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Abstract

The paper presents a new open-source Large Eddy Simulation (LES) code -MISCs-
which solves the Navier-Stokes equations using a coupled and implicit method. The
code is oriented to solve incompressible (constant density) flows and also compress-
ible flows at low Mach numbers. The code has been validated by using the open-
channel flow investigated by Moseret al. [1] whose DNS data show a good agree-
ment with the results of our current LES simulation. The system of equations has
been solved by the Portable, Extensible Toolkit for Scientific Computation (PETSc)
and the performance of different combinations of linear solvers and preconditioners
has been tested. The combination of Block Jacobi with either BiCGStab or GMRES
solvers shows the fastest convergence. The parallel efficiency of the whole simulation
is very satisfying up to 64 processors.
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1 Introduction

Computational Fluid Dynamics (CFD) is the analysis of fluid flow, heat transfer and
associated phenomena (such as chemical reactions, sediment or scalar transport). The
technique is very powerful and spans a wide range of industrial and non-industrial ap-
plications: aerodynamics, hydrodynamics, environmentalfluid mechanics, mechani-
cal engineering or combustion [2]. From the 1960s, the research of CFD has evolved
principally from aerodynamics to many other fields. The firstapproaches were based
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in steady-flow assumptions. However, there is nowadays an increasing demand for
high fidelity, unsteady CFD capabilities for turbulent flows.Conventional Reynolds
Averaged Navier Stokes (RANS) solvers based on various turbulence models often
fail to capture unsteady flow physics accurately. This is notsurprising in view of the
fact that most of these models were developed with the goal ofsolving steady flow
problems. Alternative methods are needed for unsteady CFD analyses in industrial
applications.

As computer power becomes more affordable, Large Eddy Simulation (LES) has
emerged as a viable and powerful alternative tool in turbulence computations. In re-
cent years, LES has been applied to an increasing number of problems of engineering
relevance. This was made possible through the use of parallel computing. The chal-
lenge in carrying out LES is that a three-dimensional, unsteady calculation must be
carried out on a grid capable of resolving the larger scales of the motion; for flow
geometries and Reynolds numbers of engineering interest, this implies that the grid
is usually large. Hence, the CPU time required is substantially larger than that for
an analogous RANS calculation. Moreover, LES applications have been presented in
studies of jets [3], flow around obstacles [4], sediment transport [5] or scalar trans-
port [6]. On the other hand, the Portable, Extensible Toolkit for Scientific Compu-
tation (PETSc) has successfully demonstrated that the use of modern programming
paradigms can ease the development of large-scale scientific applications. The soft-
ware has evolved into a powerful set of tools for the numerical solution of partial
differential equations and related problems on high-performance computers. The ap-
plications of PETSc [7] in engineering has shown as a very strong and efficient tool
in fields so spread as Nano-simulations, Biology/Medicine, Fusion, Geoscience, En-
vironmental flows, CFD or Optimization.

The objective of the present project is to develop an open-source code for LES
applications using the PETSc numerical library to solve theNavier-Stokes equations.
The Standard Smagorinsky model is used to resolve the subgrid scale motions (SGS)
which was then tested by application to a fully developed channel flow [1].

2 Governing equations and discretization algorithm

The present version of the MICSc code can solve incompressible (constant density)
flows and also compressible flows at low Mach number (with density depending, typ-
ically, on temperature). The Navier-Stokes equations for this kind of flows can be
written as follows:

∂ρ

∂t
+

∂ρvi

∂xi

= 0 ; (1)
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wheregi is the i-component of gravity acceleration,κ is a diffusion coefficient (as-
suming the specific heat capacity is constant). The viscous stress tensorτ ′ij is:

τ ′ij = µ

{
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−
2

3
δij

∂vl

∂xl

}

, (4)

with µ being the fluid viscosity.

Furthermore, conservation equations for an arbitrary number of transported vari-
ables (scalars) can be added to the system (for modelling,e.g., pollutant transport in
river beds or chemical species present in combustion processes).

MICSc applies the finite volume approach for discretizing these equations. This
method is based on the partition of the problem domain to forma computational grid
and the application of the conservation equations (in integral form) to each cell in the
grid. Advantages such as versatility or easy of incorporation of physical models make
it one of the most frequently used methods in CFD codes (e.g. [8]).

As shown in Equation 5, a discretized equation for a generic transported variable
(φ) on a given cell (P ) involves the summation of convective and diffusive fluxes
over all cell faces (neighboring,nb) and volumetric accumulation due to temporal
evolution, external forces or sources. Figure 1 shows notation for the cell (with capital
letters referring to cell center and small letters to cell faces).
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Figure 1: Cell notation (left), variable arrangement (right) and labelling scheme for
the nodes involved in the High Resolution Convection Schemes (HRCS, below).
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The primitive variables (velocity components, pressure and, if applicable, other
scalars) are chosen as unknowns and all of them are stored at the cell centers (collocated-
grid approach). For brevity, only the most relevant aspectsof the discretization algo-
rithms implemented in MICSc are described in this paper.

The face value of a generic transported variable (φnb) is related to neighboring
cell centers (unknown nodes) by means of a convection scheme. Although a linear
interpolation is usually recommended for LES, MICSc also provides (apart from the
first order Upwind scheme) a variety of Higher Resolution Convection Schemes (such
as for example SMART, MUSCL, QUICK, Van-Leer or Notable). The unified flux-
limiter approach reported in [9] is applied to build boundedschemes; the approach
takes into account the direction of the flow and involves three neighbouring cells (the
upwind and downwind nodes and one more node located upwind tothe upwind cell;
see Figure 1).

On the other hand, in order to avoid chessboard-like pressure contours, an undesir-
able numerical phenomenon arising on collocated grids, themomentum interpolation
procedure (originally proposed by Rhie and Chow [10]) is used to calculate the con-
vecting velocities (those involved in the mass-flow ratesṁnb across the cell faces;
uMI
e , vMI

n in Figure 1). MICSc makes use of an improved formulation (Compact Mo-
mentum Interpolation, [11]) which avoids these spurious pressure oscillations when
solving unsteady flows at very small time steps (as is commonly the case for Large
Eddy Simulations of turbulent flows).

Regarding the temporal integration of solving unsteady flows, implicit discretiza-
tion schemes are implemented. This choice avoids restrictions to the maximum time
step imposed by numerical stability requeriments (as in explicit temporal schemes).
Thus, some computational time might be saved in Large Eddy Simulations of turbu-
lent flows (technique described in Section 3) since a larger time step may be chosen
by just considering physical temporal scales, and simulation of compressible flows
at low Mach number can be made computationally affordable. MICSc allows using
multi-point implicit temporal schemes, such as first and second order Euler schemes,
and also second and third order Adams-Moulton approximations.

3 Large Eddy Simulation for turbulent flows

When solving turbulent flows, a direct numerical simulation as described in the pre-
vious section becomes computationally unaffordable for the majority of engineering
problems. Time and spatial discretization must be extremely fine to capture the large
range of structure sizes in turbulent phenomena, from the largest scales of the partic-
ular problem to the smallest ones, where transport phenomena at the molecular level
becomes most relevant. Some modeling must be therefore incorporated in order to
simulate turbulent flows. While the classic Reynolds-averageapproach is a practical
design tool to ascertain general trends, the technique known as Large Eddy Simula-
tion (LES) is arising as an accurate predictive tool, potentially usable for industrial
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applications [12].

Large-Eddy Simulations solved the filtered the Navier-Stokes equations, so that
onlu the large scales of motion are directly simulated, while the effect on them of the
rest of (small) scales is modeled. Nevertheless, some difficulties remain that prevent a
wider application of this technique to industrial flows, such as, for example, the use of
filtering in unstructured grids, wall-modeling strategiesor its high computational cost.
The latter is brought about because Large-Eddy Simulationsrequire solving unsteady
flows with (still) rather fine time steps and spatial grids.

When the finite volume method is used, the filtering process is usually carried out
implicitly by the grid. An equation system similar to Equations 1-3 for the filtered
variablesφ is resolved, except for an extra term, known as sub-grid scale stressτij =
vivj − v̄iv̄j, which must be modeled.

The present version of MICSc uses the Smagorinsky model, frequently featured in
industrial applications (mainly due to its simple implementation and a low additional
cost). It is based on the definition of a turbulent viscosity,νT , that represents the
dissipation of the energy of the large structures by the non-resolved scales:

τij −
δij

3
τkk = −2νTSij , (6)

whereSij is

Sij =
1

2
(
∂ūi

∂xj

+
∂ūj

∂xi

) , (7)

and
νT = (CS∆)2|S̄| = (CS∆)2(2SijSij)

1/2 . (8)

Here∆ is the filter size (usually defined as∆ = ∆x∆y∆z1/3) andCS is the Smagorin-
sky constant, ranging from0.065 to 1.1 depending on the type of turbulent flow.

4 Coupled and implicit solution algorithm

The discretization method described in Section 2 results inan algebraic equation sys-
tem for each conservation equation. Special iterative solvers, suitable for this kind of
large and sparse matrices are available [13]. Nevertheless, the Navier-Stokes equa-
tions are a coupled and non-linear system and some matrix processing is required
before applying a linear iterative solver.

Velocity and pressure are coupled in momentum conservationequations, where the
pressure gradient is acting as an external force. The equations governing incompress-
ible flows, however, lack a specific equation for pressure since the continuity equation
does not explicitly contain the pressure variable. As a consequence, the coefficient
matrix presents zeros on the main diagonal and solving the coupled system becomes a
challenge. Traditional algorithms (SIMPLE-like methods)apply a segregated proce-
dure for overcoming this difficulty [8]. Momentum conservation equations are solved
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separately, assuming an initial pressure field, and an iterative procedure (including
relaxation) is required until mass conservation is assured.

As interest from industry in CFD increases, more robust algorithms are required;
and the current trend is towards developing coupled algorithms, able to solve the
Navier-Stokes equations [14] simultanously. MICSc includes such a type of algo-
rithm. Some of the fundamentals of the main MICSc (Momentum Interpolation based
Coupled Solver, using PETSc) algorithm are briefly outlined in the following (a de-
tailed description can be found in [15]).

A Poisson-like equation for pressure is derived from the continuity equation. Mass-
flow rates at faces are calculated according to the Compact Momentum Interpolation
mentioned in Section 2. The resulting pressure equation (without considering, for
simplicity, relaxation or temporal terms) can be expressedas:

∑

nb(P )

ρnbAnb ⌊v⌋nb +
∑

nb(P )

ρnbAnb

{⌊

1

a

⌋

nb

fnb −

⌊

f

a

⌋

nb

}

= 0 , (9)

where⌊x⌋ represents a linear interpolation,f accounts for pressure forces (fnb =
−APpP − ANBpNB) anda is the coefficient on the main diagonal of the correspond-
ing momentum equation. In this way, the main goal of removingzeros on the main
diagonal of the coefficient matrix can be achieved.

MICSc copes with the non-linear momentum equations by applying a successive
substitution (or Picard) linearization procedure. A largelinear system must be solved
for a number of non-linear iterations (until convergence),and (when solving an un-
steady flow) for each time step. Although MICSc makes use of theparallel, efficient
and robust Krylov-subspace solvers (and preconditioners)provided by the PETSc
toolkit (described in Section 5 ), some additional techniques are incorporated in order
to improve the conditioning of the coupled system matrix.

Diagonal dominance (a sufficient condition for the convergence of stationary iter-
ative linear solvers) is enforced by applying pseudo-temporal terms (also known as
inertial relaxation) to all conservation equations. Interestingly, in the case of the pres-
sure equation, this technique is analogue to the combination of pseudo-artificial com-
pressibility and dual-step approaches used in algorithms for compressible flows when
solving problems at low Mach numbers. For the same purpose (diagonal dominance),
MICSc implements High Resolution Convection Schemes (mentioned in Section 2)
in a deferred way, so that only the Upwind part of the interpolation is included in the
matrix coefficient (the other terms are calculated from values stored at the previous
iteration and deferred to the right-side-hand vector). Finally, a deferred implementa-
tion is also applied in the Poisson-equation (Equation 9) topressure values not located
at adjacent nodes, so that the matrix structure is not bandedwith additional non-zero
diagonals. At convergence of the non-linear iterations, the original expressions are
retrieved.
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Figure 2: Diagram showing the different abstraction levelscovered by PETSc compo-
nents.

5 Linear solvers and parallelization strategy: PETSc

As in most CFD codes, the high computational demands make parallelization neces-
sary. Our approach is to rely on MPI [16], the standard for message-passing parallel
programming in distributed-memory platforms. The benefitsof MPI are well known,
such as portability to virtually all parallel computers, scalability to thousands of pro-
cessors, and a rich and flexible application programming interface.

Developing an efficient message-passing code is not trivial. Issues such as load
balancing or minimization of communication overhead must be taken into account.
On the other hand, some numerical algorithms such as linear solvers are tricky to
implement, especially in parallel, and providing numerically robust implementations
requires advanced skills. For these reasons, it is highly advisable to make use of
parallel libraries or frameworks that offer tools to help developing parallel numerical
simulation codes. One such toolkit is PETSc, which has been used in this work.

PETSc, the Portable Extensible Toolkit for Scientific Computation [7], is a parallel
framework for the numerical solution of problems arising inapplications modeled by
partial differential equations. Its design follows an object-oriented approach in order
to be able to manage the complexity of numerical methods for very large and sparse
problems on parallel computers [17]. In PETSc all the code isbuilt around a set
of objects that encapsulate data structures and solution algorithms, see Fig. 2. The
application programmer works directly with these objects rather than concentrating
on the underlying data structures. In this way, it is possible to work at a high level of
abstraction, leaving most details related to parallelization hidden within the objects.
Next, we describe the main PETSc objects and the offered functionality.

The data objects include management of index sets, vectors and sparse matrices in
different formats, as well as basic support for structured and unstructured meshes. The
vector object is used to store a parallel discrete representation of a field such as the
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pressure, the velocity components, or any other magnitude associated to the discretiza-
tion mesh. In general, PETSc vectors are distributed among MPI processes in a way
that a roughly equal number of unknowns is assigned to each process. For the particu-
lar case of structured meshes, such as the one discussed in this paper, PETSc provides
some additional helping tools to aid in the parallelization. In that case, one can think
of a field as distributed in a domain-decomposition style, that is, each process owns the
unknowns corresponding to a compact subdomain. Storage is allocated also for ghost
values,i.e., a halo of unknowns surrounding the subdomain that stores values belong-
ing to neighboring processes. During the computation, the ghost values are eventually
updated, which implies parallel communication among neighboring processes, and
this communication is managed automatically by PETSc’s internal data structures.
Regarding the matrix data structures, they follow a row-oriented distribution, com-
patible with the distribution of vectors. Matrix-vector products are performed very
efficiently, with minimal communication across processes.PETSc also takes care of
important implementation details such as memory allocation and automatic assembly
of elements during creation of matrix objects.

Built on top of the data objects are various classes of solver objects, such as linear,
nonlinear and time-stepping solvers. The nonlinear solvers include various Newton-
type methods, with explicit or implicit Jacobian, and the time-stepping solvers include
some well-known ODE methods such as Euler or Runge-Kutta. In this work, neither
of these have been used since the linearization and time discretization are carried out
by the code itself, as described in section 6. Hence, we focusour description on linear
solvers.

For solving linear systems of equations, PETSc provides a long list of iterative
methods, that can be combined with different preconditioners. All iterative solvers
belong to the class of Krylov methods. Examples of such methods are the Conju-
gate Gradient, GMRES, BiCGStab, and TFQMR. The user can choose among them
very easily, via command-line switches, without having to rebuild the program. The
performance of these algorithms,e.g., in terms of convergence, can vary widely de-
pending on the numerical properties of the system of equations. It is very important to
use an appropriate preconditioner in order to improve convergence. PETSc provides
several parallel preconditioners, based on substructuring and domain decomposition,
such as block Jacobi or additive Schwarz, with incomplete factorizations within each
block. Apart from the mentioned methods, PETSc also provides infrastructure for
implementing multi-grid linear solvers.

PETSc is being used around the world in many application areas, including CFD
computations, see for instance [18].

6 MICSc parallel code: description

MICSc is a parallel code written in C which uses PETSc to solve the Navier-Stokes
equations with the coupled and implicit method explained insection 4. It focuses
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on the LES approach for incompressible (and compressible with low Mach number)
flows.

The code is able to write output files with the results of the simulation in TecPlot
format, as well as binary files. Additionally, an ongoing development effort will confer
MICSc the ability to write the output files using HDF5 and SILO technology.

On the other hand, there are two input files for the application. The first one is
the parameters file (usually rod.inp), where all the parameters of the problem together
with the rest of the logging and extra options are specified. It is also possible to specify
these parameters at runtime from the command line and these will override the input
file parameters.

The second input file is the mesh (usually grd.inp). This file has an specific for-
mat for this application and it consists of the coordinates of the points, the type
of mesh (Cartesian or cylindrical) and the boundary conditions, whose type must
be one ofWALL, MOVING WALL, INLET, OUTFLOW, OUTPRESS, SYMMETRY and
FIX VALUE (used to fix the value of the variables in a certain region of the mesh).
Together with the development for the HDF5/SILO output, there is an ongoing work
to include MED files created with Salomé.

6.1 Data structures

Most of the MICSc data structures are the aggregation of several pieces of information
corresponding to problem elements such as the mesh, variables, etc. The main data
structures are those representing the critical information of the problem: the geome-
try and coordinates of the mesh, the variables to solve, the properties, the boundary
conditions and the system of equations. All of them are defined as follows:

St Bcond: Boundary condition, defined in a region of the mesh (patch). Includes the
equation and variable where the condition applies and two properties (explained
below) used to evaluate the implicit and explicit coefficients for the system ma-
trix.

St Geom: Geometry properties of the mesh, such as volume, edge lengthand surface
area for each cell of the mesh.

St Grid: Node information of the mesh: number of nodes and coordinates for each
dimension of the problem. It also defines the type of mesh (Cartesian or cylin-
drical).

St Prop: Property defined in a region of the mesh (patch). The type of property can
be constant or variable and, if variable, it can depend on thegeometry, the vari-
ables or the transient terms. The main purpose of the properties is to evaluate
them when necessary (depending on the type) and introduce them into the sys-
tem. Moreover, it is important to notice that properties canbe used separately
(e.g., density) or associated to boundary conditions or variables (e.g., initial val-
ues or diffusion coefficient).
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St Sys: This data structure contains PETSc objects used to store thecoefficient ma-
trix (Mat) and the right-hand side vector (Vec) of the linear system, as well as
solver objects (KSP, PC) that will be used for its resolution.

St Var: Parameters of a variable (or unknown). Includes values suchas relaxation
coefficients and maximum/minimum limits or properties for the initial values
and diffusion coefficient. It also uses aVec object of PETSc and allocates
memory to store the variable values when necessary.

6.2 Execution scheme

The execution scheme used by MICSc to perform the simulationsis divided in three
different sections, clearly distinguishable and common tomost of the scientific appli-
cations: initialization, resolution and finalization. Thescheme is illustrated graphi-
cally in Figure 3.

At the beginning of the execution there is a section where theinput files are read,
data structures are created and variables are set to their initial values.

Next, in the second section of the flux diagram, we find the coreof MICSc, where
the Navier-Stokes equations are solved by implementing thetime stepping using im-
plicit time integration and the linearization of the equation system via Picard iteration.
For the time integration it is possible to choose between several implicit methods such
as Euler (first and second order) and Adams-Moulton (second and third order). More-
over, the code is able to solve steady flows where time integration is not needed and
it can be specified asNONE for the integration method. The implementation of the
implicit time integration methods is represented in the source code by the most ex-
ternal loop where the stop condition (for non-steady flows) is given by the final time,
specified as input parameter. Inside the time integration loop we have the lineariza-
tion by Picard iterations (also known as ‘outer iterations’) where the stop condition is
either achieve convergence or reach the maximum number of outer iterations, spec-
ified as an input parameter. For each outer iteration, a coupled system of equations
is solved using the coupled variables (usually velocities and pressure) although it is
also possible to solve a segregated system for each non coupled variable. Since these
systems are linear, the KSP and PC objects provided by PETSc are used to solve
them in an efficient and transparent manner, also giving the possibility to choose from
different Krylov subspace solvers at runtime. However, in order to solve the sys-
tem, it has to be created previously by evaluating all the properties and introducing
all the terms (boundary conditions, relaxations, ...) in the coefficient matrix and the
right-hand side vector. Then, after the resolution, the variables are limited to their
maximum/minimum values if necessary.

Finally, in the third section, all the finalization tasks areperformed, such as finalize
PETSc objects or free data structures’ memory.
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Figure 3: Execution scheme of the MICSc code.
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7 Results

This section presents the validation results and the performance analysis of the MICSc
code when applied to a large eddy simulation of a channel flow.

7.1 LES validation: periodic channel case

The fully developed turbulent flow in a plane channel is a common validation case for
Large Eddy Simulations. At low Reynolds numbers, Direct Numerical Simulations of
this wall-bounded flow can be performed and statistical dataare available for compar-
ison. In this paper, some preliminary results obtained withMICSc are compared with
DNS reference data reported by Moseret al. [1].

A grid with 121×121×81 nodes in respectively the streamwise (x), wall-normal (y)
and spanwise (z) directions is used to discretize a computational domain ofdimension
2πδ×2δ×πδ. Grid stretching has been applied in the normal direction bya hyperbolic
tangent function.

Periodic boundary conditions are imposed inx andz directions, and no-slip con-
ditions at the walls. The pressure gradient that drives the flow is forced by means of a
(volumetric) source in thex-momentum equation.
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Figure 4: Normal profiles of streamwise velocity (below), Reynolds stress (left) and
turbulent intensities (right). Comparison of MICSc results and DNS reference data
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Sub-grid stresses are calculated using the Smagorinsky model (described in Section
3), being theCS = 0.065 and the filter size∆ = ∆x∆y∆z1/3. The well-known
Van-Driest damping function is also applied to reduce the turbulent viscosity near the
walls.

A linear interpolation scheme (CDS) is used as for the convection terms, and the the
temporal integration is carried out with the implicit, second-order Euler scheme. The
flow evolves (from the imposed initial field) towards the statistically steady state, a
fully developed turbulent flow at a Reynolds number (in wall units) of Reτ = 224.
Figure 4 shows (time-averaged) wall-normal profiles of meanstreamwise velocity
(< u+ >), turbulent intensities (< u+

rms >, < v+rms >, < w+
rms >) and Reynold

stress (< u′v′+ >), normalized by the wall shear velocityuτ . For comparison, DNS
profiles by Moseret al. of the turbulent channel atReτ = 180 (a lower Reynolds num-
ber) are also presented. Although some additional simulation time would be required
to obtain smoother profiles, the LES results obtained with MICSc are satisfactory: the
overestimation of the mean streamwise velocity (and, therefore, also of the fluctua-
tionsurms) at the core of the channel is common in LES; both the locationand the
values of the peaks in the other turbulent intensities are captured with an error smaller
than15%.

7.2 MICSc code performance

In this section, we present some time measurements in order to discuss the perfor-
mance of the code, especially in terms of parallel efficiency. In order to avoid long
simulations, we have considered only the first 30 time steps,which comprise 360 lin-
ear solves in total. The tests are executed on CaesarAugusta,a machine consisting
of 256 JS20 blade computing nodes, each of them with two 64-bit PowerPC 970FX
processors running at 2.2 GHz, interconnected with a low latency Myrinet network.
For the tests, only 64 processors are used due to account limitations.

The first comparison is over different combinations of linear solvers and precondi-
tioners. The linear solvers used are GMRES (gmres), BiCGStab (bcgs), BiCGStab(ℓ)
with ℓ = 2 (bcgsl), and Transpose Free QMR (tfqmr), while the tested preconditioners
are Jacobi (jacobi) and Block Jacobi (bjacobi). In the case of Block Jacobi, we usep
blocks, wherep is the number of processes, and an ILU factorization is builtfor each
block. For details about these methods, the reader is referred to [13].

Table 1 shows the execution time, averaged out over all the linear systems, as well
as the average number of iterations. Compared to the Jacobi preconditioner, the use of
Block Jacobi reduces the iterations and time needed to solve the system but noticeably
increases the setup time of the KSP object. The reason is thatJacobi does not require
any initial computation whereas Block Jacobi needs to compute the ILU factorization
of the diagonal blocks. Iterations performed with Block Jacobi preconditioning are
more expensive, but since the number of iterations performed is reduced, the overall
solving time is lower with Block Jacobi preconditioner for all linear solvers. More-
over, the fastest convergence is obtained with the BiCGStab and GMRES solvers (both

13



KSP PC Setup Solve Total Its
gmres jacobi 0.019 0.692 0.711 12.84
gmres bjacobi 0.129 0.322 0.451 3.83
bcgs jacobi 0.019 0.570 0.589 7.25
bcgs bjacobi 0.127 0.332 0.459 2
bcgsl jacobi 0.020 0.812 0.832 9.33
bcgsl bjacobi 0.129 0.556 0.685 3.67
tfqmr jacobi 0.019 1.052 1.071 11.86
tfqmr bjacobi 0.130 0.353 0.483 2.03

Table 1: Comparison of linear solvers (KSP) and preconditioners (PC). The total time
is divided into setup and solve times. The average number of iterations is also pro-
vided.

have virtually the same results), so speedup tests have beenperformed with the fastests
combinations BiCGStab + Block Jacobi, GMRES + Block Jacobi and thedefault GM-
RES + Jacobi.

From the performance results shown in Table 2, we can draw thefollowing con-
clusions. The parallel efficiency of the whole simulation, including the evaluation of
the properties and assembly of the new system of equations, is reasonably good (more
than 60% with 64 processes). In the case of the linear solver,the efficiency is slightly
worse, except in the case of BiCGStab. The worst efficiency is obtained in the case
of Jacobi preconditioning, and this can be attributed to themuch higher number of
iterations performed. The behaviour of Block Jacobi is very good, even though the ef-
fectiveness of the preconditioner decays with the number ofprocesses (since the size
of the blocks decreases). We can foresee that for cases whereconvergence is much
more difficult to attain, the parallel efficiency of Block Jacobi will be reduced.

8 Conclusion

In this paper, a new open-source LES code (MICSc) is presented. The code solves
the Navier-Stokes equations with a coupled and implicit method. The PETSc library
is used to solve the system of linear equations and study the best performance over
different combinations of linear solvers and preconditioners.

The LES code has been validated successfully with the well-known open channel
flow by Moseret al.. The results show good agreement with differences lower that
15% in the prediction of the turbulent stresses.

Regarding the performance of the code, especially in terms ofparallel efficiency, it
has been shown that the best preconditioner is Block Jacobi whereas both BiCGStab
and GMRES give the fastest convergence time (with virtually the same results). Also,
the parallel efficiency of the whole simulation, including the evaluation of the proper-
ties and assembly of the new system of equations, is reasonably good (more than 60%
with 64 processes).

14



GMRES + Jacobi

Procs
TOTAL MEANS

Solve Total Sp Ep KSP Setup KSP Solve KSP Sp Ep

1 15309.17 - - 0.37 12.39 12.77 - -
2 9926.51 1.5 77.1% 0.29 9.65 9.94 1.3 64.2%
4 5391.1 2.8 71% 0.14 4.95 5.09 2.5 62.7%
8 2791.4 5.5 68.6% 0.073 2.54 2.62 4.9 61%
16 1397.5 11 68.5% 0.038 1.37 1.41 9 56.5%
32 742.55 20.6 64.4% 0.019 0.69 0.71 18 56.1%
64 386.87 39.6 61.8% 0.0099 0.35 0.36 35.3 55.1%

GMRES + Block Jacobi

Procs
TOTAL MEANS

Solve Total Sp Ep KSP Setup KSP Solve KSP Sp Ep

1 14777.78 - - 3.79 5.81 9.59 - -
2 8703.70 1.7 84.9% 2.14 3.94 6.1 1.6 79%
4 4669.2 3.2 79.1% 1 1.93 2.93 3.3 81.8%
8 2387.5 6.2 77.4% 0.54 0.96 1.5 6.4 79.9%
16 1151.7 12.8 80.2% 0.26 0.52 0.78 12.3 76.6%
32 631.86 23.4 73.1% 0.13 0.32 0.45 21.3 66.4%
64 351.56 42 65.7% 0.064 0.17 0.23 41.2 64.4%

BiCGStab + Block Jacobi

Procs
TOTAL MEANS

Solve Total Sp Ep KSP Setup KSP Solve KSP Sp Ep

1 15312.97 - - 3.79 7.06 10.86 - -
2 8860.89 1.7 86.4% 2.10 4.80 6.91 1.6 78.6%
4 4793.98 3.2 79.9% 1.04 2.4 3.44 3.2 79%
8 2559.25 6 74.8% 0.53 1.32 1.85 5.9 73.5%
16 1186.53 12.9 80.7% 0.25 0.64 0.89 12.2 76.4%
32 639 24 74.9% 0.13 0.33 0.46 23.7 73.9%
64 354.49 43.2 67.5% 0.065 0.18 0.24 44.9 70.1%

Table 2: Parallel performance for three different combinations of iterative solver and
preconditioner. The left side of the table shows results forthe whole simulation,
whereas the right side considers only the solution of the linear systems. The columns
labeledSp andEp represent parallel spedup and efficiency forp processes.
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[18] W. Gropp, D. Kaushik, D. Keyes, B. Smith, “High-performance parallel implicit
CFD”, Parallel Computing, 27(4): 337–362, 2001.

17


