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Abstract

The paper presents a new open-source Large Eddy Simulatit®) code -MISCs-
which solves the Navier-Stokes equations using a couplddrplicit method. The
code is oriented to solve incompressible (constant denféitys and also compress-
ible flows at low Mach numbers. The code has been validatedsimguhe open-
channel flow investigated by Moset al. [1] whose DNS data show a good agree-
ment with the results of our current LES simulation. The eysbf equations has
been solved by the Portable, Extensible Toolkit for Scfen€omputation (PETSc)
and the performance of different combinations of lineaved and preconditioners
has been tested. The combination of Block Jacobi with eith€G8tab or GMRES
solvers shows the fastest convergence. The parallel effigief the whole simulation
is very satisfying up to 64 processors.
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1 Introduction

Computational Fluid Dynamics (CFD) is the analysis of fluid fltvat transfer and
associated phenomena (such as chemical reactions, sedinsealar transport). The
technique is very powerful and spans a wide range of indstrid non-industrial ap-
plications: aerodynamics, hydrodynamics, environmeiiuéd mechanics, mechani-
cal engineering or combustion [2]. From the 1960s, the rekeaf CFD has evolved
principally from aerodynamics to many other fields. The fgproaches were based



in steady-flow assumptions. However, there is nowadays eeasing demand for
high fidelity, unsteady CFD capabilities for turbulent flonSonventional Reynolds
Averaged Navier Stokes (RANS) solvers based on various leemba models often
fail to capture unsteady flow physics accurately. This issupprising in view of the
fact that most of these models were developed with the goablving steady flow
problems. Alternative methods are needed for unsteady CRIlyses in industrial
applications.

As computer power becomes more affordable, Large Eddy @iioul (LES) has
emerged as a viable and powerful alternative tool in turieéecomputations. In re-
cent years, LES has been applied to an increasing numbeoloiiepns of engineering
relevance. This was made possible through the use of pazatigouting. The chal-
lenge in carrying out LES is that a three-dimensional, watstecalculation must be
carried out on a grid capable of resolving the larger scaldbe motion; for flow
geometries and Reynolds numbers of engineering interestintiplies that the grid
is usually large. Hence, the CPU time required is substiyniaiger than that for
an analogous RANS calculation. Moreover, LES applicatianglbeen presented in
studies of jets [3], flow around obstacles [4], sedimentdpamt [5] or scalar trans-
port [6]. On the other hand, the Portable, Extensible Todtki Scientific Compu-
tation (PETSc) has successfully demonstrated that the fusedern programming
paradigms can ease the development of large-scale sa@apjfilications. The soft-
ware has evolved into a powerful set of tools for the numéscdution of partial
differential equations and related problems on high-parémce computers. The ap-
plications of PETSc [7] in engineering has shown as a vegngtiand efficient tool
in fields so spread as Nano-simulations, Biology/Medicingsién, Geoscience, En-
vironmental flows, CFD or Optimization.

The objective of the present project is to develop an opemesocode for LES
applications using the PETSc numerical library to solveNlagier-Stokes equations.
The Standard Smagorinsky model is used to resolve the subcpie motions (SGS)
which was then tested by application to a fully developedaeaflow [1].

2 Governing equations and discretization algorithm

The present version of the MICSc code can solve incompresgibhstant density)
flows and also compressible flows at low Mach number (with fedepending, typ-
ically, on temperature). The Navier-Stokes equations tia kind of flows can be
written as follows:
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whereg; is thei-component of gravity acceleration,is a diffusion coefficient (as-
suming the specific heat capacity is constant). The viscoessstensor;; is:
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with 1 being the fluid viscosity.

Furthermore, conservation equations for an arbitrary remab transported vari-
ables (scalars) can be added to the system (for mode#igg pollutant transport in
river beds or chemical species present in combustion psesgs

MICSc applies the finite volume approach for discretizingsthequations. This
method is based on the partition of the problem domain to omputational grid
and the application of the conservation equations (in nal€igrm) to each cell in the
grid. Advantages such as versatility or easy of incorporatif physical models make
it one of the most frequently used methods in CFD coéeas [8]).

As shown in Equation 5, a discretized equation for a geneaitsported variable
(¢) on a given cell P) involves the summation of convective and diffusive fluxes
over all cell faces (neighboring;b) and volumetric accumulation due to temporal
evolution, external forces or sources. Figure 1 shows iootédr the cell (with capital
letters referring to cell center and small letters to celefs).
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Figure 1: Cell notation (left), variable arrangement (r)gimd labelling scheme for
the nodes involved in the High Resolution Convection SchetdBCS, below).



The primitive variables (velocity components, pressurd, ahapplicable, other
scalars) are chosen as unknowns and all of them are stolezlalt centers (collocated-
grid approach). For brevity, only the most relevant aspettke discretization algo-
rithms implemented in MICSc are described in this paper.

The face value of a generic transported variaklg ) is related to neighboring
cell centers (unknown nodes) by means of a convection schéttieough a linear
interpolation is usually recommended for LES, MICSc alsovjates (apart from the
first order Upwind scheme) a variety of Higher Resolution Cotiee Schemes (such
as for example SMART, MUSCL, QUICK, Van-Leer or Notable). Thefied flux-
limiter approach reported in [9] is applied to build boundmthemes; the approach
takes into account the direction of the flow and involvesehreighbouring cells (the
upwind and downwind nodes and one more node located upwiticetapwind cell;
see Figure 1).

On the other hand, in order to avoid chessboard-like pressantours, an undesir-
able numerical phenomenon arising on collocated gridsythentum interpolation
procedure (originally proposed by Rhie and Chow [10]) is ugeckliculate the con-
vecting velocities (those involved in the mass-flow rateg across the cell faces;
uM! vMIin Figure 1). MICSc makes use of an improved formulation (Cachjyvéo-
mentum Interpolation, [11]) which avoids these spuriousspure oscillations when
solving unsteady flows at very small time steps (as is comynttrd case for Large

Eddy Simulations of turbulent flows).

Regarding the temporal integration of solving unsteady flomplicit discretiza-
tion schemes are implemented. This choice avoids resingtio the maximum time
step imposed by numerical stability requeriments (as idi@kpemporal schemes).
Thus, some computational time might be saved in Large Edahl&tions of turbu-
lent flows (technique described in Section 3) since a laiges step may be chosen
by just considering physical temporal scales, and simaratif compressible flows
at low Mach number can be made computationally affordabléC34 allows using
multi-point implicit temporal schemes, such as first ancdséeoorder Euler schemes,
and also second and third order Adams-Moulton approximatio

3 Large Eddy Simulation for turbulent flows

When solving turbulent flows, a direct numerical simulatiendascribed in the pre-
vious section becomes computationally unaffordable ferrttajority of engineering
problems. Time and spatial discretization must be extreifived to capture the large
range of structure sizes in turbulent phenomena, from tigesa scales of the partic-
ular problem to the smallest ones, where transport phenammethe molecular level
becomes most relevant. Some modeling must be thereforepmated in order to

simulate turbulent flows. While the classic Reynolds-avegg@oach is a practical
design tool to ascertain general trends, the technique krasaLarge Eddy Simula-
tion (LES) is arising as an accurate predictive tool, patdigtusable for industrial



applications [12].

Large-Eddy Simulations solved the filtered the Navier-8skquations, so that
onlu the large scales of motion are directly simulated, attie effect on them of the
rest of (small) scales is modeled. Nevertheless, someudtfés remain that prevent a
wider application of this technique to industrial flows, Bas, for example, the use of
filtering in unstructured grids, wall-modeling strategiests high computational cost.
The latter is brought about because Large-Eddy Simulatieasire solving unsteady
flows with (still) rather fine time steps and spatial grids.

When the finite volume method is used, the filtering processuslly carried out
implicitly by the grid. An equation system similar to Equaats 1-3 for the filtered
variables is resolved, except for an extra term, known as sub-gricesstabss;; =
v;v; — v;U;, Which must be modeled.

The present version of MICSc uses the Smagorinsky modeliérety featured in
industrial applications (mainly due to its simple implertagion and a low additional
cost). It is based on the definition of a turbulent viscosity, that represents the
dissipation of the energy of the large structures by thenesielved scales:

5 .
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and

vy = (CsA)2|S| = (CsA)2(2§ij§ij)l/2 . (8)

HereA is the filter size (usually defined &= AzAyAz'/?) andCy is the Smagorin-
sky constant, ranging froi065 to 1.1 depending on the type of turbulent flow.

4 Coupled and implicit solution algorithm

The discretization method described in Section 2 resulésialgebraic equation sys-
tem for each conservation equation. Special iterativeess\suitable for this kind of
large and sparse matrices are available [13]. NeverthelesdNavier-Stokes equa-
tions are a coupled and non-linear system and some matroegsmg is required
before applying a linear iterative solver.

Velocity and pressure are coupled in momentum conservatjoations, where the
pressure gradient is acting as an external force. The @mqsagioverning incompress-
ible flows, however, lack a specific equation for pressuressthe continuity equation
does not explicitly contain the pressure variable. As a equence, the coefficient
matrix presents zeros on the main diagonal and solving thpled system becomes a
challenge. Traditional algorithms (SIMPLE-like methodgply a segregated proce-
dure for overcoming this difficulty [8]. Momentum conselfieat equations are solved



separately, assuming an initial pressure field, and antiterprocedure (including
relaxation) is required until mass conservation is assured

As interest from industry in CFD increases, more robust #lgois are required;
and the current trend is towards developing coupled alyost able to solve the
Navier-Stokes equations [14] simultanously. MICSc inchidech a type of algo-
rithm. Some of the fundamentals of the main MICSc (Momentutarpolation based
Coupled Solver, using PETSc) algorithm are briefly outlinedhie following (a de-
tailed description can be found in [15]).

A Poisson-like equation for pressure is derived from thdiooity equation. Mass-
flow rates at faces are calculated according to the Compactdvitmm Interpolation
mentioned in Section 2. The resulting pressure equatioth@uwt considering, for
simplicity, relaxation or temporal terms) can be expressed
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where || represents a linear interpolatiofi,accounts for pressure forceg,{ =
—Appp — Angpng) @nda is the coefficient on the main diagonal of the correspond-
ing momentum equation. In this way, the main goal of remowaarps on the main
diagonal of the coefficient matrix can be achieved.

MICSc copes with the non-linear momentum equations by apglg successive
substitution (or Picard) linearization procedure. A laligear system must be solved
for a number of non-linear iterations (until convergen@a)d (when solving an un-
steady flow) for each time step. Although MICSc makes use opérallel, efficient
and robust Krylov-subspace solvers (and preconditionersyided by the PETSc
toolkit (described in Section 5 ), some additional techemjare incorporated in order
to improve the conditioning of the coupled system matrix.

Diagonal dominance (a sufficient condition for the convargeof stationary iter-
ative linear solvers) is enforced by applying pseudo-tamlpierms (also known as
inertial relaxation) to all conservation equations. legtingly, in the case of the pres-
sure equation, this technique is analogue to the combmaftipseudo-artificial com-
pressibility and dual-step approaches used in algorittomedmpressible flows when
solving problems at low Mach numbers. For the same purpaagddal dominance),
MICSc implements High Resolution Convection Schemes (meation Section 2)
in a deferred way, so that only the Upwind part of the inteaioh is included in the
matrix coefficient (the other terms are calculated from e@alatored at the previous
iteration and deferred to the right-side-hand vector).afymna deferred implementa-
tion is also applied in the Poisson-equation (Equation @yéssure values not located
at adjacent nodes, so that the matrix structure is not bawitbdadditional non-zero
diagonals. At convergence of the non-linear iterations,dhginal expressions are
retrieved.
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Figure 2: Diagram showing the different abstraction lecelgered by PETSc compo-
nents.

5 Linear solvers and parallelization strategy: PETSc

As in most CFD codes, the high computational demands makdelaation neces-
sary. Our approach is to rely on MPI [16], the standard forsage-passing parallel
programming in distributed-memory platforms. The beniitsP1 are well known,
such as portability to virtually all parallel computersakbility to thousands of pro-
cessors, and a rich and flexible application programmirgyfiate.

Developing an efficient message-passing code is not trivedues such as load
balancing or minimization of communication overhead muestdken into account.
On the other hand, some numerical algorithms such as lireegers are tricky to
implement, especially in parallel, and providing numdhceobust implementations
requires advanced skills. For these reasons, it is highlysallle to make use of
parallel libraries or frameworks that offer tools to helweleping parallel numerical
simulation codes. One such toolkit is PETSc, which has bsed in this work.

PETSc, the Portable Extensible Toolkit for Scientific Conagion [7], is a parallel
framework for the numerical solution of problems arisin@pplications modeled by
partial differential equations. Its design follows an atjeriented approach in order
to be able to manage the complexity of numerical methodsdoy large and sparse
problems on parallel computers [17]. In PETSc all the codbuidt around a set
of objects that encapsulate data structures and solutgoritdms, see Fig. 2. The
application programmer works directly with these objeether than concentrating
on the underlying data structures. In this way, it is possiblwork at a high level of
abstraction, leaving most details related to parallabrahidden within the objects.
Next, we describe the main PETSc objects and the offereditunadity.

The data objects include management of index sets, veatdrsparse matrices in

different formats, as well as basic support for structurediunstructured meshes. The
vector object is used to store a parallel discrete reprasentof a field such as the



pressure, the velocity components, or any other magnitssiecéated to the discretiza-
tion mesh. In general, PETSc vectors are distributed amoRgpvbcesses in a way
that a roughly equal number of unknowns is assigned to eaxeps. For the particu-
lar case of structured meshes, such as the one discussesipapier, PETSc provides
some additional helping tools to aid in the parallelizationthat case, one can think
of a field as distributed in a domain-decomposition stylat t, each process owns the
unknowns corresponding to a compact subdomain. Storadjedéated also for ghost
values,j.e., a halo of unknowns surrounding the subdomain that stolessdelong-
ing to neighboring processes. During the computation, busgvalues are eventually
updated, which implies parallel communication among nieegimg processes, and
this communication is managed automatically by PETScerival data structures.
Regarding the matrix data structures, they follow a rowsdgd distribution, com-
patible with the distribution of vectors. Matrix-vectorqoucts are performed very
efficiently, with minimal communication across procesdeETSc also takes care of
important implementation details such as memory allocatiod automatic assembly
of elements during creation of matrix objects.

Built on top of the data objects are various classes of solvjercts, such as linear,
nonlinear and time-stepping solvers. The nonlinear selirelude various Newton-
type methods, with explicit or implicit Jacobian, and thedtstepping solvers include
some well-known ODE methods such as Euler or Runge-Kuttéhisnwtork, neither
of these have been used since the linearization and timeetlistion are carried out
by the code itself, as described in section 6. Hence, we fogudescription on linear
solvers.

For solving linear systems of equations, PETSc providesg It of iterative
methods, that can be combined with different preconditiendll iterative solvers
belong to the class of Krylov methods. Examples of such nitlaye the Conju-
gate Gradient, GMRES, BiCGStab, and TFQMR. The user can choosegatinem
very easily, via command-line switches, without havingebuild the program. The
performance of these algorithme.g, in terms of convergence, can vary widely de-
pending on the numerical properties of the system of egustilb is very important to
use an appropriate preconditioner in order to improve agaree. PETSc provides
several parallel preconditioners, based on substrugfanm domain decomposition,
such as block Jacobi or additive Schwarz, with incompletéfazations within each
block. Apart from the mentioned methods, PETSc also previdé&astructure for
implementing multi-grid linear solvers.

PETSc is being used around the world in many applicationsaiealuding CFD
computations, see for instance [18].

6 MICSc parallel code: description

MICSc is a parallel code written in C which uses PETSc to sdieeNavier-Stokes
equations with the coupled and implicit method explainedeation 4. It focuses



on the LES approach for incompressible (and compressitite leiv Mach number)
flows.

The code is able to write output files with the results of tewdation in TecPlot
format, as well as binary files. Additionally, an ongoing ei@pment effort will confer
MICSc the ability to write the output files using HDF5 and SiLé€gtnology.

On the other hand, there are two input files for the applicatibhe first one is
the parameters file (usually rod.inp), where all the paranseif the problem together
with the rest of the logging and extra options are specifieid.dlso possible to specify
these parameters at runtime from the command line and thiésa/erride the input
file parameters.

The second input file is the mesh (usually grd.inp). This fas An specific for-
mat for this application and it consists of the coordinatéshe points, the type
of mesh (Cartesian or cylindrical) and the boundary conatjovhose type must
be one oMALL, MOVI NGWALL, | NLET, OQUTFLOW QUTPRESS, SYMVETRY and
FI X _VALUE (used to fix the value of the variables in a certain region efrttesh).
Together with the development for the HDF5/SILO outputyéhie an ongoing work
to include MED files created with Salam

6.1 Data structures

Most of the MICSc data structures are the aggregation of akpices of information
corresponding to problem elements such as the mesh, \esjadtic. The main data
structures are those representing the critical informatibthe problem: the geome-
try and coordinates of the mesh, the variables to solve, tbpepties, the boundary
conditions and the system of equations. All of them are ddfassfollows:

St Bcond: Boundary condition, defined in a region of the mesat¢h. Includes the
equation and variable where the condition applies and twpegaties (explained
below) used to evaluate the implicit and explicit coeffitgefor the system ma-
trix.

St Geom: Geometry properties of the mesh, such as volume, edge landtsurface
area for each cell of the mesh.

St Grid: Node information of the mesh: nhumber of nodes and coordirfateeach
dimension of the problem. It also defines the type of mesh éSen or cylin-
drical).

St Prop: Property defined in a region of the megaich. The type of property can
be constant or variable and, if variable, it can depend oig&oenetry, the vari-
ables or the transient terms. The main purpose of the piepastto evaluate
them when necessary (depending on the type) and introdeceitito the sys-
tem. Moreover, it is important to notice that properties barused separately
(e.g, density) or associated to boundary conditions or vargafglg, initial val-
ues or diffusion coefficient).



St Sys: This data structure contains PETSc objects used to stor#fécient ma-
trix (Mat ) and the right-hand side vectovdc) of the linear system, as well as
solver objectsKSP, PC) that will be used for its resolution.

St Var: Parameters of a variable (or unknown). Includes values asaielaxation
coefficients and maximum/minimum limits or properties foe tinitial values
and diffusion coefficient. It also uses\Mec object of PETSc and allocates
memory to store the variable values when necessary.

6.2 Execution scheme

The execution scheme used by MICSc to perform the simulatsodsided in three
different sections, clearly distinguishable and commomast of the scientific appli-
cations: initialization, resolution and finalization. Theheme is illustrated graphi-
cally in Figure 3.

At the beginning of the execution there is a section wherarpet files are read,
data structures are created and variables are set to thigilvalues.

Next, in the second section of the flux diagram, we find the cbMICSc, where
the Navier-Stokes equations are solved by implementingdinie stepping using im-
plicit time integration and the linearization of the eqoatsystem via Picard iteration.
For the time integration it is possible to choose betweears¢implicit methods such
as Euler (first and second order) and Adams-Moulton (secoddhard order). More-
over, the code is able to solve steady flows where time intiegrégs not needed and
it can be specified aSONE for the integration method. The implementation of the
implicit time integration methods is represented in thersewcode by the most ex-
ternal loop where the stop condition (for non-steady flowg)iven by the final time,
specified as input parameter. Inside the time integratiop lwe have the lineariza-
tion by Picard iterations (also known as ‘outer iteratignghere the stop condition is
either achieve convergence or reach the maximum numbertef darations, spec-
ified as an input parameter. For each outer iteration, a edupystem of equations
is solved using the coupled variables (usually velocitied pressure) although it is
also possible to solve a segregated system for each nonecbuguliable. Since these
systems are linear, the KSP and PC objects provided by PEfSusad to solve
them in an efficient and transparent manner, also giving dlssipility to choose from
different Krylov subspace solvers at runtime. However, iideo to solve the sys-
tem, it has to be created previously by evaluating all the@rties and introducing
all the terms (boundary conditions, relaxations, ...) ia toefficient matrix and the
right-hand side vector. Then, after the resolution, thealdes are limited to their
maximum/minimum values if necessary.

Finally, in the third section, all the finalization tasks aesformed, such as finalize
PETSc objects or free data structures’ memory.
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Figure 3: Execution scheme of the MICSc code.
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7 Results

This section presents the validation results and the pegnce analysis of the MICSc
code when applied to a large eddy simulation of a channel flow.

7.1 LES validation: periodic channel case

The fully developed turbulent flow in a plane channel is a camwalidation case for
Large Eddy Simulations. At low Reynolds numbers, Direct Ntioa Simulations of

this wall-bounded flow can be performed and statistical degaavailable for compar-
ison. In this paper, some preliminary results obtained WitBSc are compared with
DNS reference data reported by Mos¢al. [1].

A grid with 121 x 121 x81 nodes in respectively the streamwisg, (vall-normal ()
and spanwisez{) directions is used to discretize a computational domadiraension
2w x 26 x wd. Grid stretching has been applied in the normal directioa byperbolic
tangent function.

Periodic boundary conditions are imposedriand z directions, and no-slip con-
ditions at the walls. The pressure gradient that drives tive i8 forced by means of a
(volumetric) source in the-momentum equation.

ssssssss
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Figure 4: Normal profiles of streamwise velocity (below), Relgs stress (left) and
turbulent intensities (right). Comparison of MICSc resutid ®NS reference data
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Sub-grid stresses are calculated using the Smagorinskglrfaescribed in Section
3), being theCs = 0.065 and the filter sizeA\ = AzAyAz'/3. The well-known
Van-Driest damping function is also applied to reduce thulent viscosity near the
walls.

A linear interpolation scheme (CDS) is used as for the conmeteérms, and the the
temporal integration is carried out with the implicit, sedeorder Euler scheme. The
flow evolves (from the imposed initial field) towards the statally steady state, a
fully developed turbulent flow at a Reynolds number (in walitsjnof Re, = 224.
Figure 4 shows (time-averaged) wall-normal profiles of msaamwise velocity
(< ut >), turbulent intensities< «,,. >, < vt >, < w, . >) and Reynold
stress € v/v'" >), normalized by the wall shear velocity.. For comparison, DNS
profiles by Moseet al. of the turbulent channel dte, = 180 (a lower Reynolds num-
ber) are also presented. Although some additional sinmmdime would be required
to obtain smoother profiles, the LES results obtained wit@$tt are satisfactory: the
overestimation of the mean streamwise velocity (and, thezgalso of the fluctua-
tions u,,,,) at the core of the channel is common in LES; both the locadiad the
values of the peaks in the other turbulent intensities goucad with an error smaller
than15%.

7.2 MICSc code performance

In this section, we present some time measurements in asd#istuss the perfor-
mance of the code, especially in terms of parallel efficiedoyorder to avoid long
simulations, we have considered only the first 30 time st@p&h comprise 360 lin-
ear solves in total. The tests are executed on CaesarAugustachine consisting
of 256 JS20 blade computing nodes, each of them with two 6BdwerPC 970FX
processors running at 2.2 GHz, interconnected with a loaniat Myrinet network.
For the tests, only 64 processors are used due to accoutdtlons.

The first comparison is over different combinations of lingalvers and precondi-
tioners. The linear solvers used are GMRg81(eg, BiCGStab bcg9, BiCGStab()
with ¢ = 2 (bcgs), and Transpose Free QMRJmr), while the tested preconditioners
are Jacobijacobi) and Block Jacobil{jacobi. In the case of Block Jacobi, we uge
blocks, wherey is the number of processes, and an ILU factorization is boileach
block. For details about these methods, the reader is eeféor[13].

Table 1 shows the execution time, averaged out over all tieatisystems, as well
as the average number of iterations. Compared to the Jaaadmnutitioner, the use of
Block Jacobi reduces the iterations and time needed to duv&/sstem but noticeably
increases the setup time of the KSP object. The reason idahabi does not require
any initial computation whereas Block Jacobi needs to coethé ILU factorization
of the diagonal blocks. Iterations performed with Block Jagqmeconditioning are
more expensive, but since the number of iterations perfdnmeeduced, the overall
solving time is lower with Block Jacobi preconditioner fof lear solvers. More-
over, the fastest convergence is obtained with the BICGStIGMRES solvers (both
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| KSP | PC [ Setup| Solve| Total | Its |

gmres| jacobi | 0.019 | 0.692 | 0.711| 12.84
gmres| bjacobi| 0.129 | 0.322 | 0.451| 3.83
bcgs | jacobi | 0.019 | 0.570| 0.589| 7.25
bcgs | bjacobi| 0.127 | 0.332| 0.459 2
bcgsl | jacobi | 0.020 | 0.812| 0.832| 9.33
bcgsl | bjacobi| 0.129 | 0.556 | 0.685| 3.67
tigmr | jacobi | 0.019 | 1.052| 1.071| 11.86
tfgmr | bjacobi| 0.130 | 0.353 | 0.483| 2.03

Table 1: Comparison of linear solvers (KSP) and precondtisPC). The total time
is divided into setup and solve times. The average numbdemdtions is also pro-
vided.

have virtually the same results), so speedup tests haveieelemmed with the fastests
combinations BiCGStab + Block Jacobi, GMRES + Block Jacobi anddffeult GM-
RES + Jacobi.

From the performance results shown in Table 2, we can dravotloeving con-
clusions. The parallel efficiency of the whole simulatiam;luding the evaluation of
the properties and assembly of the new system of equat®reasonably good (more
than 60% with 64 processes). In the case of the linear sahegfficiency is slightly
worse, except in the case of BiCGStab. The worst efficiency tgiodd in the case
of Jacobi preconditioning, and this can be attributed tortheeh higher number of
iterations performed. The behaviour of Block Jacobi is vergd) even though the ef-
fectiveness of the preconditioner decays with the numberadesses (since the size
of the blocks decreases). We can foresee that for cases whevergence is much
more difficult to attain, the parallel efficiency of Block J&cwvill be reduced.

8 Conclusion

In this paper, a new open-source LES code (MICSc) is presenitkd code solves
the Navier-Stokes equations with a coupled and implicithodt The PETSc library
is used to solve the system of linear equations and studydakegderformance over
different combinations of linear solvers and preconditien

The LES code has been validated successfully with the wigisa open channel
flow by Moseret al. The results show good agreement with differences lower tha
15% in the prediction of the turbulent stresses.

Regarding the performance of the code, especially in termpau@lel efficiency, it
has been shown that the best preconditioner is Block Jacasieal both BiCGStab
and GMRES give the fastest convergence time (with virtuéilydame results). Also,
the parallel efficiency of the whole simulation, includifgetevaluation of the proper-
ties and assembly of the new system of equations, is realsayadd (more than 60%
with 64 processes).
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GMRES + Jacobi
Procs TOTAL MEANS
Solve Total [ S, | E, KSP Setup | KSP Solve| KSP | S, | E,
1 15309.17 - - 0.37 12.39 12.77| - -
2 9926.51 15 | 77.1% 0.29 9.65 9.94 | 1.3 | 64.2%
4 5391.1 28 | 71% 0.14 4.95 5.09 | 25 | 62.7%
8 2791.4 5.5 | 68.6% 0.073 2.54 262 | 49 | 61%
16 1397.5 11 | 68.5% 0.038 1.37 141 9 56.5%
32 742.55 20.6 | 64.4% 0.019 0.69 0.71 | 18 | 56.1%
64 386.87 39.6 | 61.8% 0.0099 0.35 0.36 | 35.3| 55.1%
GMRES + Block Jacobi
Procs TOTAL MEANS
Solve Total [ S, | E, KSP Setup | KSP Solve| KSP | S, | E,
1 14777.78 | - - 3.79 5.81 959 | - .
2 8703.70 1.7 | 84.9% 2.14 3.94 6.1 16 | 79%
4 4669.2 3.2 | 79.1% 1 1.93 293 | 3.3 | 81.8%
8 2387.5 6.2 | 77.4% 0.54 0.96 15 6.4 | 79.9%
16 1151.7 12.8 | 80.2% 0.26 0.52 0.78 | 12.3 | 76.6%
32 631.86 2341 73.1% 0.13 0.32 0.45 | 21.3 | 66.4%
64 351.56 42 | 65.7% 0.064 0.17 0.23 | 41.2 | 64.4%
BiCGStab + Block Jacobi
Procs TOTAL MEANS
Solve Total [ S, | E, KSP Setup | KSP Solve| KSP | S, | E,
1 15312.97 | - - 3.79 706 |10.86] - -
2 8860.89 1.7 | 86.4% 2.10 4.80 691 | 1.6 | 78.6%
4 4793.98 3.2 | 79.9% 1.04 2.4 344 | 3.2 | 7%
8 2559.25 6 | 74.8% 0.53 1.32 1.85 | 59 | 73.5%
16 1186.53 | 12.9| 80.7% 0.25 0.64 0.89 | 12.2| 76.4%
32 639 24 | 74.9% 0.13 0.33 0.46 | 23.7 | 73.9%
64 354.49 43.2 | 67.5% 0.065 0.18 0.24 | 449 | 70.1%

Table 2: Parallel performance for three different comboret of iterative solver and
preconditioner. The left side of the table shows resultstifigr whole simulation,
whereas the right side considers only the solution of theslirsystems. The columns
labeledS, and E, represent parallel spedup and efficiencyfqrocesses.
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