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ABSTRACT

In the last decades, many researches have been proposed concerning the
path and trajectory planning for manipulators. Path and trajectory planning have
important applications in many areas, for example industrial robotics, autonomous
systems, virtual prototyping, and computer-aided drug design. On the other hand,
the evolutionary algorithms have been applied in this plethora of fields, which
motivates the author’s interest on its application to the path and trajectory planning

for industrial robots.

In this work, an exhaustive search of the existing literature related to the
thesis has been carried out, which has served to create a comprehensive database
used to perform a detailed historical review of developments since its origins to

the current state of the art and the latest trends.

This thesis presents a new methodology that uses genetic algorithms to
develop and evaluate path and trajectory planning algorithms. Problem-specific
knowledge and heuristic knowledge are incorporated into encoding, evaluation

and genetic operators of the genetic algorithm.

This methodology introduces new approaches that aim at solve the problem
of path planning and trajectory planning for industrial robotic systems operating in
3D environments with static obstacles. Therefore, two algorithms (somehow, they
are similar, but with some variations) are created to solve the mentioned planning

problems.

Obstacles modeling have been done by using combinations of simple
geometric objects (spheres, cylinders, and plans) which provide an efficient

algorithm for collision avoidance.



Trajectory Planning for Industrial Robots Using Genetic Algorithms

Path planning algorithm is based on global genetic algorithms optimization
techniques, which aim to minimize the sum of the distances between significant
points of the robot along the path considering the restrictions to avoid collisions
with obstacles. The path is composed of adjacent configurations obtained by an
optimization technique using genetic algorithms, seeking to minimize a multi-
objective function that involves the distance between significant points of the two
adjacent configurations, and the distance from the points of the current
configuration to the final one. An evaluation method is designed according to the
problem presentation by defining individuals and genetic operators capable of
providing efficient solutions to the problem. The result of this algorithm is the

shortest path between two configurations given by the user.

Trajectory planning algorithm is also based on genetic algorithms
optimization techniques using the direct procedure. The algorithm is similar to the
mentioned previously algorithm for path planning problem, but with some
differences in the objective function and some details related to the conceptual
difference between path and trajectory planning. The objective of this algorithm is
to minimize the time required to move the robot from an initial configuration to
another final one without colliding with obstacles, taking into consideration the
limitation on the actuators. Each trajectory is constructed by means of adjacent
configurations obtained through an optimization process using genetic algorithms
aims to minimize a function of time required to move the robot between two
adjacent configurations, the distance from the points of the current configuration
to the final one, and the distance between significant points of the adjacent
configurations along the trajectory. The restrictions of this algorithm may be one
or a combination of the following: torque, power, and energy limitations. The
result of the optimization algorithm is a trajectory with minimum time between

two configurations of the robot.



Abstract

The algorithms presented in this thesis have been validated by its use to a
significant number of examples. The analysis of the results sheds light on the
characteristics and properties of the algorithms used, allowing obtaining the

conclusions of the work and focusing on new ways to explore in future work.






RESUMEN

En las ultimas décadas, debido la importancia de sus aplicaciones, se han
propuesto muchas investigaciones sobre la planificacion de caminos y trayectorias
para los manipuladores, algunos de los ambitos en los que pueden encontrarse
ejemplos de aplicacion son; la robética industrial, sistemas autdbnomos, creacion de
prototipos virtuales y disefio de farmacos asistido por ordenador. Por otro lado, los
algoritmos evolutivos se han aplicado en muchos campos, lo que motiva el interés
del autor por investigar sobre su aplicacion a la planificaciéon de caminos y

trayectorias en robots industriales.

En este trabajo se ha llevado a cabo una biisqueda exhaustiva de la literatura
existente relacionada con la tesis, que ha servido para crear una completa base de
datos utilizada para realizar un examen detallado de la evolucion histérica desde

sus origenes al estado actual de la técnica y las ultimas tendencias.

Esta tesis presenta una nueva metodologia que utiliza algoritmos genéticos
para desarrollar y evaluar técnicas para la planificacion de caminos y trayectorias.
El conocimiento de problemas especificos y el conocimiento heuristico se
incorporan a la codificacion, la evaluacion y los operadores genéticos del

algoritmo.

Esta metodologia introduce nuevos enfoques con el objetivo de resolver el
problema de la planificacion de caminos y la planificacion de trayectorias para
sistemas roboticos industriales que operan en entornos 3D con obstaculos
estaticos, y que ha llevado a la creacién de dos algoritmos (de alguna manera
similares, con algunas variaciones), que son capaces de resolver los problemas de

planificacion mencionados.
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El modelado de los obstaculos se ha realizado mediante el uso de
combinaciones de objetos geométricos simples (esferas, cilindros, y los planos), de

modo que se obtiene un algoritmo eficiente para la prevencion de colisiones.

El algoritmo de planificacion de caminos se basa en técnicas de
optimizacién globales, usando algoritmos genéticos para minimizar una funcioén
objetivo considerando restricciones para evitar las colisiones con los obstaculos. El
camino esta compuesto de configuraciones adyacentes obtenidas mediante una
técnica de optimizacion construida con algoritmos genéticos, buscando minimizar
una funcién multiobjetivo donde intervienen la distancia entre los puntos
significativos de las dos configuraciones adyacentes, asi como la distancia desde
los puntos de la configuracion actual a la final. El planteamiento del problema
mediante algoritmos genéticos requiere de una modelizacion acorde al
procedimiento, definiendo los individuos y operadores capaces de proporcionar

soluciones eficientes para el problema.

El algoritmo de planificacion de trayectorias también se basa en técnicas de
optimizaciéon que usan algoritmos genéticos mediante el procedimiento directo;
similares al algoritmo del problema de la planificaciéon de caminos, pero con
algunas diferencias en la funcion objetivo y detalles relacionados con la diferencia
conceptual entre la planificacion de trayectorias y caminos. El objetivo de este
algoritmo es minimizar el tiempo necesario para mover el robot de una
configuracion inicial a otra final sin colisionar con los obstaculos, considerando
los limites de los actuadores. Cada trayectoria esta construida por configuraciones
adyacentes obtenidas mediante un proceso de optimizacion utilizando algoritmos
genéticos para minimizar una funcién del tiempo necesario para mover el robot
entre dos configuraciones adyacentes, la distancia desde los puntos de la
configuracion actual a la final y la distancia entre los puntos significativos de las

configuraciones adyacentes a lo largo de la trayectoria. Las restricciones de este
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algoritmo pueden ser una o una combinacion de lo siguiente: los limites de par,
potencia y energia. El resultado del algoritmo de optimizacion es una trayectoria

con un tiempo minimo entre dos configuraciones del robot.

Los algoritmos presentados en esta tesis han sido validados por su uso a un
numero significativo de ejemplos. El analisis de los resultados arroja luz sobre las
caracteristicas y propiedades de los algoritmos utilizados, que se reflejan en dos
grandes capitulos creadas para este proposito, permitiendo obtener las
conclusiones del trabajo y orientando sobre nuevas vias a explorar en trabajos

futuros.






RESUM

En les ultimes deécades, s’han proposat moltes investigacions sobre la
planificacié de camins i trajectories per als manipuladors donada la importancia de
les seues aplicacions, alguns dels ambits en qué poden trobar exemples d’aplicacio
son: la robdtica industrial, sistemes autdonoms, creacid de prototips virtuals i
disseny de farmacs assistit per ordinador. D’altra banda, els algorismes evolutius
s’han aplicat en aquesta gran quantitat de camps, el que motiva I’interés de I’autor
per investigar sobre la seva aplicacio a la planificacié de camins i trajectories en

robots industrials.

En aquest treball s’ha dut a terme una recerca exhaustiva de la literatura
existent relacionada amb la tesi, que ha servit per a crear una completa base de
dades utilitzada per realitzar un examen detallat de I’evolucio historica des dels

seus origens a I’estat actual de la técnica i les ultimes tendéncies.

Aquesta tesi presenta una nova metodologia que utilitza algorismes geneétics
per a desenvolupar i avaluar algorismes per a la planificaci6 de camins i
trajectories. E1 coneixement de problemes especifics i el coneixement heuristic
s’incorporen a la codificacio, 1’avaluacio i els operadors genctics de I’algorisme

gengétic.

Aquesta metodologia introdueix nous enfocaments per tal de resoldre el
problema de la planificacié de camins i la planificacidé de trajectories per a
sistemes robotics industrials que operen en entorns 3D amb obstacles estatics, i
que ha portat a la creacido de dos algorismes (d’alguna manera similars, amb
algunes variacions), que son capagos de resoldre els problemes de planificacid

esmentats.
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El modelat dels obstacles s’ha realitzat mitjangant 1’as de combinacions
d’objectes geometrics simples (esferes, cilindres, i els planols), de manera que

s’obté un algorisme eficient per a la prevencio de collisions.

L’algorisme de planificacio de camins es basa en técniques d’optimitzacio
globals, usant algorismes geneétics per minimitzar la suma de les distancies entre
els punts significatius del robot al llarg del cami considerant restriccions per evitar
les col‘lisions amb els obstacles. El cami esta compost de configuracions adjacents
obtingudes mitjangant una técnica d’optimitzacid construida amb algoritmes
genétics, buscant minimitzar una funcié multiobjectiu on intervenen la distancia
entre els punts significatius de les dues configuracions adjacents, aixi com la
distancia des dels punts de la configuracié actual a la final. El plantejament del
problema mitjangant algoritmes genétics requereix d’una modelitzacié d’acord al
procediment, definint els individus i operadors capagos de proporcionar solucions
eficients per al problema. El resultat d’aquest algorisme és el cami més curt entre

dues configuracions donades per 1’usuari.

L’algorisme de planificaci6 de trajectories també es basa en técniques
d’optimitzacié que fan servir algoritmes genétics mitjancant el procediment
directe, similars a I’algorisme del problema de la planificaci6é de camins, perd amb
algunes diferéncies en la funcid objectiu i detalls relacionats amb la diferencia
conceptual entre la planificacid de trajectories i camins. L’objectiu d’aquest
algorisme és minimitzar el temps necessari per moure el robot d’una configuracio
inicial a una altra final sense topar amb els obstacles, considerant els limits dels
actuadors. Cada trajectoria esta construida per configuracions adjacents obtingudes
mitjangant un procés d’optimitzacio utilitzant algorismes genétics per minimitzar
una funcid del temps necessari per moure el robot entre dues configuracions
adjacents, la distancia des dels punts de la configuracié actual a la final i la

distancia entre els punts significatius de les configuracions adjacents al llarg de la
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trajectoria. Les restriccions d’aquest algorisme poden ser una o una combinacio
del segiient: els limits de parell, poténcia i energia. El resultat de 1’algorisme
d’optimitzacid €s una trajectoria amb un temps minim entre dues configuracions

del robot.

Els algorismes presentats en aquesta tesi han estat validats pel seu us a un
nombre significatiu d’exemples. L’analisi dels resultats llanca llum sobre les
caracteristiques i propietats dels algorismes utilitzats, que es reflecteixen en dos
grans capitols creats per a aquest proposit, permetent obtenir les conclusions del

treball i orientant sobre noves vies a explorar en treballs futurs.
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Generalized position of body i in configuration ;.

Generalized velocity of body i.
Generalized acceleration of body i.
Coefficients of the interpolation functions

Linear acceleration of the origin of the reference system attached

to body i.

Centre of gravity linear acceleration of body 7.

Vector from the origin of the reference system i to the origin of

the reference system j, expressed in the reference system k.

Vector from the origin of the reference system attached to body i

to its centre of gravity expressed in the same reference system.
Rotation matrix between the reference systems i and j.
Vector of generalized forces.

Number of points.

Angular velocity of body i.

Angular acceleration of body i.
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CHAPTER 1

INTRODUCTION

1.1. MOTIVATION AND DOMAIN OF APPLICATION

In the last few decades, the number of robots has grown in many areas.
Upon industrial applications, robots also are used in surgery, agriculture,
underwater, and for transportation. In industrial applications, they have many
purposes like; pick and place operations, assembly tasks, spray-painting, and many

other tasks.

In some cases it is required to control and program the robots in real-time.
On the contrary, to meet demands on flexibility, quality, and efficiency in
industrial systems, off-line programming is required. In off-line programming
systems, the programmer uses a three-dimensional computer model of the robot
and its work cell, in which the virtual robot can be controlled easily and moved to
the desired configurations. When the program is completed, the motion can be
verified, simulated, and optimized before its application on the actual robot.
Another advantage of the off-line programming is the improved safety for the

operator as well as the robot. Despite the fact that, off-line programming improves
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efficiency in many aspects, the programming work is still performed manually.
When the robot is to be moved from one position to another, it is then necessary to
obtain the path that connects theses points avoiding collisions. Therefore, the
planning of paths or trajectories is one of the most important areas in robotics

research.

Path planning and trajectory planning problems are two distinct parts of the
robotics that intimately are related. They are considered as a very active research
area and there are many algorithms to solve such problems. Actually, a clear
difference exists between those algorithms devoted for path planning problem and
those devoted for determining the optimal trajectory for robotic systems. The first
ones try, essentially, to obtain a sequence (“a path”) of robot configurations
(generalized coordinates) between an initial configuration (start) and a final
configuration (goal) that fulfils some conditions, mainly, collision avoidance.
Whereas, the second ones try to obtain a temporal history of the evolution for the
robot joint coordinates, by minimizing aspects, such as; the required time or the
energy consumption. Therefore, path planning is a subset of trajectory planning,
wherein the dynamics of robot are neglected. In trajectory planning, path planning
is searched firstly and then finding an optimal time scaling for the path subject to
the actuator limits; such approach known as decoupled (indirect) approach. In the
other hand, the direct approach of trajectory planning, the search takes place in the

system’s state space.

In this thesis, both, path planning and trajectory planning are presented as

two distinct fields, and each one is going to be reviewed separately.
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1.2. PATH PLANNING: STATE OF THE ART

Path planning has a very important role for getting to a desired goal in
mobile robots. Path planning, as mentioned earlier, tries to determine a sequence
of robot configurations between an initial configuration and a goal configuration
under certain restrictions, such as; collision avoidance, which is can be easily

stated “How to get from here to there?”.

The basic path-planning problem involves computing a collision-free path
between an initial configuration of the robot and a final one in a static environment
of known obstacles, and that the planned motion is consistent with the kinematic
constraints of the robot. In this case, the constraints on the solution path arise from

the geometry of both the obstacles and the robot.

Path planning has important applications in many areas, for example,
industrial robotics, autonomous systems, assembly planning and virtual
prototyping, Chang and Li 1995, computer graphics simulations, Kuffner and
Latombe 2000, and computer-aided drug design, Finn et al. 1997.

According to Hwang and Ahuja 1992a path planning algorithms can be
classified into two aspects: the scope (global or local) and the completeness.
Global algorithms assume that the robot’s environment is completely known.
Global algorithms take into account all the information in the environment, and
they plan a path from the initial to the goal configuration. Therefore, their strength
is global path planning, but they are not appropriate for fast obstacle avoidance.
On the other hand, local algorithms use only a small fraction of the world model to
generate robot control. They are used when the start and goal configuration of the
robot are close. However, the key advantage of local techniques over global ones

lies in their low computational complexity, which is particularly important when
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the world model is updated frequently based on sensor information. In the other
hand, with respect to the completeness, Hwang and Ahuja classified it into three
types. Exact (or complete) algorithms either find a solution or prove that there is
no solution. They are usually computationally expensive. Most complete
algorithms, however, are applicable in low-dimensional configuration spaces
problems. Resolution complete algorithms discretize some continuous quantities
such as object dimensions or configuration parameters, but become exact in the
limit as the discretization approaches a continuum. For probabilistically complete
algorithms, the probability of finding a solution can be made to approach one if the
problem is indeed solvable. Most such algorithms use a randomized search
procedure, which is guaranteed to find a solution if it is allowed to run long
enough. Finally, the heuristic algorithms are often non-complete as they may fail
to find a solution even when one exists. They are aimed to generating a solution in
a short time. Exact algorithms determine the complexities of the problems, while

heuristic algorithms are important in engineering applications.

For complexity analysis, some definitions should be cleared. Cormen et al.
2001 classify the problems to three classes: P, NP, and NPC. The problem is said
to be in P, if there is a polynomial time algorithm to solve it. If there is a
polynomial time algorithm to verify a solution to the problem (thus P < NP), the
problem is said to be in NP (Nondeterministic Polynomial). This means that the
problem in NP needs a very long computation time to solve if the problem size is
large. A problem is NP-hard if it is at least as difficult as any NP problem. If the
problem is NP and NP-hard, it is said to be NPC (NP-Complete). If the problem
requires a space polynomial in the problem size, it is considered in PSPACE. The
same definitions apply to PSPACE-hard and PSPACE-complete. PSPACE
hardness results have been demonstrated for various special cases of motion
planning. Reif 1979 presented the first theoretical investigation of the inherent

computational complexity of the path planning problem, showing that path
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planning for a 3-D linkage made of polyhedral links among fixed obstacles is
PSPACE-hard. A few years later, Hopcroft, Schwartz et al. 1984 proved that
motion planning for multiple independent rectangular boxes sliding inside a
rectangular box is PSPACE-hard. Hopcroft, Joseph et al. 1984 improved that the
movers’ problem for two-dimensional linkages is PSPACE-hard. One year later,
Reif and Sharir 1985 proved that the dynamic movement in the case of bounded
velocity is PSPACE-hard, even in the case where the moving body is a disc
moving in three-dimension. After that, Reif and Storer 1988 and Reif and Storer
1994 presented an algorithm for finding the shortest path between points in the
Euclidean plane with polygonal obstacles. Sun and Reif 2003 introduce an
empirical method, called discretization method, that improve the results of the
weighted region optimal path problem, by placing discretization points only in

areas that may contain optimal paths.

Path planning for robots and manipulators is a problem for which new
contributions are still provided almost every day, since Nilsson 1969 introduced
the visibility graph method (combined with 4* search algorithm, Hart et al. 1968)
to find the shortest collision-free path for his mobile robot system (Shakey)

represented by a point amidst polygonal obstacles.

Liebermann and Wesley 1977 and Lozano-Pérez 1976 presented the first
attempts to build integrated systems for automatically programming robot arms.
The input of these systems was the description of a mechanical assembly, in the
form of a set of geometrical models of the individual parts and goal assembly
relations among the parts. The task of the systems was to generate the robot
programs automatically for assembling the parts. Although these systems were
never fully implemented, they have contributed in emphasizing the importance of
geometrical reasoning in robot planning and in pointing out key motion planning

problems in the context of mechanical assembly.
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Udupa 1977 proposed the idea of growing the obstacle and shrinking a robot
to a point for planning collision-free paths for computer-controlled manipulators.
Moravec 1980 bounded all the obstacles and the moving robot by circles. The
moving circle is shrunk to its center and the obstacle circles are inversely
expanded. The finding path problem reduced to find the path for the center of
moving circle to stay outside of the grown circles. In this case, the rotation was
ignored. Brooks and Lozano-Pérez 1983 introduced a subdivision algorithm for
computing with the curve surfaces of the grown obstacles. That algorithm had the
ability to find hard paths for 2-D moving robots. Moreover, it could be directly
applied to configuration spaces for three dimensional polyhedral whose orientation

1s fixed.

Lozano-Pérez and Wesley 1979 exploited the Udupa 1977 idea in a more
general and systematic manner, and proposed the first two-dimensional path
planning algorithm for polygonal and polyhedral robots moving among polygonal
and polyhedral obstacles. In addition, they introduced the concept of configuration
space (Cy), which influenced motion planning more than any other idea. In C;, the
obstacles in the workspace are mapped as forbidden regions (C,), and the
complement of the C, constitutes the free space (Cy). Path planning for a robot
with n degrees-of-freedom (DOF) can thus be converted to the problem of
planning a path for a particle in an n-dimensional C;. Many methods of many
authors have been proposed for the construction of the configuration space C.
Lozano-Pérez 1987 considered the case where both the robot and the obstacles
were convex polygons or polyhedral, and the C, boundary for an n-DOF
manipulator was approximated by sets of (n—1)-dimensional slices recursively
built up from one-dimensional slices. Maciejewski and Fox 1993 studied the
analytical description of the boundaries of C, and derived the connectivity of C;
for revolute manipulators. Zhao et al. 1995 developed an analytical representation

of C, using a set of parametric equations resulted from mapping the boundaries of
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the obstacles from workspace into the C; through using the inverse pseudo
kinematics. Recently, Wu et al. 2007 studied a new two-phase approach for the
construction of C,. The approach based upon pre-computing the global topology of
a robot’s free space, and consisted of an offline phase and an online phase. In the
offline phase, a C, database (COD) for a given robot was developed in which the
C, maps were stored and indexed by the cells of the workspace; in the online
phase when the same robot is operated in a real environment, those maps whose
indices match the real obstacle cells were identified and then extracted from the
COD. This approach is a generic one and can be applied to manipulators with
arbitrary kinematic structures and geometries. The authors used a series of
simulation cases involving a 3-DOF manipulator and a 5-DOF manipulator to

demonstrate the performance of the proposed scheme.

Moreover, Lozano-Pérez presented the principle of the approximate cell
decomposition approach, see Lozano-Pérez 1981, 1983. Chatila 1982 was the first
to base his planner on an exact decomposition into convex cells to solve the
planning problem with incomplete knowledge for a mobile robot represented as a
point in a two-dimensional workspace. The decomposition was periodically
updated in order to include new environmental data. Gouzénes 1984 introduced
the first implemented approximate cell decomposition method for the motion

planning of arm robot with revolute joints.

In the solution of several path-planning problems, the notion of Voronoi
diagram has proved to be a useful tool. Ahmed 1997 said that the use of Voronoi
diagram for motion planning first appeared in the doctoral research work of Rowat
1979 who uses it as a heuristic for a digitized space. O'Dunlaing and Yap 1982
introduced retraction as a new theoretical approach for path planning. His method
is based on the generalized Voronoi diagram, which is the locus of points

equidistant to two or more obstacles, to motion planning for a disk in the plane.
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His method requires full knowledge of the world’s geometry prior to the planning
event. Brooks 1983a approximated generalized Voronoi graphs with generalized
cones through in freeway method in order to find a path for mobile robots. In the
same year also, Brooks 1983b used the cones to find quick paths for the Puma
arm. A definition and new theoretical results are presented one year later by
Donald 1984 for a six-dimensional C-space extension of the generalized Voronoi
diagram, named C-Voronoi diagram. He described the first known implementation
of a complete algorithm for six degrees of freedom Mover’s problem by
transforming it into a point navigation problem in a six-dimensional configuration
space. Based on part of Donald’s algorithm, Lengyel et al. 1990 developed a fast
path planning based entirely on complete and provably-good approximation
algorithms. The planner can handle any polyhedral geometry of robot and

obstacles.

Schwartz and Sharir presented a series of papers called the Piano Movers’
Problem, representing the first complete path planning approach based on an
algebraic decomposition of the robot’s configuration space known as Collins
decomposition. In the first one of the series, Schwartz and Sharir 1983a introduced
the first algorithm polynomial in the number of obstacles in two-dimensions. He
gave a topological analysis of the space of positions of a polygon moving in the
plane in the presence of polygonal obstacles. In the second paper, Schwartz and
Sharir 1983b used manifold and reduced the motion planning problem to the
problem of finding the connected components of an algebraic manifold. This
algorithm takes time doubly exponential in the degrees of freedom. A few years
later, this result was improved by Canny 1988 to a single exponential time. In their
next paper Schwartz and Sharir 1983c, they proposed algorithms for solving the
case of two-dimensional disks moving inside a polygon with avoiding to collide
with the polygon edges and with each other. This algorithm is exponential in the
number of moving disks. After that, Spirakis and Yap 1984 proved the strong NP-
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hardness of moving many disks. Later, Sharir and Ariel-Sheffi 1984 addressed
various special problems involving arbitrarily many degrees of freedom which
have relatively simple solutions by the techniques of determining the non-critical
regions and using a connectivity graph. Finally, Schwartz and Sharir 1984 studied
the motion of a rod among polyhedral obstacles in three-dimension. Kedem and
Sharir 1985, 1988 presented an exact and efficient algorithm for polygonal robot

moving among polygonal obstacles.

One of the most general and simple ways to arrange the path planning
problem is based on the utilization of Artificial Potential Fields (APF). This
concept was pioneered by Khatib 1986. He proposed this method for the real-time
collision avoidance in a continuous space. A drawback to this approach is that it is
known to suffer from local minima effects when the net force sums to zero in
certain portions of the search space. A year later, Koditschek 1987 redefined the
artificial potential field function in a way that does not contain a local-minimum,
which known as navigation function, and Rimon and Koditschek 1988 extended
the last one to n-dimensional Euclidean space for a point robot moving among
disjoint spheres. Hereafter, many authors such as Khosla and Volpe 1988 and
Volpe and Khosla 1990, directed their efforts to finding an obstacle associated
potential function based on superquadrics to counter the local-minimum problem
with better behavior enabling the robotic system to both avoid and smoothly
approach. As an alternative to the potential field method, Faverjon and
Tournassoud 1987 introduced a local approach, named, the constraints method to
plan the motion of high degrees of freedom manipulators, which separate the
description of the task from constraints of anti-collision. The same authors,
Faverjon and Tournassoud 1988 presented a learning scheme to avoid falling into
the local-minimum of the potential field. Barraquand and Latombe 1989 proposed
the randomized potential field planner (RPP) for generating paths with local-

minimum-free for robots with high degrees of freedom. Connolly et al. 1990
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introduced the idea of generating functions that satisfy Laplace's equation as a way
to build a local-minimum-free navigational potential field. Latombe 1991
expanded upon the detail of the RPP approach that proposed by Barraquand and
Latombe 1989. Latombe explained the motion planning concepts in his book and
provided a comprehensive description of the subject and fundamental techniques.
Later, Kim and Khosla 1992 proposed an artificial potential function approach to
obstacle avoidance based on the panel method. Hwang and Ahuja 1992b
constructed a potential function defined in terms of the boundary equations of
polyhedral obstacles to develop a path planner compromise between the exact and
heuristic algorithms. They extracted firstly the topological structure of the free
space in the form of the minimum potential valleys. Then, the potential field is
used to derive the most efficient, collision-free path corresponding to a given
topological path. One year later, Zelinsky and Yuta 1993 presented a local
obstacle avoidance scheme called “reactive planning” based on “path transform”
which was first developed by Zelinsky 1991. The path transform can be regarded
as numeric potential field path planners without suffering the local-minimum
problem. The path transform is considered as an expansion of the distance
transforms which was first presented by Jarvis and Byrne 1986. Chuang 1998
suggested an analytic potential field function for three-dimensional workspace to

solve path-planning problem with obstacle avoidance.

Faverjon and Tournassoud 1987 were first introduced a subgoal network
method. This algorithm divides the C-space into cells and assigns each cell a
probability that a local algorithm would succeed in that cell. Initially, the
probabilities of the cells are equal and then and they are updated using a local
algorithm. A sequence of regions with high probabilities will be searched by 4*
algorithm, then the potential field applied to that sequence of cells. Glavina 1990
proposed an algorithm to solve the find-path problem by combining a goal-

directed straight-and-slide search and a randomize generation of subgoals. Chen
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and Hwang 1992, 1998 developed a new search strategy called SANDROS
(Selective And Non-uniformly Delayed Refinement Subgoals). At first, distance
computations are performed to determine whether a given point is in free space Cy.
Then, a two-level hierarchical planning method is used to reduce memory
requirements. This algorithm builds a sparse network of robot subgoals with the
use of a simple and a computationally expensive planner. This algorithm has been
implemented and tested for planning paths for Puma robot. An efficient path
planning algorithm for general 6 degrees of freedom robots is presented by Isto
1996. The path planner is based on multiheuristic 4* search algorithm with
dynamic subgoal generation for rapid escaping from deep local-minimum wells.
One year later, Isto 1997 developed an algorithm that combines a multiheuristic
local search algorithm with a subgoal graph based guidance. Moreover, the

algorithm can adjust the balance between local and global planning.

Lozano-Pérez 1987 introduced the first resolution complete planner for
general manipulators. Lozano-Pérez et al. 1987 described a new integrated robot
system, called Handey. Handey used a simplify version of the path planner
described in Lozano-Pérez 1986, 1987. This system is capable to plan the motions
of a manipulator robot for constructing simple assemblies made of polyhedral
objects, and to execute the plans, assuming no uncertainty. Hwang and chen 1995
proposed a complete path planner based on a hierarchical and multi-resolution
search strategy based on the SANDROS search strategy developed by Chen and
Hwang 1992. In this planner the lowest possible resolution has to be defined in

advance and does not adapt to the particular workspace.

Valero 1990 presented a collision-free path-planning algorithm for a plane
manipulator with three degrees of freedom moving among polyhedral obstacles.
The manipulator consists of three rigid bodies connected by revolute joints.

Firstly, he generated a space of robot configurations, and then searched for a
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sequence of configurations with minimum distance to obtain a path between the
initial and final configurations of the robot. Valero et al. 1997, Valero et al. 2000
proposed a technique for collision-free path planning as an optimization problem

in complex environments based on the concept of adjacent configurations.

Barraquand and Latombe 1990, 1991 developed the Randomized Path
Planner (RPP) to solve path-planning problem in high-dimensional configuration
space. They had applied the RPP a general potential field method that uses random
motions for escaping spurious local-minimum. Additionally, RPP has been
embedded in a larger manipulation planner to automatically animate scenes
involving human figures modeled with 62 degrees of freedom, Koga et al. 1994.
Many years later, Caselli et al. 2001 introduced RPP driven by potential field as a
technique for solving path planning problem for 9 and 11 degrees of freedom
robots. He presented a simple yet effective heuristics for escaping local minima,

with the goal of improving overall planning performance.

The planner implemented by Kondo 1991 found paths for six degrees of
freedom manipulators in three-dimensional space using heuristic search technique.
This algorithm is fast because it minimizes the number of collision detection
computations by limiting the search in the explored parts of the configuration

space Ci.

Overmars 1992 presented a new technique uses a learning approach for path
planning. He combined the simple potential fields with roadmap method,
constructing a random network of possible motions. A disadvantage of that
method is that it is uncompleted. Kavraki and Latombe 1994a, 1994b introduced
another approach to path planning for many degrees of freedom robots moving in
static environments. The algorithm consisted of preprocessing; which is done once
for a given environment, generated a network of randomly, but probably selected,

collision-free configurations. After that, the planning stage, which connected any
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given initial and final configurations of the robot to two nodes of the network, then
computed a path through the network between these two nodes. Independently
Overmars and Svestka 1994 proposed a probabilistic algorithm for the learning
path planning problem by combining a global roadmap approach with a local
planner. A common paper from the two groups was published in Kavraki et al.
1996 combined the ideas developed by the two groups above, resulting an even
more powerful planner for high degrees of freedom robots. This algorithm uses
random sampling to construct a roadmap of the configuration space and tries to
find a path between any two input configurations by connecting them to the
roadmap. The main difficulty with a uniform random sampling of C-space is find
connections through some "critical" regions of free space C, This difficulty is
referred to as the narrow passage problem, and is common to randomized
algorithms. Hsu et al. 1998 accepted samples that are not in free space, but for
which the penetration distance of the robot into the obstacles is small. Then the
colliding nodes are retracted to C; by local re-sampling. Kavraki et al. 1998a
provided an analysis of a recent path planning method, which uses probabilistic
roadmaps. Then they studied the dependence of the failure probability to connect
these configurations on: the length of the path, the distance function of the path
from the obstacles, and the number of nodes of the probabilistic roadmap
constructed. The probability of placing random configurations inside the passage
and connecting them by straight-line paths is small. Kavraki and Latombe 1998
proposed a randomized method, which has been successfully applied for solving
path-planning problem for robots with 3 to 6 degrees of freedom operating in
known static environments. Boor et al. 1999 introduced a Gaussian non-uniform
sampling strategy in order to create a higher density of nodes near the boundary of
the Cp. Another approach, proposed by Wilmarth et al. 1999 sample the
generalized Voronoi diagram of Cy, by retracting randomly sampled configurations
using approximate values of clearance and penetration depth. Siméon et al. 2000

suggested a PRM that computes visibility roadmaps, which defined with two
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classes of nodes: the guards and connectors. Collision-free samples are kept as a
new guard node when they cannot be connected to the current roadmap or as a

new connector if they improve the connectivity of the roadmap.

A hybrid approach was considered by Caselli and Reggiani 2000, which
utilized a potential function (similar to RPP) on queries, but also saved
information from past attempts in a graph to aid future queries in the same
environment. Comparing with RPP, the performance advantage exhibited by

ERPP is strictly due to the learning component of the experience-based planner.

Wu 1996 developed path-planning algorithm, namely, the obstacle-based
probabilistic roadmap method (OBPRM) for robots with many degrees of
freedom. The main novelty of his approach was a new method for generating
roadmap candidate points randomly distributed on or near the surface of each C,.
Amato et al. 1998 described and evaluated several strategies for node generation
and proposed a multi-stage connection strategy for OBPRM in cluttered three-

dimensional workspaces.

The attractiveness of randomized path planners stems from their
applicability to virtually any type of robots. Barraquand et al. 1997 introduced a
unifying view of these planners. An estimate is given for the probability that the
roadmap planner can find a path between two given configurations, assuming that
a path of certain clearance exists. In addition, they have analyzed the probabilistic
completeness of variants of the roadmap planners under the visibility volume and
the path clearance assumptions. In each case, they have established a relation
between the probability that the planner finds a path, when one exists, and its

running time.

Other method, described by Hsu et al. 1997, build two trees rooted at the

initial and goal configurations respectively. The trees are expanded by generating
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new nodes randomly near the two trees, and connecting them to the trees by a
local planner. LaValle 1998 proposed a new probabilistic technique called
"Rapidly exploring Random Tree (RRT)". RRTs are suited particularly for path
planning problems that involve algebraic constraints (arising from obstacles) and
differential constraints (arising from nonholonomic and dynamics). LaValle and
Kuffner 1999 introduced an RRT-based approach to path planning that generated
and connected two RRTs in a state space, which generalizes configuration space.
Recently, Oh et al. 2007 presented an algorithm named Retrieval RRT Strategy
(RRS) which extended the RRT framework to deal with change of the task
environments. This algorithm combines a support vector machine (SVM) and RRT
and plans the robot path in the presence of the change of the surrounding
environments. They applied the algorithm on robot manipulator with 6 degrees of

freedom.

Henrich et al. 1998 showed a heuristic hierarchical search procedure for an
industrial robot with sex degrees of freedom in an on-line provided three-
dimensional workspace to solve the path-planning problem. This search procedure
based on the combination of multiple neighboring hypercubes resulting in step-

sizes in free areas, while maintaining small steps in the vicinity of obstacles.

Helguera and Zeghloul 2000 addressed the collision-free path-planning
problem for manipulators based on a local approach. The task was defined as a
combination of two displacements. The first one brings the robot closer to the goal
configuration and the second one enables the robot to avoid the local minima.
However, a zigzagging phenomenon appears in some heavy cluttered
environments. To avoid this situation, a graph based on the local geometry of the
environment is constructed and an 4 * search is performed in order to find a new
deadlock free position. Tests and heavy cluttered environments were successfully

performed.
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Rubio 2006 introduced in his thesis a sequential and simultaneous
algorithms based on adjacent configurations to obtain a sequence of path
configurations. Rubio et al. 2009a presented an approach in which the search of
the path is made in the state space of the robotic system, and it makes use of the
information generated about the characteristics of the process, introducing graph
techniques for branching. The method poses an optimization problem that aims at

minimizing the distance traveled by the significant points of the robot.

1.2.1. Classical Path Planning Approaches

There are a large number of methods for solving the basic path-planning
problem. Some are applicable to a wide variety of path planning problems,
whereas others have a limited applicability. The methods that will be treated in
this section are based on few different general approaches: roadmap, cell
decomposition, and potential field. Roadmap and cell decomposition approaches
differ in the connectivity graphs constructed and their representations, while the
potential field approach does not build connectivity graph explicitly. Instead, it
constructs a potential function for which the gradient guides the robot to the goal.
Roadmap and cell decomposition methods are global methods, while the potential

field approach is local one.

1.2.1.1. Roadmap Approach

The roadmap approach consists of capturing the connectivity of the robot’s
free space Crin a network of one-dimensional curves. Once a roadmap R has been
constructed, it is used as a set of standardized paths. Path planning is thus reduced
to connect the initial and goal configurations to points in R and searching R for a

path between these points, Latombe 1991. The constructed path, if any, is the
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concatenation of three sub-paths: a sub-path connecting the initial configuration to
the roadmap, a sub-path contained in the roadmap, and a sub-path connecting the
roadmap to the goal configuration. However, a good roadmap has the property that
there is a collision-free path in the space between two configurations if and only if
there is a collision-free path using only the curves represented in R. Algorithms

that produce such roadmaps are clearly complete "exact".

A various sorts of roadmaps method has been produced based on different
principles; visibility graphs, Voronoi diagrams, freeway nets, silhouettes. All of

these roadmaps have a corresponding graph representation.

e Visibility Graph Method

This method is one of the earliest path-planning methods, Nilsson 1969. It
can produce shortest paths in two-dimensional configuration spaces with
polygonal obstacles. The principle of the visibility graph method is to construct a
semi-free path as a simple polygonal line connecting the initial configuration C' to
the goal configuration C/ through vertices of C,, Latombe 1991. The visibility
graph is the undirected graph G. The nodes of G are C', C, and the vertices of C,.
The links of G are line segments, which connecting two nodes without intersecting
the C, region, see Figure (1.1). Once such G obtained, the shortest path can be
searched using algorithms such as 4* algorithm or Dijkstra's algorithm, Dijkstra
1959. The time complexity of this algorithm is O(x’), where n is the total number
of vertices of C,, Lozano-Pérez and Wesley 1979. Later, more efficient algorithms
have been proposed with time complexity O(°), e.g. see Welzl 1985, Asano et al.
1986. Ghosh and Mount 1987 gave an output sensitive algorithm that takes O(k +
n log n) time, where k is the number of edges in visibility graph. However,
visibility graph produces paths that graze the obstacles and thus bring the robot
dangerously close to the obstacles, which is undesirable in practice. For depth

knowledge leaders should refer to Latombe 1991, Choset et al. 2005.
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Figure 1.1: Visibility Graph Example, Latombe 1991.
e Voronoi Diagrams

As mentioned before, O'Dunlaing and Yap 1982 introduced retraction as a
new theoretical approach for path-planning. This method consists of defining a
continuous function of C; onto a one-dimensional subset of itself, the roadmap,
such that the restriction of this function to this subset is the identity map. In a
three-dimensional C; is retracted firstly onto a two-dimensional variant of the
Voronoi diagram. In a two-dimensional configuration space, C; is typically
retracted on its Voronoi diagram. This diagram is the set of all the free
configurations whose minimal distance to the C, region, see Figure (1.2). Choset
and Burdick 1996 described the Hierarchal Generalized Voronoi Graph (HVGYV),
which can be applied to higher dimensional workspaces. In Voronoi diagram, the
robot stays as far away as possible from the obstacles, which is an advantage over
the visibility graph approach. Both algorithms are complete for two-dimensional
polygonal configuration spaces, Gonzalez-Bafios et al. 2006. For more details,

leaders should back to Latombe 1991, Choset et al. 2005.
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Figure 1.2: Voronoi Diagram Example, Latombe 1991.
e Freeway Method

The freeway was suggested by Brooks 1983a as a method of path planning
for manipulators with 5 or 6 DOF. His algorithm applies to a polygonal robot
translating and rotating among polygonal obstacles. The algorithm finds obstacles
that face each other and generates a freeway to passing between them. This path
segment is a generalized cylinder. This freeway may be described as overlapping
generalized cones; it is essentially composed of straight lines with left and right
free-space width functions, which could easily be inverted. A generalized cone is
obtained by sweeping a two-dimensional cross section along a curve in space,

called a spine, and deforming it according to a sweeping rule.

e Silhouette Method

It is the principle of a general roadmap method developed by Canny 1988.
The Silhouette algorithm has many positive aspects; it is complete and it is not
restricted to systems with few degrees of freedom, McHenry 1998. This method
solves the basic motion-planning problem in time singly exponential in the
dimension of the configuration space. Moreover, it supposes only that the
obstacles are described as a semi-algebraic set. Roughly, it consists of constructing

the silhouette of the robot’s free space when it is viewed from a point at infinity,
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and adding some curve segments linking critical points of the silhouette to other
curve segments of the silhouette. The silhouette and the linking curves form the

roadmap that is subsequently searched for a path.

1.2.1.2. Cell Decomposition

Cell decomposition methods would be the motion planning methods that
have been the most extensively studied so far. They consist of decomposing the
robot’s free space into simple regions, called cells, such that a path between any
two configurations in a cell can be easily generated. A non-directed connectivity
graph representing the adjacency relation between the cells is then constructed and
searched. Its nodes are the cells extracted from the free space and two nodes are
connected by a link if and only if the two corresponding cells are adjacent. The
outcome of the search is a sequence of cells called a channel. A continuous free

path can be computed from this sequence.

Cell decomposition methods can be categorized into exact and approximate

methods:

o Exact cell decomposition methods decompose the free space into cells
whose union is exactly the free space. Many exacts approaches have been
developed for low dimensional workspace and with polygonal
representations of the robot and obstacles, see Figure (1.3). Schwartz and
Sharir 1983a described exact cell methods for decomposing the free space
of a robot modeled as a polygon. Avnaim et al. 1988 developed a practical
method where only the boundary of the free space is decomposed.
Barbehenn and Hutchinson 1995 adopted a critical curve based exact cell
decomposition of Schwartz and Sharir 1983a as their basic representation

and developed the only truly incremental path planning system. Sleumer
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and Tschichold-Giirman 1999 introduced a method for generating a map
consisting of connectivity graph and information about the walls of a

building that represent the environment of a mobile robot.

Figure 1.3: Exact Cell Decomposition, Latombe 1991.

e Approximate cell decomposition methods produce cells of predefined
shape whose union is strictly included in the free space. The boundary of a
cell does not characterize a discontinuity of some sort and has no physical
meaning. Approximate cell decomposition approach introduced by
Lozano-Pérez 1981, he used a single simple shape for all cells. Brooks and
Lozano-Pérez 1983 were the first introduced hierarchal approximate cell
decomposition. Furthermore, they divided the configuration space into
rectangloids cells with edges parallel to the axis of the space. Cells are
classified as empty or full depending on whether they lie entirely outside

or inside the obstacles. If there are interior points both inside and outside
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of configuration obstacles, they are labeled mixed, for more knowledge
leader can refer also to Donald 1984 and Zhu and Latombe 1990. In
addition, Latombe 1991 stated that the approximate cell decomposition
methods are resolution complete; they can find a path if one exists
provided the resolution parameters are selected small enough, whereas

exact cell decomposition methods are complete.

1.2.1.3. Potential Field

The Artificial Potential Fields general heuristic approach offers a metaphor
based on the physical phenomenon of potential fields. The potential field metaphor
has been employed throughout the field of artificial intelligence as a problem

solving approach, enjoying particular success in neural networks.

The metaphor suggests that if a problem can be modeled by a function that
assigns a value to each state configuration (position) in a continuous state space
based on its usefulness, then the optimally useful state configuration can be found

by minimizing the value of the function.

Potential field was originally developed by Khatib 1986 as an on-line
collision avoidance approach, applicable when the robot does not have a prior
model of the obstacles, but senses them during motion execution. The idea

underlying potential field can be combined with graph searching techniques.

In this method, the robot represented as a point in configuration space; is a
particle moving under the influence of an artificial potential produced by the goal
configuration and the C-obstacles. If the robot is not a point, the total potential on
the robot is computed by adding the potential values on a set of points sampled

from the surface of the robot. Typically, the C-obstacles potential constructed
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firstly, producing a repulsive force (has a high value on the obstacles and
decreases monotonically as the distance from the obstacle increases) which pushes
the robot away from them. While, the goal configuration potential generates an
attractive force which pulls the robot toward the goal. The negated gradient of the
total potential is treated as an artificial force applied to the robot. At every
configuration, the direction of this force is considered the most promising
direction of motion. The benefit of this method of being fast, but is incomplete
because of the presence of local-minimum, which occurred when the attractive and
repulsive forces are equals. As mentioned before, many authors designed different
potential functions to lower the number and depth of the local-minimum, e.g.,
Chuang and Ahuja 1991 introduced the Newtonian potential function to plane a
safe and smooth path with local-minimum-free of an object by minimizing the
potential function locally for obstacle avoidance. In this algorithm, a global
planner identifies narrow bottlenecks in the free space by computing minimum-
distance links between obstacles. A collision-free path in each of these regions is
computed using the potential field. These paths are connected to yield a solution.
For a survey of related researches please see also Latombe 1991, Hwang and

Ahuja 1992a.

1.2.2. Probabilistic Path Planning Approaches:

For high-dimensional path planning problems, it is computationally too
expensive to calculate an explicit representation of the configuration space.
Probabilistic path planning techniques have achieved substantial attention
throughout the last decade, as they are capable of solving high-dimensional
problems in acceptable execution times. As no explicit representation of
configuration space exists, probabilistic methods invoke a binary collision checker

to test whether a specific configuration is feasible. The three methods that attracted
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most attention during the last years are Randomized Path Planner (RPP),
Probabilistic Roadmap Method (PRM) and Rapidly-exploring Random Trees
(RRT). All are probabilistically complete.

1.2.2.1. Randomized Path Planner (RPP)

As mentioned above, Randomized Path Planner (RPP) developed by
Barraquand and Latombe 1990, 1991 considered as one of the first randomized
path planning technique, that combines gradient descent on the potential with a
random motion to escape local minimum in a potential field. The planner is
probabilistically resolution complete, this means that the probability of finding a
path (if there exists one) approaches 1.0 if the algorithm running time is not
limited, Barraquand et al. 1992, Lamiraux and Laumond 1996. RPP leaves the
start configuration with gradient descent, and if it terminates at a spurious local
minima rather than the intended goal configuration, a random walk of some length
is started from the local minimum. Once a lower potential value is found or the
length is attained, a new gradient descent towards the goal is attempted. If no
lower potential can be found after a given number of descent and random walk
iterations, a backtracking move to some previous configuration on a random walk
segment of the current solution candidate is executed. The process is iterated from
that configuration. RPP does not require any particular type of potential or any
potential at all, but it can be guided by the distance to goal if the distance metric is
defined to be infinite at configurations belonging to the non-free space. An

analysis of this (RPP) planner is initiated by Lamiraux and Laumond 1996.
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1.2.2.2. The probabilistic Roadmap Method (RPM)

Probabilistic roadmap method consists of sampling the configuration space
at random and connecting the samples in free space by free-collision local paths
(usually straight paths), Kavraki et al. 1996. Unlike the roadmap method, the
nodes of the PRM are free configurations, sampled randomly under a suitable
probability distribution. PRM consist of two phases: a learning phase and a query
phase. In the learning phase (also called construction phase or pre-processing
phase in the literature), a roadmap is built by randomly sampling the configuration
space. Those samples that correspond to collision-free configurations form the
vertices of the roadmap. Neighboring vertices are then connected by edges if all
states along these edges also are collision-free. In the query phase, the initial and
the goal state are connected to two nodes in the random network, with paths that
are feasible for the robot. Then it is searched for a sequence of path connecting
these nodes. Concatenation of the successive path segments transforms this
sequence, if one has been found, into a feasible path for the robot. Any standard
smoothing algorithm can be used to improve the path, Kavraki 1995. Experiments
with PRM planners have been quiet successful, showing that they are both fast and
reliable with many degrees of freedom robots, Latombe 1999. In addition, it can
handle high-dimensional configuration spaces efficiently. Path non-existence
cannot be proven using PRM, which considered a weaker completeness result: if a
path exists then the learning phase of PRM will eventually compute a roadmap

that finds it, Kavraki et al. 1996, Kavraki et al. 1998a, Kavraki et al. 1998b.

Bohlin and Kavraki 2000 introduced a single query variant called Lazy
PRM. In this approach, the roadmap validation is postponed. The roadmap is built
not in the collision-free configuration space Cg but in the whole configuration
space C;. First, after a path has been found in the query phase, this path is checked

whether it is feasible or not. Thereby, the number of collision checks needed is
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reduced drastically, making Lazy PRM favorable especially if collision checking
is very costly. If no path could be found, the roadmap has to be extended.

For more information about probabilistic roadmap leaders should back to
Kavraki and Latombe 1994a, Amato and Wu 1996, Barraquand et al. 1997, Bohlin
and Kavraki 2000, Choset et al. 2005.

1.2.2.3. Obstacle-Based Probabilistic Roadmap Method (OBPRM)

Obstacle-Based Probabilistic Roadmap Method (OBPRM) firstly developed
by Amato and Wu 1996, Wu 1996. The general approach of this algorithm follows
traditional roadmap methods: during pre-processing a graph, or roadmap, is built
in C;. Planning consist of connecting the initial and goal configurations to the
roadmap, and then finding a path in the roadmap between these two connection
points. This approach generates candidate points randomly distributed in the
surface of C,. High quality roadmaps can be obtained using this approach even

when the configuration space is crowded.

1.2.2.4. Rapidly-exploring Random Trees (RRT)

Another probabilistic algorithm is Rapidly-exploring Random Trees (RRT),
which developed as a novelty by LaValle 1998. RRT is a data structure and
algorithm that is designed for efficiently searching non-convex high-dimensional
spaces. RRTs are constructed incrementally in a way that quickly reduces the
expected distance of a randomly chosen point to the tree. RRTs are particularly
suited for path planning problems that involve obstacles and differential
constraints (nonholonomic or kinodynamic). RRTs can be considered as a
technique for generating open-loop trajectories for nonlinear systems with state

constraints. Usually, an RRT alone is insufficient to solve a planning problem.
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Thus, it can be considered as a component that can be incorporated into the

development of a variety of different planning algorithms.

1.3. TRAJECTORY PLANNING: STATE OF THE ART

Some authors use trajectory planning as a synonym for path planning, but
this is not accurate. Path planning is restricted to the geometric aspects of the
motion. The only constraints that can be taken into account are time-independent
constraints such as stationary obstacles and kinematic constraints. From the other
point of view, trajectory planning with its time dimension permits to take into
account time dependent constraints such as moving obstacles and the dynamics
constraints of the robot, i.e. the constraints imposed by the dynamics of the robot
and the capabilities of its actuators. In other words, trajectory planning consists of
creating a detailed specification of the motion of a manipulator that will cause it to
proceed from an initial position to a goal position and usually involves some
specification of the time parameters of the path (a sequence of positions, velocities
and accelerations). As the trajectory is executed, the tip of the end effector traces a
curve in space and changes its orientation. This curve is called the path of the
trajectory. The curve traced by the sequence of orientations is sometimes called
the rotation curve. However, since an infinite number of solutions exist to move
from one point to another, a suitable minimum-time trajectory must be found to

achieve high-productivity in a particular application.

The resolution of efficient trajectory planning problem with prevention of
collisions for robots in complex environments requires computationally costly
algorithms that prevent their industrial application. Mainly, these algorithms act as

sequential form, so that in the first place the path is obtained and subsequently the
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trajectory is adjusted, remaining this seriously conditioned by the result of the first
phase where the criteria of optimality associated to dynamic parameters cannot be

utilized.

Actually, there are two approaches dealing with trajectory planning problem
for a dynamic system. The first one called decoupled or indirect approach, which
includes first seeking a path in the configuration space and then finding a time
optimal time scaling for the path subjected to the dynamic constraints of the
manipulator. The second one named direct or global approach, where the search
takes place in the system’s state space. This approach involves optimal control,

numerical optimization, and grid-based searches.

One of the most important issues in trajectory planning for industrial
manipulators is increasing the productivity. Increase the productivity done in the
way that instead of increasing actuator size and power, which leads to increase the
inertia of the actuators themselves, cost, and power consumption of the lager
actuators, minimize the trajectory time needed to perform a given task, Bobrow et

al. 1985.

Generally, manipulator trajectories can be planned either in joint space
which directly specifying the time evolution of the joint angles, or in Cartesian
space which deals with the position and orientation of the end frame. In Cartesian
space, calculated values must still be converted to joint values through inverse
kinematic equations, which is a very expensive computational process, while in
joint space, generated values relate directly to joint values. In joint space, the
geometric problems with Cartesian space paths related to workspace and

singularity can be avoided.

The first solution to the problem of minimum time planning between given

end points for a manipulator introduced by Kahn and Roth 1971. An
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approximation scheme based on the linearization of the robot dynamics was
proposed to compute the optimal trajectories. The manipulator consisted of three-
links serial mechanism with constant limits on the torques. This method is
however effective only when the system motion is confined to a small region near

the terminal configuration where the linearity assumption is valid.

The research did not attract much attention until early 80s. During the
decade of 80s, many researchers have started to solve the time optimal control
trajectories problem for serial chain robotic manipulators. The approaches to solve
this problem can be classified into tow groups: the standard optimal control
theoretical approach and non-standard approximation approaches such as search
techniques from artificial intelligence and nonlinear parameter optimization

methods.

Hollerbach 1983 outlined an algorithm that finds a uniform time-scaling law
of a trajectory to make it feasible given actuator torques. He also showed that it
might be necessary to speed up a trajectory to make it dynamically feasible.
Hollerbach leaded to a formulation where the time scaling factors are linear
variables. With time-scaling algorithms in hand, the problem of finding a collision
free trajectory for n-joint manipulator in its 2n-dimensional state space can be
decoupled into the computationally simpler problem of planning paths in the n-
dimensional configuration space followed by time optimal time scaling according
to the manipulator dynamics. Shiller and Dubowsky 1988 used the idea of
decoupling to find the global time optimal trajectories for a manipulator by
considering the time optimal time scaling of a large set of paths. After the first set
of paths is selected, each path is smoothed with cubic splines. Kieffer et al. 1997
presented a nearly time optimal path tracking control for non-redundant robotic
manipulators using online trajectory time-scaling laws and dynamics. Akella and

Peng 2004 exploited the time-scaling law identified by Hollerbach, which
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decouples the path and timing along the path, to generate time-warped trajectories

to coordinate multiple manipulators.

The first formalization of the problem of finding the optimal curve
interpolating a sequence of nodes in the joint space, done by Lin et al. 1983. They
proposed cubic (spline) polynomial functions for a trajectory planning where the
total traveling time is minimized under kinematic constraints on joint velocities,
accelerations, and jerks. Cubic polynomials are widely used for interpolation since
they prevent the large oscillations of the trajectory, which can result with higher-
order polynomials. Many years later, Angeles et al. 1988 proposed an alternative
approach to trajectory planning which is also based on the concept of spline
functions, but in these cases, no equation solving is required. The trajectory is

synthesized from the scaling of a suitably normalized spline.

Thompson and Patel 1987 developed a procedure using B-splines for
constructing robot trajectories. The robot motion was specified by a sequence of
positions and orientations knots of the end-effector. B-splines were used to fit the
sequence of joint displacements for each joint. Wang and Horng 1990 used the
same algorithm presented by Lin et al. 1983, but the trajectories are expressed by
means of cubic B-splines. Thompson algorithm and Wang and Horng algorithm
had been used to generate the constrained minimum time joint trajectories for
Puma 560. Bartels et al. 1987 stated in their book that B-spline polynomials
provide local control of the joint trajectory. Chen 1991 had applied uniform cubic
B-splines to compute point-to-point minimum time trajectories problem for robotic
manipulators subject to state and control constraints. Jamhour and Andre 1996
modified Lin algorithm, so that it can deal with dynamic constraints and with
general type objective functions. Steffen and Samarago 1996 used polynomial
functions to represent the path between two adjacent trajectory points in the joint

space. Continuity conditions to guarantee a smooth motion for the manipulator are
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used to spline lower degree polynomial together. Angeles 1997 proposes
trajectories with higher-order polynomials that allow the definition of intermediate
coordinates in the Cartesian space, these intermediate coordinates lie between the

initial and the final position, that are determinate in order to avoid collision.

The planners constructed to obtain optimum trajectories with respect to the
execution time has been modeled in Kim and Shin 1985 developed a minimum
time trajectory in joint space considering the manipulator dynamics and subjected
to torque constraints. The trajectory was formed of a series of straight lines with
specified path deviation at the corner points. By deriving bounds on the joint space
acceleration from the manipulator torque limits based on a heuristic
approximation, the problem was divided into a set of one-dimensional
optimization problems, which could easily be solved. Bobrow et al. 1985, Shin
and McKay 1985 independently derived similar, and much more efficient,
algorithms for determining the time-optimal manipulator trajectory along a given
path. The algorithms consider full arm dynamics and actuator torque limits.
Subsequently, a computational enhancement to the algorithm was reported by
Pfeiffer and Johanni 1987, Slotine and Yang 1989. Rajan 1985 characterized the
trajectory using splines and computed the minimum time trajectory of two degrees
of freedom manipulator arm based on the approach proposed by Bobrow et al.
1985. Their solution is found by applying a different algorithm based on dynamic
programming. Shin and McKay 1986 employed a dynamic programming
technique to find the minimum-time trajectories along a prescribed geometric path
under the actuator constraints such as torques, assuming the robot full dynamics
are available. Many years later, Kieffer et al. 1997 proposed two schemes for
adapting time optimal trajectory planning algorithms for robots under computed

torque control.
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When obstacles are moving, the planner must compute a trajectory
parameterized by time, instead of simply a geometric path. This problem has been
proven to be computationally difficult even for robots with few DOFs by Reif and
Sharir 1985. To coordinate the motion of multiple objects Erdmann and Lozano-
Pérez 1986 introduced the notion of configurationxtime space, which is later
extended to statex time space by Fraichard 1993, where a state encodes a robot’s
configuration and velocity, to plan robot motions with both moving obstacles and
kinodynamic constraints. Two months later, Fraichard and Laugier 1993
developed an approach addresses dynamic trajectory planning, which considered
as an extension to the path-velocity decomposition proposed by Kant and Zucker
1986. Fraichard and Laugier introduced the concept of adjacent paths used within
a novel planning schema operated in two stages: path planning, a set of collision
free adjacent paths were computed considering kinematic constraints. Then,
trajectory planning, determine the motion of the robot along and between these
paths to avoid the moving obstacles considering dynamic constraints of the robot.
The reader can refer to Fraichard 1993, Fiorini and Shiller 1995, 1996, Fraichard
1998, 1999, Kuffner and Latombe 2000, Hsu et al. 2002 for more details about the

trajectory planning of robots moving in dynamic environments.

Fortune et al. 1986 described a global algorithm for finding collision-free
trajectories for two planner manipulators, with one prismatic joint and one
revolute joint, by characterizing the combinatorial structure of the configuration
space of the two arms. In the same year, Erdmann and Lozano-Pérez 1986
constructed the configuration space-time for several planner manipulators , each
with two revolute joints. The trajectories of the manipulators are planned one at a
time, using the swept volume, in space/time, of the previous trajectories as
obstacles. In the same time, also, Geering et al. 1986 proposed an algorithm to

obtain time optimal trajectories for several two links robot arms by solving the
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resultant nonlinear two point boundary value problem via the shooting and a

parameter optimization method.

O'Dunlaing 1986 presented an exact polynomial time algorithm for planning
the motion subjected to acceleration constraints. Canny et al. 1988 constructed a
polynomial time algorithm to compute a near optimal trajectory on nonlinear grid
in the phase space. Canny et al. 1990 developed an exact exponential-time
algorithm for the time-optimal trajectory of a point robot, with velocity and

acceleration bounds, in two dimensions.

Chen and Vidyasagar 1988 developed an optimal trajectory planner for
planar n-link manipulators. A grid of points in the C-space is used to detect
collisions with obstacles. Collision points are occurred in groups, and
approximated by ellipses. The equations of these ellipses are then used as
constraints in the optimal-control formulation, which is solved numerically. The
main weakness of this algorithm is the large number of elliptical constraints
needed to approximate configuration obstacles for a cluttered environment. A
similar method is used to compute time-optimal trajectories of a manipulator that
avoids the collision between the manipulator tip and obstacles introduced by
Eltimsahy and Yang 1988. O'Donnell and Lozano-Pérez 1989 proposed a
trajectory-scheduling algorithm for two manipulators synchronously operating in

common workspace.

It has been shown by Chen and Desrochers 1990 that structure of the
minimum time control (MTC) law for m-link robotic manipulators required that at
least on of the actuators is always in saturation. Their numerical algorithm
converts the original problem, possibly a partially singular one, into a totally
nonsingular optimal control problem by introducing a perturbed energy term in the

performance index.
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McCarthy and Bobrow 1992 computed the number of actuators that must be
saturated by calculating the acceleration bounds using linear programming. They
formulated the equations for manipulators with arbitrary kinematic configuration
and showed that the limits on the internal forces can be handled in the same way

as the limits on the actuator torques.

Cao et al. 1994 optimized a piecewise cubic polynomial spline to obtain a

smooth and time-optimal constrained motion.

Constantinescu and Croft 2000 proposed a method for calculating smooth
and time optimal motion for path-constrained trajectories (SPCTOM) subjected to
actuator torque and torque rate limits. This algorithm achieved an implicit jerk
limitation by limiting the drive force rate, leading to reduced strain, improved
tracking accuracy and speed. On the other hand, the algorithm proposed by Pietsch
et al. 2003, Pietsch et al. 2005 limited the trajectory jerk explicitly while the drive

force rate is implicitly limited.

Piazzi and Visioli 1997a introduced a deterministic global optimization
technique based on an interval algorithm to obtain a global minimum time
trajectory subject to constraint on joint accelerations and jerks. In the same year,
these authors, Piazzi and Visioli 1997b proposed also a global algorithm to obtain
minimum time trajectory planning of an m-joint industrial robot by means of a
newly devised outer cutting plane algorithm. He used piecewise cubic polynomials
in the joint space. Piazzi and Visioli 1997c, 2000 developed an algorithm called
interval analysis to globally minimize the maximum absolute value of the jerk
along a trajectory using minimax approach. Abdel-Malek et al. 2006 used a
minimum-jerk 3D model to obtain the desired trajectory in Cartesian coordinates.
In addition, a direct optimization approach was used to predict each joint’s profile
(a spline curve). The optimization problem has four cost function terms: (1) Joint

displacement function that evaluated displacement of each joint away from its
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neutral position. (2) Inconsistency function, which is the joint rate change (first
derivative) and it’s predicted overall trend from the initial to the final target point.
(3) The non-smoothness function of the trajectory, which is the second derivative
of the joint trajectory. (4) The non-continuity function consists of the amplitudes
of joint angle rates at the initial and final target points, in order to emphasize
smooth starting and ending conditions. They presented as an application example a

high redundant upper-body modeling with 15 degrees of freedom.

Gasparetto and Zanotto 2007 stated that in the case of trajectory planning
along a given path, all jerk-minimization algorithms that could be found consider
an execution time set a priori and do not accept any kinematic constraint. On the
other hand, the trajectory planning technique proposed by him did not require the
execution time to be imposed; moreover, kinematic constraints are taken into
account when generating the optimal trajectory, and they defined on the robot
motion before running the algorithm. Such constraints are expressed as upper
bounds on the absolute values of velocity, acceleration and jerk for all robot joints,
so that any physical limitation of the real manipulator can be taken into account

when planning its trajectory.

LaValle and Hutchinson 1996 considered multiple robots with independent
goals. This problem was treated before by Buckley 1989 and Bien and Lee 1992.
LaValle and Hutchinson developed performance measures parameters and
proposed algorithms optimizing a scalarizing function, which is a weighted

average of individual performance functions.

Saramago and Steffen 1998 had formulated off-line joint space trajectories
to optimize traveling time and minimize mechanical energy of the actuators (as
multi-objective optimization) using cubic spline function subjected to kinematic
constraints on the maximum value of velocity, acceleration, and jerk. Saramago

and Steffen 1999 proposed an approach to the solution of moving a robot



- 36 - Trajectory Planning for Industrial Robots Using Genetic Algorithms

manipulator with minimum cost along a specified geometric path in the presence
of obstacles. The optimal traveling time and the minimum mechanical energy of
the actuators are considered together to build a multi-objective function. They
applied that approach a two degrees of freedom manipulator arm. Saramago and
Junior 2000 presented a general methodology for the off-line three-dimensional
optimal trajectory planning of robot manipulators in the presence of moving
obstacles. The obstacles are protected by spherical or hyper-spherical security
zones, which are never penetrated by the end-effector. The end-effector is
represented in the model as a single point. They also considered all second order
terms were included in the dynamic equations of motion and friction. Saramago
and Steffen 2001 introduced two different strategies to optimize the trajectory-
planning problem of robot manipulators in the presence of static obstacles. The
first strategy, the trajectory must pass through a given number of points. The
second one, the trajectory passes directly from the initial point to the final one.
The trajectories were defined using spline functions, and were obtained through
off-line computation for on-line operation. Sequential unconstrained minimization

techniques (SUMT) have been used for the optimization.

Choi et al. 2000 had discussed the problem of the minimum time trajectories
and the control strategy to drive the robots along the trajectories when the exact
dynamics equations of robots are unavailable (because of the difficulty for
obtaining accurate dynamic equations in some cases and the kinematic approaches
might be more appropriate than the dynamic ones). In each time interval, the
trajectory is optimized by means of the use of evolution strategy so that the total
traveling time is minimized under the kinematic constraints. The trajectory
between the knot points, specified to describe the desired path, is built by cubic

polynomials and parameterized by time intervals between the knot points.
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Furukawa 2002 proposed an approach to search for a minimum time
suboptimal trajectory for a general discrete nonlinear system. In his approach the
relation between the input control and the time are partitioned into piecewise
constant function. This function and time step are searched then by a general

purpose nonlinear programming optimization method.

Valero et al. 2006 proposed a trajectory planner approach for industrial
robots operating in the presence of obstacles. The dynamic constraints related to
the characteristics of the robot when it evaluated the motion between
configurations were considered. Valero and his research group presented a mixed
planner (according to Tournassoud 1988 classifications) which avoids local
minimum problems and considering the dynamics behavior of the robot, to
generate trajectories in two stages: obtaining a discrete space of feasible
configurations between two feasible ones (initial and final configurations), and
then, obtain the optimal and feasible trajectory. The configuration space
generation based on the concept of adjacent configuration developed by Valero et
al. 1997, Valero et al. 2000 which enables to consider the generation of free-
collision configurations as an optimization problem. They validated the
functionality of the algorithm by applying it on robot Puma 560 with six degrees
of freedom. The robot system and the workspace were modeled using Cartesian
coordinates. Abu-Dakka et al. 2007 introduced an algorithm to optimize the
trajectory between adjacent configurations constructing a discrete space of these
configurations. This approach based on the one proposed by Valero et al. 1997,
but the difference is that the robot system was modeled using joint space

coordinates (generalized coordinates).

Rubio 2006 introduced in his thesis a simultaneous algorithm based on
adjacent configurations for trajectory planning. Rubio et al. 2009b proposed a

simultaneous direct approach for the trajectory-planning problem for industrial
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robots in environments with obstacles, where the trajectory was created gradually
as the robot moves. Their method deals with the uncertainties associated with lack
of knowledge of kinematic properties of via points since they are generated as the
algorithm evolves. One year later Rubio et al. 2010 tested the simultaneous

approach with different interpolation functions.

1.4. TRAJECTORY AND PATH PLANNING USING
GENETIC ALGORITHM: STATE OF THE ART

The growing interest for more flexible and autonomous industrial robots
leads to the need for automatic path planning and robust obstacle avoidance
algorithms. Several different procedures have been suggested as mentioned above.
Here, a history of techniques for obstacle avoidance for path planning and

trajectory planning based on Genetic Algorithm (GA) will be introduced.

The main difficulties with finding an optimum path arise from the fact that
the complexity of the system means that analytical methods may be intractable,
while enumerative search methods are overwhelmed by the size of the search
space. Enter the genetic algorithm. GAs were first introduced by Holland 1975
based search and optimization techniques have recently found increasing use in
machine learning, robot motion planning, scheduling, pattern recognition, image

sensing and many other engineering applications.

In principle, GAs are stochastic search algorithms analogous to natural
evolution based on mechanics of natural selection and natural genetics. They
combine survival of the most fitting among the string structures with randomized
yet structured information exchange to form a search algorithm with innovative

flair of natural evolution. GAs have proven their robustness and usefulness over
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other search techniques because of their unique procedures that differ from other

normal search and optimization techniques in four distinct ways:

1. GAs work with coding of a parameter set, not the parameters

themselves.

2. GAs search from a population of points, not a single point.

3. GAs use payoff (objective function) information, not derivative or

other auxiliary knowledge.
4. GAs use probabilistic transition rules, not deterministic rules.

Numerous implementations of GAs in the field of robot path and trajectory

planning have been carried out in the last decade.

Parker and Goldberg 1989 applied GAs to an inverse kinematics problem in
which a redundant robot’s maximum joint displacement in a point-to-point
positioning task was minimized. The robot had four degrees of freedom, which
allowed for an infinite number of joint solutions for arbitrary positioning of the
end-effector within the three-dimensional workspace. The robot end-effector was
assumed to be at some initial position with known initial joint angles. The world
coordinates of the desired final position of the end-effector were specified. The
fitness function combined two terms: world-positioning error at the achieved point
and joint angle displacements from the initial position. The GA was applied to find
the joint angles that would position a robot at the target location while minimizing

the largest joint displacement from the initial position.

Davidor 1991 described a novel approach to the problem of the complexity
of the optimization techniques typically used for redundancy resolution. He

applied a GA to generate and optimize robot trajectories in two-dimensional space.
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A 3-link planar (i.e. redundant) robot was used in his simulations. The start and
goal points and the path between them (i.e. a straight line in two-dimensional
space) were known. Given the triplet of joint positions (®,, ®,, ®;) “gene” and
length of each link, the end-effector’s position is uniquely determined. That is
means; each gene represents one position or arm configuration on the movement
path of the robot arm. The actual trajectories are formed by joining several arm

configurations to yield the sequence of path knot points:

{(©1, 03, 03)1(0, O3, 03),...(0}, O,, ©;3),...(0}, O, B;3),} (1.1)

where i = 1, 2, ..., n designates the order of execution according to the
ascending value. A trajectory could be found which minimized the sum of the

position errors at each of the knot points along the path.

Khoogar and Parker 1991 also examined the path-planning problem in a
two-dimensional space by developing an offline approach that used Cartesian
space, which is simpler than configuration space and does not require complex,
time-consuming mapping of the whole workspace. They also used a planar 3
degrees of freedom robot and introduced rectangular obstacles into the work
envelope. The GA was used to plan a collision free trajectory of the robot from an
arbitrary starting point to a desired goal point. The encoding method involved
specifying N incremental moves, each of which had a small finite value. In an
unusual coding scheme, the direction of the incremental joint moves for each joint
were coded with ternary numbers A = (-1, 0, 1), where -1 represents a small
rotation in the negative direction, 0 represents no move, and 1 represents a small
rotation in the positive direction. Therefore, for a three degrees of freedom robot a
set of 3*N ternary numbers can represent N successive moves all coded within a

single string:

{(A1, Mgy A3)i(A1, Az, As)a.. (A, Ag, Az);. (A1, Ay, As)n} (1.2)
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The fitness function incorporated the distance from the goal at the end of the
N moves, and a penalty if any part of the trajectory involved a collision with the
obstacle. This algorithm did not guarantee that the path would reach the goal
point; if it did not, the GA would be restarted with the final set of joint angles as
the new start point. In addition, a heuristic was involved to move the robot out of a

trapped configuration.

Shiller and Dubowsky 1991 proposed a method to solve optimal trajectory
with collision-free problem. Their method searched for a small number of
candidates of optimal trajectory in a discretized workspace. Then the trajectory
was improved using the gradient method. It is easy predicted that it takes too much

time all over the workspace.

Ahuactzin et al. 1992 introduced a GA technique to solve the inverse
kinematic problem. Moreover, they used a GA to search over a set of Manhattan
paths to find collision-free paths for planner manipulators with multiple degrees of
freedom. They apply a similar technique, coding the search space in terms of a list
of “rotate” and “move” commands for the individual joints to plan paths for
holonomic mobile robots. Many years later, this author with others extended this
work through the development of the Ariadne’s Clew algorithm, Mazer et al.
1998, which utilizes both an explore function to build a representation of
accessible space and a search function which looks for the target end state. This
algorithm proved capable of planning collision-free paths for a six degree of
freedom manipulator allowing it to avoid a separate six degrees of freedom

manipulator driven by random trajectory commands.

Zhao et al. 1992 addressed a path-planning problem for a mobile
manipulator system using genetic algorithms. Their simulation system was 3

degrees of freedom arm mounted on 2 degrees of freedom mobile base.
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Shibata and Fukuda 1993 proposed an approach for multi-agent system
coordinated motion planning by using GAs and fuzzy logic. In their approach,
each mobile robot planned its motion while considering the known environment
and using empirical knowledge for the unknown environment that included the
other robots. Each robot had a starting point in the graph under the assumption that
each robot passed a node only once or not at all. A path for a mobile robot was
encoded based about traversed nodes. These points were selected randomly at first,
while adjacent numbers must be connected with a link in the graph. Since order
based strings were used, specialized operations of crossover and mutation were

implemented.

In another interesting application, Ram et al. 1994 applied GAs to the
learning of local robot navigation behaviors for a reactive control system. The
method was applied to a mobile robot simulation in a two-dimensional world with
stationary obstacles and known start and goal positions. They employed GAs to
optimize the control parameters of the robot navigation in the system. Three
motion primitives (move to goal, avoid obstacle, and noise) were embedded in the
robot controller. A GA was used to determine optimum combinations of these
primitives for three different global behaviors of the mobile robots (safe, fast, and
direct) in three environments of varying degrees of obstacle ‘clutter’. A safe robot
was optimized to avoid hitting obstacles. While both avoid collisions, fast robots

prioritized speed whereas direct robots preferred shortest trips.

Toogood et al. 1995 a GA was used to find a collision-free trajectories for
3R (three degrees of freedom revolute manipulator) robot with specific start and
goal joint configurations, among known stationary obstacles. A local XY-
coordinate system was defined on each search plane with the origin located at the
node point and the local X-axis parallel to the ®, - ®, plane. The parameters X and
Y on each search plane are each coded as an M-bit binary number (typically, M
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was in the range of 4 to 8). Parameters that describe the entire trajectory are then

concatenated into a 2* N*M binary string for processing by the GA as:

{(X, 1), (Xo, ), .., (X, Yi)} (1.3)

Thus, all three angles (®,, ®,, ®;) at node i are able to be defined by any
point generated on the search plane through the mapping (X;, ¥;) — (0, ©,, ©3),
which reduce the number of variables from 3 to 2 to describe each knot point. In

this way, the entire path was given by:

S{(04, Oy, B3)1, (0, O3, B3),, ...(O1, Oy, B;3),;,...(O, O, O3)n} G (1.4)

where S and G represent the start and goal points respectively.

Shibata et al. 1995 proposed a motion planning method using a GA in order
to cut a three-dimensional work-piece using six degrees of freedom redundant
manipulator. In this case, the rotational angles of end-effector along a path are

used as the evaluation function.

Sugihara and Smith 1996 proposed a GA for three-dimensional path
planning of a mobile robot en an environment possibly with unknown obstacles
and moving obstacles, where the three-dimensional space was approximated with

grid cells in a rectangular discrete space.

Yun and Xi 1996 used GAs for optimum motion planning problem in joint
space. Yun and Xi algorithm incorporates kinematics, dynamics, and control
constraints. They used a binary string as a way to represent the variables
parameters. Each parameter is coded with / bits (genes), so the encoding form is as

follows:
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X X Xm

bl,l’bl,z""’bl,l’b2,1’b2,2""7b2,l""’b b

1D 25 O | (1.5)

where x;;i=1,..,m are parameters, bi, i is the jth bit of the i™ parameter.

This method works well only when the number of parameters is small. To verify
their algorithm, a simulation results was carried out for two and three degrees of

freedom robots.

Kubota et al. 1998 presented a hierarchical trajectory planning method for a
redundant manipulator based on a virus evolutionary genetic algorithm. Firstly,
they generate a set of configurations that are collision-free by using outputs of the
learned neural network, and then apply their virus evolutionary genetic algorithm

to refine the collision free trajectory.

Vadakkepat et al. 2000 combined GAs with the artificial potential field to
derive optimal potential field functions, introducing a new methodology named
Evolutionary Artificial Potential Field (EAPF). This is done to extend the basic
artificial potential field approach, which is efficient at finding safe paths, but not
typically optimal ones. Rather than adjusting the path explicitly, this technique
adjusts the potential functions around the goal and obstacles in order to implicitly
optimize the resulting path through the aggregate potential fields. The search space
is represented by a set of tunable values parameterizing or “shaping” the various
potential fields (multiplicative factors and powers). In this approach, the authors
used genotype structures that represent local distance and direction in contrast to
represent the whole path because of their simplicity to process and allow for faster

real-time performance, while this way may not allow the robot to reach its target.

Tian and Collins 2005 analyzed the reachable workspace of two degrees of

freedom robot and derived a condition for singularity avoidance. Afterwards, they
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applied GA method (with the property of keeping the elitists results in the current
generation to the next generation) to search for the optimal of the two degrees of
freedom robot base. The robot end-effector moves in XY plane. They encoded the

coordinates (xb, yb) of the location of the robot base into a chromosome, which is

a binary string.

1.5. OBJECTIVES

The principle objective of this thesis is to provide efficient algorithms using
genetic algorithms to solve the path planning and trajectory planning problems for
industrial robots in complex environments and making clear the difference

between them.

The proposed method has been built in a way such to be applicable to any
robotic system working in an industrial environment. Particular examples have

been developed on robot Puma 560.

In this work the kinematic and dynamics of the serial chain manipulators are
worked out. In the formulation, it is assumed that the mechanical system is formed
by rigid links interconnected with ideal revolution joints. The direct and inverse
kinematic problems have been focused on, in addition to recursive relations for
calculating the position, velocity and acceleration of each reference system
contained as a function of the generalized coordinate. The recursive Newton-Euler

for dynamic formulation has been addressed.

An efficient collision detection algorithm has been built to check the
collisions between robot's arms and obstacles in the workspace. The key here is

the way of building the obstacles by means of basic patterns.
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1.6. ORGANIZATION OF THE THESIS

This thesis is organized as follows: in Chapter 2 the formulation of the
kinematics and dynamics of the serial chain manipulator is performed for
obtaining the equations of motion of the mechanical system, particular example
Robot Puma 560. In addition, the workspace modeling is developed and the

collision detection algorithms.

Chapter 3 introduces path planning problem and an optimization technique

using genetic algorithm to find the shortest path between two given configurations

of the robot.

Meanwhile, in Chapter 4 the trajectory planning optimization is addressed.
Adjacent configuration concept has been treated and a detailed formulation has
been produced. A genetic algorithm procedure to solve the adjacent configuration
problem and trajectory-planning problem with new crossover and mutation
operators has been discussed. Finally, a genetic algorithm procedure has been
produced to solve the clamped cubic spline to obtain smooth trajectory with

continuous derivatives.

Finally, Chapter 5 contains some conclusions about the most relevant
aspects covered in this work. In addition, it provides some guidelines for future
subjects that still need more investigation in the dynamic identification and

simulation fields.



CHAPTER 2

PROBLEM MODELING

The strategy used to solve the problem requires the modeling of the robot as
a function of generalized coordinates moving in a complex workspace discretized
and constructed in Cartesian coordinates. This will facilitate the ramification
process used by the genetic algorithm procedure to construct and find the best
collision free path or trajectory in the discrete workspace between two given

configurations of the robot.

In this chapter, the kinematics and dynamics formulation of robotic system,
application example Puma 560, is defined as well as the formulation of obstacle

avoidance process.

2.1. ROBOT MODELING

The robotic system has been modeled as function of generalized coordinates
and considered as a wired model. This model consists of rigid links joined together

by the corresponding kinematic joints. Although the robot configuration has been
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modeled as a function of joint variables C(g; ), the workspace and obstacles have
been modeled in Cartesian coordinates (Section (2.4)) to facilitate the definition of
the whole collision avoidance process. To achieve that, the robot configuration

should be expressed in Cartesian coordinates.

Figure 2.1: Robot Wired Model.

The robot configuration can be expressed in Cartesian coordinates as a set
of points called significant points 7,{; (q,-) and interesting points /1-,{ (qi), see Figure

(2.1). Significant points have been modeled as a function of joint coordinates and
expressed in Cartesian coordinates to facilitate the formulation of the collision
avoidance process. The selection of these points is made based on the degrees of
freedom of the robot. These points should be as minimum as possible to define sin

ambiguity the configuration of the robot. It is important to emphasize that they do
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not constitute an independent set of coordinates. To improve the efficiency of the
collision detection algorithm, interesting points /”Li (qi) have been modeled as

function of joint coordinates and expressed in Cartesian coordinates. The

interesting points’ coordinates are obtained from the significant points and the

geometric characteristics of the robot. The robot configuration C/(g;) has been

converted to the Cartesian coordinates C’/ (y,{,,ﬂ,i) to facilitate the collision

avoidance technique.

In the Figure (2.1), an application example is shown for Puma 560 robotic

system with four significant points y; (qi): (711 , 7{ , )/3j , )Q{ ) and four interesting

2.2. KINEMATIC PROBLEM

The scope of this Section is about the kinematic position analysis of an open
chain mechanical system in a recursive way. Kinematics is part of the science of
motion that treats motion regardless of the forces that cause it. For instance, and
depending on the geometric description of the manipulator, it is necessary to find
the mathematical relations between the positions in coordinates of the workspace
and the joint variables that conform the configuration space, Lozano-Pérez 1983.
These relations denominate forward (or direct) and inverse kinematics
respectively, depending on the transformation sense. Within the science of
kinematics, the position, the velocity, the acceleration, and all higher order
derivatives of the position variables (with respect to time or any other variable(s))

can be studied.
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In this thesis, the positioning problem of the manipulator linkages will be
considered. Forward kinematics is defined as the geometrical problem to obtain
the Cartesian position and orientation of a robot’s end-effector given its joint
coordinates, see sub-Section (2.2.2). However, inverse kinematics is the opposite
problem, where a set of joint angles should be found for a given position and
orientation of the end-effector. Later, in Chapter 4, the velocities and accelerations
will be derived from the interpolating polynomial (represents the moving curve of

the end-effector) to use them in the inverse dynamic solver.

In the following sub-sections, the analytical relationship between the joint
angles and the end-effector position and orientation will be described. In order to

study them, the structure of the kinematic chain has to be considered first.

2.2.1. Coordinate System

A kinematic chain maybe thought of as a set of rigid bodies connected by
joints. These bodies are called /inks. The joints are usually rotational, but may also
be prismatic. The rotation maybe performed in three orthogonal directions depends
on the type of joint. This is called the degree of freedom (DOF) of the joint. Any
joint with n degrees of freedom may be modeled as n joints of one degree of
freedom connected with n - 1 links of zero length. Therefore, without loss of
generality, we only have to consider kinematic chain consisting entirely of joints
each having just one degree of freedom. The two ends of the kinematic chain are
called the base and the end-effector respectively. The base of the chain is fixed at

one position while the end-effector can move freely around the space.

In order to describe the kinematic chain accurately and effectively, a
convention is required. Denavit and Hartenberg 1955 proposed a matrix method

that systematically establishes coordinate systems attached to the rigid body for
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each element in the articulated chain. D-H has a 4*4 homogenous transformation
matrix representation, which represents the coordinate systems of each link/body
of the articulated chain with respect to the coordinate system of the previous one.
Thus, through a sequential transformation, the end-effector expressed in its local
coordinate system can be transformed and expressed in the global coordinate
system. In this thesis, the Modified Denavit-Hartenberg (Modified-DH) notation,
presented by Craig 2005, that defines the geometry of each link by means of four
independent parameters and defines the location of the corresponding reference
frame is used. These parameters allow the calculation of the vector between the
origin of the coordinate systems for different links and the rotation matrix between
them. Figure (2.2) shows the assignment of these parameters considering revolute

joints type. As can be seen, each link has four parameters, namely a;, o;, d;, and 6,.

Figure 2.2: Modified Denavit-Hartenberg Assignation Criteria for Link with Revolute Joint.

Depending on the type of the joint, one of them is the joint variable, or
generalized coordinate, and the other three are constants. If the joint is revolute, as
shown in the figure, then its variable is 6, whereas, for a prismatic one it is d;.

Here, the generalized coordinates “6;” will be denoted by the symbol g..
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2.2.2. Forward Kinematics

Forward kinematics is the issue to find the position and orientation of the

end-effector relative to some coordinate system given a set of joint angles. Using

the link parameters defined in the previous section, the transformation matrix "_%T

that transforms a vector in frame i - 1 to frame i can be defined.

cos(6)) —sin(6)) 0 a;
i1y | sin(6;) cos(e;)  cos(@))cos(a;,) -sinla;,)  d;sing
T=| . . 2.1)
sin(6,)sin(e;_;) cos(d;)sin(e; ;) cos(e; ;) —d;cosq;
0 0 0 1

i-1

From the transformation matrix, the position vector ’70-_1,0- and the

rotation matrix HRi that describe the relative position and orientation,

respectively between any two consecutive local reference frames can be extracted

as following,

a;
iy 0 =| dising, (2.2)
—d.cosa
cos(q;) —sin(g;) 0
HR[ = Sin(‘]i) COS(“[—I) COS(‘I[) COS(“H) - Sin(ai—l) (2.3)

sin(g;)sin(e; ;) cos(g;)sin(a; ) cos(a; )
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2.2.2.1. Application: Robot Puma 560

The methods presented in this thesis have been verified and tested over
Puma 560 robotic system. Puma 560 is a robot with six degrees of freedom and all
are rotational joints. It is shown in Figure (2.3) with link frame assignments in the

position corresponding to all joint angles equal to zero.

Figure 2.3: Some Kinematic Parameters and Frame Assignments for the Puma 560 Manipulator.

After the calculation of i_l’jo,-,l,oi and HRI-, Equations (2.2) and (2.3)

respectively, the vector ifo,.,oj denotes the position vector from the origin of the

i™ reference frame to the ;™ reference frame expressed in i reference frame.

Hence, the significant points and the interesting points can be found from the
following equation

0=  _ 0= 0, i-
00,0 = T0,,0, ¥ Ri To.p 2.4)
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whereOFOO, p» 1s the vector from the origin of the reference system attached to the

base of the robot to the significant or interesting point located in the link 7, and p is

one of the points y1, y2, 3, Y4, A1, A2, A3, and Ag.

The partial derivatives of the previous positions relative the generalized

coordinates could be obtained according to the following equation:

0—.
dp 070,p 05 o 0=

- - i O;,p
dg; 0q;

1

(2.5)

where OZi 1S a unit vector in the z-axis direction of the reference frame i

expressed in the base reference system 0, Yoshikawa 1990.

With the definitions of these points and their derivatives, it will be easy to
obtain and derive the minimum distances between each obstacle in the workspace
and the robot’s links needed for the prevention of collisions constraints. This will

be explained in details in Section (2.5).

2.2.3. Inverse Kinematics

The inverse kinematic problem is about finding the generalized coordinates
of a kinematic chain that give rise to a particular end-effector position and
orientation. This problem has been extensively studied in robotics. Since computer
based, robots are usually driven in joint space, though the objects to be
manipulated are expressed in the global coordinate system; the inverse kinematic
solution is essential in controlling the position and orientation of the end-effector
of the robot arm to reach its goals. The inverse kinematic problem is much more

difficult due to the existence of multiple algebraic solutions. There are two classes
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of solution methods for the inverse kinematics problem: closed form and
numerical. In robotics, a closed form solution is usually desired for the kinematic
chain of a robot arm rather than a numerical solution. Numerical solutions are
generally much slower than the corresponding closed form solution. The closed
form solution of a kinematic chain can be obtained by one or both of the two
solution methods: algebraic and geometric. In this thesis the algebraic method
explained in Craig 2005 will be used to solve the inverse kinematic problem for an

application Puma 560.

2.2.3.1. Application: Robot Puma 560

In this sub-section, the inverse kinematic problem for an industrial Puma
560 robot will be formulated. All the following relations are extracted from Craig
2005. Considering the joint variables (q1, ¢, ..., ¢s), the transformation matrix of
the end-effector {7} with respect to the global reference system (the base) is

represented

ni ha ns Py

7 7 Iz P,
gT =2 2 ! =01T(91) éT(‘gz) 23T(‘93) ZT(94) A;T(es) 2T(‘96)(2-6)
B Iy 3y Py

0 0 0 1
Py
where | Py | is the position vector of the end-effector of the robot with
Py

respect to frame 0,



-56 -

Trajectory Planning for Industrial Robots Using Genetic Algorithms

1 N2 N3
and | rp; Fyy 13 |is the orientation of the end-effector, where

31 13 I33

iy = aileas(caescs — 5456) = 523856 ]+ 81 (546506 + cy56) (2.7)
ra1 = 81[e23(Cacscs = 5456) = 5238506 |+ €1 (sac506 + 456 (2.8)
r31 = =8p3(CaCsCq — S456)— €235 (2.9)
Mo = 1fens(— c4es86 — 54¢6) + 5235556 )+ 51(Cacs — 54¢556) (2.10)
| [023 (_ C4CsS86 — 5406)+ $23555¢ ] —q (0406 - S4CSS6) (2.11)
rp = =S53(= c4css6 — 546 )+ Co35556 (2.12)
i3 = —¢i(Ca3cass + 523¢5) = 515455 (2.13)
ra3 = =51 (Ca3c485 + 52365 )+ €154 (2.14)
133 = 573C455 — C3Cs (2.15)
Py =cifaye, + azey3 —dysy |- dss, (2.16)
Py =35 [a202 + asCy3 — d4s23]+ dsc (2.17)

Py =—a3sy3 —apsy —dycy (2.18)
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where s; = sin(q;) & ¢; = cos(q,), i=1,2,...,6
823 = sin(qrtq3) & ¢z = cos(grtq3) and so on.

Then, the joint variables can be calculated using the following equations, as

presented by Craig 2005.
q, = Atan2(Py,, Py )— AtanZ(d3 + P} + P} —d? ) (2.19)

Note that there are two possible solutions for g, corresponding to the plus-

or-minus sign in Equation (2.19).

2 2 2 2 2 2 2
:PX+PY +Pz—az—a3 —d3 —d4

2612

A =AtanZ(a3,d4)—Atan2(KiJa? +d> —Kz) (2.21)

K (2.20)

The plus-or-minus sign in Equation (2.21) leads to two different solutions

for ¢;.

Gy = Atan2[(— a3 —a, ¢3) P, = (¢ Py +s1 P )(dy —ay 53), (2.22)
(ay s3—dy )Py —(a3+ay c3) (e Py +5y Py )]

Equation (2.22) computes four values of ¢,; according to the four possible
combinations of solutions for g; and ¢;. Then, four possible solutions for ¢, are

computed as follows

42 =923~ 93 (2.23)
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where the appropriate solution for ¢; is used when forming the difference.
As long as s5 # 0, we can solve for g4 as

q4 = AtanZ(— r13 Sl + 7'23 Cl,

(2.24)
—13 € Cp3 — 13 8] Co3 133 st)
”13(01 €3 C4 51 S4)+rz3(31 €23 €4 —€ 54)_”33(S23 04)2 —S5 (2.25)
rls(_ 1 523)+r23(_ 51 523)_r33(_ 023)205
Hence, g5 can be solved as
qs = Atan2(ss, cs) (2.26)
Finally, g can be solved as follows:
S6= —”11(01 €23 S4 =9 04)—”21(S1 €3 84 + € 04)+”31(523 S4)
Ce= ’”11[(01 €3 C4 t5 54)05 —Cy 823 55] 2.27)
+”21[(51 Cr3 €4 — € S4)Cs — 81 823 Ss]
—’”31(523 Cy C5+Cp3 55)
qs = Atan2(s,, ¢4 ) (2.28)

Because of the plus-or-minus signs appearing in Equations (2.19) and
(2.21), these equations compute four solutions. Additionally, there are four more
solutions obtained by flipping the wrist of the manipulator. For each of the four

solutions computed above, the flipped solution can be obtained by
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gy =q4 +180°,
q5s =—9s, (2.29)
qs = qs +180°

After all eight solutions have been computed, some (or even all) of them
might have to be discarded due to joint-limit violations. Of any remaining valid
solutions, usually the one closest to the present manipulator configuration is
chosen after applying the check collision algorithm over these valid solutions,

Craig 2005.

2.3. THE DYNAMIC MODEL

The scope of this section deals with the dynamics of robot manipulators.
Whereas the kinematic equations describe the motion of the robot without
consideration of the forces and torques producing the motion, the dynamic
equations clearly describe the relationship between motion and the force. The
equations of motion are important to consider in the design of robots, in simulation
and animation of robot motion, and in the design of control algorithms. The
equations of motion provide the basis for a number of computational algorithms
that are useful in mechanical design, control, and simulation. There are two main

problems in robot dynamics:

e Forward dynamics problem: consist in finding the characteristics of
motion that the robot acquire as a consequence of given actions (the forces

are given and the motion is the result). It is used mainly in simulation.

e Inverse dynamics problem (IDP): consist in computing the generalized

forces from a specification of the manipulator’s trajectory (position,
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velocity, acceleration). It has a variety of uses, such as motion control
systems, mechanical design and trajectory planning. Several researchers
developed O(n) algorithms for inverse dynamics for robotics used a
Newton-Euler (NE) formulation of the problem. Stepanenko and
Vukobratovic 1976 developed a recursive NE method for human limb
dynamics, and Orin et al. 1979 made the recursive method more efficient
by expressing forces and moments to local link coordinates for real-time
control of a leg of a walking machine. Luh et al. 1980 developed a very
efficient Recursive NE Algorithm (RNEA) by expressing most quantities
to link coordinates. The RNEA is the most cited method. Hollerbach 1980
developed an O(n) recursive Lagrangian formulation, but found that it was
much less efficient than the RNEA in terms of the number of
multiplications and additions/subtractions required in the algorithm.
Provenzano 2001 introduced an algorithm using Gibbs-Appell equations
leads to computationally efficient direct and inverse dynamic problem
algorithms. Concerning the formulation that rewrite the inverse dynamic
problem in its linear form Benimeli 2006 presented an analytical
algorithms for this purpose. In these algorithms the equation of motion are
provided in their linear matrix form. Mata et al. 2002 introduced an
algorithm for the inverse and direct dynamic problem constructed based
on the formulation of Gibbs-Appell. Links only were considered and the
inertia matrices were assumed to be given with respect to the center of

gravity.

In this thesis, as the IDP is not the main concerns, the recursive Newton-

Euler formulation proposed by Luh et al. 1980 will be used because of its intuitive

and efficiency.
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2.3.1. Inverse Dynamics Problem

As mentioned above, the inverse dynamic is the problem of determining the
forces required to produce a prescribed motion, as well as the constraint moments
and forces, i.e., the reactions at the joints. In this thesis, the dynamic model of the
manipulator is obtained by solving the recursive Newton-Euler formulation to
obtain the joint torques required for a given set of positions, velocities, and

accelerations (q, q, c']') (see sub-Section 4.1.2)) of the joint angles for Puma 560

robot.

The iterative Newton-Euler dynamic formulation has two-step processes
consisting of an outward loop and an inward loop. The forward recursion or
outward iteration propagates kinematic information — such as angular velocities,
linear and angular accelerations— from the base reference frame (inertial frame)
to the end-effector. The backward recursion or inward iteration propagates the
forces and moments exerted on each link from the end-effector of the manipulator

to the base reference frame.

2.3.1.1. Outward Loop:

To calculate the inertial forces acting on each link of the model we have to
calculate the angular velocity and linear and angular acceleration of the centre of
masses of each link. This is done by the outward loop starting from link 1 and

going up to link # (last link).

Angular velocity propagation from link 7 to link i +1 expressed in reference

frame i + 1 can be determined using the following equation,

i+1 i+lp i . i+15
O= R 0, +qi 2y (2.30)

1
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where: "', = Angular velocity of the link i + 1 expressed in the reference

frame i + 1.

Y/ i+1 = Unit vector in Z direction in frame i + 1.

i +l~1R = Rotation matrix describing orientation of frame 7 in frame i + 1.
g,,, = First time-derivative of joint angle i + 1.

The angular acceleration can be transformed from one link to the next by,

i+l - _i+l
@iy1= i

R iwi+i+1R iwi X‘?Hl i+12i+1 +ql‘+1 i+12i+1 (2'31)

i

where:
! “a')i +1= Angular acceleration of the link i + 1 expressed in the reference

frame i+ 1

.., = Second time-derivative of joint angle i + 1.

The linear acceleration for point ‘P, is computed by the following

equation,

i+1

Vi =R (id’ixi})i+1+iwi x (ia’ixi})i+1)"'i ‘}i) (2.32)
Linear acceleration for the centre of mass P in link 7 + 1 is calculated as

follows,

i+1- _ i+l i+1 i+1 i+1 i+1 i+1 -
Ve, = @x P+ 0)1'+1><( @; 1% PC-+1)+ Vit (2.33)

i i
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where: v is the acceleration of centre of mass

Having obtained the linear and angular acceleration of each link, the next

step is to find the inertial force and torque acting at the centre of mass of each link.

MEa=my Te (2.34)

_Ciyg i+l . i+1 Cin i+1
=" Ii+1 a)i+1+ Wi X " [i+1 W41 (2-35)

where: m; is the total mass of link i.

€[ is the inertia tensor of the link written in a frame, {C}, about the centre

of mass, Craig 2005.

2.3.1.2. Inward Loop:

In this section, the joint torques required for the motion will be calculated.
The iteration in this step are inward due to the fact that calculations now start at
the terminal link and work backwards toward the base of the robot. The equations
adopted are based on the force and moment dynamic equilibrium equations of a

link. All the following equations are extracted from Craig 2005.

From the force balance equation, the following iterative relationship can be

deduced:
ifi =i+1i i+lfi+1+iFi (2.36)

while from the moment balance equation, the following iterative

relationship can be deduced:
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i _i i itl ip i i ip itl
n;=Ni+; nig+Fe XE+BaxigR 7 fin (2.37)

Finally, the joint torques for revolute joints are calculated using the
following relationship:

7, = nl 2, (2.38)

1

where #; is the torque exerted on link i by link 7 — 1.

The inverse dynamic problem for an industrial Puma 560 robot will be
developed by solving the iterative Newton-Euler dynamic formulation, Equations
from (2.30) to (2.38). The point ‘P;;; in Equation (2.32), is the position vector
declared in Equation (2.2). In the outward iterations, i = 0 — 5. In the inward

iterations, i = 6 — 1. For Puma 560 robot, the number of links n = 6.

2.4. ENVIRONMENT MODELLING

The workspace and obstacles have been modeled in Cartesian coordinates.

The details of the modeling strategy will be found in the next two sub-Sections.

2.4.1. Workspace Modeling

The workspace of a given manipulator has been defined by Craig 2005 as
the existence or nonexistence of a kinematic solution. The workspace in this thesis
is a subset of Craig definition and is defined as the space that contains at least a set
of robot configurations obtained based on a discrete set of end-effector’s positions.

To achieve that definition, let’s consider a rectangular prism between the initial C’
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and goal C/ robot configurations. The end points of the prism’s diagonal
(represented by }/i and ;/;{ in Figure (2.4)) are corresponding to the positions in

Cartesian coordinates of the end-effector of the initial C’ and final C’ respectively.

The prism edges are parallel to the global Cartesian reference system.

Figure 2.4: Workspace Modeling.

A uniform grid of points is considered inside the prism. These points are far
a magnitude small enough (A,, A,, A.) to prevent the existence of obstacles
between two adjacent points in the grid. Thus, the workspace contains a discrete
set of configurations such that the position of the end-effector for each
configuration must belong to the previously defined grid. This means that the
robot configurations must keep the end-effector inside the prism. The set of
positions that can be occupied by the robot’s end-effector inside the prism are
restricted finite number of points provided by discretizing the prism according to

the following increments:
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;o i -7

A, = M; where Pts, =1+ ceil = = (2.39)
Pts —1
e, ‘y.f _yl ‘

4 4

A, = M; where  Pts, =1+ ceil By 2 (2.40)
Ptsy -1
S i ‘74{2 - 7/4112

A, = M; where Pts, =1+ ceil| —— (2.41)
Pts. —1

where ceil(number) returns the smallest integer value that is not less than that
number. D is less than the size of the smallest obstacle in the workspace or less
than the smallest robot’s link diameter (depends which is smaller). (Pts, — 1, Pts, —

1, Pts, — 1) are the number of points steps that discretize the prism. The points
(y{x,yé{;,yé{;) and (]/jx,yiy,yjz) are the coordinates of the end-effector positions

of the initial and final configurations of the robot.

2.4.2. Obstacle Modeling

One of the objectives of path and trajectory planning algorithms is to
generate collision-free configurations. To facilitate and systematize the calculation
of the distances between the robot links and the obstacles, a generic obstacle
models have been constructed in terms of a combination of three basic patterns:
Spheres, cylisphere, and quadrilateral planes since they are computationally
simple. Very little information has to be stored in order to fully define such

elements. Any type of obstacle can be modeled using one or set of these elements.
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A sphere is the most basic element that can be used to model an object since it
defined by its centre position and the radius. On the other hand, the cylisphere is a
cylinder with hemispheres on each end. The position and orientation of the
cylisphere can be defined by locating the position of the end points of the cylinder
axis and its radius. Finally, the quadrilateral plane is a basic building block for a

wide variety of shapes. It is defined by three points and thickness, Table (2.1).

l’s/kv Ok —  Centre
a) Sphere O«
S|
Fok —  Radius
o Os — Centrel
b) Cylisphere Fe Qa4 — Centre?2
Quia Vek —  Radius
Vie Vou — —  Vertex 1

¢) Quadri-lateral Via Vi~ —  Vertex 2

plane
Vi ek M Vo —  Vertex 3

ek —  Height

Table 2.1: The Obstacle Three Basic Elements.

The minimum distance is obtained among these basic elements and the
robot’s links. In this thesis, obstacles are considered to be static, which means,
their positions and orientations do not change with time. The three basic elements

can be defined in the space as follows:

According to Lozano-Pérez and Wesley 1979 a process of growing

obstacles has been used in order to obtain the actual dimensions of the robot.
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2.5. COLLISION AVOIDANCE FORMULATION

As mentioned previously, one of the objectives of path and trajectory
planning algorithm is generating free-collision paths or trajectories. For the
purpose of preventing collisions between the robot and the obstacles, the distances
calculated between the robot’s links and the obstacles are considered as constraints
in the optimization problem. A method to facilitate the formulation of the shortest
distance between any obstacle and robot links, is by shrinking robot links, Section

(2.1), and expanding the obstacles, Lozano-Pérez and Wesley 1979.

In the next three sub-Sections, the shortest distance between the three
obstacle patterns (Spheres, Cylispheres, Quadri-lateral plane) and the robot links
will be calculated. Before starting with the distances derivations, some

terminologies should be specified.

\71 is a vector from the global reference system to the point v, its length is ||v1 || .

_—

V|V, =V, —V;1s a vector from point v, to point v;, and its length is ||v1v2|| .

.

will be used for multiply a scalar “a” with vector “v; ”; i.e. a-v; .

II‘H

nn
o]

will be used for Vectors Dot Product; i.e. v—l ° 12 = ||v1|| . ||v2 ||cos€ .

n n

x" will be used for Vectors Cross Product; i.e. \Z xvj = ||v1 ||‘||v2||sin0~2 , where

-

n is unit vector normal to v, and v, .

—_ —

. Viov, — . S - . o —
proj)! = L2y, is the projection of v, on v, and in the direction of v, .

Vy oV,

In all cases, the robot link is considered as a cylisphere with radius 7,,. This
link will then shrinking it to line segment defined by two points: Significant point

v and Interesting point 4,,, where m = 1 — 4 for Puma 560 robot.
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2.5.1. Spherical Obstacles

Figure 2.5: Minimum Distance Derivation Between Robot Link and Sphere.

An algorithm has been built to find the shortest distance between sphere and
robot links (considered as segments), taking into account the growing obstacle
technique. Let’s consider the case of the i"™ spherical obstacle denoted by S(Qy:, 74:)

and the link segment of the robot defined by v,, and 4,,.

Consider the Figure (2.5), the minimum distance between the sphere S; and

the robot link will be |4,,0;

VmQill > or "Pszi || The key to know the answer

b

is by calculating the projection of vector 4,0, on vector 4,7, -

5 4 A Osi
By = Projyee (2.42)

If the ||Pmim|| more than ”ﬁme” then ||7szi|| should be compared with

7

i T 1, , otherwise ||Pm/1m|| should be checked if it has a value less than zero. In
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this case ||/1sz1~|| should be compared with r; +r,,, otherwise ”Pszi || should be
compared with r; +7,,. So the collision prevention with spherical obstacles can

be achieved.

3

fu SN -%l
Al

The critical s _
~5 i"<O/_l

The critical The critical
distance is |2 distance is ||Pszi||

v

———» The critical distance Jl

Figure 2.6: The Flow-Chart of the Algorithm to find the Shortest Distance Between Robot Link and

 distance is ”}/m 0.

Sphere.

The derivatives of those distances with respect to the generalized

coordinates are obtained as follow: First the derivative of the length ||7/mQ

respect to the problem variables (generalized coordinates of the robot g;).

dy,,

(7mx_Qsz;) dq, +
/m 0. ()/my Qsiy) . + (2.43)
day,,
(7’mz _Qsz;.)' dq,
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where j = 1 — 6 for robot Puma 560, i index relates to the number of spheres and j

Y can be found using Equation (2.5)

relates to joint variables.
dq,

The derivative of ||/1m 0.

( m Qu‘ ) dimx +
g
d M [ j (/1 -0 ) o, + 2.44
/ 20,0 |V =0 )4 (2.44)
(4. -0, ) 2
T dg
— ) My +
( m, Qszx) qj
IDszz dl)my
( /P Qb,j (m —QS,;V)- o 4 (2.45)
(b, -0,) =
m, Si, dqj
where 7 = can be found using Equation (2.5).
9,
Consider :
A:dlszi Om B:modﬂm]/m

dq, dq,
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(@fom).@

C=2.(mom).M Do dq,

9, (12,7

A Qi
dP A _ d(prO]/l’"y”’ j _ (A+B)||ﬂ’m7m”_c .

m’"m

dq, dq; () (2.46)
_d4, _db,
dg; dq;

d(|p,2,]) _ (4+B)JA,7.]|-(D)
dg; 2[R ()

(2.47)

The derivative of the length ||/1m Vo || with respect to the problem variables is:

| di dy )|
A - . m __/m +
(2, =7.) i, dg, )|
d(|4,7.) (1 j I di, dy. )
= 11, -7, )| L2t || 2.48
de %M’mymn _( ! 7m) dq]‘ dqj 4, ( )
di dy )|
A o—y )| L B
_( m }/m) dq/ dqj 1|

2.5.2. Cylispherical Obstacles

Cylisphere is a cylinder with hemispheres on each end. A cylisphere is

symmetrical about its ‘long’ axis. The collision avoidance algorithm between the
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robot links and cylispheres has been built considering robot links and cylispheres
as line segments. Then the minimum distance between two segments has been
determined as following. Let’s consider the case of the k™ cylisphere obstacle

denoted by Cyi(Qcr1, Ocia, 7o) and the robot’s link segment is defined by y,, and 4,,.

Fek + I

Qck,z

Figure 2.7: Minimum Distance Derivation Between Robot Links and Cylispheres.

In Figure (2.7), Line 1 represents the robot link while Line 2 represents a
zero-radius cylisphere. Points Qu1, Qe Wwith the radius 7., represents the
cylisphere obstacle. Points P,, and P; are the ends of the shortest line between the
two segments. P, is located on Line 1 and Line 3, and P, is located on Line 2 and
Line 3. By representing each line parametrically and utilizing what is known about
Line 3 and points P,, and Py, a system of equations can be solved to determine the
coordinates of points P, and P; in terms of the coordinates of points A,, V.,

successively and Q.
Any point Py;,.; on Line 1 can be represented parametrically as

PLinel = ﬂ‘m + (7m - im) X1 (2-49)
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dPLinel — dﬂ’m +(7/ -2
dq;  dq

=4, o] +[d7m —‘”’”J-xl (2.50)
dq

j J j \dq; dq,

Any point Py;,., on Line 2 can be represented parametrically as

PLine2 = Qckl + (Qck2 - Qckl)' X2 (251)
Priner _ (2.52)
dqj

Although the locations of points P,, and P, are unknown, any point Py;,.; on

Line 3 can be represented in parametric form as

PLine3 = Pm +(Pk _Pm)‘x3 (253)
Pries _ By (p _p ). | _dBy | (2.54)

Since Line 3 must be simultaneously perpendicular to Line 1 and Line 2,

AV m o PyP =0 (2.55)
and Qcleck2 © PmPk =0 (2.56)

where ﬂ'mym =7Vm _]’m > QcleckZ = Qck2 - Qckl -and b,b. = F. - F, Since

P, is a point on Line 1, and P is a point on Line 2, P,, can be expressed as

y :ﬂ“m +(7/m _im)'xl (2.57)

m
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And its derivative can be determined as Equation (2.50)

and P can be expressed as
B = Quir + (Qek2 = Qeta) X (2.58)

And its derivative can be determined as Equation (2.52)

In Equations (2.57) and (2.58), x; and x, represent the parameter values for
P, and Py, respectively. Taking the difference of Equations (2.58) and (2.57)

results in
Pk_Pm :Qckl +(Qck2 Qckl) ﬂ’ _(7/m _ﬂ’m)'xl (259)

Now, Equation (2.59) can be substituted into Equations (2.55) and (2.56)

such that
An¥m °Qetr + Otz = Ot ) X2 = Ay = (Vi = 2 )-21) = 0 (2.60)
And
0ut1Qet2 ° (Qutt + (Quk2 = Cetr) %2 = Ay = (P = 2s)-31) =0 (2.61)

Collecting terms and putting Equations (2.60) and (2.61) into matrix form

leads to

_ﬂ’m}/m ° ﬂ“mym /1m}/m ° QckIQckZ :||:x1 :| — l: m}/m Qckl :| (262)
= An¥m ° Qek1Qctz Qo1 Oek2 © Oer1 Gz |L¥2 Q192 © G« © Qckl
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[m]-x = 4 (2.63)
B

Solving Equation (2.63) via Cramer’s rule for ¢ leads to

QcleckZ ° QcleckZ A— ﬂ“mj/m ° QcleckZ B

[xl } - i il (2.64)
/1m7/m ° Qcleck2 A— ;Lmym °© /1m7/m B
m m

Since the parametric equations for Line 1 and Line 2 represent any point on
segments through the given points while the cylispheres represented are
constrained to the line segments connecting the given points, new parameters must

be defined such that:

0, lf X1 <0
X, if 0<x <1

and

0, %f Xy < 0
X, lf‘ 0< Xy <1

Now potential coordinates for P,, and P, can be calculated such that:

Py =2y + (7 = ) X1 (2.67)

m

Py = Oy +(Oukr = Ot ) %22 (2.68)
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A potential minimum distance, d, between the robot link and cylisphere is

dy; = P,F, (2.69)

and the magnitude of this potential minimum distance, , 18

||| =180l = VB By o BB (2.70)

dp.1

Desired Fok + m

L= _I-Dk Qck,z QCk’l

Line 2

Figure 2.8: Minimum Distance WHEN X; # X;; or X; # Xz2.

If x; = x1; and x, = x,, the values calculated using Equations (2.69) and (2.70) are
correct. However, if x; # x;; or x, # Xy, further checks need to be done. Figure
(2.8) shows a sample case of when the calculated minimum distance is incorrect.
In order to find the coordinates for the desired P,, the algorithm for calculating the
minimum distance between a line segment and a sphere will be used, with Line 1
represents the robot link and point O, represents the sphere. Overall, if x; # x;; or

Xy # X2, the algorithm for calculating the minimum distance between a line



-78 - Trajectory Planning for Industrial Robots Using Genetic Algorithms

segment and a sphere must be used with each of the Lines endpoints. Figure (2.9)

shows the steps of finding the minimum distance in such cases.

The critical yes ” ~
distance is Hd : 1” —<& " M and X, =X, =

S
—

no

Hd k’ZH =minimum distance between Point A and Segment O ,,0.,,
Hd k3 ” = minimum distance between Point y, and Segment, O ,,0.,,
Hd k. 4H = minimum distance between Point O ,, and Segment, 4,7,

Hd ks H = minimum distance between Point Q0 ,, and Segment, 4,7,

d

b b b

i ||dk || = min{ Hdk,l

dk,z >

v

Figure 2.9: The Flow-Chart to find the Shortest Distance Between Robot Link and Cylisphere.

dk,4

dis| 3

k,3

The smallest of the five minimum distance magnitudes calculated ||dk|| is

chosen along with its respective P, and P, coordinates. Finally, the radii of the

robot link and cylisphere 7, +r; are subtracted from ||dk|| to get the true

minimum distance magnitude value, Harden 2002.

2.5.3. Quadri-lateral Plane Obstacles

A quadrilateral plane is a basic building block for a wide variety of shapes.
It is defined by three points P;, P,, and P3, and a half thickness, e,. The fourth

point of the quadrilateral plane is calculated as
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Py=h+Ph-H (2.71)

The minimum distance between quadrilateral plane and robot links has been

calculated as the minimum distance between segment and plane as following:

Robot Link Z
= Line 1

Obstacle

Figure 2.10: Minimum Distance Derivation Between Robot Link and a Quadri-Lateral Plane.

Figure (2.10) shows the picture used to derive the minimum distance
between a robot link represented by a line segment and a quadri-lateral plane. This
derivation process can also be used for an infinite plane. In the figure, Line 1
represents the robot link. Let’s consider the case that the link line segment of the
robot is defined by 4,, and y,. Points P,, P, P,; and P,4 represent the n™ zero-
thickness quadri-lateral planar surface OP,(P,1, P2, Py, €y). Points A, Y, Pys,

and P, are potential observation points, and Line 2 is the desired minimum
distance line. The symbols ;, E, and n represent a mutually orthogonal set of

unit vectors. Here, 7 and s are both located in the plane, and n is normal to the
plane. For the derivation, it is assumed that Line 1 cannot intersect with the Planar
Surface because such an intersection indicates a collision, which we are trying to

avoid.
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The minimum distance between a line segment and an infinite plane is
always the difference between one of the line endpoints and the corresponding
projection of the same endpoint onto the surface of the plane. If the plane is a
quadri-lateral, then checks must be performed to ensure the line endpoint
projection is inside the quadri-lateral and that both line endpoints are on the same

side of the plane.

For the example shown in Figure (2.10), the first step in determining the

minimum distance is to calculate the unit vectors », s, and 7.

The unit vector ; 1s calculated as

Pn2 Pnl (272)
PRl
Then, Z can be calculated as
D= Pnl (2.73)
|| Pl
Finally, s can be calculated as
S=nxr (2.74)

Once these unit vectors are known, the projections of points 4,, and y,, onto

the plane can be calculated as

Pys=(4,-P,)or+(4,—P,)os+P, (2.75)

n
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_81 -
Bos | D 0l 5] P 5|5 (2.76)
dq; | dq; dq ;
and
Pn6:(ym_Pnl)or+(7/m_Pnl)os+Pnl (2'77)
dars _ dﬁo; g4 %o; . (2.78)
dq; \ dq; dq ;

A potential minimum distance magnitude,

d}’l

, can then be calculated as

.= min{ 12, = Posl i = Bocl §

(2.79)
(da,  dP.s
—r - ﬂ“m_Pn
_[d‘lj dqu ( S)L
dll/lm—Pnsllz[ 1 J || P _dhs | p _p ) (2.80)
dq law =Pusl) | |\ da; dq; )" " ’
(an, dp,s
| === ﬂ‘m_Pn
_{d‘li d‘]j] ( g

z
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— dﬂ_dpné . _p
_(dqj dq J s né)}x
= P ( 1 J (dy,, dPyg ]
) 2 g |V 281
dgj \[rm—Ful d g, | n o) (2.81)
_ dy
d}/m dpn6
|| Hm s |, _p
_( dq, dqj'j 4 6)_2

If the obstacle is an infinite plane, then the result in Equation (2.79) is

correct and no further calculation is needed. For the example shown in Figure
(2.10), Equation (2.79) gives the result that ||dn || = ||)/m - Pn6||. Therefore, a check
must be made to ensure that the potential obstacle witness point, P, is inside the
quadri-lateral, P,1P,,P.4P,3. The obstacle observation point, P, is inside the

quadri-lateral if all of the following equations are true,

(B = By)x(Bg = B ))on >0,
(Py = Bp)x(Pig = Bp))on >0, 08
(3 = Py )x(Pyg _Pn4))°;/; >0,
(P = Pi3)x(Pyg _Pn3))0;2 >0
(B = By)x(Bs = By))on >0,
(Poy = Py )% (Bys _PnZ))O;; >0, 0.8
(P = Pua)x(Prs = Pug))on >0,
(B = P3)x(Pus = B3))on >0

If all of the Equations (2.83) are satisfied, the obstacle observation point P,
is inside the quadri-lateral. If all of the Equations (2.82) are satisfied, a final check
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must be made to ensure that the line endpoints 4,, and y,, are located on the same

side of the plane. This is the case if

(ﬂ’m_PnS):(ym_Prm) (284)
[ = Busll - 7 = Posl

If any of the Equations (2.82) are not satisfied, then the minimum distance
magnitude calculated using Equation (2.79) is incorrect, and the true minimum
distance must be determined using the process for calculating the minimum
distance between two line segments, sub-Section (2.5.2). If Equation (2.84) is not
satisfied, then the minimum distance calculated may be correct; but must be
compared with the four potential minimum distances that can be calculated using
the distance calculation algorithm for two line segments, see the block diagram in

Figure (2.12). An illustration of this situation is shown in Figure (2.11).

P; P4
|
oY I
n .
I Zi Linel 7
————4_¥___________________________e,,
_ \ § | Robot
Pl, P3 : Y Link
N |
P, r P, 0 X

Figure 2.11: Minimum Distance When Line Endpoints Outside Quadri-Lateral.

In the figure, dotted lines represent potential minimum distances that are
considered. Line 2 is the actual minimum distance because points 4,, and y,, are on
opposite sides of the plane. Calculation proceeds by treating each edge of the
quadri-lateral plane as a line segment and computing four new potential minimum

distances. Of all the valid potential minimum distances, the one with the smallest
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magnitude is chosen along with its respective witness points. Finally, the radius of
the robot link and the thickness of the plane are subtracted from the chosen
minimum distance magnitude to get the true minimum distance magnitude value,

Harden 2002.

p - - P-P - -
e T B, =(4~R)or+(4~R)os+R,
2 -2l |-A] s - .
H—— Po=(y,~R)er+(y,~R)os+A
,S=nXF
s
. L)f// “If the obstacle is?ﬁiax
1dn,1 =mmﬂ|/11 =Py, - £ 6"} infinite plane

e = e
no __—Ifall the equations_

E (2.82) and (2.83)
\WV yes

ﬂm _PnS) — (7m _Pn6)
ﬂ'm_PnSH ||7m_Pn6||
no v
| "dn” = mln{ dn,2 > dn,3 > dn,4 > dn,S } |
1 "dn” = mln{ dn,l > dn,2 > dn,3 > dn,4 > dn,S }I
—> | =[dus| T ldl |'7

v

Figure 2.12: The Algorithm to Find the Distance Between Robot Link and Quadri-Lateral.
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where:

d .2 H =minimum distance between segments A.,Vy, and PPy,

dn,3

‘ = minimum distance between segments 4,,,, and, P,,P,3,

d .4 “ = minimum distance between segments 4,,y,, and, P,3P,4,

dn,5

‘= minimum distance between segments 4,,,, and, P,4P,.
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CHAPTER 3

PATH PLANNING

A principle problem in robotics, which will concern us in this chapter of this
dissertation, is the path planning. We want to devise algorithms that will enable a
robot to move from one position to another without any collisions. Path planning
is becoming increasingly important in many areas, for example, industrial robotics,
autonomous systems, assembly planning and virtual prototyping, Chang and Li
1995, computer graphics simulations, Kuffner and Latombe 2000, and computer-
aided drug design, Finn et al. 1997. This chapter deals with the basic path-
planning problem for industrial robot moving in a well-defined static environment
using genetic algorithms. Path planning deals with the problem of finding motion
strategies for movable objects or articulated structures. An articulated structure can
be used to model things like, e.g., the motion of a computer-animated character, a

robotic manipulator or a complex protein molecule.

The path planning problem; trying to solve in this thesis; is to find a
sequence of configurations in which the robot moves from an initial configuration

C' to a goal configuration ¢/ without colliding with obstacles in the environment.
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In path planning problems, the number of feasible paths between the initial
and final position of a robot are often very large, and the goal is not necessarily to
determine the best solution, but to obtain an acceptable one according to certain
requirements and constraints. Various search methods have been developed (e.g.,
calculus-based methods, enumerative schemes, random search algorithms, etc.) for

the robot path-planning problem. In this work, genetic algorithm has been used.

Genetic Algorithm (GA) based search and optimization techniques have
recently found an increasing use in machine learning, robot motion planning,
scheduling, pattern recognition, image sensing and many other engineering
applications. In principle, GAs are search algorithms based on mechanics of
natural selection and natural genetics. They combine survival of the most fitting
among the string structures with randomized yet structured information exchange

to form a search algorithm with innovative flair of natural evolution.

In the proposed method, generating such path is used to minimize the
distance between its initial and final configurations. The genetic algorithm (GA)
appears here to solve such problem by minimizing the traveling distance of the
end-effector and the significant points (Section 2.1)) between the initial and final
point avoiding obstacles. The workspace will be modeled in such way to provide a
discrete configuration space based on the positions of the end-effector between the

initial and final configurations of the robot.

In this procedure, two optimization processes using genetic algorithms are
involved. The first one, an optimization process for the obtaining of the adjacent
configurations (detailed in Section (3.1)). The order in which the adjacent
configurations are generated will condition the Space of Configurations generated
and, therefore, the path to be obtained. Second optimization process is used for the

obtaining of the path, which consist of a set of adjacent configurations. This



Path Planning -89 -

algorithm will be applied on an industrial robot Puma 560 modeled with six degree

of freedom.

3.1. ADJACENT CONFIGURATIONS FOR PATH
PLANNING

In this section, the process of generating a discrete space of configuration is
presented. This space of configurations is based on the obtaining of adjacent
configurations concerning kinematics compatibility and feasibility with collision

avoidance regardless the dynamics concerns.

3.1.1. Adjacent Configurations Definition

The configuration C* is adjacent to a given configuration C”, if they are

feasible and the three following conditions are satisfied:

1. The end-effector position y, (see Figure (2.1)) corresponds to a point of the
discrete workspace. In addition, it is one increment far from the point
corresponding to the C ” configuration, so it is said that, the two
configurations are neighboring and there must be a given increment

between them less than the smallest obstacle size in the workspace.

2. Verification of the absence of obstacles between adjacent configurations
C* and C”. Also, to verify that the distance between significant points

meet the following condition,



-90 - Trajectory Planning for Industrial Robots Using Genetic Algorithms

yPyFl<2min( ) i=123  j=12,.. 3.1)

where r; is the minimum characteristic dimension of the obstacles in the

workspace.
3. C"should be such as to minimize the function:

k
(7’/' ‘ﬁ)i*

W—ﬁﬁ++ﬂi@ﬁwﬂ2 (32)
Z

b2 )

4
o -cr- a2
J=1

where 4, B are coefficient and the expression is expressed in Cartesian
coordinates, which aims to minimize the distance between significant
points and the distance between the joints values of the current

configuration and the final global one.

Adjacent configuration for path planning concern in finding a set of via
points (intermediate points) that constructed the path. This path can be tracked
after that to find an optimal time scaling subjected to the dynamic constraints of

the manipulator.

3.1.2. Workspace Discretization

The first step of the optimization process is generating a discreet space. See

Section (2.4.1) for more details about the workspace discretization.
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3.1.3. Obtaining The Configuration ck

In the building process of the path, a random search procedure will be
applied to search from the C’ for the next adjacent configuration and so on until it
reaches the C’. The main concern in this part is finding a sequence of robot
configurations between the initial and final configurations that fulfils the early
listed three conditions. A methodology of two distinct routines has been
constructed to obtain a robot configuration C* adjacent to C*. In first place, the
inverse kinematic problem; explained in 2.2.3); will be used to find the C* for a
given y,. If the new configuration C* doesn’t fulfill the condition, a genetic

algorithm procedure will be used to solve the problem.

Genetic algorithm maintains a population of solutions or individuals
throughout the search. It initializes the population with a pool of potential
solutions to the problem and seeks to produce better solutions, by combining the
better of the existing ones through the use of genetic operators. Individuals are
selected at each iteration through a selection scheme depends on the fitness or the

objective function value for each individual.

A Steady State Genetic Algorithm (SSGA) procedure is used to obtain a
robot configuration C* adjacent to a given one C” considering the three conditions
mentioned previously. A SSGA uses overlapping populations. This means, the
ability to specify how much of the population should be replaced in each
generation. Newly generated offspring are added to the population, and then the
worst individuals are destroyed (so the new offspring may or may not make it into
the population, depending on whether they are better than the worst in the

population).
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e Chromosome

The individual or the chromosome represents the robot configuration. Each
chromosome consists of six genes; the robot generalized coordinates (g;; i = 1, 2,

.., 6).

Gene Gene
qi q2 qs3 q4 qs g6
N— I
g
Robot

Figure 3.1: Adjacent Configuration for Path Planning GA Chromosome.

The initial population consists of a defined number of chromosomes. The
initial values of each gene in the chromosome are selected randomly between the

two limits of the generalized coordinates for that gene. For example:

gene(i) = RV(Qi,min: Qi,max); i=1—6 (33)

where RV = Random Value (between low and high).

In fact, this way of generating the genes value and then checking the validity of
the resulting chromosome is computationally expensive. To improve that, by
looking at the workspace modeling and the conditions to produce adjacent
configurations, it will be concluded that the movement between the two

configurations is small (less then the robot width). Because of that, the previous
Equation can be modified. Consider that g/ is the given configuration and Ag is a

small increment. Therefore, the new interval for each ¢ can be calculated, as the

next flow chart indicates:
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Figure 3.2: Flow-Chart Indicates How to calculate the g; Intervals.
This means that the Equation (3.3) will be as follows:

new

gene(i) = RV(q;xin »Qimax );  1=1—6

where RV = Random Value (between low and high).

e Selection:

-903 .

(3.4)

A roulette-wheel selection method is applied to select individuals for
crossover and mutation. This method is based on the magnitude of the fitness
score of an individual relative to the rest of the population. The higher score, the

more likely an individual will be selected.

o (Crossover:

The crossover operator defines the procedure for generating a child from

two selected parents. A single point crossover used in this procedure, see Figure

(3.3).
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e  Mutation:

The mutation operator defines the procedure for mutating each genome. In
this procedure, an offspring will be selected randomly, then a gene will be selected
randomly from that offspring. This gene will be mutated with respect to the

following equation.

gene(i) = gene(i) + RV(Qi,min, Qi,max) X [R V(qi,mina qi,max) - RV(qi,mina qi,max)](3-5)

where RV = Random Value (between low and high),i=1 — 6.

OOoooOoO O0000O0

Single-Point
Crossover

OoOooOooo ooonOn

Single-Point
Mutation

O aooo

Figure 3.3: Adjacent Configuration Crossover and Mutation.
e Objective:

Minimize Equation (3.2).

3.2. GA PROCEDURE FOR PATH PLANNING

The search technique consists of generating an initial population of strings

at random. Each solution is assigned a numerical evaluation of its fitness by an
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objective function, which is a mathematical function that maps a particular
solution on a single positive number, that is a measure of the solution’s worth.
During each iteration (generation), each individual string in the current population
is evaluated using this measure of fitness. New strings (children) for the next
generation are selected from the current population of strings (parents) by a
process known as “selection”. A random selection process is used with a higher
probability given for strings with higher fitness values. Such selection scheme
systematically eliminates low-fitness individuals from the population of one
generation to the next. New generations can be produced either synchronously, so
that the old generation is completely replaced, or asynchronously, in which the

generations overlap.

The genetic algorithm for path planning uses parallel populations with
migration technique. The genetic algorithm has multiple, independent populations.
It creates the populations by cloning the genome or population that you pass when
you create it. Each population evolves using steady-state genetic algorithm, but at
each generation, some individuals migrate from one population to another. The
migration algorithm is deterministic stepping-stone; each population migrates a
fixed number of its best individuals to its neighbor. The master population is

updated each generation with best individual from each population.

Two genetic operators, crossover and mutation, are probabilistically applied
to create a new population of individuals. Parent individuals are selected as
candidates for crossover or mutation using the roulette-wheel selection method.
Genetic algorithms are domain independent because they require no explicit
notion of a neighborhood. Hence, crossover and mutation may not always produce
feasible solutions. Therefore, the feasibility of a newly created individual is

ascertained before inserting it in the population to replace a parent string.
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In the GA based solution procedure, a number of new individuals are
created at each iteration. The remaining individuals are obtained by
deterministically copying the individuals with the top fitness from the previous

generation.

3.2.1. Genetic Algorithms Operators and Parameters

The main operators and characteristics in the exposed GA are:

e Individual:

The individual or the chromosome is composed of set of intermediate points
(end-effector positions) including end points (initial and final position of the end
effector). This means that each chromosome represent a complete path between
initial and final configurations. Each triplet cells comprising one point (the
Cartesian coordinates of the end-effector) in the chromosome and considered as a

gene, Figure (3.4).

Point 1 Point i Point f
A\ N g A\ N e S
Initial Position Intermediate Position Final Position
X Y; Z, X Y: Z; X Yy Zs

Figure 3.4: Path Planning GA Chromosome.

The first point of each individual is the initial position of the end-effector of
C'. The second point will be selected randomly from the discretized workspace
without repetition in one of seven directions: X-direction, Y-direction, Z-direction,
XY-direction, XZ-direction, YZ-direction, and XYZ-direction. This strategy will be
repeated for the next point and so on until the goal position is achieved. Note that

this definition is based on the number of intermediate points that constitute the
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path, which means that paths do not have equal lengths, which leads to more

complexity in crossover and mutation.

e Objective Function:

The objective of this optimization problem is to find the optimal path
between initial and final positions of a robot end-effector. Because of the
possibility of existing obstacles, and geometric constraints, the algorithm will try
to find the shortest possible path. The shortest path will be calculated by
minimizing the sum of the straight-line segments of the corresponding significant
points of the robot, from the initial to the final point. In this case, the objective of

GA is to minimize the following equation:

Mlmmlze{nzl f\/ T R A —733)2} (3.6)

i=1j=1

where: j is the number of the significant points of the robot, and m = 4 for
Puma 560 robot; the case demonstrated in this thesis. i =1, 2, ..., n is the

number of robot configurations included in the path.

e Selection:

The selection operation is made using the roulette-wheel method.

e (Crossover:

The crossover is made through the exchange of a part of the path
(chromosome) between two selected paths through the selection operation
mentioned earlier; being that, it is executed only if the probability of the crossover
is satisfied. This is done by searching groups of individuals that have been selected
for crossover, and then, select pair of individuals randomly. In each pair, the

algorithm searches the genes of each individual for the intersection configurations.
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The intersection in this case is to find a (C/’) configuration p in path i that can be
adjacent to a (Cjk) configuration £ in the path j. The search for the adjacent
configuration occurs in the positive direction. The algorithm looks for all possible
intersections between two selected chromosomes (paths) for crossover. lL.e., given

two paths: Dad with length n and Mom with length m.

Dad = Cp,y UCh,y U...UChyy U...UC}yy (3.7)
Mom = Cig,,,, U Cio U...UCy U...UCl (3.8)
Dad (\Mom ={CE s Clon }(Chats Chiom by (Chaas Cliom )1 | (3.9)
Mom Dad = {CiprChot ko (CliomrChig by (Chioms i ) (3.10)

where (Cgad,C]{}m) are adjacent configurations, /;, = 0, 1, 2, ..., n-2 in

case of Dad . , =0, 1, 2, ..., m-2 in case of Mom number of adjacent

configurations found.

This way of intersection means that Mom( Dad and Dad (1 Mom are not

necessary to be equal, which leads to the possibility to produce only one offspring

rather than two in some cases.

The algorithm then will select one intersection randomly in case of many

are found satisfying these criteria. The new offspring (path) will be:

Oﬁ”sprlngl =sis = C})ad Uclz)ad U'“Ucbad UC}{;[om U“'Ucﬂom (311)

Of]%pringzzbrozcjl\/lnm UC}%/Iom UUc}{/{om chad U'“Ucln)ad (312)
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Note: If there are no such points, the crossover will be cancelled.

This means that the resulting path (offspring) will consist of two parts: a
part from Dad (from the initial configuration until the selected Configuration C),
and a part from Mom (from C’ until the final configuration). This crossover
method doesn’t need equal chromosomes lengths. This process is illustrated in 2-D

in Figure (3.5).

Final point Final point
9
P
CMom
P
C/\k/[am CM()m
- [ L.
k P
e | [Ch Chin | [ e
Dad
| k
Mom CDad
Mom
Dad Initial Dad
& point &
Initial point
P Crossover
v
Final point
bro sis
Initial point

Figure 3.5: Crossover Between Two Robot Paths.

e  Mutation:

Mutation is done by selecting a configuration (gene) randomly from a

selected path (chromosome). The first and the final configurations are not
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considered for mutation. The configuration is then compared to the previous and
next configurations in the path. All the possible changes with which the path will
remain incremental and quantum are applied to the configuration. To illustrate,
let’s consider three consecutive robot configurations C !, C ', C ™' (three
consecutive genes) in which their end-effector have the positions (0, 0, 0), (1, 0,
1), (1, 1, 2) with a step value of 1 in the x, y and z-coordinates. If mutation is to be
applied on the C’, where its end-effector position lies at (1, 0, 1), the algorithm
will consider how each of the coordinates changed. The x-coordinate changed
from O (previous position) to 1 and remained 1 in the next position. It is clear that
changing the x-coordinate from 1 to 0 will not affect the validity of the path since
the positions will become (0, 0, 0), (0, 0, 1), (1, 1, 2); i.e. x-coordinate changed
from current position to next, while remains the same when going from the
previous position to the current one. The same thing can be said about the y-
coordinate, since it has not changed when going from the previous position to the
current one, while changed when going to the next position. The mutation will
cause the y-coordinate to change from 0 to 1. Finally, the z-coordinate cannot be
modified since it changed from 0 to 1 to 2. If the mutation would change the z-
coordinated to O or 2, the step would be greater than the predefined step. The
mutation will not affect the coordinates that has not changed at all. For example,
the x-coordinate in (0,0,0),(0,0,1),(0,1,1) since any changes will result invalid
path. For this new position, the adjacent configuration algorithm will take places
to move the robot from the position (0, 0, 0) to (0, 0, 1) and then to (1, 1, 2).This

process is illustrated in Figure (3.6).
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Figure 3.6: Path GA Mutation.

3.3. TRAJECTOY PLANNING: INDIRECT METHOD

As mentioned before, in the introduction, one of the approaches deals with
trajectory planning is the indirect or decoupled approach. Indirect approaches
firstly seek for a path in the configuration space, and then the trajectory adjusts;
subjected to the dynamic constraints of the manipulator, see Saramago and Steffen
2001, Valero et al. 2006 for more details. Indirect approaches are the most widely
used in path planning (For depth knowledge you should refer to Piazzi and Visioli
1997a, 2000, Saramago and Steffen 2001, Plessis and Snyman 2003, Behzadipour
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and Khajepour 2006, Valero et al. 2006, Bertolazzi et al. 2007, Gasparetto and
Zanotto 2007).

In next Chapter 4 of this thesis, the trajectory-planning problem will be
discussed in details. However, in this section, after the path-planning problem has
been solved by the mentioned procedure in the previous section, the trajectory can
be adjusted by finding an optimal time scaling for the path subjected to the
dynamic constraints of the manipulator. To achieve that, the clamped cubic spline

(the time optimizer algorithm) explained in next section can be used.

3.4. TIME OPTIMIZER

A genetic algorithm procedure is fed by a path (sequence of configurations)
obtained (from previous section), its aim is to schedule the time intervals between
two adjacent configurations such that the total traveling time is minimized using
Clamped Cubic Spline subjected to: (1) Physical constraints on joint velocities,
accelerations, and jerks. (2) Dynamic constraints on actuators torques, powers, and

energies.

3.4.1. Formulation of Cubic Polynomial Joint Trajectory

The philosophy of spilining is to use low order polynomials to interpolate
from grid point to grid point. This is ideally suited when one has control of the
grid locations and the values of data being interpolated. As this control is
dominated, the relative accuracy can be controlled by changing the overall space

between the grid points.
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Cubic splines are the lowest order polynomial endowed with inflection
points. If one would think about interpolating a set of data points using parabolic
(quadratic) functions without inflection points, the interpolation would be

meaningless.

The formulation of the cubic spline is based on the n joint vectors (n

configurations) that construct the joint trajectory. Joint vectors are denoted as qij

which represents the position of the joint i with respect to configuration j. The

cubic polynomial trajectory is then constructed for each joint to fit the joint
sequence qio, q}, v qi . Let < 5< 7 < 1,0< t,1< t, be an ordered time
sequence, at time ¢ = ¢ the joint position will be qij . Let q[j (t) be a cubic
polynomial function defined on the time interval [¢;, #+,]; 0 <j < n-1. The problem
of trajectory interpolation is to spline qij (1), for j = 0,1,2,...,n-1, together such

that the required displacement, velocity and acceleration are satisfied; and the

displacement, velocity and acceleration are continuous on the entire time interval

[Z07 tn]-

Consider the cubic spline function as follows:

a/t) if ty<t<y
siy=1 40 lf h=t<t (3.13)

¢ 0) i <<,

The cubic spline function S(¢) satisfies these properties:

1) S(¢) will interpolate all data points.
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S(¢) continuous on [to,tn]
2) {S(¢) continuous on [to,tn] (3.14)

S(t)  continuous on [to,tn]

. .
Qi’](tjﬂ) :qij+ (tj+1)

3)ql ()=l () j=0l.un=2 (3.15)

. i+
Qij(tj+1):‘Zij+ (tj+1)

This means that S(¢) (represents robot trajectory) is presented by cubic
polynomials, each one has 4 coefficients, and all its derivatives (represents robot

joint velocities and accelerations) are continuous for any time ¢ in the open interval

(&, ti+1).

This results in a matrix of # - 1 equations and # + 1 unknowns. The two remaining
equations are based on the border conditions for the starting point so(#), and end

point s,.1(¢,). One of the following border conditions can be used.

a) Free or Natural splines: The second order derivatives of the splines at

the end points are zero.
Gi' (1) = 7' (1,) =0 (3.16)

b) Parabolic runout splines: The second order derivatives of the splines at
the end points are the same as at the adjacent points. The result is that

the curve becomes a parabolic curve at the end points.

Gl () =G (1))

1 (3.17)
qln (tn) = qui (tn—l)
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¢) Cubic runout splines: The curve degrades to a single cubic curve over
the last two intervals by setting the second order derivative of the

splines at the end points to:

ql.()(to):2-qil(tl)—qi2(t2) (3.18)
Qin_l (tn) = 2 : qzl_z (tnfl) - qzl_3 (tn—Z)
d) Clamped spline: The first order derivative of the splines at the end

points are set to known values.

.0 .
(1) =
{q, (%)) =4, in this case {§°(¢,) = g/ (¢,) = 0 (3.19)

;" (t,)=q;

This algorithm will be applied to an industrial robot (In this case Puma 560) which
means that the starting and ending velocities in the application examples will be
ZERO. So the border condition used is clamped spline, from more details see

Henrici 1982, Press et al. 1992.

Construction: Apply above conditions:

g/(t)=a] +b/(t—t)+c/(t—1) +d/(t-1t,)

(3.20)
;j=01,.,n-1
al t)=al =af (321)
aij+1 = qij+1 = qij (t_;+1)
= aiﬁl +bij(tj+1 _tj)+cij(tj+l _tj)z +dij(tj+l _tj)3 (3.22)

; J=0,1,...,n—-2
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h/':tj+1_tj j=0919~-'9n_1

-1
ai =q; (t,)=q]

Let bl'n zq';‘l—l (tn) (323)

-n—1

clﬂ:qi (Zn)

2
al*'=al +b/h;+c/h; +d/h;  j=0]l..,n-1 (3.24)
gl ()=b/ +2-¢](t-t)+3-d/(t-1;)" = §¢/t;)=b/ (3.25)
b/ =b/ +2-¢/h; +3-d/h;  j=0],..n-1 (3.26)
Gl ()=2-c/ +6-d/(t—-1;) = §/@t;)=2-¢/ (3.27)
o/ =c/ +3-d/h;; j=01,..,n-1 (3.28)

Solve for d; in Equation (3.28) and substitute into Equations (3.24) and (3.26) to
get:

. S h? o
al*' =al +b/h; +TI(2'C"] +cf“) j=0l,.,n—-1 (3.29)

bij+1 — bz'j + hj(cij + C,-jH) ; j=0,1,.,n-1 (3.30)

Then solve for b; in Equation (3.29)
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«/_i JtL _ﬁ Y J+l
b; =2 (a/” —ai) 3 (2-¢/ +¢/7) (3.31)

J

biH :hi(aij _aiﬂ) _17*1(2.01/*1 +c/) (3.32)

j-1

Substitute b; and b;.; into Equation (3.30): gives

ho /" +2-(h_+h)c] +hc!”

i

=hi(a,»"“ ~aj )—hi(a,»" —al™) (3.33)
J J-1

j=0,1,...,n—-1

Since h; and a; = q,(;) (the robot configuration at each intermediate point of the
trajectory) are known. Moreover, the first order derivatives of the splines at the
end points (represent the initial configuration C' of the robot and the final one C)
are set to zero, Equation (3.19). The system of equation will be in matrix form

like:

Ax=b (3.34)

where is 4 is (n + 1) x (n + 1) matrix.

[2-h, h, 0 0 0
hy  2(h,+h) h, 0 0
|0 h, ﬂ@+%) h, 0 (335
0 0 - . . 0
0 0 0 hn—2 2(hn—2 + hn—l) hn—l
|0 0 0 0 h,, 2:h,, |
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 a-ad)eit) |
- 0
. it —a) =)
x= b= :
3 (0 oa 3 (w1 -
. Tl —ar ) et ) 3:36)
361,’"1(%)—%(%" a)
L n—1 i
QP(to):O
where
g/ (t,)=0

3.4.2. Optimization of Cubic Polynomial Joint Trajectory

For industrial applications, the speed of operation affects the productivity.
To maximize the speed of operation, the traveling time for the robot should be
minimized. Thus, the optimization problem is to adjust the time intervals between
each pair of adjacent configurations such that the total traveling time is minimum.
That is, the problem is to determine a set of optimum values for time intervals ¢,, ,
th, ..., t,.1. Note that there are N joints that must be considered simultaneously. A
GA procedure with parallel populations with migration technique has been
implemented to optimize the time intervals needed to move the robot between
adjacent configurations in the pursued trajectory. The GA operators for this

procedure are as follows:

e Chromosome:

The individual or the chromosome consists of set of genes. Each gene
contains a real number represents the time interval. Number of genes in each

chromosome is varied, depends on the length of the fed trajectory.
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The value of each gene is selected randomly from an interval. The interval
limits are 0 and #max. #max 1S set by the user or obtained from the adjacent
configuration algorithm for trajectory planning explained in next Chapter, Section
(4.1). The value of # . will change in each generation depending on the new

generated offsprings.

e Selection:

A roulette-wheel selection method is applied to select individuals for
crossover and mutation.

e (Crossover:

The crossover operator defines the procedure for generating a child from
two selected parents. In this procedure, an arbitrary number “arr” should be

calculated.

arr; = RV(0, t;max) * [RV(0, tjmax) - RV(0, #; max)] 3.37)

where RV = Random Value (between low and high).

After that, the genes of the new offspring will be calculated by mixing the

parents genes.

Dad

gene” = arr; x gene”* + (1 - arr,) x gene/™” (3.38)

Mom

gene”” = arr; x gene™™ + (1 - arr) x gene;” ad (3.39)

wherej=1,2,...,n—1.
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e Mutation:

The mutation operator defines the procedure for mutating each genome. In
this procedure, an offspring will be selected randomly then a gene j will be
selected randomly from that offspring. The mutation will occur with respect to the

following equation.

gene; = gene; + RV(0, tjmax) X [RV(0, #;max) - RV(0, t;max)] (3.40)

where RV = Random Value (between low and high).

3.5. APPLICATION EXAMPLES

In this Section, application examples “particularized” for robot Puma 560
have been implemented and analyzed to validate the efficiency of the proposed
algorithms. Two groups of examples will be demonstrated; one to verify the path-

planning algorithm, while the other one to verify the time optimizer algorithm.

The introduced procedure has been executed using a computer with Intel

Xeon CPU E5440 @ 2.83 GHz, 8 GB of RAM.

3.5.1. Path Planning Procedure Examples

Many examples have been executed to verify the path-planning algorithm.
These examples have different initial and final configurations with different types

and quantities of obstacles in the workspace.
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Four operational parameters have been studied when the procedure was

applied to a numerous different examples. The parameters are:

a) The objective function: minimize the summation of significant points

traveling distance, Equation (3.6), denoted by “d,”.

b) End-effector traveling distance, denoted by “d,”.

¢) Computational time, denoted by “z.,” for path planning algorithm and “#.,”

for time optimizer algorithm:

d) Finally, the execution time: The minimum time produced by the Time

Optimizer Algorithm to adjust a trajectory on the produced path, denoted

by “te”.

3.5.1.1. Example 1: Comparison with Rubio et al. 2009a

This example demonstrates the effectiveness of the mentioned algorithm.

This example has been solved by Rubio et al. 2009a. Thus, a comparison results

will be done.

The robot initial and final configurations are shown in Table (3.1).

Obstacles are shown in Table (3.2), these obstacles are used to create 10 different

environments, starting with the case without obstacles and then the cases of 1, 2, 3

obstacles for each obstacle type.

Joint No. 1 2 3 4 5 6
LGl 59.09° | -145.38° | 13.03° | 1.13° | 31.68° | 0.00°
configuration
Final -34.65° | -169.14° | 58.56° | 0.00° | 15.78° | 0.00°
configuration

Table 3.1: Initial and Final Configurations for Example 1.
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1* Spherical 2" Spherical 3" Spherical
obstacle obstacle obstacle
S0 _ SO _ SO _
Centre G = &= &=
(-0.85, -0.40,0.50) | (-0.75,0.00,0.50) | (-0.60,0.20, 0.30)
Radius 70 =0.15 10 =0.15 0 =0.15
1* Cylindrical 2" Cylindrical 3" Cylindrical
obstacle obstacle obstacle
Centre Clcyl’1 = Czcyl’1 = C3Cyl’1 =
1 (-0.85, 0.5, 0.0) (-0.75, 0.0, 0.0) (-0.7,0.2, 0.0)
Centre Clcyl’2 = Czcyl’2 = C3Cyl’2 =
2 (-0.85, -0.5, 2.0) (-0.75, 0.0, 2.0) (-0.7,0.2, 2.0)
Radius n=0.15 r=0.15 r=0.15
1" Prismatic 2" Prismatic 3" Prismatic
obstacle obstacle obstacle
: Py = Py = — (.
Point1 | 7 035,00 (-0.5, 0.0, 0.0) o= (03, 0025, 040
: Pp= Py = —(_
Point2 | 7 035,20 (-0.5, 0.0, 2.0) P =(-0.5,0.3,2.0)
. Pi3= Py = -
Point3 | 5 035,20 (-1.3,0.0,2.0) 7 = (ELS, U2 200
. Py = Py = — (.
Pointd 1 (15,.0.35,0.0) (13.00,00) [ P»=(13,03.00

Table 3.2: Obstacles Locations (in m) for Example 1.

The next Figures (3.7), (3.8), and (3.9) show the robot in the initial
configuration for three different runs for the same example with different
environments. It’s shown clearly in the figures that the workspace dimensions can
be modified as needed. This is considered as one of the effectiveness of this

algorithm.
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Figure 3.8: Example 1- The Case

of Three Cylispherical Obstacles.
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Figure 3.9: Example 1- The Case of Three Quadri-Lateral Plane Obstacles.
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The numerical results of this example and the comparison with Rubio et al.
2009a results are tabulated in the next Table (3.3). The cases of the three basic
obstacle elements with different quantities are presented here. The column titled as
“Results of this thesis” contains the results of the proposed GA procedure. The
column titled by Rubio et al. 2009a contains 4 sub-columns (correspond to the
results of 4 different approaches used by him). These approaches are: (1) In-direct
algorithm: seq, (2) Simultaneous algorithm: A*, (3) Simultaneous algorithm:
uniform cost, and (4) Simultaneous algorithm: greedy. For more details about

these approaches please refer to their article; Rubio et al. 2009a.
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Results Rubio et al. 2009a Results
of this unifor
thesis seq A* m cost greedy
d.(m) | 3.7358 | 407 | 38 | 38 | 3.73
de(m) | 1.5199
0 Obstacles | t,(s) | 5532 | 6631 | 112.14 | 65125 | 4.94
ta(s) | 7881
t.(s) | 2.00408
d.(m) | 3.8029 | 401 | 403 | 403 | 446
. de(m) | 1.5199
I(S){’)i‘t‘:c‘lc:' ta(s) | 10567 | 20111 | 257.99 | 1267.8 | 10.48
ta(s) | 9238
t(s) | 2.11442
d.(m) | 40187 | 518 | 463 | 463 | 538
. do(m) | 1.5346
23{';“5“1“1 ta(s) | 3806 | 211.85 | 484.03 | 16858 | 44.86
stacle ta(s) | 12486
t.(s) | 2.37418
d.(m) | 41585 | 5.19 | 463 | 463 | 538
. de(m) | 1.5199
33{';';35:' ta(s) | 4013 | 193.44 | 48536 | 1682.4 | 44.98
ta(s) | 17395
t.(s) | 336064
d.(m) | 3.7692 | 468 | 505 | 505 | 621
o dom) | 15199
lcgi)sslzgf:;cal ta(s) | 3932 | 12297 | 149.02 | 74430 | 28.78
ta(s) | 6946
t.(s) | 2.24456
d.(m) | 41915 | 556 | 523 | 523 | 599
o |deqmy| 16149
Zc(y)li)slt’hel““al ta(s) | 8139 | 260.63 | 270.52 | 987.85 | 15.03
stacle te (s) | 14505
t(s) | 2.62379
d.(m) | 43138 | 595 | 820 | 820 | 6.4
A dem) | 1.5917
3C§;@;1::celr;cal ta(s) | 8366 | 23048 | 869.02 | 1457.4 | 23.80
ta(s) | 18371
t(s) | 3.15649
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ds (m) | 3.9348 4.37 4.13 4.13 6.93
1 Quadri- d.(m) | 1.5364
lateral Plane | t; (s) 10272 76.17 | 110.36 | 529.52 | 16.14
Obstacle te2 (5) 14019
t. (s) | 3.03276
ds(m) | 4.5412 5.60 5.70 5.70 8.98
2 Quadri- de (m) | 2.1387
lateral Plane | t (s) 19523 198.45 | 346.43 | 869.47 | 67.80
Obstacle te2 (5) 20833
t. (s) | 3.29023
ds(m) | 4.9628 7.42 5.94 5.94 10.71
3 Quadri- d. (m) | 1.8353
lateral Plane | t (s) 24322 1676.1 | 602.91 1407 82.27
Obstacle te2 () 25710
te(s) | 4.19822

Table 3.3: Example 1 Results.

O Results of this thesis
Bseq

OA*

Ouniform cost

B greedy

10,00

greedy
uniform cost
A*

seq

Results of this thesis

00 1s0O 2S0 3S0 1CO 2COo 3Co 1QPO 2QPO 3QPO

Graph 3.1: Example 1 — A Comparison Results of d; (m) Between GA Procedure and Rubio Algorithms.
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In this example, a group of 50 examples with different initial and final

configurations and different obstacles will be discussed. These examples have

been solved by Rubio et al. 2009a.

12+

109

Travelled Distance (m)
(2]
L

1 3 5 7

Se
GA a

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Examples

Graph 3.2: Traveled Distance Comparison Between GA Procedure and Rubio

Procedures.
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Graph 3.3: Travelled Distance Comparison Between GA Procedure
& Seq Procedure Produced by Rubio et al. 2009a.
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Graph 3.4: Travelled Distance Comparison Between GA Procedure &
A* Procedure Produced by Rubio et al. 2009a.
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Graph 3.5: Travelled Distance Comparison Between GA Procedure

& UC Procedure Produced by Rubio et al. 2009a.
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Graph 3.6: Travelled Distance Between GA Procedure & G
Procedure Produced by Rubio et al. 2009a.

Computational Time (s)
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Examples

Graph 3.7: Computational Time Comparison Between GA and Rubio Procedures.

3.5.1.3. Example 3: Industrial Application — Comparison Results

This example demonstrates the effectiveness of the mentioned algorithm.
The robot initial and final configurations are shown in Table (3.4). Obstacles are

shown in Table (3.5).

Joint No. 1 2 3 4 5 6
Initial
configuration

-7.50° | -174.80° | 46.40° | 4.30° | 16.50° | -6.50°
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Joint No. 1 2 3 4 5 6
Final 95.10° | -101.20° | 15.59° | 0.00° | 0.00° | 0.00°
conﬁguratlon
Table 3.4: Initial and Final Configurations for Example 3.
1" Cylindrical | 2" Cylindrical | 3" Cylindrical | 4™ Cylindrical
obstacle obstacle obstacle obstacle
CICyl,l = C2Cy1,l = C3Cyl,1 = C4Cyl,1 =
(-0.7,0.5,0.0) (-0.7,0.0,0.0) (-0.7,-0.15,0.7) (-0.7,-0.15,0.15)
CICyl,Z = CZCyl,2 — C3Cy1,2 — ny/,z —
(-0.7,0.5,0.8) (-0.7,0.0,0.8) (-0.7,0.65,0.7) (-0.7,0.65,0.15)
n1=0.15 r1=0.15 p31=0.15 r&1=0.15
1 Prismatic 2" Prismatic 3" Prismatic 4™ Prismatic
obstacle obstacle obstacle obstacle
P, = Py = P; = Py=
(0.31,0.79,1.42) (0.31,0.79,1.42) | (-0.03,0.79,1.42) | (-0.03,0.79,0.97)
Pp= Py= P3= Py,=
(0.31,0.99,1.42) (0.31,0.99,1.42) | (-0.03,0.99,1.42) | (-0.03,0.99,0.97)
P;3= Py= P33 = P;s=
(0.31,0.79,0.97) (-0.03,0.99,1.42) | (-0.03,0.99,0.97) | (0.31,0.99,0.97)
P = Pyy= P = Puy=
(0.31,0.99,0.97) (-0.03,0.79,1.42) | (-0.03,0.79,0.97) | (0.31,0.79,0.97)

Table 3.5: Obstacles Locations (in m) for Example 3.

The next Figure (3.10) shows the path evolution from the initial robot

configuration to the final configuration in a complex environment.
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Figure 3.10: Example 3.

In this example, the path-planning problem has been solved in first place,

and then the trajectory has been adjusted. This in-direct method of obtaining the

trajectory has been compared with the direct method developed by Rubio et al.

2009b. The comparison of results for this example is shown in Table (3.6):

ds (m) de (m) t: () te ()
, A 5.82 17049.94 | 35.61
R“;’{',‘{’,;; al- | niform cost | 5.41 16233.08 | 29.23
greedy 5.43 2674.69 45.70

Thesis Results 43181 | 1.7858 | 17782 | 1.63415

Table 3.6: Example 3 Results.
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3.5.2. Time Optimizer Examples

In this approach, many examples have been solved to show the efficiency of
the time optimizer algorithm. The first example is a comparison example, while
the other examples are illustrated by calculated the minimum time needed to adjust

trajectories on paths resulting from path planning procedure examples group.

3.5.2.1. Example 1: Comparison Results with Tse and Wang 1998

For illustration, consider a Puma 560 type robot with six revolute joints.
Eight intermediate configurations from a Cartesian path of the hand are selected,
Table (3.7). The robot is at rest initially, and comes to a full stop at the end of the
minimum time interval. In this example, only the physical constraints will be
considered. The velocity, acceleration, and jerk constraints are given in Table
(3.8). This example published by Tse and Wang 1998, so a comparison between
results will be made. Tse and Wang tested their algorithm using combinations of
crossover rate (0.35, 0.65, 0.95) and mutation rate (0.001, 0.01, 0.05, 0.1, 0.2, 0.3,
0.4).

N*of Joint | yoint2 | Joint 3 | Joint 4 | Joint 5 | Joint 6
Configuration 1
1 10 15 45 5 10 6
2 35 20 1125 | 125 20 23
3 60 25 180 20 30 40
4 75 30 200 60 -40 80
5 130 -45 120 110 -60 70
6 110 -55 15 20 10 -10
7 100 70 -10 60 50 10
8 -10 -10 100 | -100 -40 30
9 -30 0 75 -65 -15 25
10 -50 10 50 -30 10 20

Table 3.7: Sequence of Configurations [degree].
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Joint 1 | Joint 2 | Joint 3 | Joint 4 | Joint 5 | Joint 6
Velocity (deg/s) 100 95 100 150 130 110
Acceleration
(deg /%) 45 40 75 70 90 80
Jerk (deg/s’) 60 60 55 70 75 70

Table 3.8: Velocity, Acceleration, and Jerk Constraints.

After exploring the experiments, the GA parameters that give the best

solution are listed in the next table.

Description Parameter Value

Population size popsize 30
N° of populations numpop 3
Generation number ngen 150
Crossover rate pcross 0.95
Mutation rate pmut 0.05
Number of migration nmig 7
Number of solutions replaced by new generation | nReplacement 5

Table 3.9: Parameter Values for the Genetic Algorithm Procedure.

The next graph demonstrates the evolution of the time over generations in

different crossover rates (0.35, 0.65, 0.95) combined with mutation rate 0.05.

Objective Function (Time (s)

17

—pc=0,35
——pc=0,65
——pc=0,95

20

40

60

80

No. of Generations

100

120

140

160

Graph 3.8: Objective Function (Time in seconds) vs. No. of Generations, Example 1.
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The next table demonstrates the comparison of results between this GA
procedure and Tse and Wang procedure. The results are about different runs with
crossover rate 0.95 combined with mutation rates 0.001, 0.01, 0.05, 0.1, 0.2, 0.3,
0.4.

0.001 | 0.01 | 005 | 01 0.2 0.3 0.4
Tse and
Wang 1998 | 20:156 [ 19.880 | 18211 | 18226 | 18.929 | 18.957 | 19.062
Thesis 18.091 | 17.726 | 17.706 | 17.971 | 17.896 | 17.897 | 17.931
algorithm

Table 3.10: Best Minimum Time with Crossover Rate = 0.95, Example 1.

From the above results, the best minimum time found is 17.706 seconds
obtained from the GA search with crossover rate = 0.95 and mutation rate = 0.05.
Besides, the rest of results in Table (3.10) are better than the Tse and Wang
results. In addition, the results obtained from the combinations of crossover rate =
0.35, 0.65 and mutation rate = 0.01 and 0.05 are 18.087 and 18.009 respectively,
are better than the Tse and Wang results 18.356 and 18.258.

The next graphs show the optimum joint trajectories.
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Graph 3.9: Joint Variables and Derivatives vs. Time.

3.5.2.2. Example 2:

In graph (3.10), the kinematic parameters (position, velocity and
acceleration), the actuators torques, and the power developed in the first three

actuators are shown. The graph corresponds to example sub-Section (3.5.1.2). The

torques in the actuators are limited due to the following values: 7; < |140| N.m,
7y <[180| Nom, 73 <|140] N.m, 7, <[80| N.m, 75 <[80| N.m, 74 <|40| N.m. The
power limits are Pot; <[275| Watt, ~Pot, <[350|Watt, Pot; <|275| Wait,

Pot, <[150| Watt, Pots <|150| Watt, Potg <|75 Wait.
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Graph 3.10: Joints (Coordinates, Velocities, Accelerations, Torques, and Power) vs. Execution Time.

3.6. DISCUSSION OF RESULTS

The examples illustrated in previous section prove the ability of the

presented procedure to solve the Path planning problem for industrial robots.
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The traveled distance by the significant points of the robot, are very
acceptable, and by comparing the results with other works, in the most of cases,
the traveled distance of the presented procedure is more desirable than the ones of

the other works.

In the example (1), sub-Section (3.5.1.1), the comparison of results shows
the efficiency of the proposed GA procedure over the four procedures (Seq, A*,
UC, G) provided by Rubio et al. 2009a. The GA procedure improved the results of
the traveled distance for path planning by an average of percentage 87.7%, 84.3%,
84.4%, and 68.6%, respectively.

The computation time in all examples is high which may considered as the
main disadvantage of the genetic algorithm in general. Referring to In the example
(1), sub-Section (3.5.1.1), the computational time for GA procedure is higher than
the one obtained by the four procedures (Seq, A*, UC, G) provided by Rubio et al.
2009a by an average of percentage 28821%, 7316%, 1044% and 50872%.

The presented procedure shows a significant ability to adapt the robot and

its path to any workspace characteristics.






CHAPTER 4

TRAJECTORY PLANNING

For industrial robots, the problem of minimum time trajectory planning has
been addressed by numerous researchers motivated by the direct relation between
the tasks executed in minimum time and the productivity in manufacturing

systems.

The trajectory-planning problem aims at finding a relationship between two
elements belonging to two different domains: time and space. Accordingly, the
trajectory is usually expressed as a parametric function of the time, which provides
at each instant the corresponding desired position. Obviously, after having defined
this function, other aspects related to its implementation must be considered, such

as time discretization, saturation of the actuation system, and so on.

The main distinction among the various categories of trajectories consists in
the fact that they can be one- or multi-dimensional. In the first case, they define a
position for a one DOF system, while in the latter case a multidimensional

working space is considered. From a formal point of view, the difference between
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these two classes of trajectories consists in the fact that they are defined by a scalar

(p = p(1)) or a vectorial (5 = q?j) function.

The working scope of this thesis deals with the multidimensional
trajectories. The Merriam-Webster dictionary defines the trajectory as “the curve
that a body describes in space”. Although in the case of a machine composed by
several motors each of them can be independently programmed and controlled
(control in the joint space), many applications require coordination among the
different axes of motion with the purpose of obtaining a desired multidimensional
trajectory in the operational space of the machine. This is the case of tool
machines used to cut, mill, drill, grind, or polish a given workpiece, or of robots,
which must perform tasks in the three-dimensional space, such as spot, welding,

arc welding, handling, gluing, etc.

Actually, as mentioned before in Section (1.3), trajectory-planning problem
for multidimensional trajectories has been analyzed using two different
approaches: direct or global approaches and decoupled or indirect approaches.
Indirect approaches firstly seek for a path in the configuration space, and then the
trajectory adjusts; subjected to the dynamic constraints of the manipulator, see
Saramago and Steffen 2001 and Valero et al. 2006. On the other hand, the search
takes place in the system’s state space in the direct approaches. These approaches
involve optimal control and numerical optimization (see Saramago and Steffen

2001, Plessis and Snyman 2003, Gasparetto and Zanotto 2007).

Most of the existing methods belong to one or other of these types, although
the indirect methods are the most widely used. For depth knowledge you should
refer to Piazzi and Visioli 1997a, 2000, Saramago and Steffen 2001, Plessis and
Snyman 2003, Behzadipour and Khajepour 2006, Valero et al. 2006, Bertolazzi et
al. 2007, Gasparetto and Zanotto 2007.
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A characteristic of indirect methods is that the path is known previously;
either because it depends on the activity to be done by the industrial robot or
because it has been generated by a path planner. Generally speaking, the indirect
methods combine the path planning with the obtaining of the time history of

motion usually in a sequential way.

By contrast, direct methods are characterized primarily because they do not
separate the path planning from the time history of motion rather they directly
solve the problem in the state space of the robot. They try to solve the trajectory
directly based on the evolution of dynamic variables, taking into account
geometrical constraints and setting out an optimization problem to optimize some
cost function. Some examples of direct methods are presented in Constantinescu

and Croft 2000, Chettibi et al. 2004, Abdel-Malek et al. 2006.

The basic trajectory can be analytically expressed by polynomials,
harmonics, exponential, etc. In this thesis, a polynomial presentation is used for
simplicity. The degree n of the polynomial depends on the number of conditions to
be satisfied and on the desired “smoothness” of the resulting motion. Since the
number of boundary conditions is usually even, the degree n of the polynomial
function is odd, i.e. three, five, seven, and so on. In our case, a third degree

polynomial will be used.

In this thesis, the trajectory planning will be obtained in means of adjacent
configurations concepts, these adjacent configurations have a new definition a

slightly differs from the definition used in the path planning explained in Section

(3.1).
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4.1. ADJACENT CONFIGURATIONS FOR
TRAJECTORY PLANNING

In this section, the process of generating a discrete space of configuration is
presented. This space of configurations is based on the obtaining of adjacent
configurations developed by Valero 1990, Valero et al. 1997, Valero et al. 2006,
and redefined by Abu-Dakka et al. 2007, Abu-Dakka et al. 2008.

Adjacent configurations are useful in two means. Firstly, it can be used to
generate a space of adjacent configurations between the initial and goal
configurations. After that, by applying a search algorithm (such as A*, etc.), the
pursued trajectory between the initial and final configurations can be found. This
strategy is not the goal of this thesis, but a test has been done to ensure the
capability of the algorithm to construct a space of adjacent configurations, see
Section (4.1.6). The second functionality of the adjacent configurations generation
is that it can be used to construct a pursued trajectory directly without the need of
a complete space of adjacent configuration. The only need is to find the adjacent

configurations necessary to build the pursued trajectory gradually.

4.1.1. Adjacent Configurations Formulation

The adjacent configurations can be defined as follows: The configuration

ck s adjacent to a given configuration C?, if they are feasible and the three

following conditions are satisfied, Valero et al. 2005, Valero et al. 2000:

1. The end-effector position y, (see Figure (2.1)) corresponds to a point of

the discrete workspace. In addition, it is one increment far from the point
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corresponding to the C? configuration, so it is said that, the two
configurations are neighboring and there must be a given increment

between them less than the smallest obstacle size in the workspace.

2. Verify the absence of obstacles between adjacent configurations C* and

C? . Also, to verify that the distance between significant points satisfy the

following condition,

<2-minfr); i=123  j=12... (4.1)

vk

where r is the minimum characteristic dimension of the obstacles in the

workspace.

3. C*should be such as to minimize the function:

AR
Hc" - CPH —4-1* 1B é(q,f — gk )2 L C- _é] (yjf - yf)i + (4.2)
bh-r)

where 4,B, and C are coefficients.

The first term ¢ is the time needed to move the end effector between
adjacent configurations through a third degree polynomial trajectory

expressed in the next Section (4.1.2).
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The second term (ql:f —qf ) is the joint coordinates, which aims to
minimize the difference between the joint coordinates of the

generated configuration C k. and the joint coordinates of the goal

configuration of the robot, where ¢; is the joint value.

s -+

4
The last term | > |y¥ — 2 [ +
jl(yj 71)i

bs-r2f

expressed in Cartesian coordinates, aims to minimize the distance

between significant points.

4.1.2. Third-Order Polynomial Trajectory Planning Between

Adjacent Configurations

The motion of the robot between adjacent configurations Ck(q,-k ) and

c’ (qlp ) has been presented by a third-order polynomial function as following:

k k k k2 k3
qip = aip + bl-p tpk + Cl-p tpk + dip Zpk (43)
gl =bl 2%, +3%dl e, (4.4)

Gt =2cl* +6*aft (4.5)
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where a’

K bPE cP* dP*are the polynomial coefficients, ¢”¥is the
generalized coordinates, and 7, is the minimum time necessary to go

i
min *

i

max and 7

from C? to CF, satisfying the robot’s torque constraints
The verification of the maximum and minimum torque in each actuator is

done by dividing the interval 7, into intermediate points, and then,

solving the corresponding inverse dynamic problem, using the recursive
Newton-Euler formulation (Section (2.3)) to obtain the joint torques

required for a given set of joint angles, velocities, and accelerations.

For a solution of 7, , the coefficients of the polynomial function can be

pk>

determined from the following four equations:

Fort=0 = {4 V=4 (4.6)

Fort=t, = 4.7)

Requiring zero velocity at the ends does not fit in the motion conditions

between the configurations C? and CF as if they were part of the pursued
trajectory. However, it facilitates the comparison between the configurations that
constitute the discrete space since common initial and goal velocity requirements

are imposed.

The coefficients of the polynomial could be determined as following:
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Cf’k=(%2j*(qf—qf) (438)

The solution of the optimization problem is obtained by using two different
algorithms. The first one is based on nonlinear Sequential Quadratic Programming
(SQP) method using an optimization routine provided by the NAG (Numerical
Algorithms Group) commercial library, for more details see Abu-Dakka et al.
2007. The other algorithm solve the problem using genetic algorithms, Abu-Dakka
et al. 2008.

4.1.3. Workspace Discretization

The first step of the optimization process is generating discreet space of
configurations. This space is defined basing on the position of the end-effector and
is considered as a rectangular prism between the initial and final configurations of
the robot, with its axis parallel to the Cartesian reference system, see Figure (4.1).
This space has been modeled in the same way as the space explained in sub-

Section (3.1.2).
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74

Figure 4.1: Workspace Generation.

As mentioned before, to generate this space of configurations, two
optimization algorithms are tested: SQP and Genetic algorithms. The information
(like: C*, C?, t, from where you can access current position, etc.) that can be
resulted from the algorithm, are stored in a database with the same form as the

discretized prism.

4.1.4. Sequential Quadratic Programming Algorithm

As was observed in the previous part of this chapter and Chapter 2, the
optimization process for trajectories consists of nonlinear cost function and
nonlinear constraint equations. The problem variables are seven; the generalized

coordinates (g,, . » ) and the time 7, . The problem constraints are varied as the

following:
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1) Tming <7i < Tmax.i i=12,..6 (4.9)
2) Hyf -7y H <D j=1234 D = smallest obstacle size (4.10)
3) “7/4,0bmined - Pgoal position <0.02 meter (41 1)

4) Obstacle avoidance constraints.

The nonlinear actuators torques constraints, which are considered as
dynamic constraints, see Section (2.3). The derivative of equation (4.9) cannot be

obtained analytically, but it can be calculated numerically by NAG routine.

Equation (4.10) aims to restrict the distance between the significant points

in C * and their corresponding in C”. The derivative is:

dy;
k p J
yi—=ys =L +
( J J )x dql' ;
) -74] @,
U .y (7/’?_;/1?) 1470 . (4.12)
d k P J J y d
o il
dy;
k p J
}/ . — ]/ . of —
( J J )z dql' .
where d_?ﬁ can be calculated by Equation 2.5.
q;

Equation (4.11) aims to restrict the distance between the end-effector

position of C * and the goal position. The derivative is:
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The analytical partial derivatives with respect to the generalized coordinates

IR}

provided, see Section (2.5).

The cost function partial derivatives were calculated analytically as follows:

=) Zj -
k_
d“CTiCpHﬂ-Bé(q{' —q{‘)+2-c- él(yf —7f)y * Z—Z y +| (4.13)
=), > Zj Z
et -c’]
Tzz-A-t (4.14)
where i’_}; can be calculated by Equation 2.5.

The obtained solution guarantees the prevention of collisions and the
dynamic feasibility of the movement. In this problem, the objective function had

been generated by heuristically adjustment of coefficients as in Equation (4.2).

This mathematical model has been solved using a nonlinear Sequential
Quadratic Programming (SQP) optimization routine provided by the NAG
(Numerical Algorithms Group) commercial library, see Abu-Dakka et al. 2007.
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4.1.5. Genetic Algorithm Optimization Procedure

In this section, a genetic algorithm procedure will be introduced to obtain a

space of adjacent configurations, see Abu-Dakka et al. 2008.

A SSGA procedure is used to obtain the C* for a given y, . In this algorithm,

a real presentation (coding scheme) has been used. The main GA operators exposed

for this algorithm will be as follows:

e Chromosome

The individual or the chromosome represents the robot configuration and
the time to be optimized. Each chromosome consists of seven genes; six are the

robot generalized coordinates (g;. ;_; . ¢) and the seventh is the time needed to

move the robot end-effector between the adjacent configurations.

Gene Gene Gene
qi q> qs q4 qs 9s Lok
— — — )
Robot Time to be optimized

Figure4.2: Adjacent Configuration GA Chromosome.
e Selection

A roulette-wheel selection method is applied to select individuals for

crossover and mutation.

e (Crossover

The crossover operator defines the procedure for generating a child from
two selected parents. A single point crossover used in this procedure, see Figure

(3.3).
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e Mutation

The mutation operator defines the procedure for mutating each genome. In
this procedure, an offspring will be selected randomly then a gene will be selected
randomly from that offspring, Figure (3.3). The mutation will occur with respect to

the Equation (3.5).

e Objective Function

Minimize Equation (4.2).

The resulting offspring will be tested if it’s a valid robot configuration with
dynamic compatibility or not, regardless if it’s better or worse than the original

one (Because GA will deal with that).

As mentioned in Section (1.4), some of the advantages of the Genetic
Algorithms over other SQP optimization technique are: the SQP are sensitive to
the initial guess for the variable, while GA searches from a population of points,
rather than a single one. Using GAs, there is no need for derivatives or any

mathematical complexion. GAs use probabilistic transition not deterministic rules.

4.1.6. Comparison Results Between SQP and GA

Many examples were applied in various cases, next Table (4.1) shows the
results of 6 different examples with different environments conditions. A space of
adjacent configurations has been generated using SQP and GA algorithms. In each
space, the average of the optimized time between each pair of adjacent
configurations has been calculated. In addition, the average computational time,
needed to generate a robot configuration adjacent to a given one, has been

calculated. The GA algorithm shows a high ability of convergence and coverage in
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comparison with the SQP algorithm, it reaches to 95-98% for cases without

obstacles. The table results (4.1) shows the average time needed to move the robot

between adjacent configurations and the percentage of total number of

convergence; which means the total number of successful adjacent configurations

generated with respect to the total trials of the algorithm in a specific workspace;

which depends on the complexity of the workspace. Finally, it will focus on the

calculation time needed. In the table, Case 1 will demonstrate the results obtained

from SQP. On the other hand, Case 2 will demonstrate the results obtained from

the GA procedure.
Case 1: SQP Case 2: GA
Sphere | Cylinder | Plane Sphere | Cylinder | Plane
Avg. Timeof | - 01 | 10044 | 13608 | 03581 | 03478 | 0.3461
motion (sec)
Avg. Time of
calculation 12.97 39.0 16.2 16.19 17.10 19.38
(sec)
Percentage
of 78.6% 58.6% 81.6% 79.4% 78% 78%
convergence
Two Three Sphere Two Three Sphere
Spheres | Spheres and Spheres | Spheres and
cylinder cylinder
Avg. Time of | ) 1536 | 15220 | 13608 | 03432 | 03436 | 0.3513
motion (sec)
Avg. Time of
calculation 14.9 15.1 7.8 10.4 14.89 15.56
(sec)
Percentage
of 75.4% 79.7% 61.1% 78% 84% 75%
convergence

Table 4.1: Comparison Results Between GA & SQP.

As shown in the table, the GA procedure demonstrates higher efficiency

than the SQP. Hence, the GA procedure for the obtaining of adjacent

configurations will be used in the process of the obtaining the pursued trajectory.
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4.2. OBTAINING THE TRAJECTORY

In this thesis, a mixed method (in two stages) using genetic algorithms for
obtaining the minimum time pursued trajectory for industrial robots (at least 6
DOF) working in complex environments, in which the intermediate configurations
are unknown (i.e., no assumptions are previously made for the path), is presented.
In the first stage, the algorithm will optimize the trajectory time depending on the
optimized time from the adjacent configurations explained in the previous Section
(4.1); where the pursued trajectory is composed of set of adjacent configurations.
In the second stage, the obtained trajectory time from the first stage will be
optimized using genetic algorithms subjected to continuous velocity and

acceleration between intermediate configurations.

The method proposed deals with two facts: the obstacles in the workspace
and unknown intermediate configurations between C' and C'. These facts lead to
uncertainties about the kinematic characteristics of intermediate points,
highlighting that the knowledge of these kinematic characteristics are

indispensable to solve the inverse dynamic problem.

The algorithm works on a discretized configuration space which is
generated gradually as the direct procedure solution evolves, demands less

computational effort than the corresponding indirect procedure, Valero et al. 2006.

The determination of the trajectory from C ' is achieved by applying a
random search algorithm to look for the next adjacent configuration in the
discretized configuration space and so on till the C” is reached. The problem of the
obtained trajectory is that it suffers from velocity and acceleration discontinuity

between the intermediate points.
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The objective of the algorithm is to minimize the traveling time ¢ between C
"and C’/, where ¢ equal the summation of the optimized time t,r (the time obtained
while confirming the dynamic compatibility associated with the adjacency

between the configurations C* and C?) that constructed the trajectory.
= thk’l_ (4.15)

This time ¢ still is not the optimal time as the trajectory suffers from velocity and
acceleration discontinuity between the via points. As a solution, the clamped cubic
spline algorithm is applied to make continuous velocity and acceleration

connections between via points (see Section (3.4).

4.2.1. Genetic Algorithm Procedure

In this procedure, three optimization processes using genetic algorithms are
involved. Firstly, optimization process for obtaining the adjacent configurations
(detailed in Section (4.1)). The order in which the adjacent configurations are
generated will condition the Space of Configurations generated and, therefore, the
trajectory to be obtained. Second optimization process is applied for obtaining the
pursued trajectory. Finally, an optimization procedure using clamped cubic spline
is applied to optimize the trajectory time and to make continuous connections for

velocities and accelerations between intermediate configurations.

Genetic algorithm for adjacent configuration uses the technique of steady-
state reproduction without duplicates. This technique creates a certain number of
children to replace the parents in the population, but discards children, which are

duplicates of current individuals in the population (see Section (4.1.5)). On the
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other hand, for the trajectory, a parallel populations GA procedure with migration
technique has been implemented. The objective here is to find the shortest path
between two configurations of robotic manipulator. Real coding scheme has been

used to encode the parameters to generate the path.

In the GA based solution procedure, a number of new individuals are
created at each iteration. The remaining individuals are obtained by
deterministically copying the individuals with the top fitness from the previous

generation.

4.2.1.1. Genetic Algorithms Operators and Parameters

As mentioned before, a parallel populations GA procedure with migration
technique has been implemented to obtain minimum time trajectories. The main

operators and characteristics in the exposed GA are:

e Individual:

The individual or the chromosome is a complete trajectory between C' and
C’. Each chromosome is composed of a set of genes. Each gene contains the robot
configuration C{q,q>,...,q;}, and the time needed to move the robot to this

configuration. See Figure (4.3).

4— Gene ) —» €— Genen P 4— Genef —¥

Cilq) | T=0 C'q) | T=t, Clg) | T=1

Figure 4.3: Trajectory GA Chromosome.

The first gene of each individual contains the initial configuration data.

Then the ramification process to construct the chromosome will be started by
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selecting randomly the next gene; based on the random search algorithm; by
calling the adjacent configuration builder algorithm, and so on till the final
configuration reached. The ramification can be done without repetition in seven
directions: X-direction, Y-direction, Z-direction, XY-direction, XZ-direction, YZ-
direction, and XYZ-direction. In this algorithm, there are no restrictions on the

chromosome length and chromosomes can have different lengths.

In chromosome construction process, if the algorithm is not able to find the
next adjacent configuration due to obstacles or dynamic incompatibility, a retuning
back recursive technique will be applied. This technique depends on tracking back
process, looking for the last possible configuration in which the robot can continue
from it. If the tracking back drives the search to the initial configuration, this
means that there is no possible trajectory in the workspace. In this case, the

algorithm extends the workspace and starts again.

e Objective Function:

The objective of this algorithm is to minimize the equation (4.15).

e (Crossover:

The crossover is made through the exchange of a part of the path between
two trajectories chosen through the selection operation mentioned earlier. It is
executed only if the probability of the crossover is satisfied. The crossover process
for trajectory planning has been built in the same way detailed in sub-Section

(3.2.1), Figure (3.3).

e  Mutation:

Mutation is done by selecting randomly a point among the intermediate
points in the trajectory (the first and final points are not considered for mutation).

The point is then compared to the previous and next points in the trajectory. All
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the possible changes with which the trajectory will remain incremental and
quantum, are applied to the point. For more details see Figure (3.3) and sub-

Section (3.2.1).

4.3. APPLICATION EXAMPLES & RESULTS

The introduced procedure has been applied to a Puma 560 robot using a

computer with Intel Xeon CPU E5440 @ 2.83 GHz, 8 GB of RAM.

Four operational parameters have been studied when the procedure was

applied to a numerous different examples. The parameters are:

a) Execution time: The time needed to move the robot from the initial to the

final configuration, denoted by ¢,.
b) Computational time, denoted by ¢,:
¢) End-effector traveling distance, denoted by d..

d) Summation of significant points traveling distance, Equation (4.16),

denoted by d;.

Sl f byt - b - @16

i=1 j=1

where: j is the number of the significant and interesting points of the robot,
and m = 4 for Puma 560 robot. i = 1, 2, ..., n is the number of robot

configurations included in the trajectory.
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4.3.1. Example 1: Comparison Results with Rubio et al. 2009b

This example demonstrates the effectiveness of the mentioned algorithm.
The case of 0 obstacles and spherical obstacles of this example were solved by
Rubio et al. 2009b. Thus, a results comparison will be done. Rubio compared his
results by using three different approaches: A*, uniform cost (UC), and greedy

(G). For more details about his procedure, please refer to his article.

The robot initial and final configurations and obstacles are shown in the

previous chapter Table (3.1) and (3.2) respectively.

The results of the part solved by Rubio et al. 2009b are tabulated and

compared with the results of this thesis in Table (4.2).

. Results Rubio et al. 2009b Results
Operational of this m
uniform
parameters thesis A¥* cost greedy
te () 1.552 22.15 21.67 26.16
0 ds (m) 3.9446 3.65 3.65 4.19
Obstacles de (m) 1.68652
t. () 4876 2691.27 2785.20 555.55
1 te () 1.80759 21.63 27.61 49.98
S . ds (m) 4.0642 4.48 4.11 5.94
pherical
Obstacle de (m) 1.5925
t. () 7321 2360.28 2182.93 294.74
2 te () 1.96055 32.48 46.32
S . ds (m) 4.1335 5.81 5.71
pherical
Obstacle de (m) 1.5666
t. () 6749 735.32 70.30
3 te () 2.67079 22.30 28.97 38.21
S . ds (m) 4.2554 5.35 4.90 5.57
pherical
Obstacle de (m) 1.6133
t; () 6799 257.58 371.74 88.40

Table 4.2: Example 1 Results.
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Moreover, Rubio solved a series of 20 examples in his article (Five different
initial and final configurations * four different environments). These examples

have been solved using the GA procedure presented in this thesis. The comparison

of the results is illustrated in the following graphs:
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Graph 4.1: Execution Time Comparison Between GA Procedure Using
Cubic Polynomial for Interpolation and Rubio Procedure Using Harmonic
Interpolation Functions.
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Graph 4.2: Travelled Distance Comparison Between GA Procedure
Using Cubic Polynomial for Interpolation and Rubio Procedure Using

Harmonic Interpolation Functions.
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Graph 4.3: Computational Time Comparison Between GA Procedure
Using Cubic Polynomial for Interpolation and Rubio Procedure Using

Harmonic Interpolation Functions.

Rubio 2006, in his doctoral thesis solved the same series of examples using
cubic polynomial functions with zero velocities at the ends of intermediate
configurations trajectories. Then he adjusted the trajectory to obtain a continuous
velocities and accelerations between intermediate configurations. The comparison
between Rubio procedure and GA procedure presented in this thesis will be as

following:
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Graph 4.4: Execution Time Comparison Between GA Procedure Using Cubic
Polynomial for Interpolation and Rubio Procedure Using Cubic Polynomial
Interpolation Functions.
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Graph 4.5: Execution Time Comparison Between GA Procedure & A*

Procedure Produced by Rubio 2006.
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Graph 4.6: Execution Time Comparison Between GA Procedure &
Amplitude Procedure Produced by Rubio 2006.
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Graph 4.7: Execution Time Comparison Between GA Procedure & Voraz

Procedure Produced by Rubio 2006.
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Graph 4.8: Travelled Distance Comparison Between GA Procedure Using
Cubic Polynomial for Interpolation and Rubio Procedure Using Cubic
Polynomial Interpolation Functions.
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Graph 4.9: Travelled Distance Comparison Between GA Procedure & A*
Procedure Produced by Rubio 2006.
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Graph 4.10: Travelled Distance Comparison Between GA Procedure &
Amplitud Procedure Produced by Rubio 2006.
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Graph 4.11: Travelled Distance Between GA Procedure & Voraz
Procedure Produced by Rubio 2006.
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Graph 4.12: Computational Time Comparison Between GA Procedure
Using Cubic Polynomial for Interpolation and Rubio Procedure Using

Cubic Polynomial Interpolation Functions.

Observing the comparison of results of the 20 examples, you can see clearly
that the main objective of this work “execution time” obtained by the GA
procedure is better than the one published by Rubio 2006 and Rubio et al. 2009b.
However, the traveling distance by significant points in some cases is not better
than the ones obtained by him. In addition, the computational time is very high in
all cases, which may be considered as one of the main disadvantages of the genetic

algorithm.

4.3.2. Example 2: Indirect and Direct Methods Comparison

In this Example, a comparison between the indirect method explained in
Chapter 3 and the method obtained in this Chapter will be demonstrated. The robot
initial and final configurations and obstacles are shown in the previous chapter
Table (3.1) and (3.2) respectively. The results of the indirect method are tabulated

in Table (3.3) (the case with zero obstacles and spherical obstacles). The
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corresponding results for the same example using the direct method are tabulated

in Table (4.3).

Execution Travelled Computational
Time (s) Distance (m) Time (s)

0 Obstacle 2,00408 3,7358 13413
Indirect 1 Obstacles 2,11442 3,8029 19805
(Chapter 3) | 2 Obstacles 2,37418 4,0187 16292
3 Obstacles 3,36064 4,1585 21408
0 Obstacle 1,68652 3,9446 4876
Direct 1 Obstacles 1,80759 4,0642 7321
(Chapter 4) | 2 Obstacles 1,96055 4,1335 6749
3 Obstacles 2,67079 4,2554 6799

Table 4.3: Comparison Between Direct and Indirect Method.

As shown in the table, the trajectory time obtained from the direct method
(the method obtained in this chapter) is better than the trajectory time obtained
from the indirect one. This is because the direct method is based on the minimum

time trajectory between adjacent configurations.

4.3.3. Example 3: Industrial Application — Comparison Results

This example demonstrates the effectiveness of the mentioned algorithm.
The next Figure (4.4) shows the robot in the initial and final configuration. This
example also was solved by Rubio et al. 2009b. The robot initial and final

configurations are shown in Table (3.4). Obstacles are shown in Table (3.5).
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Figure 4.4: Example 3.

The comparison results for this example between the proposed approach and
the procedure introduced by Rubio are shown in the next Table (4.4):

Rubio et al. 2009b Results
Results of T
this thesis * uniform
A cost greedy
t. (5) 1.42842 35.61 29.23 45.70
ds (m) 4.2556 5.82 5.41 5.43
0 Obstacl 2
STACIES 1 g, m) | 1.7389
t. (s) 28885 17049.94 16233.08 2674.69
Table 4.4: Example 3 Results.
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4.3.4. Example 4: Industrial Application — Case With and Without
Obstacles

This example demonstrates the effectiveness of the mentioned algorithm

and its ability to adapt in absence or presence of obstacle. The robot initial and

final configurations are shown in Table (4.5). Obstacles are shown in Table (4.6).

Joint No. 1 2 3 4 5 6
jitial -108.54 | -9.88 | 19436 | -15.98 | -86.93 | 0.00
configuration
Final 0.13 | -10236 | 191.40 | 0.00 | 12.47 | 0.00
configuration
Table 4.5: Initial and Final Configurations for Example 4.
nd
1% Cylindrical 2 3" Cylindrical | 4™ Cylindrical
Cylindrical
obstacle obstacle obstacle
obstacle
Ol _
Centre 0C310 . f) CM = (030, | cOM=(-030, | €M =(0.30,
1 .30, -0.70, ) ) )
0.00) 0.70, 0.00) 0.70, 0.58) 0.70, 0.00)
Centre | CO'2=(0.30, | €2 =(-0.30, | C&"?=(0.30, | C"2=(0.30,
2 -0.70, 0.00) -0.70, 0.58) -0.70, 0.58) -0.70, 0.58)
Radius =0.15 &=0.15 &=0.15 =0.15
1** Quadri- 2" Quadri- 3" Quadri- 4™ Quadri-
lateral lateral lateral lateral
obstacle obstacle obstacle obstacle
Point 1 P11 = (045, P21 = (045, P31 = (045, = P41 = (045,
0.34, 0.89) 0.34, 1.38) 0.0400, 0.89) | 0.34, 0.8900)
Point 2 P12 = (045, - P22 = (045, - P32 = (067, - P42 = (045,
0.04, 0.89) 0.04, 1.38) 0.04, 0.89) 0.34, 1.38)
Point 3 P13 = (067, - P23 = (067, - P33 (O 67 - P43 (0 67,
0.04, 0.89) 0.04, 1.38) 0.04, 1.38) 0.34, 1.38)
Point 4 P14 = (067, P24 = (067, P34 = (045, - P44 = (067,
0.34, 0.89) 0.34, 1.38) 0.04, 1.38) 0.34, 0.89)

Table 4.6: Obstacles Locations (in m) for Example 4.
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The results for this example in case of obstacle or without obstacles are

shown in Table (4.7):

te (5) tc (s) de (m) ds (m)
0 Obstacles 242217 12915 1.7106 4.7870
With Obstacles 3.85854 57080 1.7802 5.2227

Table 4.7: Example 4 Results.

The next Figure (4.5) shows the robot in the initial and final configuration,
the end-effector track, and the workspace. The left one is the final and the right

one is the initial.

P

Figure 4.5: Example 4 (Case With and Without Obstacles).
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4.3.5. Example 5: Typical Industrial Application

Here you can see the ability of the algorithm to modify the search space to

adapt the robot to find the trajectory between the initial and final configurations.

S’

Figure 4.6: Example 4.
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te () tc () de (m) | ds (m)
1.52102 9720-2173 1.1335 | 3.2619

Table 4.8: Example 4 Results.

4.4. DISCUSSION OF RESULTS

The examples illustrated in previous section prove the ability of the

presented procedure to solve the trajectory-planning problem for industrial robots.

Using cubic polynomial as interpolation functions demonstrate results better
than harmonic functions, and the proposed GA procedure provides minimum time
trajectory better than the A* and Amplitude procedures produced by Rubio 2006
and Rubio et al. 2009b.

The computation time in all examples is high which may considered as the

main disadvantage of the genetic algorithm in general.

The traveled distance by the significant points of the robot, are very
acceptable, and by comparing the results with other works, in the most of cases,
the traveled distance of the presented procedure is better than the ones of the other

works.

The presented procedure shows a significant ability to adapt the robot and

its trajectory to any workspace characteristics.






CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, new approaches have been presented to solve the path and
trajectory planning problems for industrial robots operating in 3D complex
environment. Genetic algorithms appear in this thesis to solve such problems.
These approaches have led to two general classes of algorithms that are capable of

obtaining the solution of the mentioned planning problems. These classes are:

1) An algorithm to solve the adjacent configuration problem. This algorithm

in fact has two versions;

a) Version for solving the adjacent configuration for path planning

considering just the kinematics, geometric, and obstacles constraints.

b) Version for solving the adjacent configuration problem for the
trajectory planning considering dynamic constraints of the robotic

system.

2) An algorithm to solve path and trajectory planning problems. This

algorithm also has two versions.



-164 - Trajectory Planning for Industrial Robots Using Genetic Algorithms

a) Version for path planning. This version aims to find the shortest path
between two robot configurations subjected to the kinematics,

geometric, and obstacle avoidance constraints.

b) Version for trajectory planning. This version aims to find the
minimum time trajectory between two robot configurations subjected
to the dynamics constraints of the robotic system and the obstacle

avoidance constraints.

The path planning algorithm aims to find the shortest path between two
given robot configurations; initial configuration C ’ and final configuration C;
avoiding the collision with obstacles in the workspace. In an indirect way, the
minimum time trajectory has been calculated in this case by adjusting a trajectory
to the resulting path. This could be achieved by building the clamped cubic spline

algorithm and solving it by genetic algorithm procedure.

The trajectory planning algorithm aims to minimize the trajectory time
needed to move the robot from an initial configuration C' to a final configuration
C/ avoiding the collision with obstacles in the workspace. The workspace has been
built in a way that gives the capability to modify its dimensions if there is no
feasible solution in the current one. The effectiveness of this technique has been
shown clearly in the experimental results. A new crossover and mutation operators

have been designed in a way to improve the solution and its quality.

The presented algorithms can be applied to any industrial robotic system. In
this thesis, an application example has been developed using Puma 560 robot for
testing the algorithms. In addition, an application program using object oriented
C++ has been built in a way to simulate the dynamics and kinematic (direct and

inverse) of the Puma 560 robot.
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The presented algorithms have been tested and validated using a large
number of examples. The analysis of the results shed light on the characteristics
and properties of the algorithms used, and are reflected in two chapters of this
document. Part of these examples is compared with the work of other authors and
demonstrates the efficiency of the proposed procedure by an average of 81.3% for
path planning (see sub-Section Example 1:3.5.1.2) and 43% for trajectory planning
(see sub-Section 4.3.1). Another part of the examples is done using close to real
industrial scenario to show the ability of the presented algorithm to adapt to any

workspace.

An important parameter should be discussed here is the computational time.
As shown in the illustrated example the computational time is relevantly high.
Moreover, the computational time increases as well as the restrictions increase.
Furthermore, the number of individuals should be increased, and so the number of
generations for more accurate results using the GA procedure, especially for more
complex problems and workspaces, which leads to an increase of the
computational time. This maybe considered as a disadvantage of the GA in
general. However, as the industrial robots work on a repetitive trajectories and
paths, an offline planning normally takes place. This means that the computational
time cost can be acceptable as the resulting planning and time trajectory are good

enough.

Finally, because of the importance of the path and trajectory planning
problems in the industry, it is necessary to introduce new operating assumptions to
improve the quality and the functionality of the presented algorithms. These

assumptions are:

e Adding a new optimization algorithm to deal with the orientation of the

Gripper of the robot to achieve some tasks.
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e Rebuilding the existing algorithms using Ant-Colony optimization instead
of genetic algorithms could be very interesting. Knowing that, ants are
very powerful in finding the shortest path and minimum time trajectory
between their colonies and the food. Many authors like Liu et al. 2005 and
Maurya and Shukla 2010 used the ant colony optimization procedure to
solve the path and trajectory planning for mobile robots. It will be an
opportunity to check their efficiency in planning paths and trajectories for

industrial robots.

While there is considerable work yet to be addressed, this thesis provides useful

approached to deal with path and trajectory planning for industrial robots.
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APPENDIX A

PUMA 560 ROBOTIC MANIPULATOR
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Figure A.1: Skeleton of the Puma 560 Robot with Local Coordinate Frames
and Modified-DH Parameters (Out of scale).
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The Puma 560 is a six degree of freedom robot manipulator. The end-
effector of the robot arm can reach a point within its workspace from any
direction. In this appendix all parameters and specifications used in this thesis for

robot Puma 560 will be indicated.

A.1. DENAVIT-HARTENBERG PARAMETERS

A table that considers the common Modified Denavit-Hartenberg

parameters a,, @;, d; and @, for Puma 560 like robot, will be presented.

Link | ¢, a, d, 0,
1 0 0 0 0,
2 | -90 0 0 0,
3 0 431.8 | 149.09 0,
4 90 -20.32 | 431.8 0,
5 90 0 0 0,
6 90 0 0 0,

Table A.1: Modified-DH Parameters
Values for Robot Puma 560, Angles in

[degrees], Distances in [millimeter].
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A.2. DYNAMIC PARAMETERS

Positions of the Centre of .
. . Links Masses
Robot links Gravity
(kg)

X y z
1 0.0 -0.054 0.0 10.521
2 0.1398 0.0 0.14909 15.781
3 -0.00032 | -0.197 0.0 8.767
4 0.0 0.0 -0.057 1.052
5 0.0 -0.007 0.0 1.052
6 0.0 0.0 0.03725 0.351

Table A.2: Positions of the Centre of Mass and Masses for

Puma 560 Links, Values in [meter].

Robot

links Ixx Iyy Izz Ixy Ixz Iyz
1 1.6120 | 0.5091 | 1.6120 0.0 0.0 0.0
2 0.4898 | 8.0783 | 8.2672 0.0 0.0 0.0
3 3.3768 | 0.3009 | 3.3768 0.0 0.0 0.0
4 0.1810 | 0.1810 | 0.1273 0.0 0.0 0.0
5 0.0735 ] 0.0735 | 0.1273 0.0 0.0 0.0
6 0.0071 | 0.0071 | 0.0141 0.0 0.0 0.0

Table A.3: Inertia Tensor for Puma 560 Links, Values in [kg/m].
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A.3. LOCAL

Trajectory Planning for Industrial Robots Using Genetic Algorithms

POSITIONS OF SIGNIFICANT AND
INTERESTING POINTS

Significant Points are y;, 7,, 73, and y,. Interesting Points are 4, 4,,

Ay, and Ay

Significant Points

Reference Local Position
frame
7 2 0.0, 0.0, 0.255
1z 3 0.0, 0.0, 0.105
73 3 0.0, -0.351, 0.0
V4 6 0.0, 0.0, 0.267
Interesting Points
Reference Local Position
frame
4 2 -0.229, 0.0, 0.255
A 3 0.0,0.1,0.0
A 4 0.0, 0.0, -0.081
Ay 5 0.0, 0.0, 0.0

Table A.4: Significant and

Interesting Points used for Puma

560 in This Thesis, Values in

[meter].
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A.4. JOINTS LIMITS

Joint Minimum | Maximum
Value Value

1 -160 160
2 -215 35

3 -45 225
4 -140 140
5 -100 100
6 -266 266

Table A.5: Admissible Movement Range for

Each Joint, Values in [degree].
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