

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://doi.org/10.1109/TPDS.2017.2713778

http://hdl.handle.net/10251/102495

Institute of Electrical and Electronics Engineers

Selfa-Oliver, V.; Sahuquillo Borrás, J.; Petit Martí, SV.; Gómez Requena, ME. (2017). A
Hardware Approach to Fairly Balance the Inter-Thread Interference in Shared Caches. IEEE
Transactions on Parallel and Distributed Systems. 28(11):3021-3032.
doi:10.1109/TPDS.2017.2713778

1

A Hardware Approach to Fairly Balance the
Inter-thread Interference in Shared Caches

Vicent Selfa, Julio Sahuquillo, Member,IEEE, Salvador Petit, Member,IEEE, and
Marı́a E. Gómez, Member,IEEE,

Abstract—Shared caches have become the common design choice in the vast majority of modern multi-core and many-core
processors, since cache sharing improves throughput for a given silicon area. Sharing the cache, however, has a downside: the
requests from multiple applications compete among them for cache resources, so the execution time of each application increases over
isolated execution. The degree in which the performance of each application is affected by the interference becomes unpredictable
yielding the system to unfairness situations.
This paper proposes Fair-Progress Cache Partitioning (FPCP), a low-overhead hardware-based cache partitioning approach that
addresses system fairness. FPCP reduces the interference by allocating to each application a cache partition and adjusting the
partition sizes at runtime. To adjust partitions, our approach estimates during multicore execution the time each application would have
taken in isolation, which is challenging. The proposed approach has two main differences over existing approaches. First, FPCP
distributes cache ways incrementally, which makes the proposal less prone to estimation errors. Second, the proposed algorithm is
much less costly than the state-of-the-art ASM-Cache approach. Experimental results show that, compared to ASM-Cache, FPCP
reduces unfairness by 48% in four-application workloads and by 28% in eight-application workloads, without harming the performance.

Index Terms—Cache partitioning; multi-cores; fairness; progress; slowdown; execution time in isolation

F

1 INTRODUCTION

SHARED caches can be found in the vast majority of
modern multi-core and many-core processors. The main

reason is that cache sharing improves throughput for a given
silicon area. As a consequence, recent microprocessors in-
corporate shared caches in almost all, if not all, levels of the
cache hierarchy. In this regard, all cache levels (e.g. L1, L2
and L3) are shared in simultaneous multithreading (SMT)
processors, e.g. the multi-core IBM Power8 processor [1]
and the many-core Knights Landing Intel Xeon Phi [2].
The benefits of cache sharing are also exploited in the
embedded market, e.g., the L2 cache in the ARM Cortex-A53
processor [3]. Cache sharing, however, introduces interfer-
ence when the co-running threads dynamically contend for
cache resources. Consequently, the performance of individ-
ual applications can be worse than when executed alone,
depending on how severe is the contention.

This causes an unfairness problem, which is a major con-
cern in current CMP design, since unfairness causes critical
undesirable behaviors: i) it makes execution time unpre-
dictable, which complicates the analysis of both hardware
and software implementations, ii) it complicates priority-
based Operating System (OS) scheduling, and iii) it enables
denial of service attacks. Despite this, unfairness is still an
unsolved problem in current microprocessors.

The unfairness of a system depends on the progress of
the running applications. This progress metric is defined, per
application, as the quotient between its execution time when
executed with co-runners and its execution time when exe-

• V. Selfa, J. Sahuquillo, Salvador Petit and M. E. Gómez are with the De-
partment of Computing Engineering, Universitat Politècnica de València,
Spain.
E-mail: {viselol,jsahuqui,spetit,megomez}@disca.upv.es

cuted in isolation. Slowdown is the inverse of progress, and
both metrics can be used to measure how interference de-
grades performance. Using the progress metric, unfairness
is formally defined as the quotient between the progress of
the most progressing application and the progress of the
least progressing application [4]. Consequently, a system is
considered to be completely fair when all the tasks in the
system experience the same progress, so unfairness is equal
to one [5], [6], [7], [8].

To illustrate the unfairness problem in a real system we
measured the progress of four applications running concur-
rently on a recent Intel multicore processor, the Xeon E5
2658 v3. The Intel Xeon E5 2658 v3 supports the execution
of 24 applications (i.e. 12 SMT-2 cores) at the same time
and features a 30MB L3 shared cache. The L2 caches, on
the other hand, are shared among the 2 hardware threads
that run in each core when hyperthreading (i.e. SMT) is
enabled. In order to avoid intra-core interference, each ap-
plication was allocated to a different core, disabling the SMT
mode. Figure 1 shows the progress that each application
(libquantum, lu, omnetpp and sphinx3) experienced
with respect to individual execution. It can be appreciated
that sphinx3 is the most progressing application, with a
progress rate of 82% (i.e. 22% slowdown) and libquantum
is the least progressing application, with a progress rate
of 57% (75% slowdown). The unfairness is, therefore, 44%
(82% / 57%− 1 = 0.44). Notice that the unfairness problem
would exacerbate if the L1 and L2 had been shared, which
could happen if two applications were allocated to the same
core.

To address unfairness in modern multicore processors,
this paper proposes Fair-Progress Cache Partitioning (FPCP), a
low-overhead hardware-based cache partitioning approach

2

libquantum lu omnetpp sphinx3
Applications

0%

20%

40%

60%

80%

100%

Unfairness
Progress alone
Progress with corunners

Fig. 1. Progress and unfairness for 4 applications running concurrently
in an Intel Xeon E5 2658A during 120 seconds.

that reduces cache interference by allocating a cache parti-
tion to each application and adjusting its size dynamically
at runtime, since the cache requirements of each application
vary during its execution. Thus, FPCP acts periodically,
modifying the number of ways allocated to each partition,
giving more cache space to applications suffering more
slowdown. Section 5 explains the proposal in detail.

A key characteristic of FPCP is that the number of cache
ways provided to a given application can only vary in one-
unit between two consecutive intervals. This particularity
makes the hardware simpler, the mechanism more resilient
to deviations in the estimations and, as experimental results
will show, allows the system to achieve the best cache distri-
bution. However, the slowdown an application suffers is un-
known at runtime, so a key challenge to deal with fairness is
the estimation of the execution time each application would
experience in isolation. To deal with this issue we need
a performance model that, taking multi-core performance
and inter-thread interference as inputs, provides us with
accurate performance estimations of isolated execution as
output.

Two approaches have been recently proposed to estimate
isolated execution performance. The first one, Per-Thread
Cycle Accounting (PTCA) [9], identifies at run-time the cache
misses that would have not occurred in isolation (i.e. inter-
thread misses). Then, the amount of cycles the reorder
buffer (ROB) is blocked due to these misses is subtracted
from the total execution time to obtain an estimation of the
execution time the application would experience if executed
without co-runners. The other, Application Slowdown Model
(ASM) [10], is conceptually similar. However, ASM uses the
Cache Access Ratio (CAR), cache accesses per time unit,
as a proxy for performance. In this work, both approaches
have been implemented in order to check and evaluate
our proposal. Experimental results show that, in our im-
plementation, the ASM approach is a bit more accurate than
PTCA. Section 4 explains the differences between this two
approaches and compares them.

Finally, Section 6 compares FPCP with two state-of-the-
art cache partitioning mechanisms, Utility Cache Partition-
ing (UCP) [11], by Qureshi and Patt, and ASM-Cache, a
recent proposal by Subramanian et al. [10] that works on top
of the ASM performance model. While both help to reduce
unfairness, they present several drawbacks: i) since finding
the optimal partitioning is a NP-hard problem [12], both
UCP and ASM-Cache employ a O(n2) greedy algorithm,
compromising scalability; ii) they strongly depend on the
accuracy of the estimation of the execution time in isolation,

so errors in this estimation can have a big impact on appli-
cation progress and system unfairness, and iii) both rely on
the cache replacement policy obeying the stack property [13]
(as with LRU) and in being able to track the number of hits
in each frame of the replacement policy stack. In contrast,
FPCP avoids these limitations by featuring an incremental
cache partitioning algorithm, which is both less complex
and more resilient to estimation errors.

This paper makes the following contributions.

• We characterize the applications from SPEC
CPU2006 and NAS benchmark suites according to
their relationship between progress and shared cache
interference, analyzing how unfairness may be af-
fected depending on both the co-running applica-
tions and the available cache resources.

• We implement and compare two different models to
estimate isolated execution performance, PTCA and
ASM, concluding that ASM is slightly more accurate.

• We propose FPCP, a simple, cost-effective and scal-
able cache partitioning mechanism that improves
system fairness regardless of the number of contend-
ing applications.

• We show that FPCP achieves better fairness than two
state-of-the-art cache partitioning mechanisms, UCP
and ASM-Cache, across a wide range of workloads
and system configurations.

The remainder of this work is organized as follows.
Section 2 discusses the related work. Section 3 analyzes
the relationship between interference, progress and fairness.
Section 4 discusses the way progress is estimated at run-
time. Section 5 presents the repartitioning approach, and
Section 6 evaluates the proposal. Finally, in Section 7 some
concluding remarks are drawn.

2 RELATED WORK

Some research works partition shared last level caches (e.g.
L2 or L3) focusing on performance, QoS or fairness. The
specific implementation of each proposal can be hardware-
based or software-based, and those that are hardware-based
can be evaluated using real hardware or in a simulation
environment.

Regarding approaches addressing QoS in CMPs with
shared caches, in [14] Iyer presents the CQoS cache manage-
ment framework, which provides prioritized service to mul-
tiple heterogeneous threads sharing a cache structure. CQoS
relies on hardware support to enforce priorities among the
memory access streams issued by the different threads.
In [15], Chang and Sohi use multiple time-sharing cache
partitions to guarantee QoS among threads. They propose
a QoS metric that modulates the allocated cache space for
a given thread. Ubik [16] employs ZCaches [17], a radical
change from traditional caches, to partition the cache. Their
goal is to provide QoS while at the same time improving the
performance of batch applications.

Other recent approaches also targeting QoS employ In-
tel Cache Allocation Technologies (CAT) [18]. Both Hera-
cles [19] and Dirigent [20] focus on maximizing utiliza-
tion in large-scale datacenters without affecting the user-
perceived latency in latency critical applications. To do that,

3

and among other approaches, they classify applications
a priori as batch or latency critical, and use CAT to limit
the amount of cache resources that batch applications can
consume. Ginseng [21] is also based on CAT, but focuses
on cloud computing providers that rent virtual machines.
It uses a market-driven auction system to partition the
LLC into non-overlapping partitions depending upon how
much each guest is willing to pay and how that affects the
rest. Note that approaches using CAT are controlled from
software, while our approach works at hardware level, with
a granularity orders of magnitude smaller. Additionally, the
amount of information available to the operating system
and userland software is limited to public-exposed perfor-
mance counters, while a hardware-level approach has access
to much more information.

In [22], Hsu et al. demonstrate that modern CMPs require
policies to adequately distribute the cache space, since LRU
is not sufficient to meet neither performance nor fairness
goals. They also formalize the different aspects that char-
acterize a partitioning policy and conclude that policies
targeting fairness are often near optimal, performance-wise.
Most techniques aimed at achieving fairness, which is the
goal of this work, are software-based and rely on OS
scheduling [23], [24], [25]. Others, like [5], try to achieve
system fairness by dynamically adapting the rate at which
different cores inject requests to the memory subsystem.
Fedorova et al. [26] propose a software-based technique that
regulates OS time slices to prevent the IPC of a given thread
from being lower than estimated using the thread fair miss
rate. The fair miss rate of a thread is defined as the miss
rate that the thread experiences when the shared cache
is equally distributed among concurrent threads. The ap-
proach followed in [27] is based on changing the LRU policy
to focus on fairness among cores by penalizing the core with
highest IPC in favor of the others. The work in [28] evaluates
several static partitioning approaches to achieve fairness on
an Ivy Bridge architecture. It employs a theoretical approach
to model application LLC features. In [29], Kim et al. try
to improve system fairness by partitioning the shared L2
space without requiring any OS modification. In this work,
they analyze four metrics and their correlation with system
fairness. However, three of them require offline profiling,
making them impractical. We considered the last metric as a
base for our proposal, but we found that it strongly depends
on the characteristics of the memory hierarchy of the CMP,
which makes it unsuitable.

Some approaches such as [30], [31], [32], [33], [34], pur-
sue to improve the raw cache performance. An interesting
idea is the work by Qureshi and Patt [11], Utility Cache
Partitioning (UCP), which partitions the cache to minimize
cache misses and maximize cache throughput. Other works
focusing on throughput, like [35] and [36], require OS in-
tervention. Vantage also targets performance but does not
use traditional caches but ZCaches, which provide Vantage
with more flexibility for partitioning the cache. While Van-
tage uses an adaptation of the Utility Cache Partitioning
algorithm to distribute cache space, our proposal could also
be adapted to work on top of it. Notice that while the cache
partition policy proposed in this paper assumes that parti-
tions are enforced by augmenting LRU cache replacement
policy to allow way partitioning [14], other schemes such as

those presented in [37] can be used.
A significant amount of work has been devoted to

software-based cache partitioning approaches [38], [39], [40].
Most of them are based on page-coloring techniques that
manipulate the address bits used to determine the cache
set the data blocks are placed into. Coloris [41] targets
QoS, and monitors the cache miss rates of running appli-
cations, re-partitioning the cache when miss rates exceed
applications-specific thresholds. In [42], the authors propose
a lightweight dynamic partitioning approach for the LLC
that employs page coloring to improve performance. How-
ever, the main disadvantage of page coloring comes when
there is frequent repartitioning, since memory pages must
be copied to new locations to change the cache allocation,
so is less versatile than a hardware mechanism, as the one
presented in this paper.

3 ANALYSIS OF THE INTER-APPLICATION CACHE
INTERFERENCE

The interference an application suffers when contending
for the shared resources with other applications has an
unpredictable impact on its progress (Equation 1), and thus
in the unfairness of the system, measured as in Equation 2.
In Equation 1, Ct,multicore is the measured execution time of
task t with less effective cache resources due to contention,
and Ct,alone is the estimated execution time task t would
experience were it executed without interference.

Progresst =
Ct,alone

Ct,multicore
(1)

Unfairness =
maxProgressi

minProgressj
| i, j ∈ Tasks (2)

To help to understand the causes of unfairness, this
section analyzes how the progress of each individual appli-
cation is affected when the amount of assigned cache ways
varies from 1 way to the total available, simulating other
applications competing for the same cache resources1.

Since results depend on the cache geometry, to focus the
analysis we first consider a 2MB-16w LLC cache. Figure 2a
shows the progress rate (from 0% to 100%) achieved by the
different applications (sorted by ascending progress with 1
cache way) when varying the number of assigned cache
ways. For instance, povray achieves a progress rate of
around 39% with just 1 cache way and requires 2 and 3
ways to increase its progress up to 82% and 100%, respec-
tively. These results have been obtained using the simulation
environment described in Section 6.

According to the number of ways required to achieve
a significant (e.g. 80%) progress, three main categories of
applications can be distinguished: cache-insensitive progress,
highly cache-sensitive progress and moderately cache-sensitive
progress. The former group contains those applications
whose progress is barely affected by the number of cache
ways assigned to the application, that is, a single cache way
is enough to achieve significant progress. The second and

1. The progress of a task when running in the cache with a reduced
number of ways, say w, is computed as the execution time of the task
when it has the entire cache for itself (i.e. 16 ways and no interference)
divided by the execution time taken in the constrained cache.

4

(a) 2MB-16w LLC

(b) 4MB-32w LLC

Fig. 2. Effect of the available number of ways on progress, sorted by 1-way progress, for applications of the SPEC 2006 and NAS benchmark suites.

third categories group those applications whose progress
is sensitive to the number of ways. However, while ap-
plications in the second group require a high number of
cache ways (e.g. half the number of the total cache ways),
applications in the last group require a relatively low (e.g.
from 2 to 4) number of ways to achieve significant progress.

Next, we illustrate how this information can be used
to provide an overview analysis about system unfairness
through two examples: one with low unfairness and another
one with a high level of unfairness.

Low-unfairness example. Assume that cactusADM and
milc run together. In this case, unfairness would not be
a concern since both applications are classified as cache-
insensitive progress, and the progresses of both applications
would be higher than 97% regardless of the cache way
distribution.

High-unfairness example. Assume now that the appli-
cations running together are cactusADM and xalancbmk.
The former is an application with cache-insensitive progress
while the latter is classified as highly cache-sensitive progress.
Thus, while cactusADM only requires one way to achieve
a notable progress, xalancbmk requires significantly more
cache resources to have an adequate progress rate. How-
ever, due to its poor cache locality under the typical LRU
replacement algorithm, which is the reason its progress is
so cache insensitive, cactusADM uses around 10 out of
16 cache ways, leaving to xalancbmk only the remaining
6. Consequently, the progress of xalancbmk drops below
80%, which yields the system to an unfairness level of
around 25%.

An analogous study has been performed for a 4MB-
32w cache (see Figure 2b). It can be noticed that, although
using the same sorting approach, the relative order of the
workloads in Figure 2a and in Figure 2b is slightly different.
This can occur when the working set fits in the larger cache

or when the larger cache improves the hit ratio enough to
significantly reduce cache trashing.

4 ANALYSIS OF PROGRESS ESTIMATION AP-
PROACHES

FPCP employs auxiliary circuitry to estimate the execution
time each application would have experienced if executed
without co-runners, since this information is required to
estimate the progress of the application, see Equation 1 in
Section 3. Then, the progress results are used to select cache
partition sizes. Therefore, if estimations are not accurate
enough, it is likely that the cache partitioning will perform
poorly.

There are are two recent approaches to estimate perfor-
mance without co-runners: Per-Thread Cycle Accounting
(PTCA) by Du Bois et al. [9] and Application Slowdown
Model (ASM) by Subramanian et al. [10].

To implement and evaluate FPCP, we first implemented
and compared the PTCA and ASM models to obtain
progress estimations, based on the guidelines discussed in
the original works. To make this paper self contained, some
key guidelines are discussed below. Please, refer to the
original work for further details.

Both approaches make use of an Auxiliary Tag Directory
(ATD) per core, which is a structure that keeps track of what
the status of the shared cache would have been if it were
private to the core [11]. Note that if SMT is used and one
wants to distribute cache resources per-application instead
of per-core, then an ATD per thread is required and the
mentioned models need to take into account the interference
between threads at the shared cache levels above the LLC.

The key challenge lies on obtaining accurate estimates
of performance in isolation by using information gathered
during execution with co-runners. This can be done by
subtracting the cycles an application makes no progress due

5

to interference caused by co-runners from the concurrent
execution time (see Equation 3, where It,multicore represents
the stall cycles due to interference).

Ct,alone = Ct,multicore − It,multicore (3)

Using the ATD, PTCA identifies at run-time the LLC
cache misses that would have not occurred in isolation (i.e.
inter-thread misses). Then, the amount of cycles the reorder
buffer (ROB) is blocked due to these misses is accounted as
interference cycles.

The approach followed by ASM is conceptually similar.
However, ASM uses the Cache Access Ratio to the LLC
(CAR) as a proxy for performance. CARt,multicore is ob-
tained during execution with co-runners and it is defined as
in Equation 4. On the other hand, CARt,alone is estimated
dividing the number of cache accesses to the LLC by the
cycles elapsed minus the cycles lost due interference (see
Equation 5). Notice that the fraction’s denominator of the
latter equation matches Ct,alone when applying Equation 3.

CARt,multicore =
#LLC Accesses

Ct,multicore
(4)

CARt,alone =
#LLC Accesses

Ct,multicore − It,multicore
=

#LLC Accesses

Ct,alone
(5)

Therefore, progress is defined in ASM as shown in
Equation 6. Note that the original ASM paper estimates
slowdown instead of progress but, since one is the inverse
of the other, both can be used with the same aim.

Progresst =
CARt,multicore

CARt,alone
=

#LLC Accesses
Ct,multicore

#LLC Accesses
Ct,alone

=
Ct,alone

Ct,multicore

(6)
ASM uses a different method than PTCA to compute

the interference cycles. Instead of tracking the time the ROB
is stalled due to interference, they multiply the number of
inter-thread misses (obtained with the ATD) by the average
cache miss service time. Note that both ASM and PTCA
provide mechanisms to separate and identify interference
coming from different parts of the system so, while in this
work we are only targeting LLC-originated unfairness, ad-
ditional sharing policies, orthogonal to our proposal, could
be implemented in other shared parts of the system, like
the memory controller or the NoC [43], [44], [45] to further
reduce unfairness.

We compared the accuracy of both ASM and PTCA and
we found that, in our experimental setup, ASM was slightly
more accurate than PTCA. Thus, results will be presented
only with the ASM model. Figure 3 shows the average
and the standard deviation of the estimation error across
the studied workloads varying the number of applications
running concurrently.

5 FPCP PARTITIONING APPROACH

As mentioned above, a system is totally fair if all the co-
running tasks progress at the same pace with respect to
isolated execution. The proposed partitioning approach pur-
sues to minimize system unfairness by narrowing progress
differences among co-executing tasks. FPCP gathers inter-
ference data during multicore execution at regular intervals,

2 4 8
Number of applications

0%

5%

10%

15%

20%

25%

Pr
og

re
ss

 E
st

im
at

io
n

Er
ro

r ASM-Cache
PTCA

Fig. 3. Progress estimation error with ASM and PTCA.

Prog: 0.82
Ways: 2

Prog: 0.87
Ways: 6

Prog: 0.68
Ways: 3

Prog: 0.65
Ways: 4

Prog: 0.92
Ways: 6

Prog: 1.00
Ways: 1

Prog: 0.82
Ways: 6

Prog: 0.78
Ways: 4

Prog: 0.65
Ways: 7

Prog: 0.82
Ways: 8

Prog: 0.78
Ways: 11

Prog: 0.92
Ways: 6

Prog: 0.65
Ways: 15

Prog: 0.78
Ways: 17

Le
v
e
l
0

Le
v
e
l
1

Le
v
e
l
2

#0 #1 #2 #3 #4 #5 #7#6

#8 #9 #10 #11

#12 #13

Prog: 0.65
Ways: 32

Le
v
e
l
3

#14

Fig. 4. Logical tree structure used by FPCP.

and then estimates progress at the end of each interval
according to Equation 6 and distributes cache ways.

We evaluated different interval lengths and found that
the best results for FPCP were obtained with intervals of
5K misses. The reason we use misses to define the interval
length instead of cycles is that this way responsiveness
is increased during execution phases with lots of cache
accesses.

Next, we analyze the scalability of FPCP with the num-
ber of cores, we discuss the reasons behind using binary
trees as underlaying structure, and finally, we estimate the
proposal overhead.

5.1 Algorithm and hardware implementation

FPCP implements a hardware tree-based algorithm, which
requires little extra logic [46]. The set of n applications
running in the processor is subdivided recursively until the
subsets have only two applications, and a binary tree with
the n applications at the leafs is constructed. Figure 4 shows
the resulting tree for 8 applications sharing a cache in an
8-core CMP.

Each leaf node contains the number of ways assigned to
the corresponding application as well as the Modified Mov-
ing Average (MMA) [47] of its progress (see Equation 7).

MMAi=MMAi−1+f(Progressi−1−MMAi−1)|f=0.1 (7)

The reason why we use the MMA is that it approximates
a conventional moving average, but only requires the pre-
vious average and the progress from the current interval
to compute the average for the next. In addition, it retains
enough previous information to make solid partitioning
decisions while allowing a fast reaction time to changes in
the workload behavior.

Each non-leaf node, on the other hand, stores i) the
total number of ways assigned to its children and ii) the
minimum progress (MMA) between its children. Note that,
to ease the understanding of the example, in Figure 4 we use

6

foreach n ∈ Nlevel do
if n.left.progress < n.right.progress then

least← n.left
most← n.right
n.prog ← n.left.progress

else
least← n.right
most← n.left
n.prog ← n.right.progress

if n.ways == most.ways+ least.ways then
if most.ways > 1 then

most gives 1 way to least

else if n.ways > most.ways+ least.ways then
least gains 1 way

else
if most.ways > 1 then

most loses 1 way

else
least loses 1 way

Fig. 5. FPCP algorithm.

dashed lines to indicate which child node has the minimum
progress.

Each Level i in the tree except Level 0 has an associated
number of intervals Ii, where i indicates the level depth. Ev-
ery Ii intervals the algorithm listed in Figure 5 is applied to
the nodes in Level i (i ≥ 1). For each node in that level, the
minimum progress between its children is determined and
stored in the node by checking only the lower level. Then,
there are three possible cases: À The node has the same
number of ways as its children combined. When this occurs,
the most progressing child relinquishes a way (provided it
has more than one) in favor of the least progressing child. Á

The node has more ways assigned than its children. In this
case no child has its ways reduced, but the least progressing
node gains a way. Â The node has less ways assigned than
its children. If this happens, then no child receives a way,
and a way is subtracted from the most progressing child, if
possible, or its brother, if not.

In Figure 4, node #8 is an example of case À. When
the algorithm is applied to this node, a way is transferred
from node #1 to #0. On the other hand, node #11 is an
example of case Á. It has 11 assigned ways, but one of these
ways is not assigned either to node #6 or node #7. This can
happen if node #10 gave a way to node #11 in a previous
application of the algorithm in the upper level (node #13).
So, when the algorithm is applied to #11, #7 gains a way,
and #6 is not affected. Finally, node #10 is an example of
case Â, since it has less ways assigned than its combined
children. Again, this situation can occur due to a previous
application of FPCP in an upper level.

From now on, we assume I1 = 1, I2 = 4, and I3 = 8,
which are the values we used to obtain the experimental
results in Section 6. Therefore, way transfer at Level 1 will
occur every 1×5K misses; at Level 2 every 4×5K misses,
and at Level 3 every 8×5K misses. Additionally, progress
is computed every 1×5K misses. While we transfer ways
one at a time, this value can be increased, but there is a
trade-off between responsiveness and a higher penalty due
estimation errors. In addition, a threshold could be used to
only transfer ways if the progress difference is considered

significant.

5.2 Rationale for using binary trees as the underlying
structure
FPCP ’s goal is to ensure that applications progressing the
most relinquish cache resources, and that the freed cache
resources are assigned to those applications progressing
the least. A simple approach could be to only transfer
resources from the most progressing application to the least
progressing application, since finding the minimum and
maximum elements in a set has a O(n) cost, being n the
size of the set. However, the benefits of this approach do
not scale as the number of applications increases, since we
are considering only two applications and ignoring the rest.
The distribution of cache resources would be, therefore, not
responsive enough. Other approach could be to sort the ap-
plications by progress and adjust all the partitions according
to this information. Although the idea seems appealing, the
sorting cost is O(nlog(n)), which could make prohibitive
the hardware implementation cost. Using a binary tree and
making updates by levels maintains the benefits of poten-
tially exchanging ways between all the applications, while
keeping complexity O(n). The reason for using different
delays to update the levels of the tree is to leave some
time for the changes to settle in the lower levels, which
lead to better overall results. Arguably, other data structures
could be used instead of binary trees, but binary trees have
been used because both their simplicity and straightforward
scalability to greater numbers of applications.

5.3 Overhead Analysis
This section analyzes the FPCP overhead in terms of hard-
ware and timing complexity for 4- and 8-core systems.

The proposed approach assumes a thread-aware LRU
replacement algorithm [11], [14], [48]. Therefore, each cache
block is tagged with the associated thread it belongs to
(i.e. a 2-bit tag for a cache shared among four threads).
As depicted in Table 1, this implies around 35% and
45% of the total overhead for 4 and 8 cores, respectively,
which accounts for 1.10% and 1.30% of the area of the
entire shared cache (4/8 MB). Notice, however, that some
processors already implement this capability; for instance,
recent Intel Xeon processors [18], [49] feature cache uti-
lization monitoring and cache partitioning, referred to as
Cache Monitoring Technologies (CMT) and Cache Alloca-
tion Technologies (CAT), respectively, that can be used for
this purpose. Although CAT could be, in principle, used
to this end, notice that CAT is designed to be controlled
by software, while our approach works at hardware level,
with a granularity orders of magnitude smaller (i.e. ns vs
ms). Anyway, if the processor implements these features,
the total hardware overhead would drop to around 0.71%
for both configurations, assuming that we still use the ATD
to estimate progress.

The ATD is the other key hardware structure incurring
overhead. As mentioned above, this component is used,
one per core, to track inter-thread interference. However,
to reduce hardware costs we only monitor a subset of 64
cache sets, and the results are extrapolated with minimal
impact on accuracy [9]. ATDs account for 64% and 54% of

7

Item General cost Cost for a 4-core CMP Cost for a 8-core CMP

Core ID per tag Cache blocks × log2 cores 131072 bits 393216 bits
Alternate Tag Directory Sampled sets × associativity ×

(tag + replacement bits) × cores 237568 bits 475136 bits
Per-core interference cycle counter 32 bits × cores 128 bits 256 bits
Counters for the total number of accesses,
sampled accesses and inter-thread misses 3 × 20 bits 60 bits 60 bits
Per-core counters for hit and miss service times 16 bits × 2 × cores 128 bits 256 bits
FPCP tree cost (2 × cores - 1)×

(32 bits + log2 associativity) 259 bits 555 bits

Total 369215 bits 869479 bits
Percentage area overhead w.r.t. shared cache 1.10% 1.30%

TABLE 1
Detailed FPCP hardware overhead.

the total overhead, for 4 cores and 8 cores, respectively. The
remaining components, included the tree structure required
by FPCP, incur in a minimal hardware overhead (less than
1%) and the other values used by the proposal (e.g. CPI and
number of cache misses) that do not appear in the table can
be gathered from performance counters available in most
multi-cores, so they do not incur in additional overhead.

Each I1×5K misses interval, the progress of all the
applications is updated in the leaf nodes. Additionally, each
Ii intervals, the algorithm listed in Figure 5 (which has a
constant execution time) is applied to the Level i of the tree.
Therefore, the cost of FPCP is of O(n) since each interval
a number of nodes that depends linearly on the number of
applications (n) must be traversed. Further timing analysis
are discussed in the next section.

5.4 Main differences with the ASM-Cache approach
FPCP differs from ASM-Cache both in the criteria applied to
distribute cache ways and in the hardware implementation
complexity.

ASM-Cache distributes cache ways among applications
in a greedy way, according to the estimates of the execution
time in isolation. Thus, the number of assigned ways to a
given application can highly vary between two successive
intervals. For instance, an application could have assigned
a few ways (e.g. two out of sixteen) in a given interval and
almost all the cache ways (e.g. fourteen or fifteen) in the
subsequent interval, or vice versa. As a consequence, inaccu-
rate estimations can severely impact on the system fairness.
Unlike this approach, what we propose is to distribute cache
space in steps of a single cache way between consecutive
intervals. Notice that our proposal is, in essence, based on
relative estimates instead of absolute ones. This way makes
our approach more resilient to possible inaccuracies in the
estimation process.

Regarding complexity, ASM-Cache relies on the cache
replacement policy obeying the stack property [13] (as with
LRU) and in being able to track the number of hits in
each frame of the replacement policy stack. Moreover, since
finding the optimal partitioning is a NP-hard problem [12],
ASM-Cache employs a O(m2) greedy algorithm (where
m is the cache associativity) to search for an adequate
partitioning. All these reasons difficult the design of a viable
hardware implementation. Instead, as discussed above, the
cost of FPCP is only O(n) (with n being the core count).

We experimentally measured the time taken by both the
FPCP and other approaches, i.e. ASM-Cache, on a 2.2GHz

Core count 2/4/8 cores at 3GHz
Issuing policy Out-of-order
Issue/Commit width 4 instructions/cycle
ROB size 128 entries
Load/Store queue 64/48 entries
L1 Icache (private) 32KB, 8ways, 64B-line, 2cc
L1 Dcache (private) 32KB, 8ways, 64B-line, 2cc
LLC (shared) (2 cores) 2MB, 16ways, 64B-line, 11cc, 16 MSHR
LLC (shared) (4 cores) 4MB, 32ways, 64B-line, 11cc, 16 MSHR
LLC (shared) (8 cores) 8MB, 32ways, 64B-line, 11cc, 16 MSHR
Main Memory Latency 200 cycles zero-load latency

TABLE 2
System configuration.

Xeon, as an approximation of the time taken by the hard-
ware. Regarding FPCP , the algorithm takes between 100 –
800 cycles, depending on the depth of the specific level of
the tree being considered. The algorithm is triggered when
a given number of cache misses is reached, which translates
to around 500K cycles on average, but it is highly dependent
on the workload. On the other hand, the time taken by ASM-
Cache is about 120K cycles, and the algorithm is triggered
each 5M cycles. This means that the overhead of FPCP falls
in between 0.02% and 0.16%, while the overhead of ASM-
Cache is at least one order of magnitude higher, i.e. by
2.4%. This was expected, since ASM-Cache has quadratic
complexity while FPCP ’s complexity is linear.

6 EXPERIMENTAL EVALUATION

We modeled all the studied approaches and performed a
microarchitectural, cycle-by-cycle simulation by extending
the Multi2Sim [50] simulation framework. The proposal has
been evaluated varying the number of applications (i.e.
cores in our system) sharing the cache. We have studied
a cache shared by two, four and eight applications, which
covers a representative range of shared caches in current
multi-cores (e.g. ARM processors).

Each processor core has private 32KB 8-way L1 caches,
while the shared cache has a capacity of 1MB per core in
the system (e.g. 8MB for the 8-core multi-core). The shared
cache for the 2-core processor has 16 ways, while the others
have 32 ways. Bank and port contention have been modeled
in all the configurations. Table 2 summarizes the main
architectural parameters.

FPCP was evaluated and compared against a baseline
shared cache using the LRU replacement policy without
partitioning (referred to as NoPart) and against two state-
of-the art approaches (i.e. UCP and ASM-Cache). In the
UCP scheme, each core has a small utility monitor based

8

1 2 3 4 5 6
Time (ps) 1e11

0

5

10

15

20

25

M
PK

I NoPart hmmer
FPCP hmmer

NoPart mcf
FPCP mcf

(a) MPKI evolution.

1 2 3 4 5 6
Time (ps) 1e11

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

Alone hmmer
NoPart hmmer
FPCP hmmer

Alone mcf
NoPart mcf
FPCP mcf

(b) IPC evolution.

1 2 3 4 5 6
Time (ps) 1e11

0

2

4

6

8

10

12

U
se

d

NoPart
FPCP

(c) Ways used by hmmer. The remaining are used by mcf.

1 2 3 4 5 6
Time (ps) 1e11

0

5

10

15

20

25

30

35

%
 o

f u
nf

ai
rn

es
s

NoPart
FPCP

(d) System unfairness evolution.

Fig. 6. Dynamic hmmer-mcf evolution.

on dynamic set sampling (UMON-DSS) with 64 sets. This
monitor estimates how well each core makes use of cache
capacity, and distributes cache resources to minimize the
overall number of misses.

With respect to ASM-Cache, it employs a mechanism
similar as the used by UCP, but with a different aim. Instead
of trying to minimize misses, the mechanism estimates how
the slowdown of a given application will be affected accord-
ing to the number of ways allocated to it, so the optimal
partitioning is the one that minimizes the per application
slowdown.

Experiments were run with multi-program mixes from
both the SPEC CPU2006 benchmark suite [51] with the
ref input set and the NAS Parallel Benchmark suite [52]
(single-threaded runs). From these benchmark suites three
different sets of workloads were considered, varying the
number of applications sharing the cache. We used 100 two-
application, 175 four-application and 100 eight-application
workloads to consider a wide range of scenarios. All the
workloads were randomly generated, and results were col-
lected simulating each workload for 2-billion cycles after
skipping the initial 500M instructions of each individual
application.

6.1 Analyzing performance, progress, and unfairness

This section analyzes the dynamic run-time interactions
among applications, considering used cache ways, system
performance, progress and unfairness. To help the under-
standing of these interactions and on how our proposal
works, we start with a simple two-application example.

Figure 6 presents the results for two benchmarks, hmmer
and mcf, running concurrently. As we already observed in
Figure 1, without cache partitioning this workload exhibits
significant unfairness during its execution. This can be also
appreciated in Figure 6d, which shows the unfairness evolu-
tion for both the baseline approach (NoPart) and for FPCP.

It can be noticed in Figure 6a that the MPKI (Misses Per
Kilo-Instruction) at the shared cache of both applications is
considerably different; while the MPKI of mcf is over 20 for
most of its execution, the MPKI of hmmer is only around 2.
The reason for such a difference is that this fragment of the
hmmer execution is CPU-bound, and therefore very sensi-
tive to cache misses. This can be appreciated in Figure 6b,
where the IPC of hmmer drops from above 2 to about 1.6 due
to the interference of mcf. On the other hand, this phase of
mcf is memory bound and experiences a high amount of
cache misses, so this benchmark shows little sensitiveness
to cache miss ratio variations and a cache hog.

Without any intervention in the shared cache (i.e. with-
out partitioning), this fact translates into noticeable differ-
ences in the progress rate experienced by both applications.
As shown in Figure 6c, NoPart assigns between 3 and 5
ways to hmmer and the remaining cache ways (13 to 11) to
mcf. Notice that, despite mcf holding around two thirds of
the cache ways, its IPC is still below 0.5. Moreover, this IPC
is similar to what the application achieves in standalone ex-
ecution. This means that mcf exhibits an excellent progress
when co-running with hmmer (see Figure 1). Therefore, the
only way to reduce unfairness is to accelerate the progress
of hmmer (the least progressing application).

FPCP correctly identifies these progress differences and
borrows ways from mcf, assigns them to hmmer, and im-
proves its progress. As a result, unfairness is reduced from
36% to 10%.

At a first glance, it could seem counterintuitive, since
FPCP takes ways from the application with the highest
MPKI and assigns them to the one with the lowest MPKI,
thus widening even more the huge MPKI differences. How-
ever, it makes sense when we realize how little the progress
of mcf is affected by the number of assigned ways (see
Figure 2a). In fact, mcf only needs 2 ways to achieve a
progress rate of around 90%, while hmmer requires around
12 ways to achieve the same progress. This brings two

9

1 2 3 4 5 6
Time (ps) 1e11

0

5

10

15

20

25

U
se

d
w

ay
s

bzip2 gcc mcf sjeng

(a) NoPart

1 2 3 4 5 6
Time (ps) 1e11

0

5

10

15

20

25

U
se

d
w

ay
s

bzip2 gcc mcf sjeng

(b) FPCP

Fig. 7. Run-time way partitioning under NoPart and FPCP for the {bzip2, gcc, mcf, sjeng} workload.

1 2 3 4 5 6
Time (ps) 1e11

0

5

10

15

20

25

30

35

%
 o

f u
nf

ai
rn

es
s

NoPart
FPCP

Fig. 8. Unfairness for the {bzip2, gcc, mcf, sjeng} workload.

important findings: i) blindly reducing cache misses does
not necessarily address system fairness, and ii) accurate
progress estimations are critical to address fairness.

This analysis can be extrapolated regardless of the num-
ber of applications. Lets see another simple working ex-
ample for a 4-application workload. Figure 7 compares
the distribution of ways per application between the non-
partitioned baseline approach and the proposal. According
to the analysis performed in Section 3, to achieve a progress
rate of around 80%, bzip2 requires about 12 ways, gcc 2
ways, mcf 8 ways, and sjeng 2 ways. However, without
cache partitioning, Figure 7a shows that gcc occupies at
run-time similar or even more ways than bzip2, while
mcf exceeds 16 ways for most of the execution time. FPCP,
in contrast, distributes ways much more accordingly (com-
pared to NoPart) to what the progress analysis suggested,
giving more ways to bzip2 and fewer ways to the remain-
ing co-runners, as can be seen in Figure 7b. As a result, FPCP
significantly improves system fairness for this workload (see
Figure 8), reducing the final unfairness around one third
(from 33% with NoPart to 23%).

6.2 Experimental results
FPCP has been evaluated against NoPart, UCP and ASM-
Cache in terms of system unfairness and performance. Fig-
ure 9 presents the unfairness results for 100 pairs of bench-
marks sorted in increasing unfairness order (the highest,
the worst). Since each application only suffers interference
from one co-runner, average system unfairness for this case
is relatively low, averaging 7.1% for the baseline (NoPart),
6.2% and 5.7% for UCP and ASM-Cache and 5.6% for FPCP.
In spite of this fact, UCP, ASM-Cache and FPCP improve
unfairness over LRU by 13%, 19%, and 21%, respectively.

The interference grows with the number of applications
running together. Figure 10 shows the results for 175 4-
application workloads. Three major observations can be

drawn. First, FPCP significantly improves unfairness over
NoPart and both state-of-the art approaches. On average,
NoPart presents an unfairness level of 28.3%; UCP and
ASM-Cache of 21.2% and 20.6%, respectively; and FPCP
reduces it to only 13.9%. Second, FPCP highly reduces the
maximum unfairness compared to the second best approach
(i.e. 37% vs 60% of ASM-Cache). Finally, the standard devi-
ation of the unfairness results achieved with FPCP is much
lower compared to the other approaches (20%, 18%, 17%
and 10% for NoPart, UCP, ASM-Cache and FPCP, respec-
tively).

To cover a wider range of scenarios, we also evaluate
the proposal with 8-application workloads using a shared
LLC with 8MB and 32 ways. Again, as shown in Figure 11,
FPCP is the approach that keeps unfairness lower, reducing
it from the average 50% of NoPart to 36%. UCP and ASM-
Cache, while reducing unfairness compared to NoPart in
most cases, do not achieve this goal in some specific work-
loads (as depicted in the right side of the figure). This is
because these approaches strongly depend on the accuracy
of the estimations, which degrades with the number of
applications [9], [10] (see Section 4). Our approach, however,
only exchanges one way at a time, so it is more forgiving
with progress estimation inaccuracies.

There are multiple reasons why system unfairness rises
with the number of cores, even assuming a perfect progress
estimation approach (i.e. perfect interference estimation). On
the one hand, while the per core cache space remains
constant (1 MB), the number of ways does not, so the
partitioning policy presents comparatively less flexibility.
Therefore, under certain circumstances, it cannot provide
the high number of cache ways some applications require
to have an adequate progress rate. On the other hand, as
seen in Figure 2, there are applications whose progress is
not affected by the number of cache ways allocated to them
(e.g. CactusADM or is). Thus, when these applications
are combined with other applications that require a high
number of ways (e.g. mcf or lu), the system will show an
inherently high unfairness level. The reason is that, while
the partitioning approaches can equalize the progresses
of moderately or highly cache-sensitive applications, the
differences between these progresses and the progresses of
cache insensitive applications will be important.

Finally, we evaluate the performance of the proposal to
verify that fairness is not improved at the cost of perfor-
mance. Performance results, quantified with the Harmonic
Speedup metric [53], [54], show minor differences across the
compared approaches. Figure 12 shows the results averaged

10

0 20 40 60 80 100
Workload

0

10

20

30

40

50

%
 o

f u
nf

ai
rn

es
s

NoPart
UCP
ASM-Cache
FPCP

Fig. 9. System unfairness results over 100 2-application workloads.

0 25 50 75 100 125 150 175
Workload

10

20

30

40

50

60

70

%
 o

f u
nf

ai
rn

es
s

NoPart
UCP
ASM-Cache
FPCP

Fig. 10. System unfairness results over 175 4-application workloads.

across all the tested workloads for two, four and eight
applications.

6.2.1 Sensitivity to the aggressiveness of way redistribution

In order to check the unfairness benefits coming from as-
signing cache ways conservatively either in one-way steps
or considering longer intervals, we performed three addi-
tional experiments considering 4-application workloads. In
the first experiment, we slightly modified FPCP to allow
redistributing 2 and 3 ways at a time instead of a single
one to check its impact on unfairness. In the other two
experiments, we checked the impact of redistributing ways
conservatively in other existing approaches. First, we modi-
fied the original ASM-Cache to redistribute only one way at
a time, and finally, we compared different versions of ASM-
Cache by increasing the interval length, thus slowing down
way redistribution.

With respect to the first experiment, increasing the num-
ber of ways exchanged in each operation, we found that
either trading 2 or 3 ways increases unfairness compared to
trading only one cache way at a time. This increase is, on
average, of around 5%. In the second experiment, we found
that limiting to a single one the amount of ways traded each
time ASM-Cache is triggered, helped to reduce unfairness.
The improvement was, on average, by 6% compared to
original ASM-Cache scheme. While this seems significant,
note that FPCP has 35% less unfairness, on average, than
ASM-Cache. Regarding the third experiment, we compared
three versions of ASM-Cache, with 5M-cycle, 10M-cycle and
50M-cycle interval lengths, respectively. While the longest
interval slightly reduced unfairness, differences are lower
than 3%.

In short, two meaningful findings can be drawn from
the aforementioned experiments. First, care must be taken
when basing decisions on estimations that can be inaccurate
or present transient errors, so slowly redistributing cache
ways tends to perform better. And second, conservatively

0 20 40 60 80 100
Workload

20

40

60

80

100

120

%
 o

f u
nf

ai
rn

es
s

NoPart
UCP
ASM-Cache
FPCP

Fig. 11. System unfairness results over 100 8-application workloads.

2 4 8
Number of cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pe
rf

or
m

an
ce

(H
ar

m
on

ic
 S

pe
ed

up
)

NoPart UCP ASM-Cache FPCP

Fig. 12. System performance.

distributing cache ways is not a panacea, but the partition-
ing algorithm plays a key role, since there are still important
unfairness differences between FPCP and the limited ASM-
Cache version.

7 CONCLUSIONS

Cache sharing must be properly managed to address system
fairness in current processors.

In this paper, we have characterized the applications in
isolated execution and analyzed the relationship between
progress and number of assigned cache ways. This analysis
gives the progress that each application would achieve
in multicore execution if it had assigned during all the
execution time a fixed number of cache ways. Thus, it
provides some insights about what would be a reasonable
fairness level to aim for when executing a set of applications
concurrently.

A major challenge to address system fairness is the esti-
mation of the execution time of each application is isolation
during multicore execution. Two distinct approaches have
been evaluated and compared. However, since estimates can
be inaccurate and workload behavior fluctuates at run-time,
using them directly, as done in the state-of-the-art ASM-
Cache and UCP proposals, is not necessarily the optimal
approach.

In this paper we have presented FPCP, a simple and
effective hardware algorithm that only allows a given appli-
cation to experience a variation of ±1 cache way between
two consecutive intervals. Compared to ASM-Cache, the
complexity of the algorithm is reduced from O(n2) to only
O(m), where n is the cache associativity and m the number
of cores sharing the cache.

FPCP has been evaluated varying the number of applica-
tions running concurrently. Experimental results show that,
compared to the state-of-the-art ASM-Cache, FPCP reduces
unfairness by 48% in four-application workloads and by

11

28% in eight-application workloads, without harming the
performance.

ACKNOWLEDGMENTS

This work was supported in part by the Spanish Minis-
terio de Economı́a y Competitividad (MINECO) and Plan
E funds, under grants TIN2014-62246-EXP and TIN2015-
66972-C5-1-R.

REFERENCES

[1] B. Sinharoy, J. A. V. Norstrand, R. J. Eickemeyer, H. Q. Le,
J. Leenstra, D. Q. Nguyen, B. Konigsburg, K. Ward, M. D. Brown,
J. E. Moreira, D. Levitan, S. Tung, D. Hrusecky, J. W. Bishop,
M. Gschwind, M. Boersma, M. Kroener, M. Kaltenbach, T. Karkha-
nis, and K. M. Fernsler, “Ibm power8 processor core microarchi-
tecture,” IBM J. of Res. and Dev., vol. 59, no. 1, pp. 2:1–2:21, 2015.

[2] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod,
S. Chinthamani, S. Hutsell, R. Agarwal, and Y. C. Liu, “Knights
landing: Second-generation intel xeon phi product,” IEEE Micro,
vol. 36, no. 2, pp. 34–46, 2016.

[3] ARM, ARM Cortex-A53 MPCore Processor. Technical Reference Man-
ual, 2014.

[4] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi,
“Application-to-core mapping policies to reduce memory interfer-
ence in multi-core systems,” in PACT 2012, pp. 455–456.

[5] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via
source throttling: A configurable and high-performance fairness
substrate for multi-core memory systems,” in ASPLOS. ACM,
2010, pp. 335–346.

[6] F. J. Cazorla, A. Ramı́rez, M. Valero, P. M. Knijnenburg, R. Sakellar-
iou, and E. Fernández, “Qos for high-performance smt processors
in embedded systems,” IEEE Micro, vol. 24, no. 4, pp. 24–31, 2004.

[7] R. Gabor, S. Weiss, and A. Mendelson, “Fairness enforcement in
switch on event multithreading,” ACM Trans. Archit. Code Optim.,
vol. 4, no. 3, 2007.

[8] O. Mutlu and T. Moscibroda, “Stall-time fair memory access
scheduling for chip multiprocessors,” in MICRO. IEEE Computer
Society, 2007, pp. 146–160.

[9] K. Du Bois, S. Eyerman, and L. Eeckhout, “Per-thread cycle ac-
counting in multicore processors,” ACM Trans. Archit. Code Optim.,
vol. 9, no. 4, pp. 29:1–29:22, 2013.

[10] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu,
“The application slowdown model: Quantifying and controlling
the impact of inter-application interference at shared caches and
main memory,” in MICRO. ACM, 2015, pp. 62–75.

[11] M. Qureshi and Y. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition
shared caches,” in MICRO, Dec 2006, pp. 423–432.

[12] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A resource
allocation model for qos management,” in RTSS. IEEE Computer
Society, 1997, pp. 298–.

[13] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Syst. J., vol. 9, no. 2, pp.
78–117, 1970.

[14] R. Iyer, “CQoS: a framework for enabling QoS in shared caches of
CMP platforms,” in ICS, 2004, pp. 257–266.

[15] J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip
multiprocessors,” in ICS, 2007, pp. 242–252.

[16] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing
with strict qos for latency-critical workloads,” in Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’14.
New York, NY, USA: ACM, 2014, pp. 729–742. [Online]. Available:
http://doi.acm.org/10.1145/2541940.2541944

[17] D. Sanchez and C. Kozyrakis, “The zcache: Decoupling ways and
associativity,” in Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’43.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 187–198.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2010.20

[18] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos,
R. Singhal, and R. Iyer, “Cache qos: From concept to reality
in the intel R© xeon R© processor E5-2600 v3 product family,”
in 2016 IEEE International Symposium on High Performance
Computer Architecture, HPCA 2016, Barcelona, Spain, March
12-16, 2016, 2016, pp. 657–668. [Online]. Available: http:
//dx.doi.org/10.1109/HPCA.2016.7446102

[19] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: Improving resource efficiency at scale,”
in Proceedings of the 42Nd Annual International Symposium
on Computer Architecture, ser. ISCA ’15. New York, NY,
USA: ACM, 2015, pp. 450–462. [Online]. Available: http:
//doi.acm.org/10.1145/2749469.2749475

[20] H. Zhu and M. Erez, “Dirigent: Enforcing qos for latency-critical
tasks on shared multicore systems,” in Proceedings of the
Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’16.
New York, NY, USA: ACM, 2016, pp. 33–47. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872394

[21] L. Funaro, O. A. Ben-Yehuda, and A. Schuster, “Ginseng:
Market-driven llc allocation,” in Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference, ser. USENIX
ATC ’16. Berkeley, CA, USA: USENIX Association, 2016, pp.
295–308. [Online]. Available: http://dl.acm.org/citation.cfm?id=
3026959.3026987

[22] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni, “Communist,
utilitarian, and capitalist cache policies on cmps: Caches as a
shared resource,” in 2006 International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), Sept 2006, pp. 13–22.

[23] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “Addressing fairness
in smt multicores with a progress-aware scheduler,” in IPDPS,
2015, pp. 187–196.

[24] C. Wu, J. Li, D. Xu, P.-C. Yew, J. Li, and Z. Wang, “Fps: A fair-
progress process scheduling policy on shared-memory multipro-
cessors,” TPDS, vol. 26, no. 2, pp. 444–454, 2015.

[25] D. Xu, C. Wu, P.-C. Yew, J. Li, and Z. Wang, “Providing fairness
on shared-memory multiprocessors via process scheduling,” in
Performance Evaluation Review, vol. 40, no. 1. ACM, 2012, pp.
295–306.

[26] A. Fedorova, M. Seltzer, and M. D. Smith, “Improving perfor-
mance isolation on chip multiprocessors via an operating system
scheduler,” in PACT. IEEE Computer Society, 2007, pp. 25–38.

[27] A. Sharifi, S. Srikantaiah, M. T. Kandemir, and M. J. Irwin,
“Courteous cache sharing: being nice to others in capacity
management,” in The 49th Annual Design Automation Conference
2012, DAC ’12, San Francisco, CA, USA, June 3-7, 2012, 2012,
pp. 678–687. [Online]. Available: http://doi.acm.org/10.1145/
2228360.2228482

[28] J. Brock, C. Ye, C. Ding, Y. Li, X. Wang, and Y. Luo, “Optimal
cache partition-sharing,” in 44th International Conference on Parallel
Processing, ICPP 2015, Beijing, China, September 1-4, 2015, 2015,
pp. 749–758. [Online]. Available: http://dx.doi.org/10.1109/ICPP.
2015.84

[29] S. Kim, D. Chandra, and D. Solihin, “Fair cache sharing and
partitioning in a chip multiprocessor architecture,” in PACT, Sept
2004, pp. 111–122.

[30] H. Dybdahl and P. Stenström, “An adaptive shared/private nuca
cache partitioning scheme for chip multiprocessors,” in HPCA.
IEEE, 2007, pp. 2–12.

[31] H. Dybdahl, P. Stenström, and L. Natvig, “A cache-partitioning
aware replacement policy for chip multiprocessors,” in HiPC.
Springer, 2006, pp. 22–34.

[32] H. S. Stone, J. Turek, and J. L. Wolf, “Optimal partitioning of cache
memory,” Computers, IEEE Transactions on, vol. 41, no. 9, pp. 1054–
1068, 1992.

[33] G. E. Suh, S. Devadas, and L. Rudolph, “A new memory moni-
toring scheme for memory-aware scheduling and partitioning,” in
HPCA. IEEE, 2002, pp. 117–128.

[34] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of
shared cache memory,” The Journal of Supercomputing, vol. 28, no. 1,
pp. 7–26, 2004.

[35] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter, “Dy-
namic hardware-assisted software-controlled page placement to
manage capacity allocation and sharing within large caches,” in
HPCA, Feb 2009, pp. 250–261.

[36] S. Cho and L. Jin, “Managing distributed, shared l2 caches through

12

os-level page allocation,” in MICRO. IEEE Computer Society,
2006, pp. 455–468.

[37] Y. Xie and G. H. Loh, “PIPP: Promotion/Insertion Pseudo-
partitioning of Multi-core Shared Caches,” in ISCA. ACM, 2009,
pp. 174–183.

[38] D. Tam, R. Azimi, L. Soares, and M. Stumm, “Managing shared
L2 caches on multicore systems in software,” in In Proc. of the
Workshop on the Interaction between Operating Systems and Computer
Architecture (WIOSCA), 2007, pp. 1–8.

[39] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page
coloring-based multicore cache management,” in Proceedings of the
4th ACM European Conference on Computer Systems, ser. EuroSys
’09. New York, NY, USA: ACM, 2009, pp. 89–102. [Online].
Available: http://doi.acm.org/10.1145/1519065.1519076

[40] T. Sherwood, B. Calder, and J. Emer, “Reducing cache misses
using hardware and software page placement,” in Proceedings of
the 13th International Conference on Supercomputing, ser. ICS ’99.
New York, NY, USA: ACM, 1999, pp. 155–164. [Online]. Available:
http://doi.acm.org/10.1145/305138.305189

[41] Y. Ye, R. West, Z. Cheng, and Y. Li, “Coloris: A dynamic cache
partitioning system using page coloring,” in 2014 23rd Interna-
tional Conference on Parallel Architecture and Compilation Techniques
(PACT), Aug 2014, pp. 381–392.

[42] L. Zhang, Y. Liu, R. Wang, and D. Qian, “Lightweight dynamic
partitioning for last level cache of multicore processor on real sys-
tem,” in 2012 13th International Conference on Parallel and Distributed
Computing, Applications and Technologies, Dec 2012, pp. 33–38.

[43] O. Mutlu and T. Moscibroda, “Parallelism-aware batch schedul-
ing: Enhancing both performance and fairness of shared dram
systems,” in 2008 International Symposium on Computer Architecture,
June 2008, pp. 63–74.

[44] M. M. Lee, J. Kim, D. Abts, M. Marty, and J. W. Lee, “Probabilistic
distance-based arbitration: Providing equality of service for many-
core cmps,” in 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, Dec 2010, pp. 509–519.

[45] D.-L. Wang, D.-Y. Gao, and D.-H. Wang, “Enhancing the perfor-
mance and fairness of shared dram systems with sharing-aware
scheduling,” in 2010 2nd International Conference on Computer Engi-
neering and Technology, vol. 6, April 2010, pp. V6–709–V6–713.

[46] J. Baer, Microprocessor Architecture: From Simple Pipelines to Chip
Multiprocessors. Cambridge University Press, 2010.

[47] P. Kaufman, The new commodity trading systems and methods. Wiley,
1987.

[48] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of
shared cache memory,” J. Supercomput., vol. 28, no. 1, pp. 7–26,
2004.

[49] Intel Corporation, Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, September 2015, no. 331843-001US.

[50] R. Ubal et al., “Multi2Sim: A Simulation Framework to Evaluate
Multicore-Multithreaded Processors,” in SBAC-PAD, 2007, pp. 62–
68.

[51] Standard Performance Evaluation Corporation. [Online]. Available:
http://www.spec.org

[52] NAS Parallel Benchmark Suite. [Online]. Available: http://www.
nas.nasa.gov/publications/npb.html

[53] S. Eyerman and L. Eeckhout, “System-level performance metrics
for multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53,
May 2008.

[54] K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput and
fairness in smt processors.” in IsPASS, vol. 1, 2001, pp. 164–171.

Vicent Selfa received his BS and MS in Com-
puter Engineering from the UPV, Spain in 2013
and 2014, respectively. He is currently a PhD
student at the Parallel Architecture Group (GAP)
of the Universitat Politècnica de València with a
fellowship from the Spanish Government. His re-
search interests include fairness-aware resource
partitioning policies and chip multiprocessor ar-
chitectures.

Julio Sahuquillo received his BS, MS, and PhD
degrees in Computer Engineering from the UPV,
Spain. Since 2002 he is an Associate Professor
at the DISCA department at the UPV. He has
published more than 140 refereed conference
and journal papers. His current research topics
include multi- and manycore processors, mem-
ory hierarchy design, and architecture-aware
scheduling. He has cochaired several work-
shops, collocated in conjunction with IEEE sup-
ported conferences.

Salvador Petit received his PhD degree in com-
puter engineering from the UPV. Currently, he is
an associate professor in the DISCA department
at UPV where he teaches several courses on
computer organization. His research topics in-
clude multithreaded and multi-core processors,
memory hierarchy design, as well as real-time
systems. He is a member of the IEEE and the
IEEE Computer Society.

Marı́a E. Gómez received his BS, MS, and PhD
degrees in Computer Engineering from the UPV,
Spain. She joined the DISCA department at UPV
in 1996 where she is currently an Associate
Professor. She has published more than 50 con-
ference and journal papers. She has served on
program committees for several major confer-
ences. Her research interests are on processor
architecture and interconnection networks.

