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ABSTRACT  

The biomass obtained from microalgae, such as Chlorella, is used to make 

dietary products, supplements and pharmaceuticals. However, microalgae are 

produced very far from consumption places.  One of the most usual distribution 

forms is as a dry product, a process that entails high production costs and leads 

to the loss of certain nutritional properties. Therefore, the aim of this study was 

to evaluate alternative preservation strategies for microalgae Chlorella other 

than dehydration and freezing. To that end, sterilization, acidification and 

packaging material were analyzed during two months of storage under different 

temperature and light exposure conditions. The results showed that color was 

modified considerably by sterilization, regardless of light exposure and type of 

package, whereas citric acid preserved color, especially at low storage 

temperatures. Furthermore, the study shows that acidification with 3.5% of citric 

acid and vacuum packaging are the recommended treatment for microalgae, 

without the need for cold storage.  
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type, storage temperature. 

 

PRACTICAL APPLICATIONS 

 

Stabilization of microalgae Chlorella from production to consumption places 

could increase the possibilities of commercialization of this product, recently 

labeled ‘superfood’ by the UN Food and Agriculture Organization. In order to 

preserve all their nutritional properties for at least 2 months, acidification with 

3.5% of citric acid and vacuum packaging are the recommended treatments, 

without the need for cold storage. 

 

1. INTRODUCTION 

 

Mass production of microalgae was first carried out by Germany during World 

War II in order to obtain lipids to be used as source of biofuel. After World War 

II, microalgae biomass started to be considered as a supplement able to 

replace conventional animal or vegetable proteins in direct consumption by 

cattle or humans, shortening the inefficient protein food chain. Thus, from 1948 

onwards, a group of scientists at Carnegie Institution of Washington performed 

the first systematic studies, establishing the scientific fundamentals of massive 

culture of microalgae. The aim was to use green microalgae Chlorella for large 

scale food production (Burlew, 1953). 

Chlorella, which belongs to the phylum Chlorophyta, is a green microalga with 

a diameter of 2–10 μm. It contains a single chloroplast, is unicellular, coccoidal, 
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and nonmotile and is widely present in fresh, brackish and marine water 

(Nurachman et al., 2015).  

Microalgae biomass has been described as a ‘superfood’ by the UN Food and 

Agriculture Organization (FAO) due to its high nutritional content, concerning 

not only protein levels (approx. 50% of dry matter, easily digestible due to a 

very complete amino acid profile), but also other essential components for 

metabolism, such as minerals, vitamins, antioxidants and polyunsaturated 

fatty acids, especially Omega 3 and 6 (Buggypower, 2016). 

It is a source of ß-glucan, which is an active immunostimulator, reducer of blood 

lipids, and a free radical scavenger (Sanghvi & Lo, 2010). In addition, its 

contents include 1-4% chlorophyll, a pigment that detoxifies heavy metals and 

pesticides from the body (Se-Kwon, 2015). 

The presence of polyunsaturated fatty acids (PUFAs) in microalgae should also 

be highlighted: Two of the most abundant fatty acids are linoleic acid (LA) and 

alpha-linolenic acid (ALA). Arachidonic acid Omega 6 can be synthesized by 

humans from LA and essential Omega 3 acids, such as DHA and EPA, from 

ALA (Solana, Rizza & Bertucco, 2014). Traditionally, they have been obtained 

from fish and fish oils, but safety issues have arisen due to the accumulation of 

toxins in fish (Sanghvi & Lo, 2010). Microalgae may be considered as the initial 

EPA and DHA producers in the marine food chain, reaching higher EPA and 

DHA contents than other possible sources, such as certain fishes or soybean 

(Adarme-Vega, Lim, Timmins, Vernen, Li, & Schenk, 2012). 
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Additionally, microalgae have a beneficial impact on the environment, since 

they release oxygen and consume 1.87 kg of CO2 per kg of dry biomass 

produced (Buggypower, 2016; Solana et al., 2014). 

Despite the above advantages, the production of microalgae entails several 

problems, due to high installing and operating costs, difficulties in controlling 

the culture conditions, bacterial contamination or alien algae and instability of 

light supply and weather (Yen, Hu, Chen, Ho, Lee & Chang, 2013). Moreover, 

production takes place far away from consumption sites, adding to the 

challenge of preserving their beneficial features during transport and ensuring 

an adequate shelf life to guarantee successful commercialization. Currently, 

they can be found in specialized markets in a dehydrated format only, further 

increasing production costs.  

Recently, Misra, Koubaa, Roohinejad, Juliano, Alpas, Inácio, Saraiva & Barba 

(2017) have reviewed the landmarks in the historical development of 21st 

century food, focusing on the importance of the emerging technologies to 

reduce the consumption of energy and improve the sustainability of the food 

chain. These technologies can broadly be divided into thermal (e.g. ohmic 

heating) and non-thermal (e.g, high-pressure processing, electro technologies 

and irradiation). However, all these techniques required considerable 

investments in the acquisition of new equipment, hindering their extension. 

Furthermore, according to this review, thermal processes remain the most 

prevalent technologies even today. Low temperature preservation/cold 

storage of food is known since prehistoric times, when people kept food 

products in caves, aware that food could be preserved for longer periods in 
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cold places (Gavroglu, 2014). On the other hand, the introduction of heat in 

food processing allowed for the preservation of food  during long sea voyages, 

as used for instance by the French army of Napoleon Bonaparte thanks to the 

first developments by Nicholas Appert, published in his 1812 work “The Art of 

Preserving Foods for Many Years” (Featherstone, 2012).  

Similarly, it is well known that acidification of foods to pH levels of 4.6 or below 

avoid the growth of the microorganisms responsible for foodborne diseases, 

such as botulism. Hence, Title 21 of the Code of Federal Regulations, Part 114 

(21CFR114) regulates acidified foods (FDA USA Food & Drug Administration, 

2016). However, even when manufactured under proper conditions of 

acidification and sanitation, food products may still be spoiled by yeasts and 

molds. In order to prevent this, acid and acidified foods are usually heated to 

180ºF and packaged hot to kill yeast and mold spores on the products and in 

the container and cap (Rushing & Curtis, 1993). 

Regarding the influence of light exposure in the degradation of different 

nutritional components, several studies have confirmed that storage in dark 

places increases the shelf life of food products by preventing oxidative and 

hydrolytic degradations (Caponio, Bilancia, Pasqualone, Sikorska & Gomes 

2005; Brothersen, McMahon, Legako, & Martini, 2016). 

Therefore, the combination of different preserving methods (e.g., pH, aw, salt 

content, storage temperature, etc.) enhances the benefits provided by each of 

those methods separately due to a synergistic preservation effect. In this 

regard, the use of hurdle technology is considered as a key to future food 

preservation (Leistner, 2000; Rahman, 2016) and its state of art was recently 
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reviewed (Singh & Shalini, 2016). Concerning the preservation of microalgae 

Chlorella, the study of how these hurdles could contribute to extend their shelf 

life may open new chances to safely distribute this product from the production 

to the consumption place. 

Considering all the above, the aim of this study was to assess different 

preservation strategies (thermal sterilized treatment, packaging material, 

freezing or cooling, reduced pH and light exposure) for microalgae produced 

by a factory located in Madeira in order to make transport to their sales outlets 

more viable. To that end, moisture content, pH, water activity, salt content, 

changes in color and microbial growth were analyzed during two months of 

storage. 

 

2. MATERIALS AND METHODS 

 

2.1. Raw Material 

Microalgae samples were delivered frozen in polyethylene bags by the 

Buggypower Company, which owns a production plant in Madeira Island 

(Portugal), where microalgae are grown in vertical photobioreactors. In turn, 

dehydrated green and red commercial algae were used to compare their 

characteristics with microalgae. For that purpose, the commercial algae were 

rehydrated using an algae:water ratio of 5:500 (w/w) for 20 minutes as per the 

manufacturer's recommendation. Then, algae were drained. 
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2.2. pH Adjustment of Microalgae 

In order to reduce the pH of microalgae samples, citric acid was added at 

different concentrations (2.5% or 3.5%) to check the effect of this preservative 

on shelf life. 

 

2.3. Thermal Treatment of Microalgae 

Microalgae were sterilized in an autoclave at 115ºC for 15 minutes to extend 

their shelf life.   

 

2.4. Packaging and Storage of Microalgae  

Samples packaged in jars or in bags of bi-oriented polyamide/polypropylene 

thermal resistant material (Bolsemack S.L.) were vacuum-sealed and 

subsequently stored at room temperature, whereas samples stored at 4ºC or 

-18ºC were sealed without removing the air in the headspace of the package.  

Furthermore, in samples stored at room temperature, the influence of light was 

also controlled by leaving part of them in dark chambers and exposing the rest 

to light. Table 1 provides a description of all the combinations used in the 

storage of microalgae along with the notation for each case. Microalgae 

samples were stored for 2 months. For each of the thirteen preserving 

treatments shown in Table 1, eighteen package units were prepared in order 

to have enough samples for all the analysis performed in different days of the 

storage period. Therefore, a total amount of 234 units of preservation were 

considered. 20 g. of microalgae were placed in each package unit.  
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TABLE 1. Description and notation of the treatments for stabilization of microalgae 
 

 

2.5 Analytical Determinations 

Analytical determinations of moisture content, pH, aw and color measurements 

were performed on day 0, 30, 45 and 60 after packaging. Additionally, 

microbiological analysis of mesophyllic aerobics, molds and yeasts were 

performed to analyze the evolution of microalgae each 30 days during two 

months. The determination of the effect of citric acid on the pH of microalgae 

was performed initially. By contrast, the analysis of sodium chloride was 

performed at the end of the study period. All determinations were carried out 

in triplicate. Thus, initially and after 45 days of storage, 3 different packaging 

units were used to perform the analysis of the aforementioned parameters, 

whereas after 30 and 60 days of storage 6 packaging units were used, since 

STORAGE 
CONDITIONS DESCRIPTION NOTATION 

FRIDGE (4ºC) 

BAG- 3.5% citric acid – Without thermal treatment Bag 3.5 4C 

BAG – 2.5%  citric acid – Without thermal treatment Bag 2.5 4C 

BAG – Without citric acid – Without thermal treatment Bag 4C 

JAR- Without citric acid – Without thermal treatment Jar 4C 

ROOM 
TEMPERATURE – 
WITHOUT LIGHT 

BAG - 3.5% citric acid -  Without thermal treatment Bag 3.5 RT 

BAG - 2.5% citric acid -  With thermal treatment Bag 2.5 TT RT 

BAG – Without citric acid – With thermal treatment Bag TT RT 

JAR -  Without citric acid – With thermal treatment Jar TT RT 

ROOM 
TEMPERATURE – 

WITH LIGHT 

BAG – 3.5% citric acid – Without thermal treatment  Bag 3.5 RT L 

BAG – 2.5% citric acid – With thermal treatment Bag 2.5 TT RT L 

BAG – Without citric acid -  With thermal treatment Bag TT RT L 

JAR -  Without citric acid -  With thermal treatment Jar TT RT L 

FREEZER (-18ºC) BAG- Without citric acid – Without thermal treatment Bag -18C 
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microbial counts were also registered. A methodological description is provided 

below: 

 

2.5.1 MOISTURE 

Moisture determination was performed based on an adaptation of method 

934.06 (AOAC, 2000): The sample was heated under -0.8 bar of pressure and 

60ºC in a vacuum oven (JP Selecta model Vaciotem-T), and the loss of weight 

was used to calculate the moisture content of the sample.  

The purpose of using a vacuum oven is to minimize cold spots as well as to 

vent moisture from inside air (Nielsen, 2010). The moisture content results 

were given in g of water per g of microalgae. 

 

2.5.2  WATER ACTIVITY (aW) 

Measurements were performed with a water activity meter (Aqualab, model 

4TE) at 25 °C. 

 

2.5.3  pH 

Measurements were performed in duplicate using a pH meter with a contact 

electrode (METTLER TOLEDO SevenEasy model), previously calibrated with 

buffer solutions of pH 4.00 and 7.00 at 25 ° C. 

 

2.5.4 SODIUM CHLORIDE (xS) 

Measurements were carried out in triplicate with a Chloride Analyzer 

(CORNING, model 925) using a combined acid buffer solution as a support 
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electrolyte that maintained the correct pH for the complete cycle of titrations 

and a colloid to prevent precipitation. This equipment was previously calibrated 

with a standard solution of 200 mg /L ClNa at 25 ° C. 

Aliquots of microalgae samples were diluted at a 1:200 (w/w) ratio and titrated 

in the equipment. The sodium chloride results were given in g of ClNa per g of 

microalgae. 

 

2.5.5 OPTICAL PROPERTIES 

Surface color was measured with a spectrocolorimeter (Minolta, model CM-

3600d) by registering reflectance and using the small lens. The 

spectrocolorimeter was calibrated and measurements were performed in 

triplicate over each surface of samples placed in cuvettes of 1-cm thickness. 

Color was recorded using the CIE-L*a*b* uniform color space (L*a*b*) 

considering the observer 10º and the illuminant D65. 

 

2.5.6  MICROBIOLOGICAL ANALYSIS 

Microbiological analysis of mesophyllic aerobic, molds and yeasts were 

performed on the different treatments of treated microalgae at day 30 and day 

60 of storage. The serial dilutions of samples were seeded using the pour plate 

technique by duplicate. Aerobic mesophylls were analyzed using plate count 

agar (Scharlau, 01-161-500, Barcelona, Spain) and incubated at 35±2.0°C for 

48 hours. Molds and yeasts were analyzed using Oxytetracycline Sabouraud 

Agar Base (Scharlau, 01-275-500, Barcelona, Spain) with a sterile 
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Oxytetracycline selective supplement (Scharlau, 06-115LYO1, Barcelona, 

Spain) and incubated at 25±2.0°C for 5 days. 

For aerobic mesophylls, plates containing between 25 and 250 colonies were 

considered (FDA, 2001), while in the case of yeasts and molds, plates 

containing between 0 and 30 colonies were counted. The results were 

expressed as log CFU/g. 

 

2.6 Statistical Analysis 

The statistical software Statgraphics Centurion XVI was used to evaluate the 

statistical significance of the different treatments applied to the preservation of 

microalgae, storage time and different conditions of storage. Interactions of the 

factors studied were analyzed with a significance level of 95 % (p < 0.05). 

 

3. RESULTS AND DISCUSSION 

 

3.1 Initial Characterization of Algae 

Table 2 shows the moisture (xw), sodium chloride content (xs), pH and water 

activity (aw) results of microalgae Chlorella and the two dehydrated commercial 

algae that were rehydrated for analysis. The results show similar values of 

water activity in all cases, while water content was higher in rehydrated algae 

due to the process itself. Furthermore, pH was higher in Green algae. In terms 

of salt content, red algae showed the lowest value, despite the fact that all algae 

came from seawater, where salt concentration is around 3.5% (Park et al., 

2011). The differences in salt content were also shown on the label of 
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commercial algae since the Green type had 1.6 g of salt/g of dry matter and the 

Red type, 0.7 g of salt /g of dry matter.  

 
TABLE 2. Initial characterization of algae 

 

 
Equal letters indicate homogeneous groups. 
 

 

3.2. Effect of Citric Acid on the pH of Microalgae 

One of the classic strategies used in food preservation is the reduction of pH. 

Most foodborne pathogens cannot grow at a pH less than 4.4 (Montville & 

Matthews, 2009). Foods with lower pH values (below 4.5) are not easily altered 

by bacteria, being more sensitive to alteration by yeasts and molds (Casp & 

Abril, 2003). Therefore, in this study, preliminary experiments were performed 

using citric acid to achieve a pH below 3.5 to ensure greater stability of 

microalgae.  The results were fitted to equation 1 (R² = 0.9967). As can be 

seen, with 2.5% of citric acid, samples reached a pH lower than 4.5. Thus, this 

was the first concentration of citric acid chosen to extend the shelf life of 

microalgae with mild thermal treatment. It was also decided to work with a 

concentration of 3.5 % citric acid to see the influence of a lower pH on the 

stability of microalgae.  

 

pH=5.6221·[% Added citric acid]-0.278 (equation 1) 

 

Type of algae pH aw xw (g water/g algae) xs (g salt/g algae) 

Green algae (commercial) 7.60 0.9938 0.9192±0.0009b 0.02107±0.00016b 

Red algae (commercial) 6.97 0.9973 0.9425±0.0036c 0.00311±0.00016a 
Microalgae (Chlorella) 5.75 0.9814 0.8406±0.0007a 0.02033±0.00019b 
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In general, no factor affected the pH, with the exception of the initial value of 

citric acid added, as expected. More specifically, samples of microalgae without 

citric acid at room temperature obtained a pH of 6.27±0.13 and 5.9±0.2 at 

refrigerated/frozen temperature. Regardless of temperature, adding 2.5% of 

citric acid to stored microalgae lead to pH values of 4.1±0.3 and adding 3.5% 

of citric acid lead to pH values of 3.52±0.03. No influence of storage time was 

registered. 

 

3.3 Moisture Content and Water Activity  

The water content values of microalgae as a function of the storage 

temperature, citric acid addition, exposure to light, packaging material and 

thermal treatment are shown in Figure 1. In all cases, there was a reduction in 

the amount of water compared to the initial values of microalgae. In addition, 

the most remarkable fact was that the higher the citric acid concentration, the 

lower the moisture content in microalgae, which is coherent with the increase 

of solids in the samples, although no differences between both concentrations 

of citric acid were observed for refrigerated storage. Overall, there was a slight 

decrease in moisture content over time, probably due to water permeability of 

the packaging material. Thus, glass material, impermeable to water vapor, was 

better able to maintain moisture content. In fact, the slight difference in 

moisture content of microalgae packaged in jars or in bags when stored at 

room temperature was not detected when the microalgae were refrigerated, 

since permeability depends on temperature. On the other hand, at room 

temperature, exposure to light had no significant impact on moisture content. 
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At freezing temperatures, moisture loss in samples was slightly lower than in 

samples stored under refrigerated conditions. 

 

 

FIGURE 1. Moisture content of treated microalgae as a function of storage temperature and 
time. A: Storage at room temperature. B: Frozen or refrigerated storage. The notation 
indicates whether the microalgae were stored in bags or jars, with 3.5% (3.5) or 2.5% (2.5) 
citric acid and at room temperature (RT), 4 ºC (4C) or -18ºC (-18C). TT refers to cases in which 
microalgae were subjected to thermal treatment in an autoclave at 115ºC for 15 minutes and 
L indicates that the microalgae were exposed to light during the storage time.  
 
 

Despite the differences in moisture content of microalgae depending on the 

addition of citric acid, water activity remained quite similar to the raw material 

for all cases (0.976±0.004). 
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3.4 Sodium Chloride Content (xs) 

In general, after two months of storage there was an increase in salt content 

(2.21±0.06 g of NaCl/100 g of microalgae) with respect to the values of raw 

material (2.03±0.02 g of NaCl/100 microalgae), in coherence with the loss of 

moisture content mentioned previously, with no significant differences between 

the treatments considered.  

 

3.5 Optical Properties 

Figures 2 shows the location of the coordinates b* and a* in the chromatic 

plane for microalgae stored at room or refrigerated/frozen temperatures. 

It is worth noting that the thermal treatment increased a* and b* coordinates, 

which implied a browning of the microalgae and a change in the quadrant 

position of samples (from the second to the first) in the chromatic diagram. 

Both coordinates decreased at room temperature over storage time. With 

regard to citric acid, it significantly reduced coordinate a* initially, leading to a 

more intense green color. This greenish color was maintained in microalgae 

stored at refrigerated/frozen temperature, disappearing when they were stored 

at room temperature. In fact, the highest values of hue were for microalgae not 

treated with citric acid and stored at low temperature. Therefore, thermal 

treatment was the main factor behind the browning of microalgae as has been 

observed in previous studies: Chlorophyll is barely detectable after treatment 

with temperatures higher than 40ºC in kiwifruit pulp (Schwartz, Núñez, Muñoz 

& María, 1999). It is also important to bear in mind that heating caused the 

EPA and DHA content to significantly decrease (Hadipranoto, 2005). Exposure 
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to light did not lead to a change in color of microalgae. Consequently, they can 

be considered suitable for distribution in transparent packaging. Moreover, no 

differences in color of samples placed in bags or jars were detected, so it 

seems plastic bags are both easier and cheaper to use. 
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FIGURE 2. Chromatic planes b*-a* of treated microalgae stored at room temperature without exposure to light (A) or with light (B) and at 
refrigerated/frozen temperature (C). Numbers in the labels of each symbol represent the days of storage. 
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The luminosity results for treated microalgae are shown in Figure 3. Overall, 

this parameter changed less at room temperature than at refrigerated/frozen 

temperature. It is likely that the thermal treatment applied was responsible for 

this homogeneity. Moreover, the addition of citric acid at room temperature 

contributed to a higher luminosity at the end of storage. No significant 

differences were found concerning the impact of light exposure.  In the case 

of microalgae stored at refrigerated/frozen temperature, luminosity was very 

similar to the raw material values up to the 30th day of storage. However, this 

was followed by a significant decrease in this parameter, except for microalgae 

treated with citric acid. The packaging material did not affect the luminosity 

values. 
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FIGURE 3. Luminosity of treated microalgae over time at room temperature (A) and at 
refrigerated/frozen temperature (B). Dashed lines represent the initial values for raw material. 
The notation indicates whether the microalgae were stored in bags or jars, with 3.5% (3.5) or 
2.5% (2.5) citric acid and at room temperature (RT), 4 ºC (4C) or -18ºC (-18C). TT refers to 
cases in which microalgae were subjected to thermal treatment in an autoclave at 115ºC for 
15 minutes and L indicates that the microalgae were exposed to light during the storage time.  

 

 

3.8 Microbiology Counts 

The aerobic mesophyllic, molds and yeasts counts of treated microalgae are 

represented in Figure 4. In the absence of legislation about these products, 

the acceptable limits for both types of microorganisms laid down in the Spanish 

regulations concerning hygiene standards for the elaboration, distribution and 
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marketing of processed foods (BOE 12-1-2001, R.D. 3484/2000, 29-12-2000) 

have been followed. More specifically, the threshold for aerobic mesophylls on 

the expiry date was 1x106 CFU/g and the threshold for molds and yeasts was 

1x102 CFU/g, based on the criterion for fruits and vegetables recommended 

by Pascual & Calderón, 2000.  

 

 

FIGURE 4. Microbiological content of treated microalgae as a function of storage temperature 
and time. A: Aerobic mesophilic counts. B: Molds and yeast counts. The notation indicates 
whether the microalgae were stored in bags or jars, with 3.5% (3.5) or 2.5% (2.5) citric acid 
and at room temperature (RT), 4 ºC (4C) or -18ºC (-18C). TT refers to cases in which 
microalgae were subjected to thermal treatment in an autoclave at 115ºC for 15 minutes and 
L indicates that the microalgae were exposed to light during the storage time. 
 

According to our results, the addition of citric acid significantly reduced the 

growth of aerobic mesophylls in samples during the storage period analyzed. 



21  

However, no significant differences in growing aerobic mesophylls between 

the two tested citric acid levels were detected in microalgae stored at room 

temperature. In non-acidified samples, the acceptable limit was exceeded after 

30 to 60 days of storage, even in thermally treated samples. This could be 

connected with the initial pollution level in the raw material or to the presence 

of spores. It should be pointed out that low storage temperatures did not slow 

down aerobic mesophyllic growth. In addition, the absence of oxygen in 

containers stored at room temperature would be responsible for the slower 

growth of microorganisms.  

The thermal treatment applied reduced the growth of molds and yeast during 

the analyzed storage time. Again, low temperatures (4 and -18ºC) did not 

reduce the development of this type of microorganism, although the 

established threshold was not exceeded. Finally, in this case, citric acid did not 

improve the stability of microalgae. As mentioned previously, molds and yeast 

are less sensitive to pH reduction, with their minimum pH value for proper 

growth ranging from 1.5 to 3.5 (Casp & Abril, 2003).  

To sum up, although thermal treatment could lead to a reduction of molds and 

yeasts, it is not clear whether this response is related to the absence of oxygen, 

since all thermally treated samples were vacuum packaged. Therefore, the 

addition of 3.5% of citric acid would be the recommended treatment to 

guarantee the maximum shelf life from a microbiological point of view.  

 

 

 



22  

4. CONCLUSIONS 

Thermal treatment considerably changed the color of this product regardless of 

light exposure and type of packaging, whilst citric acid preserved it, especially 

at low storage temperatures. In terms of microbial stability, acidification with 

3.5% citric acid and vacuum packaging would be the recommended treatment 

for microalgae, without the need for cold storage. In conclusion, the best way 

to transport and distribute microalgae would be acidification and vacuum 

packaging in bi-oriented polyamide/polypropylene bags stored at 4ºC. 
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