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Γ-FLATNESS AND BISHOP–PHELPS–BOLLOBÁS TYPE
THEOREMS FOR OPERATORS

BERNARDO CASCALES, ANTONIO J. GUIRAO, VLADIMIR KADETS,
AND MARIIA SOLOVIOVA

ABSTRACT. The Bishop–Phelps–Bollobás property deals with simulta-
neous approximation of an operator T and a vector x at which T nearly
attains its norm by an operator T0 and a vector x0, respectively, such that
T0 attains its norm at x0. In this note we extend the already known results
about the Bishop–Phelps–Bollobás property for Asplund operators to a
wider class of Banach spaces and to a wider class of operators. Instead
of proving a BPB-type theorem for each space separately we isolate two
main notions: Γ-flat operators and Banach spaces with ACKρ structure.
In particular, we prove a general BPB-type theorem for Γ-flat operators
acting to a space with ACKρ structure and show that uniform algebras
and spaces with the property β have ACKρ structure. We also study the
stability of the ACKρ structure under some natural Banach space the-
ory operations. As a consequence, we discover many new examples of
spaces Y such that the Bishop–Phelps–Bollobás property for Asplund
operators is valid for all pairs of the form (X,Y ).

1. INTRODUCTION

In this paper X , Y are Banach spaces (real or complex), K stands for the
field of scalars R or C, L(X, Y ) is the space of all bounded linear operators
T : X → Y , L(X) = L(X,X), BX and SX denote the closed unit ball and
the unit sphere of X , respectively and acoA stands for the absolute convex
hull of the set A.

According to [1], a pair (X, Y ) has the Bishop–Phelps–Bollobás property
(BPB property) for operators if for every ε > 0 there exists δ(ε) > 0 such
that for every operator T ∈ L(X, Y ) of norm 1, if x0 ∈ SX is such that
‖T (x0)‖ > 1 − δ(ε), then there exist u0 ∈ SX and S ∈ SL(X,Y ) satisfying
‖S(u0)‖ = 1, ‖x0 − u0‖ < ε, and ‖T − S‖ < ε.

If an analogous definition is valid for operators T , S from a subspace
I ⊂ L(X, Y ), then we say that (X, Y ) has the Bishop–Phelps–Bollobás
property for operators from I.

With this terminology, the original Bishop–Phelps–Bollobás theorem [8]
says that for every X , the pair (X,K) has the BPB property for operators.
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Also, thanks to Acosta, Aron, Garcı́a, and Maestre [1, Theorem 2.2], if Y
has the Lindenstrauss’ property β (Definition 4.8), then for every Banach
space X the pair (X, Y ) has the Bishop–Phelps–Bollobás property for op-
erators.

In 2011 Aron, Cascales, and Kozhushkina [4, Theorem 2.4] showed that
for every X and every compact Hausdorff space K the pair (X,C(K)) has
the BPB property for Asplund operators (Definition 2.2). In 2013 Cascales,
Guirao and Kadets [9] extended this result to uniform algebras A ⊂ C(K).
The exact statement of the last result is given below.

Theorem 1.1 ([9, Theorem 3.6]). Let A ⊂ C(K) be a uniform algebra
and T : X → A be an Asplund operator with ‖T‖ = 1. Suppose that
0 < ε <

√
2 and x0 ∈ SX are such that ‖Tx0‖ > 1 − ε2

2
. Then there exist

u0 ∈ SX and an Asplund operator S ∈ SL(X,A) satisfying that:

‖Su0‖ = 1, ‖x0 − u0‖ ≤ ε and ‖T − S‖ < 2ε.

In the same vein, Acosta, Becerra Guerrero, Garcı́a, Kim, and Maestre [2]
generalized [4, Theorem 2.4] to some spaces of continuous vector-valued
functions (see Theorem 4.13 below).

The aim of this paper is to extend all these results to a wider class of Ba-
nach spaces and to a wider class of operators. The main difference of our
approach is that instead of proving a Bishop–Phelps–Bollobás kind theorem
for each space separately (and thus repeating essential parts of the proof
many times), we introduce a new Banach space property (called ACKρ

structure) which extracts all the useful technicalities for the BPB type of
approximation. We prove a general Bishop–Phelps–Bollobás type theorem
for Γ-flat operators (see Definition 2.8) acting to a space with ACKρ struc-
ture and show that uniform algebras and spaces with the property β have
ACKρ structure. After that, we study the stability of the ACKρ structure
under some natural Banach space theory operations which as a consequence
gives us a wide collection of examples of pairs (X, Y ) possessing the BPB
property for Asplund operators.

The structure of the paper is as follows. In section 2 we collect the nec-
essary definitions (in particular that of Asplund operators and of Γ-flat op-
erators) and prove an important Basic Lemma. In section 3 we introduce
the central concept of ACKρ structure and prove a general BPB type the-
orem for this class of Banach spaces. Finally, in section 4 we perform the
announced study of spaces with ACKρ structure which, on the one hand,
gives a unified proof of several results from [1, 2, 4] and [9], and on the
other hand, leads to new BPB type theorems in concrete spaces.

For the non-defined notions used through this article, we refer to [12].

2. Γ-FLAT OPERATORS AND THE BASIC LEMMA

Let (B, τ) be a topological space, ρ be a metric on B (possibly, not re-
lated with τ ). B is said to be fragmented by ρ, if for every non-empty subset
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A ⊂ B and for every ε > 0 there exists a τ -open U such that U ∩ A 6= ∅
and diam(U∩A) < ε. Some important examples of fragmented topological
spaces come from Banach space theory. For instance, every weakly com-
pact subset of a Banach space is fragmented by the norm (i.e., by the metric
ρ(x, y) = ‖x− y‖), see [16].

A Banach space X is called an Asplund space if, whenever f is a convex
continuous function defined on an open subset U of X , the set of all points
of U where f is Fréchet differentiable is a dense Gδ-subset of U . This def-
inition is due to Asplund [3] under the name strong differentiability space.
This concept has multiple characterizations via topology or measure theory,
as in the following:

Theorem 2.1 ([17, 21, 22]). Let X be a Banach space. Then the following
conditions are equivalent:

(i) X is an Asplund space;
(ii) every w∗-compact subset of (X,w∗) is fragmented by the norm;

(iii) each separable subspace of X has separable dual;
(iv) X∗ has the Radon-Nikodým property.

According to the above, every reflexive space and every separable space
whose dual is separable is an Asplund space. Classical example of Asplund
spaces are Lp and `p with 1 < p < ∞, and also c0; examples of spaces
that are not Asplund are C[0, 1], `1, `∞, L1[0, 1] and L∞[0, 1], see for in-
stance [11].

Definition 2.2 ([23]). An operator T ∈ L(X, Y ) is said to be an Asplund
operator if it factors through an Asplund space, i.e., there exist an Asplund
Banach space Z and operators T1 ∈ L(X,Z), T2 ∈ L(Z, Y ) such that T =
T2 ◦ T1.

Compact and weakly compact operators are Asplund operators (every
weakly compact operator factorizes through a reflexive space).

Theorem 2.1 yields the following result:

Remark 2.3 ([23]). If T is an Asplund operator, then its adjoint T ∗ sends
the unit ball of Y ∗ into a w∗-compact subset of (X,w∗) that is norm frag-
mented.

Definition 2.4. Let Y be a Banach space. Y is said to have the Bishop–
Phelps–Bollobás property for Asplund operators (A-BPBp for short) if for
every ε > 0 there exists δ(ε) > 0, such that for every Banach space X and
every Asplund operator T ∈ SL(X,Y ), if x0 ∈ SX is such that ‖T (x0)‖ >
1− δ(ε), then there exist u0 ∈ SX and S ∈ SL(X,Y ) satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < ε and ‖T − S‖ < ε.

Definition 2.5 ([13]). Let A and B be topological spaces. A function
f : A→ B is said to be quasi-continuous, if for every non-empty open sub-
set U ⊂ A, every z ∈ U and every neighborhood V of f(z) there exists a
non-empty open subset W ⊂ U such that f(W ) ⊂ V .
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Let us introduce some new terminology. Note that a similar concept of
fragmentability of maps was introduced in [14].

Definition 2.6. Let A be a topological space and (M,d) be a metric space.
A function f : A → M is said to be openly fragmented, if for every non-
empty open subset U ⊂ A and every ε > 0 there exists a non-empty open
subset V ⊂ U with d-diam(f(V )) < ε.

Every continuous or quasi-continuous function f : A → M is openly
fragmented. In particular, if A is a discrete topological space then every
f : A → M is openly fragmented. For every metric space M , every left-
continuous f : [0, 1]→ M and every right-continuous function f : [0, 1]→
M are openly fragmented. Every f : A→M with a dense set of continuity
points is openly fragmented. Every separately continuous function of two
variables f : [0, 1]× [0, 1]→M is quasi-continuous [6] and, consequently,
openly fragmented. Some other easy but useful examples are given in the
following theorem:

Theorem 2.7. LetA,B be topological spaces, ρ be a metric onB (possibly,
not related with the original topology), and f : A→ B be a function.

(i) If B is fragmented by ρ, and f is continuous in the original topolo-
gies, then f : A→ (B, ρ) is openly fragmented.

(ii) If A is fragmented by some metric ρ1 and f : (A, ρ1) → (B, ρ) is
uniformly continuous, then f : A→ (B, ρ) is openly fragmented.

Let, moreover, (B, ‖·‖) be a Banach space. Then
(iii) If f, g : A → (B, ‖·‖) are openly fragmented then f + g : A →

(B, ‖·‖) is openly fragmented.
(iv) If f : A → (B, ‖·‖) and g : A → K are openly fragmented then

gf : A→ (B, ‖·‖) is openly fragmented.

Proof. (i) For a given non-empty open subset U ⊂ A consider f(U) ⊂ B.
By ρ-fragmentability of B, for every ε > 0 there exits an open subset W
of B with f(U) ∩W 6= ∅ and diam(f(U) ∩W ) < ε. By continuity of f
the set f−1(W ) is open and V := f−1(W ) ∩ U will be the non-empty open
subset V ⊂ U we need.

The statements (ii), (iii) and (iv) are routine. �

Definition 2.8. Let X , Y be Banach spaces and Γ ⊂ Y ∗. An operator
T ∈ L(X, Y ) is said to be Γ-flat, if T ∗|Γ : (Γ, w∗)→ (X∗, ‖·‖X∗) is openly
fragmented. In other words, for everyw∗-open subset U ⊂ Y ∗ with U∩Γ 6=
∅ and every ε > 0 there exists a w∗-open subset V ⊂ U with V ∩ Γ 6= ∅
such that diam(T ∗(V ∩ Γ)) < ε. The set of all Γ-flat operators in L(X, Y )
will be denoted by FlΓ(X, Y ).

Statements (iii) and (iv) of the previous theorem imply that FlΓ(X, Y ) is
a linear subspace of L(X, Y ). Let us list some examples of Γ-flat operators.

Example A. Every Asplund operator T ∈ L(X, Y ) is Γ-flat for every Γ ⊂
BY ∗ . This follows from Remark 2.3 and Theorem 2.7, (i).
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Example B. If (Γ, w∗) ⊂ Y ∗ is norm fragmented, then every bounded op-
erator in L(X, Y ) is Γ-flat (Theorem 2.7, (ii)). In particular, we have the
next concrete example.

Example C. If (Γ, w∗) ⊂ Y ∗ is discrete, then every operator T ∈ L(X, Y )
is Γ-flat.

The notion of Γ-flatness generalizes the property of Asplund operators
that allowed to prove [4, Lemma 2.3]. The immediate generalization of that
lemma is the following result:

Lemma 2.9 (Basic Lemma). Let X, Y be Banach spaces, Γ ⊂ BY ∗ be
a 1-norming set, T ∈ FlΓ(X, Y ) be a Γ-flat operator with ‖T‖ = 1 ,
0 < ε < 2/3, and x0 ∈ SX be such that ‖Tx0‖ > 1 − ε. Then for every
r > 0 and for every k ∈ [ ε

2(1−ε) , 1) there exist:

(i) a w∗-open set Ur ⊂ Y ∗ with Ur ∩ Γ 6= ∅, and
(ii) points x∗r ∈ SX∗ and ur ∈ SX with |x∗r(ur)| = 1 such that

‖x0 − ur‖ ≤
ε

k
and ‖T ∗z∗ − x∗r‖ ≤ r+2k for every z∗ ∈ Ur∩Γ. (2.1)

The proof of this fact is a modification of that of [4, Lemma 2.3]. First,
we use the following fact:

Proposition 2.10 ([19, Corollary 2.2]). LetX be a real Banach space, z∗ ∈
SX∗ , z ∈ SX , η > 0 and z∗(z) ≥ 1 − η. Then for every k ∈ (0, 1) there
exist y∗ ∈ SX∗ and u ∈ SX such that

y∗(u) = 1, ‖z − u‖ ≤ η

k
, ‖z∗ − y∗‖ ≤ 2k.

In the next proposition, we relax the condition z∗ ∈ SX allowing ‖z∗‖ to
be smaller than 1. Note that x∗ plays the role of z∗.

Proposition 2.11. Let X be a Banach space, ε ∈ (0, 2/3), x ∈ SX , x
∗ ∈

BX∗ and |x∗(x)| ≥ 1 − ε. Then, for every k ∈ [ ε
2(1−ε) , 1) there exist y∗ ∈

SX∗ and u ∈ SX such that

|y∗(u)| = 1, ‖x− u‖ ≤ ε

k
, ‖x∗ − y∗‖ ≤ 2k.

Proof. Without loss of generality we can assume that x∗(x) ≥ 1− ε. Then
‖x∗‖ ≥ 1 − ε. Set z∗ := x∗/ ‖x∗‖ , z := x. Then z∗(z) ≥ 1 − η for
η = 1 − (1 − ε) ‖x∗‖−1 ∈ [0, ε]. If η = 0, then z∗(z) = 1, so we can take
y∗ = z∗ and u = x, which satisfy the inequalities we want. So we may
assume that 0 < η ≤ ε. Set k0 := kη

ε
∈ (0, 1). So, according to Proposition

2.10, there exist y∗ ∈ SX∗ and u ∈ SX such that

y∗(u) = 1, ‖z − u‖ ≤ η

k0

, ‖z∗ − y∗‖ ≤ 2k0.
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Therefore, ‖x− u‖ ≤ η/k0 = ε/k. Also, we have

‖x∗ − y∗‖ ≤ ‖x∗ − z∗‖+ ‖z∗ − y∗‖ ≤
∥∥∥∥x∗ − x∗

‖x∗‖

∥∥∥∥+ 2k0

= 1− ‖x∗‖+ 2k0 = 1− ‖x∗‖+
2k

ε

(
1− 1− ε
‖x∗‖

)
.

Observe that the function ψ(t) = 1 − t + 2k
ε

(1 − 1−ε
t

) is increasing when

t ∈
(

0,
√

2k(1−ε)
ε

)
. So, if k ≥ ε

2(1−ε) , we have ψ(‖x∗‖) ≤ ψ(1) = 2k. In

this case, we get our conclusion. �

Proof of Lemma 2.9. Use that Γ ⊂ BY ∗ is 1-norming and pick y∗0 ∈ Γ such
that

|T ∗(y∗0)(x0)| = |y∗0(Tx0)| > 1− ε.
Set U := {y∗ ∈ Y ∗ : |T ∗y∗(x0)| > 1−ε}. We have that y∗0 ∈ U ∩Γ ⊂ BY ∗ .
Since U is w∗-open in Y ∗ and U ∩ Γ 6= ∅, according to Definition 2.8, for
every r > 0 there exists a w∗-open subset Ur ⊂ U with Ur ∩ Γ 6= ∅ such
that diam(T ∗(Ur ∩ Γ)) < r.

Fix some y∗1 ∈ Ur ∩ Γ and set x∗1 = T ∗y∗1 . Then, 1 ≥ ‖x∗1‖ ≥ |x∗1(x0)| >
1 − ε which, by applying Proposition 2.11 to any ε

2(1−ε) ≤ k < 1, gives
x∗r ∈ SX∗ and ur ∈ SX with |x∗r(ur)| = 1 and such that

‖x0 − ur‖ ≤
ε

k
and ‖x∗1 − x∗r‖ ≤ 2k.

Finally, let z∗ ∈ Ur ∩ Γ be arbitrary. Then,

‖T ∗z∗ − x∗r‖ ≤ ‖T ∗z∗ − x∗1‖+ ‖x∗1 − x∗r‖ ≤ r + 2k,

which finishes the proof. �

3. THE ACK STRUCTURE

In the definition below we extract the structural properties of C(K) and
its uniform subalgebras that were essential in the proof of [9, Th. 3.6]. The
name “ACK structure” comes from the words “Asplund” and “C(K)”.

Definition 3.1. Let X be a Banach space and O be a non-emtpy subset of
L(X). We will say thatX hasO-ACK structure with parameter ρ, for some
ρ ∈ [0, 1) (X ∈ O-ACKρ, for short) whenever there exists a 1-norming set
Γ ⊂ BX∗ such that for every ε > 0 and every non-empty relatively w∗-open
subset U ⊂ Γ there exist a non-empty subset V ⊂ U , vectors x∗1 ∈ V ,
e ∈ SX and an operator F ∈ O with the following properties:

(I) ‖Fe‖ = ‖F‖ = 1;
(II) x∗1(Fe) = 1;

(III) F ∗x∗1 = x∗1;
(IV) denoting V1 = {x∗ ∈ Γ : ‖F ∗x∗‖+(1−ε) ‖(IX∗ − F ∗)(x∗)‖ ≤ 1},

then |x∗(Fe)| ≤ ρ for every x∗ ∈ Γ \ V1;
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(V) dist(F ∗x∗, aco{0, V }) < ε for every x∗ ∈ Γ (recall, that aco ab-
breviates the absolute convex hull); and

(VI) |v∗(e)− 1| ≤ ε for every v∗ ∈ V .
The Banach space X is said to have simple O-ACK structure (X ∈ O-

ACK) if V1 = Γ. In other words, for X ∈ O-ACK the above definition
holds true in a stronger form: the property (IV) is substituted by

(IV)’ ‖F ∗x∗‖+ (1− ε) ‖(IX∗ − F ∗)(x∗)‖ ≤ 1 for every x∗ ∈ Γ,
which makes the original (IV) unnecessary, because now it would speak
about the empty set Γ \ V1. In case of O = L(X), we will simply say
ACKρ (and simple ACK) structure.

Remark 3.2. If X belongs to the class ACKρ, then X also belongs to
ACKσ for every σ ∈ [ρ, 1). Moreover, ACK ⊂ ACKρ for every ρ ∈ [0, 1).

Definition 3.3. A linear subspace I ⊂ L(X, Y ) is said to be a Γ-flat ideal,
if all elements of I are Γ-flat operators, I contains all operators of finite
rank, and for every T ∈ I and every F ∈ L(Y ) their composition F ◦ T
belongs to I.

Observe that the subspace of Asplund operators inL(X, Y ) is an example
of Γ-flat ideal. The theorem below motivates the above definition.

Theorem 3.4. Let X be a Banach space, Y ∈ ACKρ , Γ ⊂ Y ∗ be the
corresponding 1-norming set from Defintion 3.1 and T ∈ L(X, Y ) be a Γ-
flat operator with ‖T‖ = 1. Let 0 < ε ≤ 1/2 and let x0 ∈ SX be such that
‖Tx0‖ > 1 − ε. Then there exist u0 ∈ SX and an operator S ∈ SL(X,Y )

with ‖Su0‖ = 1 such that

max {‖x0 − u0‖ , ‖T − S‖} <
√

2ε

(
1 +

2

1− ρ+
√

2ε

)
.

Moreover, if Y ∈ ACK then the estimate can be improved to

max {‖x0 − u0‖ , ‖T − S‖} <
√

2ε.

Additionally, S can be chosen from I whenever T belongs to a Γ-flat ideal
I. In particular, every Y ∈ ACKρ (ACK) has the A-BPBp.

Before proving the theorem, we need a preliminary result.

Lemma 3.5. Under the conditions of Theorem 3.4 above, for every k ∈
(ε/(2(1− ε)), 1) and for every

ν > 2k

(
1 +

2

1− ρ+ 2k

)
,

there exist u0 ∈ SX and S ∈ SL(X,Y ) satisfying ‖Su0‖ = 1, ‖x0 − u0‖ ≤ ε
k

and ‖T − S‖ < ν. In the case of Y ∈ ACK the same is true for every
ν > 2k.

If, moreover, T belongs to a Γ-flat ideal I, then S can be chosen from I
as well.



8 CASCALES, GUIRAO, KADETS, AND SOLOVIOVA

Proof. First, consider the more involved case of Y ∈ ACKρ. Fix r > 0 and
0 < ε′ < 2/3. Now, we can apply Lemma 2.9 with Y , Γ, r and ε > 0. We
produce a w∗-open set Ur ⊂ Y ∗ with Ur ∩ Γ 6= ∅, and points x∗r ∈ SX∗ and
ur ∈ SX with |x∗r(ur)| = 1 such that (2.1) holds true.

Since Ur ∩ Γ 6= ∅, we can apply Definition 3.1 to U = Ur ∩ Γ and ε′

and obtain a non-empty V ⊂ U , y∗1 ∈ V , e ∈ SY , F ∈ L(Y ) and V1 ⊂ Γ
which satisfy properties (I) – (VI). In particular, for every z∗ ∈ V ⊂ Ur ∩Γ
according to (2.1) we have

‖T ∗z∗ − x∗r‖ ≤ r + 2k. (3.1)

Define now the linear operator S : X → Y by the formula

S(x) := x∗r(x)Fe+ (1− ε̃)(IY − F )Tx, (3.2)

where the value of ε̃ ∈ [ε′, 1) will be specified below in such a way that
‖S‖ ≤ 1. In order to do this, bearing in mind the fact that Γ is 1-norming,
we can write

‖S‖ = ‖S∗‖ = sup {‖S∗y∗‖ : y∗ ∈ Γ} .

So our first goal is to estimate

‖S∗y∗‖ = ‖y∗(Fe)x∗r + (1− ε̃)T ∗(IY ∗ − F ∗)(y∗)‖ (3.3)

from above for all y∗ ∈ Γ. For y∗ ∈ V1, the sought estimate ‖S∗y∗‖ ≤ 1
follows immediately from the definition of V1 (see property (IV)). So, it
remains to consider the case y∗ ∈ Γ \ V1. Thanks to (V), for every y∗ ∈ Γ,
there exists an element v∗ =

∑n
k=1 λkv

∗
k with

‖F ∗y∗ − v∗‖ < ε′ (3.4)

such that {v∗k}nk=1 ⊂ V , and
∑n

k=1 |λk| ≤ 1. According to (3.1) we have
‖T ∗v∗k − x∗r‖ ≤ r + 2k, consequently

‖v∗(e)x∗r − T ∗v∗‖ ≤
n∑
k=1

|λk| ‖v∗k(e)x∗r − T ∗v∗k‖

(VI)

≤ ε′ +
n∑
k=1

|λk| ‖x∗r − T ∗v∗k‖ ≤ ε′ + r + 2k. (3.5)

Now, for every y∗ ∈ Γ \ V1

‖S∗y∗‖ ≤ ε̃ |y∗(Fe)|+ (1− ε̃) ‖y∗(Fe)x∗r + T ∗y∗ − T ∗F ∗y∗‖
(IV)

≤ ε̃ρ+ (1− ε̃) ‖T ∗y∗‖+ (1− ε̃) ‖(F ∗y∗)(e)x∗r − T ∗F ∗y∗‖
(3.4)
≤ ε̃ρ+ (1− ε̃) + 2ε′(1− ε̃) + (1− ε̃) ‖v∗(e)x∗r − T ∗v∗‖

(3.5)
≤ ε̃ρ+ (1− ε̃) + 2ε′(1− ε̃) + (1− ε̃)(ε′ + r + 2k)

≤ ε̃ρ+ (1− ε̃)(1 + 3ε′ + r + 2k).
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This means, that if we choose ε̃ = (3ε′+ r+ 2k)/(1− ρ+ 3ε′+ r+ 2k),
then we have ‖S‖ ≤ 1. In this case,

1 = |x∗r(ur)|
(II)
= |y∗1(x∗r(ur)Fe)|,

and by using de definition of S and keeping in mind that (III) implies
y∗1(FTur) = F ∗y∗1(Tur) = y∗1(Tur), we deduce that

|y∗1(x∗r(ur)Fe)|=|y∗1(S(ur))| ≤ ‖S(ur)‖ ≤ 1.

Therefore, ‖S‖ = 1 and S attains the norm at the point u0 := ur ∈ SX
for which by (2.1) we already had that ‖u0 − x0‖ ≤ ε

k
.

Now, let us estimate

‖S − T‖ = ‖S∗ − T ∗‖ = sup
y∗∈Γ
‖S∗y∗ − T ∗y∗‖

≤ sup
y∗∈Γ
‖y∗(Fe)x∗r − T ∗F ∗y∗‖+ 2ε̃. (3.6)

For every y∗ ∈ Γ we can proceed the same way as before. Namely,

‖(F ∗y∗)(e)x∗r − T ∗F ∗y∗‖
(3.4)
≤ 2ε′ + ‖v∗(e)x∗r − T ∗v∗‖

(3.5)
≤ 3ε′ + r + 2k.

Combining this with the inequalities (3.6) and the value of ε̃ we conclude
that

‖T − S‖ ≤ 3ε′ + r + 2k + 2
3ε′ + r + 2k

1− ρ+ 3ε′ + r + 2k
. (3.7)

Since r > 0 and 0 < ε′ < 2/3 are arbitrary, for suitable values we will
have the desired estimate ‖T − S‖ < ν.

To finish the proof in the case of Y ∈ ACKρ we observe that if T belongs
to a Γ-flat ideal I then S ∈ I.

Now the simpler case of Y ∈ ACK. In this case ‖S∗y∗‖ ≤ 1 for all
y∗ ∈ Γ thanks to (IV)’. So, ‖S‖ ≤ 1 for all values of ε̃ ∈ [ε′, 1) and we can
simply take ε̃ = ε′. With such a choice of ε̃ the estimate (3.7) changes to
‖T − S‖ ≤ 5ε′ + r + 2k, which again for small values of r and ε′ gives us
‖T − S‖ < ν for the ν which corresponds to this case. �

Proof of Theorem 3.4. First, select ε0 ∈ (0, ε) in such a way that the in-
equality ‖Tx0‖ > 1 − ε0 is still valid. Now we apply Lemma 3.5 with
ε0 instead of ε and substitute k =

√
ε0/2. In the case of Y ∈ ACKρ we

take ν ∈
(√

2ε0

(
1 + 2

1−ρ+
√

2ε0

)
,
√

2ε
(

1 + 2
1−ρ+

√
2ε

))
, and in the case of

Y ∈ ACK we take ν ∈ (
√

2ε0,
√

2ε). �

Remark 3.6. The statements of Lemma 3.5 and Theorem 3.4 remain correct
if in the definition of ACKρ and ACK the property (IV) is substituted by the
following weaker one, in which V1 is larger than in the original definition:

Denote V1 = {y∗ ∈ Γ : |y∗(Fe)|+(1−ε′) ‖(IY ∗ − F ∗)(y∗)‖ ≤ 1}. Then
|v∗(Fe)| ≤ ρ for every v∗ ∈ Γ \ V1.
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Also, a look at the proof of Lemma 2.9 shows that the condition of T
being Γ-flat can be weaken in the following way: for every y ∈ BY and
every δ > 0 if the w∗-slice S(Γ, x, δ) := {y∗ ∈ Γ : Re y∗(y) > 1 − δ} is
not empty, then for every ε > 0 there exists a non-empty relatively w∗-open
subset V ⊂ S(Γ, x, δ) such that diam(T ∗(V )) < ε.

There are two reasons why we have selected the more restrictive variants.
Firstly, with the restrictive definition of (IV) we are able to prove a nice
stability result (Theorem 4.12 below), and secondly, all the examples with
“relaxed” versions of (IV) and of Γ-flatness that we have in hand, satisfy
the restrictive variant of (IV) and of Γ-flatness.

4. BANACH SPACES WITH ACK STRUCTURE

The aim of this section is presenting those natural examples of Banach
spaces having ACK structure as well as showing the stability of the ACK
structure under some operations, such us `∞-sums or injective tensor prod-
ucts.

First of all, let us introduce the first natural class of Banach spaces with
ACK structure. As commented above, Definition 3.1, comes from an anal-
ysis of the proofs in [9]. We shall show next that, indeed, every uniform
algebra A has simple ACK structure. The key tool is Lemma 4.2, that was
proved in [9, Lemma 2.5 and Lemma 2.7], and is about the existence of
peak functions f ∈ SA whose range is contained in the Stolz’s region

Stε = {z ∈ C : |z|+ (1− ε)|1− z| ≤ 1}.
For a topological space (T, τ), we denote by Cb(T ) the space of bounded

continuous functions f : T → K equipped with the sup-norm.

Definition 4.1. Let (T, τ) be a topological space. A subalgebra A ⊂ Cb(T )
is said to be an ACK-subalgebra, if for every non-empty open set W ⊂ T
and 0 < ε < 1, there exist f ∈ A and t0 ∈ W such that f(t0) = ‖f‖∞ = 1,
|f(t)| < ε for every t ∈ T \W and f(T ) ⊂ Stε.

Lemma 4.2. Let A ⊂ C(K) be a uniform algebra. Then there exists a
topological space ΓA such that A is isometric to an ACK-subalgebra of
Cb(ΓA). In the case of K being the space of multiplicative functionals on A

the corresponding ΓA can be selected as a topological subspace of K.

We will use the following elementary property of Stε.

Lemma 4.3. If z belongs to the Stolz region Stε, then zn ∈ Stε.

Proof. For every z ∈ Stε it holds

|zn|+ (1− ε)|1− zn| = |zn|+ (1− ε)|1− z||1 + z + . . .+ zn−1|
≤ |z|n + (1− |z|)|1 + z + . . .+ zn−1|
≤ |z|n + (1− |z|)(1 + |z|+ . . .+ |z|n−1)

= |z|n + (1− |z|n) = 1,
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which finishes the proof. �

The following simple lemma gives an essential property that turns uni-
form algebras into Banach spaces with simple ACK structure.

Lemma 4.4. Let A ⊂ Cb(ΓA) be an ACK-subalgebra. Then, for every
non-empty open set W ⊂ ΓA and 0 < ε < 1, there exist a non-emtpy subset
W0 ⊂ W , functions f , e ∈ A, and t0 ∈ W0 such that f(t0) = ‖f‖ = 1,
e(t0) = ‖e‖ = 1, |f(t)| < ε for every t ∈ ΓA \W0, |1− e(t)| < ε for every
t ∈ W0 and f(ΓA) ⊂ Stε.

Proof. By using Definition 4.1 for the open set W ⊂ ΓA and ε, we get a
function e ∈ A and t0 ∈ W such that e(t0) = ‖e‖ = 1, |e(t)| < ε for
every t ∈ ΓA \W and e(ΓA) ⊂ Stε. Let W0 := {t ∈ W : |1 − e(t)| < ε}.
Define the function fn : ΓA → K by fn(t) := (e(t))n whose range, by
Lemma 4.3, is contained in Stε. From the very definition of W0 and the
fact that e(ΓA) ⊂ Stε, we deduce that |e(t)| ≤ 1 − ε(1 − ε) < 1 for
every t ∈ ΓA \W0. Thus, taking a suitable n0 ∈ N, we can assume that
|fn0(t)| = |e(t)|n0 < ε on ΓA \ W0. Therefore, f := fn0 ∈ A gives the
conclusions of the lemma. �

Theorem 4.5. Let A ⊂ Cb(ΓA) be an ACK-subalgebra, and let X be a
subspace A ⊂ X ⊂ Cb(ΓA) that has the following property: fx ∈ X
for every x ∈ X and f ∈ A. Then X ∈ ACK with the corresponding
1-norming subset of BX∗ being Γ = {δt : t ∈ ΓA}.

Proof. Fix ε > 0 and a non-emtpy relatively w∗-open subset U = {δt :
t ∈ W ⊂ ΓA} ⊂ Γ. Observe that W ⊂ ΓA is open. Now, by applying
Lemma 4.4 to W with ε we obtain the corresponding W0 ⊂ ΓA, t0 ∈ W0,
f , eA ∈ A. Let us define V ⊂ U , x∗1 ∈ V , e ∈ SX and F ∈ L(X) as
follows:

V := {δt : t ∈ W0}, x∗1 := δt0 , e := eA, Fx := fx, forx ∈ X.

Then, F ∗x∗ = f(t)x∗ for every x∗ = δt ∈ Γ. We shall show that properties
(I) – (VI) are satisfied. First, ‖F‖ ≤ 1 and ‖Fe‖ = e(t0)f(t0) = 1,
which proves (I). Property (II) is straightforward from x∗1(Fe) = x∗1(fe) =
e(t0)f(t0) = 1. From (F ∗x∗1)(x) = x(t0)f(t0) = x(t0) = x∗1(x) we deduce
that F ∗x∗1 = x∗1, which is (III). To show (IV)’, take x∗ = δt ∈ Γ and estimate

‖F ∗x∗‖+ (1− ε) ‖(IX∗ − F ∗)(x∗)‖
≤ |f(t)|+ (1− ε)|1− f(t)| ≤ 1.

Let us show now (V). Take x∗ = δt ∈ Γ. In case t belongs to ΓA \ W0,
then ‖F ∗x∗‖ = |f(t)| < ε. Otherwise, t ∈ W0 (that is, x∗ ∈ V ), using
that F ∗x∗ = f(t)x∗ and that f ∈ SX , we deduce that f(t)x∗ ∈ aco{0, V }.
Hence, in both cases

dist(F ∗x∗, aco{0, V }) < ε.
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Finally, for every v∗ ∈ V we have that v∗(e) = e(t) for some t ∈ W0. So,

|v∗(e)− 1| = |e(t)− 1| ≤ ε,

which shows (VI) and finishes the proof. �

From Lemma 4.2 and Theorem 4.5 takingX = A we obtain the promised
example.

Corollary 4.6. Every uniform algebra A has simple ACK structure.

Theorem 4.5 gives more examples of spaces with simple ACK structure.
For instance, let T be the unit disk in C, A(T) ⊂ C(T) be the disc-algebra,
i.e., A(T) is the closure in C(T) of the set {

∑m
k=0 akz

k : ak ∈ C,m ∈ N}
of all polynomials. For a given n ∈ N denote An(T) the closure in C(T)
of the set {

∑m
k=−n akz

k : ak ∈ C,m ∈ N}. Then A(T) and X = An(T)
satisfy all the conditions of Theorem 4.5, so An(T) ∈ ACK, but An(T) is
not an algebra. Another example: let c0 ⊂ X ⊂ `∞. Then X ∈ ACK.

The first example is of illustrative character, because the space An(T) is
isometric to the algebra A(T). In contrast, the second example gives a big
variety of mutually non-isomorphic spaces with ACK structure. Observe
that the simple ACK structure of those X such that c0 ⊂ X ⊂ `∞ can be
also deduced from Theorem 4.9 below.

Remark 4.7. In general, it is not clear whether for a given T ∈ FlΓ(X, Y )
the formula (3.2) gives a Γ-flat operator S. But, under the conditions of
Theorem 4.5, we have an additional property F ∗x∗ = f(t)x∗. Combining
this property with (iv) of Theorem 2.7, we get S ∈ FlΓ(X, Y ). In particular,
in the case of uniform algebras the Bishop–Phelps–Bollobás type approxi-
mation of Γ-flat operators can be made by operators that are Γ-flat as well.

Now we show that Banach spaces with Lindenstrauss’ property β (see
for instance [18]) have ACK structure.

Definition 4.8. A Banach space X is said to have the property β if there
exist two sets {xα : α ∈ Λ} ⊂ SX , {x∗α : α ∈ Λ} ⊂ SX∗ and ρ ∈ [0, 1)
such that the following conditions hold:

(i) x∗α(xα) = 1;
(ii) |x∗α(xγ)| ≤ ρ < 1 if α 6= γ; and

(iii) ‖x‖ = sup{|x∗α(x)| : α ∈ Λ}, for all x ∈ X .

Theorem 4.9. Let X have the property β. Then X ∈ ACKρ with the same
value of ρ as in Definition 4.8 and with Γ = {x∗α : α ∈ Λ} from that
definition. Moreover, if X has property β with ρ = 0, then X ∈ ACK.

Proof. Since X has property β, the set Γ = {x∗α : α ∈ Λ} is a 1-norming
subset of BX∗ . Observe that property β implies that (Γ, w∗) is a discrete
topological space. Fix ε > 0 and a non-empty relatively w∗-open subset
U ⊂ Γ. Take x∗α0

∈ U . Let us define the corresponding V , x∗1 ∈ V , e ∈ SX ,
and F ∈ L(X) as follows:

V := {x∗α0
} ⊂ U, x∗1 := x∗α0

, e := xα0 , F (x) := x∗α0
(x)xα0 .
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It is clear that F ∗x∗ = x∗(xα0)x
∗
α0

for every x∗ ∈ X∗. We shall show that
properties (I) – (VI) of Definition 3.1 hold true. Properties (I) – (III) are
routine. To show (IV) observe first that∥∥F ∗x∗α0

∥∥+ (1− ε)
∥∥(IX∗ − F ∗)(x∗α0

)
∥∥ =

∥∥x∗α0
(xα0)x

∗
α0

∥∥ = 1,

that is, x∗α0
∈ V1. Consequently, whenever v∗ = x∗α ∈ Γ \ V1, then α 6= α0

and thus |v∗(Fe)| = |x∗α(xα0)| ≤ ρ.
In case that ρ = 0, we have that F ∗x∗α = 0 for every α 6= α0, so

‖F ∗x∗α‖+ (1− ε) ‖(IX∗ − F ∗)x∗α‖ = (1− ε) ‖x∗α‖ < 1,

i.e., V1 = Γ.
Property (V) is a consequence of the fact that F ∗x∗ ∈ aco{0, V } for

every x∗ = x∗α ∈ Γ, because F ∗x∗ = x∗α(xα0)x
∗
α0

. Finally, property (VI)
and in turn our conclusions are consequence of the fact that the unique
v∗ ∈ V is v∗ = x∗α0

, so |v∗(e)− 1| = 0 ≤ ε. �

Corollary 4.10 ([1, Theorem 2.2]). Let Y have property β. Then, for every
Banach spaceX , the pair (X, Y ) has the Bishop–Phelps–Bollobás property
for operators.

Proof. In the proof of Theorem 4.9, (Γ, w∗) is a discrete topological space.
Therefore every operator T ∈ L(X, Y ) is Γ-flat (Example C after Definition
2.8). Now the application of Theorem 3.4 completes the proof. �

Now we show the stability of the ACK structure with respect to the oper-
ations of `∞-sum and injective tensor product of two spaces (Theorem 4.11
and Theorem 4.12)

Theorem 4.11. Let X , Y be Banach spaces having ACK structure with
parameters ρX and ρY respectively. Then Z := X

⊕
∞ Y ∈ ACKρ with

ρ = max{ρX , ρY }. Moreover, Z ∈ ACK whenever X , Y ∈ ACK.

Proof. Observe that both X and Y have ACK structure with parameter ρ.
Let ΓX ⊂ BX∗ and ΓY ⊂ BY ∗ be the corresponding 1-norming subsets in
Definition 3.1. Then, the set

Γ := {(x∗, 0) : x∗ ∈ ΓX} ∪ {(0, y∗) : y∗ ∈ ΓY }
is a 1-norming subset of BZ∗ . Take a non-empty relatively w∗-open subset
U ⊂ Γ. Then, there exist relatively w∗-open subsets UX ⊂ ΓX and UY ⊂
ΓY that are not both empty and such that (UX × {0}) ∪ ({0} × UY ) ⊂ U .
Without loss of generality we may assume that UX 6= ∅.

Fix ε > 0. By using Definition 3.1 for X , ε, and UX we obtain a non-
empty subset VX ⊂ UX , x∗1 ∈ VX , eX ∈ SX , FX ∈ L(X) with the prop-
erties (I) – (VI). Thus, we can define the corresponding V ⊂ U , z∗1 ∈ V ,
e ∈ SZ and F ∈ L(Z) as follows:

V := {(x∗, 0) : x∗ ∈ VX} ⊂ U, z∗1 := (x∗1, 0), e := (eX , 0),

and for (x, y) ∈ Z,
F (x, y) := (FX(x), 0).
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Let us check the required properties. It is clear that ‖F‖ = 1 and that
‖Fe‖ = ‖FX(eX)‖ = 1, which shows (I). (II) follows easily; z∗(Fe) =
x∗1(FXeX) = 1. Due to the fact that (FXx

∗
1, 0) = (x∗1, 0), we deduce that

F ∗z∗1 = z∗1 , showing that (III) holds. Now, for every z∗ = (x∗, 0) ∈ V with
x∗ ∈ VX,1 we have

‖F ∗z∗‖+ (1− ε) ‖(IZ∗ − F ∗)(z∗)‖
= ‖F ∗Xx∗‖+ (1− ε) ‖(IX∗ − F ∗X)(x∗)‖
≤ 1,

which can be easily deduced from F ∗z∗ = (F ∗Xx
∗, 0). Consequently, for

every x∗ ∈ VX,1 we have z∗ = (x∗, 0) ∈ V1. (Observe that in the case of
simple ACK structure we have already proved (IV)’). Let v∗ ∈ Γ\V1. Then,
either v∗ = (0, y∗), or v∗ = (x∗, 0) with x∗ ∈ ΓX \ VX,1. On the one hand,
when v∗ = (0, y∗), we have |v∗(Fe)| = 0 ≤ ρ. On the other hand, whenever
v∗ = (x∗, 0) with x∗ ∈ ΓX \ VX,1, then |v∗(Fe)| = |x∗(FXeX)| ≤ ρ, which
proves (IV). Now, let z∗ ∈ Γ. Whenever z∗ = (0, y∗) we have F ∗z∗ = 0.
Otherwise, z∗ = (x∗, 0) and we have dist(F ∗Xx

∗, aco{0, VX}) < ε. Thus,
in both cases

dist(F ∗z∗, aco{0, V }) < ε.

Finally, for every v∗ = (x∗, 0) ∈ V we have |v∗(e)−1| = |x∗(eX)−1| ≤ ε,
which proves (VI) and concludes our proof. �

Recall that given two normed spaces X and Y , one can define their in-
jective tensor product X ⊗̂ε Y , as the completion of (X ⊗ Y, ‖·‖ε), where

‖z‖ε := sup{|〈x∗ ⊗ y∗, z〉| : x∗ ∈ BX∗ , y∗ ∈ BY ∗},

for every z ∈ X⊗Y and 〈x∗⊗ y∗, x⊗ y〉 := x∗(x) y∗(y), for every x⊗ y ∈
X ⊗ Y and for every x∗ ∈ X∗ and y∗ ∈ Y ∗.

An important example of such a product is the Banach space C(K)⊗̂εY ,
which can be naturally identified with C(K,Y ), that is, the Banach space
of continuous (Y, ‖·‖)-valued functions defined on K, endowed with the
supremum norm ‖f‖ = sup{‖f(t)‖ : t ∈ K}.

Note that it follows from the definition of the injective norm that if X0 ⊂
BX∗ and Y0 ⊂ BY ∗ are 1-norming, then for every z ∈ X ⊗̂εY the following
equality holds:

‖z‖ε = sup{|〈x∗ ⊗ y∗, z〉| : x∗ ∈ X0, y
∗ ∈ Y0}.

Recall also that ‖x∗ ⊗ y∗‖(X⊗̂εY )∗ = ‖x∗‖ · ‖y∗‖ for every x∗ ∈ X∗ and
y∗ ∈ Y ∗.

This is all the information about tensor products that will be used in The-
orem 4.12 below. We refer to Ryan’s book [20] for tensor products theory
in general and the above definitions and statements in particular.

Theorem 4.12. Let X and Y be Banach spaces both of which have ACK
(resp. ACKρ) structure. Then, X ⊗̂ε Y has ACK (resp. ACKρ) structure.
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Proof. Since X and Y have ACK (resp. ACKρ) structure, there exist 1-
norming sets ΓX ⊂ SX∗ and ΓY ⊂ SY ∗ satisfying Definition 3.1. Define the
map φ : (BX∗ , w∗)× (BY ∗ , w∗)→ (B(X⊗̂εY )∗ , w

∗) by φ(x∗, y∗) = x∗ ⊗ y∗,
for every x∗ ∈ BX∗ and for every y∗ ∈ BY ∗ .

First, we shall show that the map φ is continuous. Let {(x∗α, y∗α)}α∈Λ be
a convergent net to (x∗, y∗) ∈ BX∗ ×BY ∗ . Then, for every x⊗ y ∈ X ⊗Y ,
we can estimate

|〈φ(x∗α, y
∗
α)− φ(x∗, y∗), x⊗ y〉| = |x∗α(x)y∗α(y)− x∗(x)y∗(y)|
≤ |(x∗α(x)− x∗(x))y∗α(y)|+ |x∗(x)(y∗α(y)− y∗(y))|
≤ |x∗α(x)− x∗(x)| ‖y∗α‖ ‖y‖+ ‖x∗(x)‖ |y∗α(y)− y∗(y)|
≤ |x∗α(x)− x∗(x)| ‖y‖+ ‖x‖ |y∗α(y)− y∗(y)|,

which tends to zero. This argument extends easily to every element inX⊗Y
and, in turn, to every z ∈ X ⊗̂ε Y (due to the boundedness of the range of
the map φ).

The 1-norming set Γ that we need for our theorem can be introduced as
follows:

Γ := {x∗ ⊗ y∗ : x∗ ∈ ΓX , y
∗ ∈ ΓY } = φ(ΓX × ΓY ).

Let ε > 0 and U be a non-empty relatively w∗-open subset of Γ. Let
x∗0 ∈ ΓX and y∗0 ∈ ΓY be such that φ(x∗0, y

∗
0) ∈ U . The continuity of φ

ensures that there exist non-empty relatively w∗-open subsets WX ⊂ ΓX ,
WY ⊂ ΓY such that x∗0 ∈ WX , y∗0 ∈ WY and φ(WX ×WY ) ⊂ U .

We can apply Definition 3.1 to X and Y , to the former with ε/2 and WX

and to the latter with ε/2 and WY , to find two non-empty sets VX ⊂ WX

and VY ⊂ WY , two functionals x∗1 ∈ VX and y∗1 ∈ VY , two points eX ∈ SX
and eY ∈ SY and finally, two operators FX ∈ L(X) and FY ∈ L(Y ),
satisfying respectively the properties (I) – (VI), or with their corresponding
modifications for the the simple ACK structure. Denote also by VX,1 and
VY,1 the corresponding variants for X and Y of the set V1 from property
(IV) of Definition 3.1.

Now, define the non-emtpy set V ⊂ U and corresponding z∗1 ∈ V , e ∈
SX⊗εY , F ∈ L(X ⊗̂ε Y ) as follows: V := φ(VX × VY ) ⊂ U , z∗1 :=
φ(x∗1, y

∗
1) = x∗1 ⊗ y∗1 , e := eX ⊗ eY , and F (x ⊗ y) := FX(x) ⊗ FY (y) for

every x ⊗ y ∈ X ⊗ Y . It remains to check the properties (I) – (VI). First,
observe that F ∗(x∗ ⊗ y∗) = F ∗Xx

∗ ⊗ F ∗Y y∗ for every x∗ ∈ X∗ and y∗ ∈ Y ∗.
(I) Let z belong to BX⊗̂εY

, then

‖Fz‖ε = sup
x∗∈ΓX

sup
y∗∈ΓY

|〈x∗ ⊗ y∗, Fz〉| = sup
x∗∈ΓX

sup
y∗∈ΓY

|〈F ∗(x∗ ⊗ y∗), z〉|

= sup
x∗∈ΓX

sup
y∗∈ΓY

|〈F ∗Xx∗ ⊗ F ∗Y y∗, z〉| ≤ sup
x∗∈ΓX

sup
y∗∈ΓY

‖F ∗Xx∗‖ ‖F ∗Y y∗‖

≤ ‖F ∗X‖ ‖F ∗Y ‖ ≤ 1,

which implies that ‖F‖ = 1, since

‖Fe‖ = ‖FXeX ⊗ FY eY ‖ = ‖FXeX‖ ‖FY eY ‖ = 1.
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(II) z∗1(Fe) = (x∗1 ⊗ y∗1)(FXeX ⊗ FY eY ) = x∗1(FXeX)y∗1(FY eY ) = 1.
(III) F ∗z∗1 = z∗1 , since for every x⊗ y ∈ X ⊗ Y we have

(F ∗z∗1)(x⊗ y) = (x∗1 ⊗ y∗1)(FXx⊗ FY y) = (F ∗Xx
∗
1)(x)(F ∗Y y

∗
1)(y),

which, in turn, implies that (F ∗z∗1)(x⊗ y) = x∗1(x)y∗1(y) = z∗1(x⊗ y).
(IV) For (x∗, y∗) ∈ ΓX × ΓY , denote z∗ = x∗ ⊗ y∗. Firstly, let us show that
for every x∗ ∈ VX,1 and y∗ ∈ VY,1 the functional z∗ belongs to V1, i.e., that

‖F ∗z∗‖+ (1− ε)
∥∥(I(X⊗̂εY )∗ − F ∗)(z∗)

∥∥ ≤ 1.

First of all, observe that

‖x∗ ⊗ y∗ − F ∗Xx∗ ⊗ F ∗Y y∗‖ =

= ‖x∗ ⊗ (y∗ − F ∗Y y∗)− (x∗ − F ∗Xx∗)⊗ F ∗Y y∗‖
≤ ‖y∗ − F ∗Y y∗‖+ ‖F ∗Y y∗‖ ‖(x∗ − F ∗Xx∗)‖ .

Therefore,

‖F ∗Xx∗‖ ‖F ∗Y y∗‖+ (1− ε) ‖x∗ ⊗ y∗ − F ∗Xx∗ ⊗ F ∗Y y∗‖
= ‖F ∗Y y∗‖

(
‖F ∗Xx∗‖+ (1− ε) ‖(x∗ − F ∗Xx∗)‖

)
+ (1− ε) ‖y∗ − F ∗Y y∗‖

≤ ‖F ∗Y y∗‖+ (1− ε) ‖y∗ − F ∗Y y∗‖ ≤ 1.

This implies that for every z∗ = x∗⊗ y∗ ∈ Γ \V1 we have two possibilities:
either x∗ /∈ VX,1 or y∗ /∈ VY,1. By symmetry, it is sufficient to consider
x∗ /∈ VX,1. In this case |x∗(FXeX)| ≤ ρ, so

|z∗(Fe)| = |x∗(FXeX)| |y∗(FY eY )| ≤ |x∗(FXeX)| ≤ ρ.

(V) We shall show that dist(F ∗z∗, aco{0, V }) < ε for every z∗ = x∗ ⊗
y∗ ∈ Γ. Due to the facts that dist(F ∗Xx

∗, aco{0, VX}) < ε/2 and that
dist(F ∗Y y

∗, aco{0, VY }) < ε/2, there exist v∗X ∈ aco{0, VX} and v∗Y ∈
aco{0, VY } such that ‖F ∗Xx∗ − v∗X‖ < ε/2 and ‖F ∗Y y∗ − v∗Y ‖ < ε/2. Then
v∗ := v∗X ⊗ v∗Y belongs to aco{0, V } and

‖F ∗z∗ − v∗‖ ≤ ‖(F ∗Xx∗ − v∗X)⊗ F ∗Y y∗‖+ ‖v∗X ⊗ (F ∗Y y
∗ − v∗Y )‖

≤ ‖F ∗Xx∗ − v∗X‖ ‖F ∗Y y∗‖+ ‖v∗X‖ ‖F ∗Y y∗ − v∗Y ‖ ≤ ε.

(VI) For every v∗ = x∗ ⊗ y∗ ∈ V we get

|v∗(e)− 1| = |x∗(eX)y∗(eY )− 1| ≤ |x∗(eX)y∗(eY )− y∗(eY )|

+ |y∗(eY )− 1| ≤ ε

2
|y∗(eY )|+ ε

2
≤ ε.

This finishes the proof. �

4.1. Sup-normed spaces of vector-valued functions. As we mentioned
in the introduction, Acosta, Becerra Guerrero, Garcı́a, Kim, and Maestre
considered the A-BPB property in spaces of continuous vector-valued func-
tions. Let us recall their result explicitly. Here, as usual, σ(Z,∆) denotes
the weakest topology on Z in which all elements of ∆ ⊂ Z∗ are continuous.
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Theorem 4.13 ([2, Theorem 3.1]). LetX,Z be Banach spaces,K be a com-
pact Hausdorff topological space. Let Z satisfy property β for the subset of
functionals ∆ = {z∗α : α ∈ ∆}. Let τ ⊇ σ(Z,∆) be a linear topology on
Z dominated by the norm topology. Then for every closed operator ideal I
contained in the ideal of Asplund operators, we have that (X,C(K, (Z, τ)))
has the Bishop–Phelps–Bollobás property for operators from I.

The next proposition together with Theorem 3.4 generalize Theorem 4.13
for the case of Z endowed with its strong topology.

Proposition 4.14. Let K be a compact Hausdorff topological space. Then,

(Y ∈ ACKρ)⇒ (C(K,Y ) ∈ ACKρ);

(Y ∈ ACK)⇒ (C(K,Y ) ∈ ACK).

Proof. Bearing in mind Corollary 4.6 and Theorem 4.12, the fact that the
space C(K) ⊗̂ε Y is isometric to C(K,Y ) concludes the proof. �

Our aim now is showing a generalization of Theorem 4.13 in the spirit of
the ACK structure, that covers all topologies τ from that theorem. In order
to do this we need some terminology.

For a topological space T and a Banach space Z denote by Cbof(T, Z)
the space of all bounded openly fragmented (see Definiton 2.6) functions
f : T → Z equipped with the sup-norm. For a topology τ on Z denote
by Cb(T, (Z, τ)) the space of bounded τ -continuous functions f : T → Z
equipped with the sup-norm.

Definition 4.15. Let Z ∈ ACKρ and let Γ ⊂ BZ∗ be the corresponding
1-norming set. A linear topology τ on Z is said to be Γ-acceptable, if it is
dominated by the norm topology and dominates σ(Z,Γ).

The following result simultaneously generalizes our Theorem 4.5 and
Theorem 4.13. We state the result in the most general settings, which makes
the statement bulky. Some “elegant” partial cases will be given as corollar-
ies.

Theorem 4.16. Let A ⊂ Cb(ΓA) be an ACK-subalgebra. Let Z be a Ba-
nach space and O ⊂ L(Z) such that Z ∈ O-ACKρ (Z ∈ O-ACK) with
ΓZ ⊂ BZ∗ being the corresponding 1-norming set. Finally, let τ be a ΓZ-
acceptable topology on Z. Let X ⊂ Cb(ΓA, (Z, τ)) be a Banach space
satisfying the following properties:

(i) For every x ∈ X and f ∈ A the function fx belongs to X .
(ii) X contains all functions of the form f ⊗ z, f ∈ A, z ∈ Z.

(iii) F ◦ x ∈ X for every x ∈ X and F ∈ O.
(iv) For every finite collection {xk}nk=1 ⊂ X the corresponding func-

tion of two variablesϕ : ΓA×(ΓZ , w
∗)→ Kn, defined byϕ(t, z∗) =

(z∗(xk(t)))
n
k=1, is quasi-continuous.
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Then X ∈ ACKρ (X ∈ ACK, respectively) with the corresponding 1-
norming subset of BX∗ being Γ = {δt ⊗ z∗ : t ∈ ΓA, z

∗ ∈ ΓZ}, where the
functional δt ⊗ z∗ ∈ X∗ acts as follows: (δt ⊗ z∗)(x) = z∗(x(t)).

Proof. Fix ε > 0 and a non-empty relatively w∗-open subset U ⊂ Γ. Let
t0 ∈ ΓA and z∗0 ∈ ΓZ be such that δt0 ⊗ z∗0 ∈ U . Since U is relatively
w∗-open, there exist {xk}nk=1 ⊂ X such that δt ⊗ z∗ ∈ Γ belongs to U
whenever

max
1≤k≤n

|〈(δt0 ⊗ z∗0)− (δt ⊗ z∗), xk〉| < 1.

Consider the non-emtpty open set

B := {t ∈ ΓA : |z∗0(xk(t))− z∗0(xk(t0))| < 1 for 1 ≤ k ≤ n},
and define the following non-empty relatively w∗-open subset of ΓZ :

D := {z∗ ∈ ΓZ : |z∗(xk(t0))− z∗0(xk(t0))| < 1 for 1 ≤ k ≤ n}.
Using property (iv) for {xk}nk=1 ⊂ X we can find a non-empty open subset
B1 ⊂ B and a non-empty relatively w∗-open subset D1 ⊂ D such that for
every t ∈ B1 and every z∗ ∈ D1 it holds

max
1≤k≤n

|z∗(xk(t))− z∗0(xk(t0))| < 1.

Define the non-empty subset W := {δt ⊗ z∗ : t ∈ B1, z
∗ ∈ D1} ⊂ Γ. It is

clear that W ⊂ U .
By applying Definition 3.1 to Z, ΓZ , D1 and (ε/2), we get VZ ⊂ D1,

z∗1 ∈ VZ , eZ ∈ SZ and FZ ∈ O satisfying (I) – (VI). Denote also VZ,1 ⊂ ΓZ ,
the subset that appears in property (IV) (in the case of Z ∈ ACK we have
VZ,1 = ΓZ). By applying Lemma 4.4 to A, ΓA, the non-empty open set
B1 and (ε/2), we find a non-empty subset B2 ⊂ B1, functions f0, eA (both
belonging to A) and s0 ∈ B2, satisfying its conclusions.

Finally, let us define the requested non-empty subset V ⊂ U and corre-
sponding x∗1 ∈ V , e ∈ SX , F ∈ L(X) as follows:

V := {δt ⊗ z∗ : t ∈ B2, z
∗ ∈ VZ} ⊂ W ⊂ U,

x∗1 := δs0 ⊗ z∗1 , e(t) := eA(t)eZ , for every t ∈ ΓA

(condition (ii) implies e ∈ X), and

(Fx)(t) := f0(t)FZ(x(t)),

for every x ∈ X and for every t ∈ ΓA. Conditions (i) and (iii) ensure that
F (x) ∈ X . Observe that for every x∗ = δt ⊗ z∗ ∈ Γ

F ∗x∗ = f0(t) (δt ⊗ F ∗Zz∗) .
It remains to check the properties (I) – (VI).

(I) It is clear that ‖F‖ = ‖FZ‖ = 1 and ‖Fe‖ = ‖f0eA‖ ‖FZ(eZ)‖ = 1.
(II) x∗1(Fe) = z∗1(f0(s0)eA(s0)FZ(eZ)) = 1.
(III) F ∗x∗1 = x∗1, since for every x ∈ X we have

(F ∗x∗1)(x) = z∗1 (f0(s0)FZx(s0)) = (F ∗Zz
∗
1)(x(s0)) = z∗1(x(s0)) = x∗1(x).
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(IV) For every x∗ ∈ Γ, we have x∗ = δt ⊗ z∗, t ∈ ΓA and z∗ ∈ ΓZ . First,
consider the case z∗ ∈ VZ,1 and observe that

‖(IX∗ − F ∗)(x∗)‖ = ‖z∗ − f0(t)F ∗Zz
∗‖

≤ |1− f0(t)| ‖z∗‖+ |f0(t)| · ‖(IZ∗ − F ∗Z)(z∗)‖
= |f0(t)| · ‖(IZ∗ − F ∗Z)(z∗)‖+ |1− f0(t)|.

Therefore, in this case

‖F ∗x∗‖+ (1− ε) ‖(IX∗ − F ∗)(x∗)‖
= |f0(t)| · ‖F ∗Zz∗‖+ (1− ε) ‖z∗ − f0(t)F ∗Zz

∗‖
≤ |f0(t)|

(
‖F ∗Zz∗‖+ (1− ε) ‖(IZ∗ − F ∗Z)(z∗)‖

)
+ (1− ε)|1− f0(t)|

≤ |f0(t)|+ (1− ε)|1− f0(t)| ≤ 1.

Whenever Z ∈ ACK, then VZ,1 = ΓZ , so the above inequality holds for
every z∗ ∈ ΓZ . Thus, we have proved (IV)’. If Z ∈ ACKρ we still must
consider those x∗ belonging to Γ \ V1. The above inequality implies that
z∗ /∈ VZ,1 and, consequently, |z∗(FZeZ)| ≤ ρ which, in turn, implies that

|x∗(Fe)| = |f0(t)eA(t)z∗(FZeZ)| ≤ ρ.

(V) Let x∗ = δt ⊗ z∗ ∈ Γ. Recall that F ∗x∗ = f0(t)δt ⊗ F ∗Zz∗. Set VA :=
{δt : t ∈ B2}. In the proof of Theorem 4.5 it was proved that for every
t ∈ ΓA it holds

dist(f(t)δt, aco{0, VA}) <
ε

2
.

On the other hand, by our construction, we deduce that

dist (F ∗Zz
∗, aco{0, VZ}) <

ε

2
.

Thus, there exist a∗ ∈ aco{0, VA} and b∗ ∈ aco{0, VZ} such that

‖f(t)δt − a∗‖ <
ε

2
and ‖F ∗Zz∗ − b∗‖ <

ε

2
.

In particular, since a∗ ⊗ b∗ belongs to aco{0, V }, we can deduce that

dist(F ∗x∗, aco{0, V }) ≤ ‖f0(t)δt ⊗ F ∗Zz∗ − a∗ ⊗ b∗‖
≤ ‖f0(t)δt ⊗ F ∗Zz∗ − f0(t)δt ⊗ b∗‖+

+ ‖f0(t)δt ⊗ b∗ − a∗ ⊗ b∗‖
≤ ‖F ∗Zz∗ − b∗‖+ ‖f0(t)δt − a∗‖ < ε.

(VI) For every x∗ = δt⊗z∗ ∈ V we have t ∈ B2 and z∗ ∈ VZ . Consequently,
|eA(t)− 1| ≤ ε

2
and |z∗(eZ)− 1| ≤ ε

2
. From this we get

|x∗(e)− 1| = |eA(t)z∗(eZ)− 1| = |eA(t)(z∗(eZ)− 1) + (eA(t)− 1)| ≤ ε,

which completes the proof. �
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Remark 4.17. Under the hypothesis of the previous theorem, given F ∈
L(Z) and f ∈ A we can consider the operatorsCF : X → X and Pf : X →
X defined, respectively, by CF (x) = F ◦ x and Pf (x) = fx, for every
x ∈ X . Then, if we set O′ := {CF ◦ Pf : F ∈ O, f ∈ A}, then X has
O′-ACKρ (resp. O′-ACK) structure.

Conditions (i) – (iii) in Theorem 4.16 are easily verified in concrete ex-
amples. In contrast, condition (iv) looks technical. So, in order to make
Theorem 4.16 more applicable, we shall present easy-to-verify sufficient
conditions for (iv).

Before passing to these sufficient conditions, observe that the function
of two variables ϕ : ΓA × (ΓZ , w

∗)→ Kn from condition (iv) is separately
continuous. Therefore, the role of sufficient condition for (iv) can be played
by any theorem about quasi-continuity of a separately continuous function
f : U × V → W . There is a number of such theorems (see Encyclopedia of
Mathematics article “Separate and joint continuity” or the introduction to
[7]). For example, according to Namioka’s theorem [15] this (and a much
stronger result) occurs for U being a regular, strongly countably complete
topological space, V being a locally compact σ-compact space andW being
a pseudo-metric space. The results of the kind “separate continuity implies
quasi-continuity” that we list and apply below do not pretend to be new.

Proposition 4.18. Let U , V , W be topological spaces, V be discrete and
f : U × V → W be separately continuous. Then, f is continuous (and
consequently quasi-continuous).

If Z has property β, the corresponding (ΓZ , w
∗) is a discrete topolog-

ical space. Thus, the above proposition guaranties the validity of (iv) of
Theorem 4.16 in this case.

Corollary 4.19. Under the conditions of Theorem 4.13, C(K, (Z, τ)) ∈
ACKρ, where ρ is the parameter from the property β of Z. If β = 0, then
C(K, (Z, τ)) ∈ ACK. In particular, this implies the conclusion of Theorem
4.13.

Proposition 4.18 also guaranties (iv) of Theorem 4.16 in the case of ΓA =
N (just change the roles of U and V in Proposition 4.18). If we apply
Theorem 4.16 with A = c0 ⊂ Cb(N) = `∞, this leads to the following
result:

Corollary 4.20. Let Z ∈ ACKρ (Z ∈ ACK), c0(Z) ⊂ X ⊂ `∞(Z),
and X has the following property: (Fz1, Fz2, . . .) ∈ X for every x =
(z1, z2, . . .) ∈ X and F ∈ L(Z). Then X ∈ ACKρ (X ∈ ACK respec-
tively).

This corollary is applicable to c0(Z) and `∞(Z) themselves and also for
some intermediate spaces like c0(Z,w) of weakly null sequences in Z.

https://www.encyclopediaofmath.org/index.php/Separate_and_joint_continuity
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Proposition 4.21. Let Z be a Banach space, (ΓA, τ) be a topological space,
ΓZ ⊂ (BZ∗ , w∗), and xk : ΓA → Z for k ∈ {1, 2, . . . , n} be τ -σ(Z,ΓZ)-
continuous and τ -‖ · ‖-openly fragmented functions. Then, the function
ϕ : (ΓA, τ) × (ΓZ , w

∗) → Kn given by ϕ(t, z∗) = (z∗(xk(t)))
n
k=1 is quasi-

continuous.

Proof. Fix (t0, z
∗
0) ∈ ΓA × ΓZ . Let UA ⊂ ΓA, UZ ⊂ ΓZ be open and

w∗-open neighborhoods of t0 and z∗0 respectively. Set U := UA × UZ . We
have to show that, for a given ε > 0, there exist a non-empty open subset
WA ⊂ UA and a non-empty relatively w∗-open subset WZ ⊂ UZ such that
for every t ∈ WA and every z∗ ∈ WZ

max
1≤k≤n

|z∗(xk(t))− z∗0(xk(t0))| < ε. (4.1)

Fix δ < ε/4 and define

VA :=

{
t ∈ UA : max

1≤k≤n
|z∗0(xk(t))− z∗0(xk(t0))| < δ

}
.

The set VA ⊂ UA is a non-emtpy open neighborhood of t0 because of the
τ -σ(Z,ΓZ) continuity of xk (the map z∗0 ◦ xk is a K-valued τ -continuous
function). Applying inductively the definition of openly fragmented func-
tion, we define a non-empty open set WA ⊂ (VA, τ) in such a way that for
all k = 1, . . . , n it holds

diam(xk(WA)) < δ.

Fix a t1 ∈ WA and define the non-empty relatively w∗-open subset WZ ⊂
UZ as follows:

WZ :=

{
z∗ ∈ UZ : max

1≤k≤n
|z∗(xk(t1))− z∗0(xk(t1))| < δ

}
.

Let us show, for every t ∈ WA and every z∗ ∈ WZ , the validity of
inequality (4.1):

|z∗0(xk(t0))− z∗(xk(t))| ≤ |z∗0(xk(t0))− z∗0(xk(t))|
+ |z∗0(xk(t))− z∗0(xk(t1))|
+ |z∗0(xk(t1))− z∗(xk(t1))|
+ |z∗(xk(t1))− z∗(xk(t))|.

The first summand in the right-hand side of the previous inequality does
not exceed δ since t ∈ VA. Accordingly, the second and fourth summands
are both bounded by δ since z∗0 , z

∗ ∈ BZ∗ and ‖xk(t)− xk(t1)‖ < δ since
t, t1 ∈ WA and diam(xk(WA)) < δ. Finally, the corresponding third sum-
mand is bounded by δ since z∗ ∈ WZ . Therefore,

|z∗0(xk(t0))− z∗(xk(t))| ≤ 4δ < ε,

which completes the proof of (4.1) and that of the proposition. �
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As an application of the previous proposition we get the following corol-
laries which contain as a particular case the space Cw(K,Z) of Z-valued
weakly continuous functions for Z ∈ ACKρ (or Z ∈ ACK).

Corollary 4.22. Let Z ∈ O-ACKρ (or Z ∈ O-ACK) and A ⊂ C(K)
be a uniform algebra with K being the space of multiplicative functionals
on A. Fix ΓZ ⊂ H ⊂ Z∗, where ΓZ is the 1-norming set given by the
ACK structure of Z. Denote by Aσ(Z,H)(K,Z) the following subspace of
C(K, (Z, σ(Z,H))):

Aσ(Z,H)(K,Z) =
{
f ∈ ZK : z∗ ◦ f ∈ A for all z∗ ∈ H

}
.

Let us assume that
(i) F ∗H ⊂ H for every F ∈ O.

(ii) (f(K), σ(Z,H)) is fragmented by the norm for every f belonging
to Aσ(Z,H)(K,Z).

Then, Aσ(Z,H)(K,Z) ∈ ACKρ (resp. Aσ(Z,H)(K,Z) ∈ ACK).

Sketch of the proof: It relays on the use of Theorem 4.16. Let ΓA ⊂ K
be the corresponding subset from Lemma 4.2. Then, restrictions of ele-
ments of A to ΓA form an ACK-subalgebra Cb(ΓA) isometric to A (that
we identify with A) and restrictions of elements of Aσ(Z,H)(K,Z) to ΓA

form a subspace X ⊂ Cb(ΓA, (Z, σ(Z,H))) isometric to Aσ(Z,H)(K,Z).
The conditions (i) and (ii) of Theorem 4.16 follow from the definition of
Aσ(Z,H)(K,Z). The condition (iii) of Theorem 4.16 is reduced to the present
condition (i). And, finally, the condition (iv) of Theorem 4.16 is reduced to
the present (ii) by using Proposition 4.21. �

The condition (i) above could be quite demanding, for instance, when
O = L(Z) in which case H is forced to be Z∗. However, in all concrete
examples that we know of ACK structure, the family O can be taken really
small. Thus, for concrete examples of Z, the condition (i) could be easily
satisfied for every election of H .

By using the results from [5] it can be shown that condition (ii) above
is satisfied for every H whenever (Z,w) is Lindelöf. Indeed, given f be-
longing to Aσ(Z,H)(K,Z), f(K) ⊂ Z is σ(Z,H)-compact, thus, it is also
Lindelöf. A straightforward application of [5, Corollary E] ensures that
(f(K), σ(Z,H)) is norm-fragmented. Hence, in this case, Corollary 4.22
can be simplified as follows:

Corollary 4.23. Let Z ∈ O-ACKρ (or Z ∈ O-ACK) such that (Z,w) is
Lindelöf and A ⊂ C(K) be a uniform algebra with K being the space of
multiplicative functionals on A. Fix ΓZ ⊂ H ⊂ Z∗ such that F ∗H ⊂ H
for every F ∈ O, where ΓZ is the 1-norming set given by the ACK structure
of Z. Then, Aσ(Z,H)(K,Z) ∈ ACKρ (resp. Aσ(Z,H)(K,Z) ∈ ACK).

Observe that when Z has property β, the set O coincides with the set
{x∗α(·)xα : α ∈ Λ}. Therefore, in this case, F ∗H ⊂ H for every H and for
every F ∈ O. Thus, we have proved the following corollary.
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Corollary 4.24. Let Z be a Banach space with property β such that (Z,w)
is Lindelöf and A ⊂ C(K) be a uniform algebra with K being the space of
multiplicative functionals on A. Fix ΓZ ⊂ H ⊂ Z∗, where ΓZ = {x∗α : α ∈
Λ}. Then, Aσ(Z,H)(K,Z) ∈ ACKρ.

However, this technique can not fully generalize Theorem 4.13 by Acosta
et al. to the case of vector-valued uniform algebras, since here the Lindelöf
property is essential and property β does not imply in general weak Lin-
delöf. Observe that nevertheless the original statement of Theorem 4.13 is
covered completely by our Corollary 4.19.
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Proc. Amer. Math. Soc. 128 (2000), 3301–3309.

[6] R. Baire, Sur les functions des variables reelles, Ann. Mat. Pura Appl. 3 (1899),
1–122.

[7] T. Banakh, Quasicontinuous and separately continuous functions with values in
Maslyuchenko spaces, arXiv:1506.01661v4 [math.GN].

[8] B. Bollobás, An extension to the theorem of Bishop and Phelps, Bull. London Math.
Soc. 2 (1970), 181–182.

[9] B. Cascales, A.J. Guirao, and V. Kadets, A Bishop–Phelps–Bollobás type theorem for
uniform algebras, Advances in Mathematics 240 (2013), 370–382.

[10] B. Cascales, I. Namioka, and J. Orihuela, The Lindelöf property in Banach spaces,
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