necessity of a realistic dynamic model.

In order to further check the correspondence between results with the full model and the real
robot, we run a third experiment where we compared the signals from the anemometer, rate gyro
and actuators while the blimp was backing away from a frontal wall, as shown in Fig. 8.D, both in
simulation and in reality. Fig. 10 shows the very close match between signals gathered in reality and
those recorded in the same situation in simulation. At the beginning, the front thruster is almost
fully reversed while a strong yaw torque is produced by the yaw thruster. These actions produce the

11Video clips of simulated and physical robots under control of the same evolved neural controller are available at
http://lis.epfl.ch/jczthesis
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Figure 10: Comparison of thruster commands and sensor values in simulation and reality when the
best evolved individual is started facing a wall, as shown in Fig. 8.D.

same increase in rotation rate (detected by the rate gyro) and a slight backward velocity (indicated
by negative anemometer value), both in reality and in simulation. After approximately 3 seconds,
the blimp is almost finished with the back-and-rotate manoeuvre and starts a strong counter-action
with the yaw thruster to cancel the rotational movement, resulting in a noticeable decrease in gyro
output. After that, the robot accelerates forward (as shown in the anemometer graph) to recover its
preferred circular trajectory (as revealed by the almost constant, though not null, rate gyro output).
Slight discrepancies among signals from simulation and reality can be explained by differences in initial
positions implying slightly different visual inputs, inaccuracies in sensor modelling, and omitted higher
order components in the dynamic model.

4 Conclusions and Outlook
An exhaustive dynamic modelling of an indoor airship has been presented together with a pragmatic
methodology for parameter identification using a series of simple experiments to be carried out with the
physical blimp. Following this methodology allowed us to develop an efficient flight simulator without
the need for costly facilities like wind tunnel or aerodynamic balance. The obtained 3D simulation
runs 40 to 50 times faster than real-time, significantly speeding up evolutionary experiments, which
are notoriously time-consuming.

A major drawback of using artificial evolution to discover efficient robot controllers, that is the
time it takes for evaluating a whole population of controllers over a number of generations (which is
even more problematic with physical flying robots that may be damaged by collisions, have limited
on-board energy, and have actuators performance that change over time), has been addressed in this
article by demonstrating the use of physics-based simulation and successful transfer to reality. Not only
qualitatively identical behaviours have been observed, but a close look at the internal signals reveal a
quantitatively similar functioning of the evolved control system during the same phase of operation in
the two worlds, simulated and real.

However, systematic analysis of the importance of each parameter and component of the model
has not been carried out and good correlation between simulation and reality has been demonstrated
only within a specific navigational task where altitude was automatically kept constant. In the future,
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care should be taken to assess whether the vertical and roll movements are sufficiently close to the
real dynamics in order to ensure a good transfer in the case of more complex tasks with more complex
sensors.

So far, the vision sensor as well as the visual surroundings remained quite simplistic. In future
work, we plan to take advantage of this simulator to evolve more complex neuromorphic systems
(requiring a higher number of generation to produce efficient solutions) fed with a higher number of
pixels in order to cope with natural indoor environments. In that case, it is probable that the visual
input will have significant discrepancies between simulation and reality, such that hand-crafted image
preprocessing will fail at totally cancelling them. In order to cope with that kind of issues, previous
research in evolutionary robotics suggest two approaches. The first one is called incremental evolution
and consists in continuing evolution in reality for a short amount of generations (see Nolfi and Floreano,
2000, Section 4.4). The second solution consists of evolving hebbian-like synaptic plasticity, which we
have shown to support fast self-adaptation to changing environments [Urzelai and Floreano, 2001].

Another interesting research direction that is enabled by working in simulation is the evolution of
sensor morphologies. For instance, position and orientation of simple vision sensors could be left to
evolutionary control [Cliff and Miller, 1996]. Eventually, our goal is to apply this approach to winged
microflyers [Nicoud and Zufferey, 2002, Zufferey and Floreano, 2006, Zufferey et al., 2006] instead of
airships.
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