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ABSTRACT 

In the last decades, many researches have been proposed concerning the 

path and trajectory planning for manipulators. Path and trajectory planning have 

important applications in many areas, for example industrial robotics, autonomous 

systems, virtual prototyping, and computer-aided drug design. On the other hand, 

the evolutionary algorithms have been applied in this plethora of fields, which 

motivates the author’s interest on its application to the path and trajectory planning 

for industrial robots. 

In this work, an exhaustive search of the existing literature related to the 

thesis has been carried out, which has served to create a comprehensive database 

used to perform a detailed historical review of developments since its origins to 

the current state of the art and the latest trends. 

This thesis presents a new methodology that uses genetic algorithms to 

develop and evaluate path and trajectory planning algorithms. Problem-specific 

knowledge and heuristic knowledge are incorporated into encoding, evaluation 

and genetic operators of the genetic algorithm.  

This methodology introduces new approaches that aim at solve the problem 

of path planning and trajectory planning for industrial robotic systems operating in 

3D environments with static obstacles. Therefore, two algorithms (somehow, they 

are similar, but with some variations) are created to solve the mentioned planning 

problems.  

Obstacles modeling have been done by using combinations of simple 

geometric objects (spheres, cylinders, and plans) which provide an efficient 

algorithm for collision avoidance. 



 Trajectory Planning for Industrial Robots Using Genetic Algorithms 

Path planning algorithm is based on global genetic algorithms optimization 

techniques, which aim to minimize the sum of the distances between significant 

points of the robot along the path considering the restrictions to avoid collisions 

with obstacles. The path is composed of adjacent configurations obtained by an 

optimization technique using genetic algorithms, seeking to minimize a multi-

objective function that involves the distance between significant points of the two 

adjacent configurations, and the distance from the points of the current 

configuration to the final one. An evaluation method is designed according to the 

problem presentation by defining individuals and genetic operators capable of 

providing efficient solutions to the problem. The result of this algorithm is the 

shortest path between two configurations given by the user. 

Trajectory planning algorithm is also based on genetic algorithms 

optimization techniques using the direct procedure. The algorithm is similar to the 

mentioned previously algorithm for path planning problem, but with some 

differences in the objective function and some details related to the conceptual 

difference between path and trajectory planning. The objective of this algorithm is 

to minimize the time required to move the robot from an initial configuration to 

another final one without colliding with obstacles, taking into consideration the 

limitation on the actuators. Each trajectory is constructed by means of adjacent 

configurations obtained through an optimization process using genetic algorithms 

aims to minimize a function of time required to move the robot between two 

adjacent configurations, the distance from the points of the current configuration 

to the final one, and the distance between significant points of the adjacent 

configurations along the trajectory. The restrictions of this algorithm may be one 

or a combination of the following: torque, power, and energy limitations. The 

result of the optimization algorithm is a trajectory with minimum time between 

two configurations of the robot. 
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The algorithms presented in this thesis have been validated by its use to a 

significant number of examples. The analysis of the results sheds light on the 

characteristics and properties of the algorithms used, allowing obtaining the 

conclusions of the work and focusing on new ways to explore in future work. 





 

RESUMEN 

En las últimas décadas, debido la importancia de sus aplicaciones, se han 

propuesto muchas investigaciones sobre la planificación de caminos y trayectorias 

para los manipuladores, algunos de los ámbitos en los que pueden encontrarse 

ejemplos de aplicación son; la robótica industrial, sistemas autónomos, creación de 

prototipos virtuales y diseño de fármacos asistido por ordenador. Por otro lado, los 

algoritmos evolutivos se han aplicado en muchos campos, lo que motiva el interés 

del autor por investigar sobre su aplicación a la planificación de caminos y 

trayectorias en robots industriales. 

En este trabajo se ha llevado a cabo una búsqueda exhaustiva de la literatura 

existente relacionada con la tesis, que ha servido para crear una completa base de 

datos utilizada para realizar un examen detallado de la evolución histórica desde 

sus orígenes al estado actual de la técnica y las últimas tendencias. 

Esta tesis presenta una nueva metodología que utiliza algoritmos genéticos 

para desarrollar y evaluar técnicas para la planificación de caminos y trayectorias. 

El conocimiento de problemas específicos y el conocimiento heurístico se 

incorporan a la codificación, la evaluación y los operadores genéticos del 

algoritmo. 

Esta metodología introduce nuevos enfoques con el objetivo de resolver el 

problema de la planificación de caminos y la planificación de trayectorias para 

sistemas robóticos industriales que operan en entornos 3D con obstáculos 

estáticos, y que ha llevado a la creación de dos algoritmos (de alguna manera 

similares, con algunas variaciones), que son capaces de resolver los problemas de 

planificación mencionados. 



 Trajectory Planning for Industrial Robots Using Genetic Algorithms 

El modelado de los obstáculos se ha realizado mediante el uso de 

combinaciones de objetos geométricos simples (esferas, cilindros, y los planos), de 

modo que se obtiene un algoritmo eficiente para la prevención de colisiones.  

 El algoritmo de planificación de caminos se basa en técnicas de 

optimización globales, usando algoritmos genéticos para minimizar una función 

objetivo considerando restricciones para evitar las colisiones con los obstáculos. El 

camino está compuesto de configuraciones adyacentes obtenidas mediante una 

técnica de optimización construida con algoritmos genéticos, buscando minimizar 

una función multiobjetivo donde intervienen la distancia entre los puntos 

significativos de las dos configuraciones adyacentes, así como la distancia desde 

los puntos de la configuración actual a la final. El planteamiento del problema 

mediante algoritmos genéticos requiere de una modelización acorde al 

procedimiento, definiendo los individuos y operadores capaces de proporcionar 

soluciones eficientes para el problema.  

El algoritmo de planificación de trayectorias también se basa en técnicas de 

optimización que usan algoritmos genéticos mediante el procedimiento directo; 

similares al algoritmo del problema de la planificación de caminos, pero con 

algunas diferencias en la función objetivo y detalles relacionados con la diferencia 

conceptual entre la planificación de trayectorias y caminos. El objetivo de este 

algoritmo es minimizar el tiempo necesario para mover el robot de una 

configuración inicial a otra final sin colisionar con los obstáculos, considerando 

los límites de los actuadores. Cada trayectoria esta construida por configuraciones 

adyacentes obtenidas mediante un proceso de optimización utilizando algoritmos 

genéticos para minimizar una función del tiempo necesario para mover el robot 

entre dos configuraciones adyacentes, la distancia desde los puntos de la 

configuración actual a la final y la distancia entre los puntos significativos de las 

configuraciones adyacentes a lo largo de la trayectoria. Las restricciones de este 
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algoritmo pueden ser una o una combinación de lo siguiente: los límites de par, 

potencia y energía. El resultado del algoritmo de optimización es una trayectoria 

con un tiempo mínimo entre dos configuraciones del robot. 

Los algoritmos presentados en esta tesis han sido validados por su uso a un 

número significativo de ejemplos. El análisis de los resultados arroja luz sobre las 

características y propiedades de los algoritmos utilizados, que se reflejan en dos 

grandes capítulos creadas para este propósito, permitiendo obtener las 

conclusiones del trabajo y orientando sobre nuevas vías a explorar en trabajos 

futuros. 





 

RESUM 

En les últimes dècades, s’han proposat moltes investigacions sobre la 

planificació de camins i trajectòries per als manipuladors donada la importància de 

les seues aplicacions, alguns dels àmbits en què poden trobar exemples d’aplicació 

són: la robòtica industrial, sistemes autònoms, creació de prototips virtuals i 

disseny de fàrmacs assistit per ordinador. D’altra banda, els algorismes evolutius 

s’han aplicat en aquesta gran quantitat de camps, el que motiva l’interès de l’autor 

per investigar sobre la seva aplicació a la planificació de camins i trajectòries en 

robots industrials. 

En aquest treball s’ha dut a terme una recerca exhaustiva de la literatura 

existent relacionada amb la tesi, que ha servit per a crear una completa base de 

dades utilitzada per realitzar un examen detallat de l’evolució històrica des dels 

seus orígens a l’estat actual de la tècnica i les últimes tendències. 

Aquesta tesi presenta una nova metodologia que utilitza algorismes genètics 

per a desenvolupar i avaluar algorismes per a la planificació de camins i 

trajectòries. El coneixement de problemes específics i el coneixement heurístic 

s’incorporen a la codificació, l’avaluació i els operadors genètics de l’algorisme 

genètic. 

Aquesta metodologia introdueix nous enfocaments per tal de resoldre el 

problema de la planificació de camins i la planificació de trajectòries per a 

sistemes robòtics industrials que operen en entorns 3D amb obstacles estàtics, i 

que ha portat a la creació de dos algorismes (d’alguna manera similars , amb 

algunes variacions), que són capaços de resoldre els problemes de planificació 

esmentats. 
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El modelat dels obstacles s’ha realitzat mitjançant l’ús de combinacions 

d’objectes geomètrics simples (esferes, cilindres, i els plànols), de manera que 

s’obté un algorisme eficient per a la prevenció de col·lisions. 

L’algorisme de planificació de camins es basa en tècniques d’optimització 

globals, usant algorismes genètics per minimitzar la suma de les distàncies entre 

els punts significatius del robot al llarg del camí considerant restriccions per evitar 

les col·lisions amb els obstacles. El camí està compost de configuracions adjacents 

obtingudes mitjançant una tècnica d’optimització construïda amb algoritmes 

genètics, buscant minimitzar una funció multiobjectiu on intervenen la distància 

entre els punts significatius de les dues configuracions adjacents, així com la 

distància des dels punts de la configuració actual a la final. El plantejament del 

problema mitjançant algoritmes genètics requereix d’una modelització d’acord al 

procediment, definint els individus i operadors capaços de proporcionar solucions 

eficients per al problema. El resultat d’aquest algorisme és el camí més curt entre 

dues configuracions donades per l’usuari. 

L’algorisme de planificació de trajectòries també es basa en tècniques 

d’optimització que fan servir algoritmes genètics mitjançant el procediment 

directe, similars a l’algorisme del problema de la planificació de camins, però amb 

algunes diferències en la funció objectiu i detalls relacionats amb la diferència 

conceptual entre la planificació de trajectòries i camins. L’objectiu d’aquest 

algorisme és minimitzar el temps necessari per moure el robot d’una configuració 

inicial a una altra final sense topar amb els obstacles, considerant els límits dels 

actuadors. Cada trajectòria està construïda per configuracions adjacents obtingudes 

mitjançant un procés d’optimització utilitzant algorismes genètics per minimitzar 

una funció del temps necessari per moure el robot entre dues configuracions 

adjacents, la distància des dels punts de la configuració actual a la final i la 

distància entre els punts significatius de les configuracions adjacents al llarg de la 
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trajectòria. Les restriccions d’aquest algorisme poden ser una o una combinació 

del següent: els límits de parell, potència i energia. El resultat de l’algorisme 

d’optimització és una trajectòria amb un temps mínim entre dues configuracions 

del robot. 

Els algorismes presentats en aquesta tesi han estat validats pel seu ús a un 

nombre significatiu d’exemples. L’anàlisi dels resultats llança llum sobre les 

característiques i propietats dels algorismes utilitzats, que es reflecteixen en dos 

grans capítols creats per a aquest propòsit, permetent obtenir les conclusions del 

treball i orientant sobre noves vies a explorar en treballs futurs. 
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r  Vector from the origin of the reference system i to the origin of 

the reference system j, expressed in the reference system k.   
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ir ,
r  Vector from the origin of the reference system attached to body i 

to its centre of gravity expressed in the same reference system.  
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iω  Angular velocity of body i. 

iω&  Angular acceleration of body i. 
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CHAPTER 1  

INTRODUCTION 

1.1. MOTIVATION AND DOMAIN OF APPLICATION 

In the last few decades, the number of robots has grown in many areas. 

Upon industrial applications, robots also are used in surgery, agriculture, 

underwater, and for transportation. In industrial applications, they have many 

purposes like; pick and place operations, assembly tasks, spray-painting, and many 

other tasks. 

In some cases it is required to control and program the robots in real-time. 

On the contrary, to meet demands on flexibility, quality, and efficiency in 

industrial systems, off-line programming is required. In off-line programming 

systems, the programmer uses a three-dimensional computer model of the robot 

and its work cell, in which the virtual robot can be controlled easily and moved to 

the desired configurations. When the program is completed, the motion can be 

verified, simulated, and optimized before its application on the actual robot. 

Another advantage of the off-line programming is the improved safety for the 

operator as well as the robot. Despite the fact that, off-line programming improves 
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efficiency in many aspects, the programming work is still performed manually. 

When the robot is to be moved from one position to another, it is then necessary to 

obtain the path that connects theses points avoiding collisions. Therefore, the 

planning of paths or trajectories is one of the most important areas in robotics 

research. 

Path planning and trajectory planning problems are two distinct parts of the 

robotics that intimately are related. They are considered as a very active research 

area and there are many algorithms to solve such problems. Actually, a clear 

difference exists between those algorithms devoted for path planning problem and 

those devoted for determining the optimal trajectory for robotic systems. The first 

ones try, essentially, to obtain a sequence (“a path”) of robot configurations 

(generalized coordinates) between an initial configuration (start) and a final 

configuration (goal) that fulfils some conditions, mainly, collision avoidance. 

Whereas, the second ones try to obtain a temporal history of the evolution for the 

robot joint coordinates, by minimizing aspects, such as; the required time or the 

energy consumption. Therefore, path planning is a subset of trajectory planning, 

wherein the dynamics of robot are neglected. In trajectory planning, path planning 

is searched firstly and then finding an optimal time scaling for the path subject to 

the actuator limits; such approach known as decoupled (indirect) approach. In the 

other hand, the direct approach of trajectory planning, the search takes place in the 

system’s state space. 

In this thesis, both, path planning and trajectory planning are presented as 

two distinct fields, and each one is going to be reviewed separately. 



Introduction   - 3 - 

1.2. PATH PLANNING: STATE OF THE ART  

Path planning has a very important role for getting to a desired goal in 

mobile robots. Path planning, as mentioned earlier, tries to determine a sequence 

of robot configurations between an initial configuration and a goal configuration 

under certain restrictions, such as; collision avoidance, which is can be easily 

stated “How to get from here to there?”. 

The basic path-planning problem involves computing a collision-free path 

between an initial configuration of the robot and a final one in a static environment 

of known obstacles, and that the planned motion is consistent with the kinematic 

constraints of the robot. In this case, the constraints on the solution path arise from 

the geometry of both the obstacles and the robot. 

Path planning has important applications in many areas, for example, 

industrial robotics, autonomous systems, assembly planning and virtual 

prototyping, Chang and Li 1995, computer graphics simulations, Kuffner and 

Latombe 2000, and computer-aided drug design, Finn et al. 1997. 

According to Hwang and Ahuja 1992a path planning algorithms can be 

classified into two aspects: the scope (global or local) and the completeness. 

Global algorithms assume that the robot’s environment is completely known. 

Global algorithms take into account all the information in the environment, and 

they plan a path from the initial to the goal configuration. Therefore, their strength 

is global path planning, but they are not appropriate for fast obstacle avoidance. 

On the other hand, local algorithms use only a small fraction of the world model to 

generate robot control. They are used when the start and goal configuration of the 

robot are close. However, the key advantage of local techniques over global ones 

lies in their low computational complexity, which is particularly important when 
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the world model is updated frequently based on sensor information. In the other 

hand, with respect to the completeness, Hwang and Ahuja classified it into three 

types. Exact (or complete) algorithms either find a solution or prove that there is 

no solution. They are usually computationally expensive. Most complete 

algorithms, however, are applicable in low-dimensional configuration spaces 

problems. Resolution complete algorithms discretize some continuous quantities 

such as object dimensions or configuration parameters, but become exact in the 

limit as the discretization approaches a continuum. For probabilistically complete 

algorithms, the probability of finding a solution can be made to approach one if the 

problem is indeed solvable. Most such algorithms use a randomized search 

procedure, which is guaranteed to find a solution if it is allowed to run long 

enough. Finally, the heuristic algorithms are often non-complete as they may fail 

to find a solution even when one exists. They are aimed to generating a solution in 

a short time. Exact algorithms determine the complexities of the problems, while 

heuristic algorithms are important in engineering applications. 

For complexity analysis, some definitions should be cleared. Cormen et al. 

2001 classify the problems to three classes: P, NP, and NPC. The problem is said 

to be in P, if there is a polynomial time algorithm to solve it. If there is a 

polynomial time algorithm to verify a solution to the problem (thus NPP ⊆ ), the 

problem is said to be in NP (Nondeterministic Polynomial). This means that the 

problem in NP needs a very long computation time to solve if the problem size is 

large. A problem is NP-hard if it is at least as difficult as any NP problem. If the 

problem is NP and NP-hard, it is said to be NPC (NP-Complete). If the problem 

requires a space polynomial in the problem size, it is considered in PSPACE. The 

same definitions apply to PSPACE-hard and PSPACE-complete. PSPACE 

hardness results have been demonstrated for various special cases of motion 

planning. Reif 1979 presented the first theoretical investigation of the inherent 

computational complexity of the path planning problem, showing that path 



Introduction   - 5 - 

planning for a 3-D linkage made of polyhedral links among fixed obstacles is 

PSPACE-hard. A few years later, Hopcroft, Schwartz et al. 1984 proved that 

motion planning for multiple independent rectangular boxes sliding inside a 

rectangular box is PSPACE-hard. Hopcroft, Joseph et al. 1984 improved that the 

movers’ problem for two-dimensional linkages is PSPACE-hard. One year later, 

Reif and Sharir 1985 proved that the dynamic movement in the case of bounded 

velocity is PSPACE-hard, even in the case where the moving body is a disc 

moving in three-dimension. After that, Reif and Storer 1988 and Reif and Storer 

1994 presented an algorithm for finding the shortest path between points in the 

Euclidean plane with polygonal obstacles. Sun and Reif 2003 introduce an 

empirical method, called discretization method, that improve the results of the 

weighted region optimal path problem, by placing discretization points only in 

areas that may contain optimal paths. 

Path planning for robots and manipulators is a problem for which new 

contributions are still provided almost every day, since Nilsson 1969 introduced 

the visibility graph method (combined with A* search algorithm, Hart et al. 1968) 

to find the shortest collision-free path for his mobile robot system (Shakey) 

represented by a point amidst polygonal obstacles. 

Liebermann and Wesley 1977 and Lozano-Pérez 1976 presented the first 

attempts to build integrated systems for automatically programming robot arms. 

The input of these systems was the description of a mechanical assembly, in the 

form of a set of geometrical models of the individual parts and goal assembly 

relations among the parts. The task of the systems was to generate the robot 

programs automatically for assembling the parts. Although these systems were 

never fully implemented, they have contributed in emphasizing the importance of 

geometrical reasoning in robot planning and in pointing out key motion planning 

problems in the context of mechanical assembly. 
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Udupa 1977 proposed the idea of growing the obstacle and shrinking a robot 

to a point for planning collision-free paths for computer-controlled manipulators. 

Moravec 1980 bounded all the obstacles and the moving robot by circles. The 

moving circle is shrunk to its center and the obstacle circles are inversely 

expanded. The finding path problem reduced to find the path for the center of 

moving circle to stay outside of the grown circles. In this case, the rotation was 

ignored. Brooks and Lozano-Pérez 1983 introduced a subdivision algorithm for 

computing with the curve surfaces of the grown obstacles. That algorithm had the 

ability to find hard paths for 2-D moving robots. Moreover, it could be directly 

applied to configuration spaces for three dimensional polyhedral whose orientation 

is fixed. 

Lozano-Pérez and Wesley 1979 exploited the Udupa 1977 idea in a more 

general and systematic manner, and proposed the first two-dimensional path 

planning algorithm for polygonal and polyhedral robots moving among polygonal 

and polyhedral obstacles. In addition, they introduced the concept of configuration 

space (Cs), which influenced motion planning more than any other idea. In Cs, the 

obstacles in the workspace are mapped as forbidden regions (Co), and the 

complement of the Co constitutes the free space (Cf). Path planning for a robot 

with n degrees-of-freedom (DOF) can thus be converted to the problem of 

planning a path for a particle in an n-dimensional Cs. Many methods of many 

authors have been proposed for the construction of the configuration space Cs. 

Lozano-Pérez 1987 considered the case where both the robot and the obstacles 

were convex polygons or polyhedral, and the Co boundary for an n-DOF 

manipulator was approximated by sets of (n−1)-dimensional slices recursively 

built up from one-dimensional slices. Maciejewski and Fox 1993 studied the 

analytical description of the boundaries of Co and derived the connectivity of Cs 

for revolute manipulators. Zhao et al. 1995 developed an analytical representation 

of Co using a set of parametric equations resulted from mapping the boundaries of 
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the obstacles from workspace into the Cs through using the inverse pseudo 

kinematics. Recently, Wu et al. 2007 studied a new two-phase approach for the 

construction of Cs. The approach based upon pre-computing the global topology of 

a robot’s free space, and consisted of an offline phase and an online phase. In the 

offline phase, a Co database (COD) for a given robot was developed in which the 

Co maps were stored and indexed by the cells of the workspace; in the online 

phase when the same robot is operated in a real environment, those maps whose 

indices match the real obstacle cells were identified and then extracted from the 

COD. This approach is a generic one and can be applied to manipulators with 

arbitrary kinematic structures and geometries. The authors used a series of 

simulation cases involving a 3-DOF manipulator and a 5-DOF manipulator to 

demonstrate the performance of the proposed scheme. 

Moreover, Lozano-Pérez presented the principle of the approximate cell 

decomposition approach, see Lozano-Pérez 1981, 1983. Chatila 1982 was the first 

to base his planner on an exact decomposition into convex cells to solve the 

planning problem with incomplete knowledge for a mobile robot represented as a 

point in a two-dimensional workspace. The decomposition was periodically 

updated in order to include new environmental data. Gouzènes 1984 introduced 

the first implemented approximate cell decomposition method for the motion 

planning of arm robot with revolute joints. 

In the solution of several path-planning problems, the notion of Voronoi 

diagram has proved to be a useful tool. Ahmed 1997 said that the use of Voronoi 

diagram for motion planning first appeared in the doctoral research work of Rowat 

1979 who uses it as a heuristic for a digitized space. O'Dunlaing and Yap 1982 

introduced retraction as a new theoretical approach for path planning. His method 

is based on the generalized Voronoi diagram, which is the locus of points 

equidistant to two or more obstacles, to motion planning for a disk in the plane. 
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His method requires full knowledge of the world’s geometry prior to the planning 

event. Brooks 1983a approximated generalized Voronoi graphs with generalized 

cones through in freeway method in order to find a path for mobile robots. In the 

same year also, Brooks 1983b used the cones to find quick paths for the Puma 

arm. A definition and new theoretical results are presented one year later by 

Donald 1984 for a six-dimensional C-space extension of the generalized Voronoi 

diagram, named C-Voronoi diagram. He described the first known implementation 

of a complete algorithm for six degrees of freedom Mover’s problem by 

transforming it into a point navigation problem in a six-dimensional configuration 

space. Based on part of Donald’s algorithm, Lengyel et al. 1990 developed a fast 

path planning based entirely on complete and provably-good approximation 

algorithms. The planner can handle any polyhedral geometry of robot and 

obstacles. 

Schwartz and Sharir presented a series of papers called the Piano Movers’ 

Problem, representing the first complete path planning approach based on an 

algebraic decomposition of the robot’s configuration space known as Collins 

decomposition. In the first one of the series, Schwartz and Sharir 1983a introduced 

the first algorithm polynomial in the number of obstacles in two-dimensions. He 

gave a topological analysis of the space of positions of a polygon moving in the 

plane in the presence of polygonal obstacles. In the second paper, Schwartz and 

Sharir 1983b used manifold and reduced the motion planning problem to the 

problem of finding the connected components of an algebraic manifold. This 

algorithm takes time doubly exponential in the degrees of freedom. A few years 

later, this result was improved by Canny 1988 to a single exponential time. In their 

next paper Schwartz and Sharir 1983c, they proposed algorithms for solving the 

case of two-dimensional disks moving inside a polygon with avoiding to collide 

with the polygon edges and with each other. This algorithm is exponential in the 

number of moving disks. After that, Spirakis and Yap 1984 proved the strong NP-
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hardness of moving many disks. Later, Sharir and Ariel-Sheffi 1984 addressed 

various special problems involving arbitrarily many degrees of freedom which 

have relatively simple solutions by the techniques of determining the non-critical 

regions and using a connectivity graph. Finally, Schwartz and Sharir 1984 studied 

the motion of a rod among polyhedral obstacles in three-dimension. Kedem and 

Sharir 1985, 1988 presented an exact and efficient algorithm for polygonal robot 

moving among polygonal obstacles. 

One of the most general and simple ways to arrange the path planning 

problem is based on the utilization of Artificial Potential Fields (APF). This 

concept was pioneered by Khatib 1986. He proposed this method for the real-time 

collision avoidance in a continuous space. A drawback to this approach is that it is 

known to suffer from local minima effects when the net force sums to zero in 

certain portions of the search space. A year later, Koditschek 1987 redefined the 

artificial potential field function in a way that does not contain a local-minimum, 

which known as navigation function, and Rimon and Koditschek 1988 extended 

the last one to n-dimensional Euclidean space for a point robot moving among 

disjoint spheres. Hereafter, many authors such as Khosla and Volpe 1988 and 

Volpe and Khosla 1990, directed their efforts to finding an obstacle associated 

potential function based on superquadrics to counter the local-minimum problem 

with better behavior enabling the robotic system to both avoid and smoothly 

approach. As an alternative to the potential field method, Faverjon and 

Tournassoud 1987 introduced a local approach, named, the constraints method to 

plan the motion of high degrees of freedom manipulators, which separate the 

description of the task from constraints of anti-collision. The same authors, 

Faverjon and Tournassoud 1988 presented a learning scheme to avoid falling into 

the local-minimum of the potential field. Barraquand and Latombe 1989 proposed 

the randomized potential field planner (RPP) for generating paths with local-

minimum-free for robots with high degrees of freedom. Connolly et al. 1990 
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introduced the idea of generating functions that satisfy Laplace's equation as a way 

to build a local-minimum-free navigational potential field. Latombe 1991 

expanded upon the detail of the RPP approach that proposed by Barraquand and 

Latombe 1989. Latombe explained the motion planning concepts in his book and 

provided a comprehensive description of the subject and fundamental techniques. 

Later, Kim and Khosla 1992 proposed an artificial potential function approach to 

obstacle avoidance based on the panel method. Hwang and Ahuja 1992b 

constructed a potential function defined in terms of the boundary equations of 

polyhedral obstacles to develop a path planner compromise between the exact and 

heuristic algorithms. They extracted firstly the topological structure of the free 

space in the form of the minimum potential valleys. Then, the potential field is 

used to derive the most efficient, collision-free path corresponding to a given 

topological path. One year later, Zelinsky and Yuta 1993 presented a local 

obstacle avoidance scheme called “reactive planning”  based on “path transform” 

which was first developed by Zelinsky 1991. The path transform can be regarded 

as numeric potential field path planners without suffering the local-minimum 

problem. The path transform is considered as an expansion of the distance 

transforms which was first presented by Jarvis and Byrne 1986. Chuang 1998 

suggested an analytic potential field function for three-dimensional workspace to 

solve path-planning problem with obstacle avoidance. 

Faverjon and Tournassoud 1987 were first introduced a subgoal network 

method. This algorithm divides the C-space into cells and assigns each cell a 

probability that a local algorithm would succeed in that cell. Initially, the 

probabilities of the cells are equal and then and they are updated using a local 

algorithm. A sequence of regions with high probabilities will be searched by A* 

algorithm, then the potential field applied to that sequence of cells. Glavina 1990 

proposed an algorithm to solve the find-path problem by combining a goal-

directed straight-and-slide search and a randomize generation of subgoals. Chen 
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and Hwang 1992, 1998 developed a new search strategy called SANDROS 

(Selective And Non-uniformly Delayed Refinement Subgoals). At first, distance 

computations are performed to determine whether a given point is in free space Cf. 

Then, a two-level hierarchical planning method is used to reduce memory 

requirements. This algorithm builds a sparse network of robot subgoals with the 

use of a simple and a computationally expensive planner. This algorithm has been 

implemented and tested for planning paths for Puma robot. An efficient path 

planning algorithm for general 6 degrees of freedom robots is presented by Isto 

1996. The path planner is based on multiheuristic A* search algorithm with 

dynamic subgoal generation for rapid escaping from deep local-minimum wells. 

One year later, Isto 1997 developed an algorithm that combines a multiheuristic 

local search algorithm with a subgoal graph based guidance. Moreover, the 

algorithm can adjust the balance between local and global planning. 

Lozano-Pérez 1987 introduced the first resolution complete planner for 

general manipulators. Lozano-Pérez et al. 1987 described a new integrated robot 

system, called Handey. Handey used a simplify version of the path planner 

described in Lozano-Pérez 1986, 1987. This system is capable to plan the motions 

of a manipulator robot for constructing simple assemblies made of polyhedral 

objects, and to execute the plans, assuming no uncertainty. Hwang and chen 1995 

proposed a complete path planner based on a hierarchical and multi-resolution 

search strategy based on the SANDROS search strategy developed by Chen and 

Hwang 1992. In this planner the lowest possible resolution has to be defined in 

advance and does not adapt to the particular workspace. 

Valero 1990 presented a collision-free path-planning algorithm for a plane 

manipulator with three degrees of freedom moving among polyhedral obstacles. 

The manipulator consists of three rigid bodies connected by revolute joints. 

Firstly, he generated a space of robot configurations, and then searched for a 
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sequence of configurations with minimum distance to obtain a path between the 

initial and final configurations of the robot. Valero et al. 1997, Valero et al. 2000 

proposed a technique for collision-free path planning as an optimization problem 

in complex environments based on the concept of adjacent configurations. 

Barraquand and Latombe 1990, 1991 developed the Randomized Path 

Planner (RPP) to solve path-planning problem in high-dimensional configuration 

space. They had applied the RPP a general potential field method that uses random 

motions for escaping spurious local-minimum. Additionally, RPP has been 

embedded in a larger manipulation planner to automatically animate scenes 

involving human figures modeled with 62 degrees of freedom, Koga et al. 1994. 

Many years later, Caselli et al. 2001 introduced RPP driven by potential field as a 

technique for solving path planning problem for 9 and 11 degrees of freedom 

robots. He presented a simple yet effective heuristics for escaping local minima, 

with the goal of improving overall planning performance. 

The planner implemented by Kondo 1991 found paths for six degrees of 

freedom manipulators in three-dimensional space using heuristic search technique. 

This algorithm is fast because it minimizes the number of collision detection 

computations by limiting the search in the explored parts of the configuration 

space Cs. 

Overmars 1992 presented a new technique uses a learning approach for path 

planning. He combined the simple potential fields with roadmap method, 

constructing a random network of possible motions. A disadvantage of that 

method is that it is uncompleted. Kavraki and Latombe 1994a, 1994b introduced 

another approach to path planning for many degrees of freedom robots moving in 

static environments. The algorithm consisted of preprocessing; which is done once 

for a given environment, generated a network of randomly, but probably selected, 

collision-free configurations. After that, the planning stage, which connected any 
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given initial and final configurations of the robot to two nodes of the network, then 

computed a path through the network between these two nodes. Independently 

Overmars and Svestka 1994 proposed a probabilistic algorithm for the learning 

path planning problem by combining a global roadmap approach with a local 

planner. A common paper from the two groups was published in Kavraki et al. 

1996 combined the ideas developed by the two groups above, resulting an even 

more powerful planner for high degrees of freedom robots. This algorithm uses 

random sampling to construct a roadmap of the configuration space and tries to 

find a path between any two input configurations by connecting them to the 

roadmap. The main difficulty with a uniform random sampling of C-space is find 

connections through some "critical" regions of free space Cf. This difficulty is 

referred to as the narrow passage problem, and is common to randomized 

algorithms. Hsu et al. 1998 accepted samples that are not in free space, but for 

which the penetration distance of the robot into the obstacles is small. Then the 

colliding nodes are retracted to Cf by local re-sampling. Kavraki et al. 1998a 

provided an analysis of a recent path planning method, which uses probabilistic 

roadmaps. Then they studied the dependence of the failure probability to connect 

these configurations on: the length of the path, the distance function of the path 

from the obstacles, and the number of nodes of the probabilistic roadmap 

constructed. The probability of placing random configurations inside the passage 

and connecting them by straight-line paths is small. Kavraki and Latombe 1998 

proposed a randomized method, which has been successfully applied for solving 

path-planning problem for robots with 3 to 6 degrees of freedom operating in 

known static environments. Boor et al. 1999 introduced a Gaussian non-uniform 

sampling strategy in order to create a higher density of nodes near the boundary of 

the Cf. Another approach, proposed by Wilmarth et al. 1999 sample the 

generalized Voronoi diagram of Cf, by retracting randomly sampled configurations 

using approximate values of clearance and penetration depth. Siméon et al. 2000 

suggested a PRM that computes visibility roadmaps, which defined with two 



- 14 - Trajectory Planning for Industrial Robots Using Genetic Algorithms 

classes of nodes: the guards and connectors. Collision-free samples are kept as a 

new guard node when they cannot be connected to the current roadmap or as a 

new connector if they improve the connectivity of the roadmap. 

A hybrid approach was considered by Caselli and Reggiani 2000, which 

utilized a potential function (similar to RPP) on queries, but also saved 

information from past attempts in a graph to aid future queries in the same 

environment. Comparing with RPP, the performance advantage exhibited by 

ERPP is strictly due to the learning component of the experience-based planner. 

Wu 1996 developed path-planning algorithm, namely, the obstacle-based 

probabilistic roadmap method (OBPRM) for robots with many degrees of 

freedom. The main novelty of his approach was a new method for generating 

roadmap candidate points randomly distributed on or near the surface of each Co. 

Amato et al. 1998 described and evaluated several strategies for node generation 

and proposed a multi-stage connection strategy for OBPRM in cluttered three-

dimensional workspaces. 

The attractiveness of randomized path planners stems from their 

applicability to virtually any type of robots. Barraquand et al. 1997 introduced a 

unifying view of these planners. An estimate is given for the probability that the 

roadmap planner can find a path between two given configurations, assuming that 

a path of certain clearance exists. In addition, they have analyzed the probabilistic 

completeness of variants of the roadmap planners under the visibility volume and 

the path clearance assumptions. In each case, they have established a relation 

between the probability that the planner finds a path, when one exists, and its 

running time. 

Other method, described by Hsu et al. 1997, build two trees rooted at the 

initial and goal configurations respectively. The trees are expanded by generating 
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new nodes randomly near the two trees, and connecting them to the trees by a 

local planner. LaValle 1998 proposed a new probabilistic technique called 

"Rapidly exploring Random Tree (RRT)". RRTs are suited particularly for path 

planning problems that involve algebraic constraints (arising from obstacles) and 

differential constraints (arising from nonholonomic and dynamics). LaValle and 

Kuffner 1999 introduced an RRT-based approach to path planning that generated 

and connected two RRTs in a state space, which generalizes configuration space. 

Recently, Oh et al. 2007 presented an algorithm named Retrieval RRT Strategy 

(RRS) which extended the RRT framework to deal with change of the task 

environments. This algorithm combines a support vector machine (SVM) and RRT 

and plans the robot path in the presence of the change of the surrounding 

environments. They applied the algorithm on robot manipulator with 6 degrees of 

freedom. 

Henrich et al. 1998 showed a heuristic hierarchical search procedure for an 

industrial robot with sex degrees of freedom in an on-line provided three-

dimensional workspace to solve the path-planning problem. This search procedure 

based on the combination of multiple neighboring hypercubes resulting in step-

sizes in free areas, while maintaining small steps in the vicinity of obstacles. 

Helguera and Zeghloul 2000 addressed the collision-free path-planning 

problem for manipulators based on a local approach. The task was defined as a 

combination of two displacements. The first one brings the robot closer to the goal 

configuration and the second one enables the robot to avoid the local minima. 

However, a zigzagging phenomenon appears in some heavy cluttered 

environments. To avoid this situation, a graph based on the local geometry of the 

environment is constructed and an A* search is performed in order to find a new 

deadlock free position. Tests and heavy cluttered environments were successfully 

performed. 
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Rubio 2006 introduced in his thesis a sequential and simultaneous 

algorithms based on adjacent configurations to obtain a sequence of path 

configurations. Rubio et al. 2009a presented an approach in which the search of 

the path is made in the state space of the robotic system, and it makes use of the 

information generated about the characteristics of the process, introducing graph 

techniques for branching. The method poses an optimization problem that aims at 

minimizing the distance traveled by the significant points of the robot. 

1.2.1. Classical Path Planning Approaches  

There are a large number of methods for solving the basic path-planning 

problem. Some are applicable to a wide variety of path planning problems, 

whereas others have a limited applicability. The methods that will be treated in 

this section are based on few different general approaches: roadmap, cell 

decomposition, and potential field. Roadmap and cell decomposition approaches 

differ in the connectivity graphs constructed and their representations, while the 

potential field approach does not build connectivity graph explicitly. Instead, it 

constructs a potential function for which the gradient guides the robot to the goal. 

Roadmap and cell decomposition methods are global methods, while the potential 

field approach is local one. 

1.2.1.1. Roadmap Approach 

The roadmap approach consists of capturing the connectivity of the robot’s 

free space Cf in a network of one-dimensional curves. Once a roadmap R has been 

constructed, it is used as a set of standardized paths. Path planning is thus reduced 

to connect the initial and goal configurations to points in R and searching R for a 

path between these points, Latombe 1991. The constructed path, if any, is the 
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concatenation of three sub-paths: a sub-path connecting the initial configuration to 

the roadmap, a sub-path contained in the roadmap, and a sub-path connecting the 

roadmap to the goal configuration. However, a good roadmap has the property that 

there is a collision-free path in the space between two configurations if and only if 

there is a collision-free path using only the curves represented in R. Algorithms 

that produce such roadmaps are clearly complete "exact". 

A various sorts of roadmaps method has been produced based on different 

principles; visibility graphs, Voronoi diagrams, freeway nets, silhouettes. All of 

these roadmaps have a corresponding graph representation. 

• Visibility Graph Method 

This method is one of the earliest path-planning methods, Nilsson 1969. It 

can produce shortest paths in two-dimensional configuration spaces with 

polygonal obstacles. The principle of the visibility graph method is to construct a 

semi-free path as a simple polygonal line connecting the initial configuration C 
i to 

the goal configuration C 
f through vertices of Co, Latombe 1991. The visibility 

graph is the undirected graph G. The nodes of G are C i, C 
f, and the vertices of Co. 

The links of G are line segments, which connecting two nodes without intersecting 

the Co region, see Figure (1.1). Once such G obtained, the shortest path can be 

searched using algorithms such as A* algorithm or Dijkstra's algorithm, Dijkstra 

1959. The time complexity of this algorithm is O(n3), where n is the total number 

of vertices of Co, Lozano-Pérez and Wesley 1979. Later, more efficient algorithms 

have been proposed with time complexity O(n3), e.g. see Welzl 1985, Asano et al. 

1986. Ghosh and Mount 1987 gave an output sensitive algorithm that takes O(k + 

n log n) time, where k is the number of edges in visibility graph. However, 

visibility graph produces paths that graze the obstacles and thus bring the robot 

dangerously close to the obstacles, which is undesirable in practice. For depth 

knowledge leaders should refer to Latombe 1991, Choset et al. 2005. 
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Figure 1.1: Visibility Graph Example, Latombe 1991. 

• Voronoi Diagrams 

As mentioned before, O'Dunlaing and Yap 1982 introduced retraction as a 

new theoretical approach for path-planning. This method consists of defining a 

continuous function of Cf onto a one-dimensional subset of itself, the roadmap, 

such that the restriction of this function to this subset is the identity map. In a 

three-dimensional Cf is retracted firstly onto a two-dimensional variant of the 

Voronoi diagram. In a two-dimensional configuration space, Cf is typically 

retracted on its Voronoi diagram. This diagram is the set of all the free 

configurations whose minimal distance to the Co region, see Figure (1.2). Choset 

and Burdick 1996 described the Hierarchal Generalized Voronoi Graph (HVGV), 

which can be applied to higher dimensional workspaces. In Voronoi diagram, the 

robot stays as far away as possible from the obstacles, which is an advantage over 

the visibility graph approach. Both algorithms are complete for two-dimensional 

polygonal configuration spaces, González-Baños et al. 2006. For more details, 

leaders should back to Latombe 1991, Choset et al. 2005. 
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Figure 1.2: Voronoi Diagram Example, Latombe 1991. 

• Freeway Method 

The freeway was suggested by Brooks 1983a as a method of path planning 

for manipulators with 5 or 6 DOF. His algorithm applies to a polygonal robot 

translating and rotating among polygonal obstacles. The algorithm finds obstacles 

that face each other and generates a freeway to passing between them. This path 

segment is a generalized cylinder. This freeway may be described as overlapping 

generalized cones; it is essentially composed of straight lines with left and right 

free-space width functions, which could easily be inverted. A generalized cone is 

obtained by sweeping a two-dimensional cross section along a curve in space, 

called a spine, and deforming it according to a sweeping rule. 

• Silhouette Method 

It is the principle of a general roadmap method developed by Canny 1988. 

The Silhouette algorithm has many positive aspects; it is complete and it is not 

restricted to systems with few degrees of freedom, McHenry 1998. This method 

solves the basic motion-planning problem in time singly exponential in the 

dimension of the configuration space. Moreover, it supposes only that the 

obstacles are described as a semi-algebraic set. Roughly, it consists of constructing 

the silhouette of the robot’s free space when it is viewed from a point at infinity, 
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and adding some curve segments linking critical points of the silhouette to other 

curve segments of the silhouette. The silhouette and the linking curves form the 

roadmap that is subsequently searched for a path. 

1.2.1.2. Cell Decomposition 

Cell decomposition methods would be the motion planning methods that 

have been the most extensively studied so far. They consist of decomposing the 

robot’s free space into simple regions, called cells, such that a path between any 

two configurations in a cell can be easily generated. A non-directed connectivity 

graph representing the adjacency relation between the cells is then constructed and 

searched. Its nodes are the cells extracted from the free space and two nodes are 

connected by a link if and only if the two corresponding cells are adjacent. The 

outcome of the search is a sequence of cells called a channel. A continuous free 

path can be computed from this sequence. 

Cell decomposition methods can be categorized into exact and approximate 

methods: 

• Exact cell decomposition methods decompose the free space into cells 

whose union is exactly the free space. Many exacts approaches have been 

developed for low dimensional workspace and with polygonal 

representations of the robot and obstacles, see Figure (1.3). Schwartz and 

Sharir 1983a described exact cell methods for decomposing the free space 

of a robot modeled as a polygon. Avnaim et al. 1988 developed a practical 

method where only the boundary of the free space is decomposed. 

Barbehenn and Hutchinson 1995 adopted a critical curve based exact cell 

decomposition of Schwartz and Sharir 1983a as their basic representation 

and developed the only truly incremental path planning system. Sleumer 
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and Tschichold-Gürman 1999 introduced a method for generating a map 

consisting of connectivity graph and information about the walls of a 

building that represent the environment of a mobile robot. 

 

Figure 1.3: Exact Cell Decomposition, Latombe 1991. 

• Approximate cell decomposition methods produce cells of predefined 

shape whose union is strictly included in the free space. The boundary of a 

cell does not characterize a discontinuity of some sort and has no physical 

meaning. Approximate cell decomposition approach introduced by 

Lozano-Pérez 1981, he used a single simple shape for all cells. Brooks and 

Lozano-Pérez 1983 were the first introduced hierarchal approximate cell 

decomposition. Furthermore, they divided the configuration space into 

rectangloids cells with edges parallel to the axis of the space. Cells are 

classified as empty or full depending on whether they lie entirely outside 

or inside the obstacles. If there are interior points both inside and outside 
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of configuration obstacles, they are labeled mixed, for more knowledge 

leader can refer also to Donald 1984 and Zhu and Latombe 1990. In 

addition, Latombe 1991 stated that the approximate cell decomposition 

methods are resolution complete; they can find a path if one exists 

provided the resolution parameters are selected small enough, whereas 

exact cell decomposition methods are complete. 

1.2.1.3. Potential Field  

The Artificial Potential Fields general heuristic approach offers a metaphor 

based on the physical phenomenon of potential fields. The potential field metaphor 

has been employed throughout the field of artificial intelligence as a problem 

solving approach, enjoying particular success in neural networks. 

The metaphor suggests that if a problem can be modeled by a function that 

assigns a value to each state configuration (position) in a continuous state space 

based on its usefulness, then the optimally useful state configuration can be found 

by minimizing the value of the function. 

Potential field was originally developed by Khatib 1986 as an on-line 

collision avoidance approach, applicable when the robot does not have a prior 

model of the obstacles, but senses them during motion execution. The idea 

underlying potential field can be combined with graph searching techniques. 

In this method, the robot represented as a point in configuration space; is a 

particle moving under the influence of an artificial potential produced by the goal 

configuration and the C-obstacles. If the robot is not a point, the total potential on 

the robot is computed by adding the potential values on a set of points sampled 

from the surface of the robot. Typically, the C-obstacles potential constructed 
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firstly, producing a repulsive force (has a high value on the obstacles and 

decreases monotonically as the distance from the obstacle increases) which pushes 

the robot away from them. While, the goal configuration potential generates an 

attractive force which pulls the robot toward the goal. The negated gradient of the 

total potential is treated as an artificial force applied to the robot. At every 

configuration, the direction of this force is considered the most promising 

direction of motion. The benefit of this method of being fast, but is incomplete 

because of the presence of local-minimum, which occurred when the attractive and 

repulsive forces are equals. As mentioned before, many authors designed different 

potential functions to lower the number and depth of the local-minimum, e.g., 

Chuang and Ahuja 1991 introduced the Newtonian potential function to plane a 

safe and smooth path with local-minimum-free of an object by minimizing the 

potential function locally for obstacle avoidance. In this algorithm, a global 

planner identifies narrow bottlenecks in the free space by computing minimum-

distance links between obstacles. A collision-free path in each of these regions is 

computed using the potential field. These paths are connected to yield a solution. 

For a survey of related researches please see also Latombe 1991, Hwang and 

Ahuja 1992a. 

1.2.2. Probabilistic Path Planning Approaches: 

For high-dimensional path planning problems, it is computationally too 

expensive to calculate an explicit representation of the configuration space. 

Probabilistic path planning techniques have achieved substantial attention 

throughout the last decade, as they are capable of solving high-dimensional 

problems in acceptable execution times. As no explicit representation of 

configuration space exists, probabilistic methods invoke a binary collision checker 

to test whether a specific configuration is feasible. The three methods that attracted 
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most attention during the last years are Randomized Path Planner (RPP), 

Probabilistic Roadmap Method (PRM) and Rapidly-exploring Random Trees 

(RRT). All are probabilistically complete. 

1.2.2.1. Randomized Path Planner (RPP) 

As mentioned above, Randomized Path Planner (RPP) developed by 

Barraquand and Latombe 1990, 1991 considered as one of the first randomized 

path planning technique, that combines gradient descent on the potential with a 

random motion to escape local minimum in a potential field. The planner is 

probabilistically resolution complete, this means that the probability of finding a 

path (if there exists one) approaches 1.0 if the algorithm running time is not 

limited, Barraquand et al. 1992, Lamiraux and Laumond 1996. RPP leaves the 

start configuration with gradient descent, and if it terminates at a spurious local 

minima rather than the intended goal configuration, a random walk of some length 

is started from the local minimum. Once a lower potential value is found or the 

length is attained, a new gradient descent towards the goal is attempted. If no 

lower potential can be found after a given number of descent and random walk 

iterations, a backtracking move to some previous configuration on a random walk 

segment of the current solution candidate is executed. The process is iterated from 

that configuration. RPP does not require any particular type of potential or any 

potential at all, but it can be guided by the distance to goal if the distance metric is 

defined to be infinite at configurations belonging to the non-free space. An 

analysis of this (RPP) planner is initiated by Lamiraux and Laumond 1996. 
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1.2.2.2. The probabilistic Roadmap Method (RPM) 

Probabilistic roadmap method consists of sampling the configuration space 

at random and connecting the samples in free space by free-collision local paths 

(usually straight paths), Kavraki et al. 1996. Unlike the roadmap method, the 

nodes of the PRM are free configurations, sampled randomly under a suitable 

probability distribution. PRM consist of two phases: a learning phase and a query 

phase. In the learning phase (also called construction phase or pre-processing 

phase in the literature), a roadmap is built by randomly sampling the configuration 

space. Those samples that correspond to collision-free configurations form the 

vertices of the roadmap. Neighboring vertices are then connected by edges if all 

states along these edges also are collision-free. In the query phase, the initial and 

the goal state are connected to two nodes in the random network, with paths that 

are feasible for the robot. Then it is searched for a sequence of path connecting 

these nodes. Concatenation of the successive path segments transforms this 

sequence, if one has been found, into a feasible path for the robot. Any standard 

smoothing algorithm can be used to improve the path, Kavraki 1995. Experiments 

with PRM planners have been quiet successful, showing that they are both fast and 

reliable with many degrees of freedom robots, Latombe 1999. In addition, it can 

handle high-dimensional configuration spaces efficiently. Path non-existence 

cannot be proven using PRM, which considered a weaker completeness result: if a 

path exists then the learning phase of PRM will eventually compute a roadmap 

that finds it, Kavraki et al. 1996, Kavraki et al. 1998a, Kavraki et al. 1998b. 

Bohlin and Kavraki 2000 introduced a single query variant called Lazy 

PRM. In this approach, the roadmap validation is postponed. The roadmap is built 

not in the collision-free configuration space Cf, but in the whole configuration 

space Cs. First, after a path has been found in the query phase, this path is checked 

whether it is feasible or not. Thereby, the number of collision checks needed is 
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reduced drastically, making Lazy PRM favorable especially if collision checking 

is very costly. If no path could be found, the roadmap has to be extended.  

For more information about probabilistic roadmap leaders should back to 

Kavraki and Latombe 1994a, Amato and Wu 1996, Barraquand et al. 1997, Bohlin 

and Kavraki 2000, Choset et al. 2005. 

1.2.2.3. Obstacle-Based Probabilistic Roadmap Method (OBPRM) 

Obstacle-Based Probabilistic Roadmap Method (OBPRM) firstly developed 

by Amato and Wu 1996, Wu 1996. The general approach of this algorithm follows 

traditional roadmap methods: during pre-processing a graph, or roadmap, is built 

in Cs. Planning consist of connecting the initial and goal configurations to the 

roadmap, and then finding a path in the roadmap between these two connection 

points. This approach generates candidate points randomly distributed in the 

surface of Co. High quality roadmaps can be obtained using this approach even 

when the configuration space is crowded. 

1.2.2.4. Rapidly-exploring Random Trees (RRT) 

Another probabilistic algorithm is Rapidly-exploring Random Trees (RRT), 

which developed as a novelty by LaValle 1998. RRT is a data structure and 

algorithm that is designed for efficiently searching non-convex high-dimensional 

spaces. RRTs are constructed incrementally in a way that quickly reduces the 

expected distance of a randomly chosen point to the tree. RRTs are particularly 

suited for path planning problems that involve obstacles and differential 

constraints (nonholonomic or kinodynamic). RRTs can be considered as a 

technique for generating open-loop trajectories for nonlinear systems with state 

constraints. Usually, an RRT alone is insufficient to solve a planning problem. 
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Thus, it can be considered as a component that can be incorporated into the 

development of a variety of different planning algorithms. 

1.3. TRAJECTORY PLANNING: STATE OF THE ART  

Some authors use trajectory planning as a synonym for path planning, but 

this is not accurate. Path planning is restricted to the geometric aspects of the 

motion. The only constraints that can be taken into account are time-independent 

constraints such as stationary obstacles and kinematic constraints. From the other 

point of view, trajectory planning with its time dimension permits to take into 

account time dependent constraints such as moving obstacles and the dynamics 

constraints of the robot, i.e. the constraints imposed by the dynamics of the robot 

and the capabilities of its actuators. In other words, trajectory planning consists of 

creating a detailed specification of the motion of a manipulator that will cause it to 

proceed from an initial position to a goal position and usually involves some 

specification of the time parameters of the path (a sequence of positions, velocities 

and accelerations). As the trajectory is executed, the tip of the end effector traces a 

curve in space and changes its orientation. This curve is called the path of the 

trajectory. The curve traced by the sequence of orientations is sometimes called 

the rotation curve. However, since an infinite number of solutions exist to move 

from one point to another, a suitable minimum-time trajectory must be found to 

achieve high-productivity in a particular application. 

The resolution of efficient trajectory planning problem with prevention of 

collisions for robots in complex environments requires computationally costly 

algorithms that prevent their industrial application. Mainly, these algorithms act as 

sequential form, so that in the first place the path is obtained and subsequently the 
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trajectory is adjusted, remaining this seriously conditioned by the result of the first 

phase where the criteria of optimality associated to dynamic parameters cannot be 

utilized. 

Actually, there are two approaches dealing with trajectory planning problem 

for a dynamic system. The first one called decoupled or indirect approach, which 

includes first seeking a path in the configuration space and then finding a time 

optimal time scaling for the path subjected to the dynamic constraints of the 

manipulator. The second one named direct or global approach, where the search 

takes place in the system’s state space. This approach involves optimal control, 

numerical optimization, and grid-based searches. 

One of the most important issues in trajectory planning for industrial 

manipulators is increasing the productivity. Increase the productivity done in the 

way that instead of increasing actuator size and power, which leads to increase the 

inertia of the actuators themselves, cost, and power consumption of the lager 

actuators, minimize the trajectory time needed to perform a given task, Bobrow et 

al. 1985. 

Generally, manipulator trajectories can be planned either in joint space 

which directly specifying the time evolution of the joint angles, or in Cartesian 

space which deals with the position and orientation of the end frame. In Cartesian 

space, calculated values must still be converted to joint values through inverse 

kinematic equations, which is a very expensive computational process, while in 

joint space, generated values relate directly to joint values. In joint space, the 

geometric problems with Cartesian space paths related to workspace and 

singularity can be avoided. 

The first solution to the problem of minimum time planning between given 

end points for a manipulator introduced by Kahn and Roth 1971. An 
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approximation scheme based on the linearization of the robot dynamics was 

proposed to compute the optimal trajectories. The manipulator consisted of three-

links serial mechanism with constant limits on the torques. This method is 

however effective only when the system motion is confined to a small region near 

the terminal configuration where the linearity assumption is valid. 

The research did not attract much attention until early 80s. During the 

decade of 80s, many researchers have started to solve the time optimal control 

trajectories problem for serial chain robotic manipulators. The approaches to solve 

this problem can be classified into tow groups: the standard optimal control 

theoretical approach and non-standard approximation approaches such as search 

techniques from artificial intelligence and nonlinear parameter optimization 

methods. 

Hollerbach 1983 outlined an algorithm that finds a uniform time-scaling law 

of a trajectory to make it feasible given actuator torques. He also showed that it 

might be necessary to speed up a trajectory to make it dynamically feasible. 

Hollerbach leaded to a formulation where the time scaling factors are linear 

variables. With time-scaling algorithms in hand, the problem of finding a collision 

free trajectory for n-joint manipulator in its 2n-dimensional state space can be 

decoupled into the computationally simpler problem of planning paths in the n-

dimensional configuration space followed by time optimal time scaling according 

to the manipulator dynamics. Shiller and Dubowsky 1988 used the idea of 

decoupling to find the global time optimal trajectories for a manipulator by 

considering the time optimal time scaling of a large set of paths. After the first set 

of paths is selected, each path is smoothed with cubic splines. Kieffer et al. 1997 

presented a nearly time optimal path tracking control for non-redundant robotic 

manipulators using online trajectory time-scaling laws and dynamics. Akella and 

Peng 2004 exploited the time-scaling law identified by Hollerbach, which 
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decouples the path and timing along the path, to generate time-warped trajectories 

to coordinate multiple manipulators. 

The first formalization of the problem of finding the optimal curve 

interpolating a sequence of nodes in the joint space, done by Lin et al. 1983. They 

proposed cubic (spline) polynomial functions for a trajectory planning where the 

total traveling time is minimized under kinematic constraints on joint velocities, 

accelerations, and jerks. Cubic polynomials are widely used for interpolation since 

they prevent the large oscillations of the trajectory, which can result with higher-

order polynomials. Many years later, Angeles et al. 1988 proposed an alternative 

approach to trajectory planning which is also based on the concept of spline 

functions, but in these cases, no equation solving is required. The trajectory is 

synthesized from the scaling of a suitably normalized spline. 

Thompson and Patel 1987 developed a procedure using B-splines for 

constructing robot trajectories. The robot motion was specified by a sequence of 

positions and orientations knots of the end-effector. B-splines were used to fit the 

sequence of joint displacements for each joint. Wang and Horng 1990 used the 

same algorithm presented by Lin et al. 1983, but the trajectories are expressed by 

means of cubic B-splines. Thompson algorithm and Wang and Horng algorithm 

had been used to generate the constrained minimum time joint trajectories for 

Puma 560. Bartels et al. 1987 stated in their book that B-spline polynomials 

provide local control of the joint trajectory. Chen 1991 had applied uniform cubic 

B-splines to compute point-to-point minimum time trajectories problem for robotic 

manipulators subject to state and control constraints. Jamhour and Andre 1996 

modified Lin algorithm, so that it can deal with dynamic constraints and with 

general type objective functions. Steffen and Samarago 1996 used polynomial 

functions to represent the path between two adjacent trajectory points in the joint 

space. Continuity conditions to guarantee a smooth motion for the manipulator are 
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used to spline lower degree polynomial together. Angeles 1997 proposes 

trajectories with higher-order polynomials that allow the definition of intermediate 

coordinates in the Cartesian space, these intermediate coordinates lie between the 

initial and the final position, that are determinate in order to avoid collision. 

The planners constructed to obtain optimum trajectories with respect to the 

execution time has been modeled in  Kim and Shin 1985 developed a minimum 

time trajectory in joint space considering the manipulator dynamics and subjected 

to torque constraints. The trajectory was formed of a series of straight lines with 

specified path deviation at the corner points. By deriving bounds on the joint space 

acceleration from the manipulator torque limits based on a heuristic 

approximation, the problem was divided into a set of one-dimensional 

optimization problems, which could easily be solved. Bobrow et al. 1985, Shin 

and McKay 1985 independently derived similar, and much more efficient, 

algorithms for determining the time-optimal manipulator trajectory along a given 

path. The algorithms consider full arm dynamics and actuator torque limits. 

Subsequently, a computational enhancement to the algorithm was reported by 

Pfeiffer and Johanni 1987, Slotine and Yang 1989. Rajan 1985 characterized the 

trajectory using splines and computed the minimum time trajectory of two degrees 

of freedom manipulator arm based on the approach proposed by Bobrow et al. 

1985. Their solution is found by applying a different algorithm based on dynamic 

programming. Shin and McKay 1986 employed a dynamic programming 

technique to find the minimum-time trajectories along a prescribed geometric path 

under the actuator constraints such as torques, assuming the robot full dynamics 

are available. Many years later, Kieffer et al. 1997 proposed two schemes for 

adapting time optimal trajectory planning algorithms for robots under computed 

torque control. 
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When obstacles are moving, the planner must compute a trajectory 

parameterized by time, instead of simply a geometric path. This problem has been 

proven to be computationally difficult even for robots with few DOFs by Reif and 

Sharir 1985. To coordinate the motion of multiple objects Erdmann and Lozano-

Pérez 1986 introduced the notion of configuration× time space, which is later 

extended to state× time space by Fraichard 1993, where a state encodes a robot’s 

configuration and velocity, to plan robot motions with both moving obstacles and 

kinodynamic constraints. Two months later, Fraichard and Laugier 1993 

developed an approach addresses dynamic trajectory planning, which considered 

as an extension to the path-velocity decomposition proposed by Kant and Zucker 

1986. Fraichard and Laugier introduced the concept of adjacent paths used within 

a novel planning schema operated in two stages: path planning, a set of collision 

free adjacent paths were computed considering kinematic constraints. Then, 

trajectory planning, determine the motion of the robot along and between these 

paths to avoid the moving obstacles considering dynamic constraints of the robot. 

The reader can refer to Fraichard 1993, Fiorini and Shiller 1995, 1996, Fraichard 

1998, 1999, Kuffner and Latombe 2000, Hsu et al. 2002 for more details about the 

trajectory planning of robots moving in dynamic environments. 

Fortune et al. 1986 described a global algorithm for finding collision-free 

trajectories for two planner manipulators, with one prismatic joint and one 

revolute joint, by characterizing the combinatorial structure of the configuration 

space of the two arms. In the same year, Erdmann and Lozano-Pérez 1986 

constructed the configuration space-time for several planner manipulators , each 

with two revolute joints. The trajectories of the manipulators are planned one at a 

time, using the swept volume, in space/time, of the previous trajectories as 

obstacles. In the same time, also, Geering et al. 1986 proposed an algorithm to 

obtain time optimal trajectories for several two links robot arms by solving the 
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resultant nonlinear two point boundary value problem via the shooting and a 

parameter optimization method. 

O'Dunlaing 1986 presented an exact polynomial time algorithm for planning 

the motion subjected to acceleration constraints. Canny et al. 1988 constructed a 

polynomial time algorithm to compute a near optimal trajectory on nonlinear grid 

in the phase space. Canny et al. 1990 developed an exact exponential-time 

algorithm for the time-optimal trajectory of a point robot, with velocity and 

acceleration bounds, in two dimensions. 

Chen and Vidyasagar 1988 developed an optimal trajectory planner for 

planar n-link manipulators. A grid of points in the C-space is used to detect 

collisions with obstacles. Collision points are occurred in groups, and 

approximated by ellipses. The equations of these ellipses are then used as 

constraints in the optimal-control formulation, which is solved numerically. The 

main weakness of this algorithm is the large number of elliptical constraints 

needed to approximate configuration obstacles for a cluttered environment. A 

similar method is used to compute time-optimal trajectories of a manipulator that 

avoids the collision between the manipulator tip and obstacles introduced by 

Eltimsahy and Yang 1988. O'Donnell and Lozano-Pérez 1989 proposed a 

trajectory-scheduling algorithm for two manipulators synchronously operating in 

common workspace. 

It has been shown by Chen and Desrochers 1990 that structure of the 

minimum time control (MTC) law for m-link robotic manipulators required that at 

least on of the actuators is always in saturation. Their numerical algorithm 

converts the original problem, possibly a partially singular one, into a totally 

nonsingular optimal control problem by introducing a perturbed energy term in the 

performance index. 
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McCarthy and Bobrow 1992 computed the number of actuators that must be 

saturated by calculating the acceleration bounds using linear programming. They 

formulated the equations for manipulators with arbitrary kinematic configuration 

and showed that the limits on the internal forces can be handled in the same way 

as the limits on the actuator torques. 

Cao et al. 1994 optimized a piecewise cubic polynomial spline to obtain a 

smooth and time-optimal constrained motion. 

Constantinescu and Croft 2000 proposed a method for calculating smooth 

and time optimal motion for path-constrained trajectories (SPCTOM) subjected to 

actuator torque and torque rate limits. This algorithm achieved an implicit jerk 

limitation by limiting the drive force rate, leading to reduced strain, improved 

tracking accuracy and speed. On the other hand, the algorithm proposed by Pietsch 

et al. 2003, Pietsch et al. 2005 limited the trajectory jerk explicitly while the drive 

force rate is implicitly limited. 

Piazzi and Visioli 1997a introduced a deterministic global optimization 

technique based on an interval algorithm to obtain a global minimum time 

trajectory subject to constraint on joint accelerations and jerks. In the same year, 

these authors, Piazzi and Visioli 1997b proposed also a global algorithm to obtain 

minimum time trajectory planning of an m-joint industrial robot by means of a 

newly devised outer cutting plane algorithm. He used piecewise cubic polynomials 

in the joint space. Piazzi and Visioli 1997c, 2000 developed an algorithm called 

interval analysis to globally minimize the maximum absolute value of the jerk 

along a trajectory using minimax approach. Abdel-Malek et al. 2006 used a 

minimum-jerk 3D model to obtain the desired trajectory in Cartesian coordinates. 

In addition, a direct optimization approach was used to predict each joint’s profile 

(a spline curve). The optimization problem has four cost function terms: (1) Joint 

displacement function that evaluated displacement of each joint away from its 
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neutral position. (2) Inconsistency function, which is the joint rate change (first 

derivative) and it’s predicted overall trend from the initial to the final target point. 

(3) The non-smoothness function of the trajectory, which is the second derivative 

of the joint trajectory. (4) The non-continuity function consists of the amplitudes 

of joint angle rates at the initial and final target points, in order to emphasize 

smooth starting and ending conditions. They presented as an application example a 

high redundant upper-body modeling with 15 degrees of freedom. 

Gasparetto and Zanotto 2007 stated that in the case of trajectory planning 

along a given path, all jerk-minimization algorithms that could be found consider 

an execution time set a priori and do not accept any kinematic constraint. On the 

other hand, the trajectory planning technique proposed by him did not require the 

execution time to be imposed; moreover, kinematic constraints are taken into 

account when generating the optimal trajectory, and they defined on the robot 

motion before running the algorithm. Such constraints are expressed as upper 

bounds on the absolute values of velocity, acceleration and jerk for all robot joints, 

so that any physical limitation of the real manipulator can be taken into account 

when planning its trajectory. 

LaValle and Hutchinson 1996 considered multiple robots with independent 

goals. This problem was treated before by Buckley 1989 and Bien and Lee 1992. 

LaValle and Hutchinson developed performance measures parameters and 

proposed algorithms optimizing a scalarizing function, which is a weighted 

average of individual performance functions. 

Saramago and Steffen 1998 had formulated off-line joint space trajectories 

to optimize traveling time and minimize mechanical energy of the actuators (as 

multi-objective optimization) using cubic spline function subjected to kinematic 

constraints on the maximum value of velocity, acceleration, and jerk. Saramago 

and Steffen 1999 proposed an approach to the solution of moving a robot 
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manipulator with minimum cost along a specified geometric path in the presence 

of obstacles. The optimal traveling time and the minimum mechanical energy of 

the actuators are considered together to build a multi-objective function. They 

applied that approach a two degrees of freedom manipulator arm. Saramago and 

Junior 2000 presented a general methodology for the off-line three-dimensional 

optimal trajectory planning of robot manipulators in the presence of moving 

obstacles. The obstacles are protected by spherical or hyper-spherical security 

zones, which are never penetrated by the end-effector. The end-effector is 

represented in the model as a single point. They also considered all second order 

terms were included in the dynamic equations of motion and friction. Saramago 

and Steffen 2001 introduced two different strategies to optimize the trajectory-

planning problem of robot manipulators in the presence of static obstacles. The 

first strategy, the trajectory must pass through a given number of points. The 

second one, the trajectory passes directly from the initial point to the final one. 

The trajectories were defined using spline functions, and were obtained through 

off-line computation for on-line operation. Sequential unconstrained minimization 

techniques (SUMT) have been used for the optimization. 

Choi et al. 2000 had discussed the problem of the minimum time trajectories 

and the control strategy to drive the robots along the trajectories when the exact 

dynamics equations of robots are unavailable (because of the difficulty for 

obtaining accurate dynamic equations in some cases and the kinematic approaches 

might be more appropriate than the dynamic ones). In each time interval, the 

trajectory is optimized by means of the use of evolution strategy so that the total 

traveling time is minimized under the kinematic constraints. The trajectory 

between the knot points, specified to describe the desired path, is built by cubic 

polynomials and parameterized by time intervals between the knot points. 
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Furukawa 2002 proposed an approach to search for a minimum time 

suboptimal trajectory for a general discrete nonlinear system. In his approach the 

relation between the input control and the time are partitioned into piecewise 

constant function. This function and time step are searched then by a general 

purpose nonlinear programming optimization method. 

Valero et al. 2006 proposed a trajectory planner approach for industrial 

robots operating in the presence of obstacles. The dynamic constraints related to 

the characteristics of the robot when it evaluated the motion between 

configurations were considered. Valero and his research group presented a mixed 

planner (according to Tournassoud 1988 classifications) which avoids local 

minimum problems and considering the dynamics behavior of the robot, to 

generate trajectories in two stages: obtaining a discrete space of feasible 

configurations between two feasible ones (initial and final configurations), and 

then, obtain the optimal and feasible trajectory. The configuration space 

generation based on the concept of adjacent configuration developed by Valero et 

al. 1997, Valero et al. 2000 which enables to consider the generation of free-

collision configurations as an optimization problem. They validated the 

functionality of the algorithm by applying it on robot Puma 560 with six degrees 

of freedom. The robot system and the workspace were modeled using Cartesian 

coordinates. Abu-Dakka et al. 2007 introduced an algorithm to optimize the 

trajectory between adjacent configurations constructing a discrete space of these 

configurations. This approach based on the one proposed by Valero et al. 1997, 

but the difference is that the robot system was modeled using joint space 

coordinates (generalized coordinates). 

Rubio 2006 introduced in his thesis a simultaneous algorithm based on 

adjacent configurations for trajectory planning. Rubio et al. 2009b proposed a 

simultaneous direct approach for the trajectory-planning problem for industrial 
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robots in environments with obstacles, where the trajectory was created gradually 

as the robot moves. Their method deals with the uncertainties associated with lack 

of knowledge of kinematic properties of via points since they are generated as the 

algorithm evolves. One year later Rubio et al. 2010 tested the simultaneous 

approach with different interpolation functions. 

1.4. TRAJECTORY AND PATH PLANNING USING 

GENETIC ALGORITHM: STATE OF THE ART  

The growing interest for more flexible and autonomous industrial robots 

leads to the need for automatic path planning and robust obstacle avoidance 

algorithms. Several different procedures have been suggested as mentioned above. 

Here, a history of techniques for obstacle avoidance for path planning and 

trajectory planning based on Genetic Algorithm (GA) will be introduced. 

The main difficulties with finding an optimum path arise from the fact that 

the complexity of the system means that analytical methods may be intractable, 

while enumerative search methods are overwhelmed by the size of the search 

space. Enter the genetic algorithm. GAs were first introduced by Holland 1975 

based search and optimization techniques have recently found increasing use in 

machine learning, robot motion planning, scheduling, pattern recognition, image 

sensing and many other engineering applications. 

In principle, GAs are stochastic search algorithms analogous to natural 

evolution based on mechanics of natural selection and natural genetics. They 

combine survival of the most fitting among the string structures with randomized 

yet structured information exchange to form a search algorithm with innovative 

flair of natural evolution. GAs have proven their robustness and usefulness over 
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other search techniques because of their unique procedures that differ from other 

normal search and optimization techniques in four distinct ways: 

1. GAs work with coding of a parameter set, not the parameters 

themselves. 

2. GAs search from a population of points, not a single point. 

3. GAs use payoff (objective function) information, not derivative or 

other auxiliary knowledge. 

4. GAs use probabilistic transition rules, not deterministic rules. 

Numerous implementations of GAs in the field of robot path and trajectory 

planning have been carried out in the last decade. 

Parker and Goldberg 1989 applied GAs to an inverse kinematics problem in 

which a redundant robot’s maximum joint displacement in a point-to-point 

positioning task was minimized. The robot had four degrees of freedom, which 

allowed for an infinite number of joint solutions for arbitrary positioning of the 

end-effector within the three-dimensional workspace. The robot end-effector was 

assumed to be at some initial position with known initial joint angles. The world 

coordinates of the desired final position of the end-effector were specified. The 

fitness function combined two terms: world-positioning error at the achieved point 

and joint angle displacements from the initial position. The GA was applied to find 

the joint angles that would position a robot at the target location while minimizing 

the largest joint displacement from the initial position. 

Davidor 1991 described a novel approach to the problem of the complexity 

of the optimization techniques typically used for redundancy resolution. He 

applied a GA to generate and optimize robot trajectories in two-dimensional space. 
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A 3-link planar (i.e. redundant) robot was used in his simulations. The start and 

goal points and the path between them (i.e. a straight line in two-dimensional 

space) were known. Given the triplet of joint positions (Θ1, Θ2, Θ3) “gene” and 

length of each link, the end-effector’s position is uniquely determined. That is 

means; each gene represents one position or arm configuration on the movement 

path of the robot arm. The actual trajectories are formed by joining several arm 

configurations to yield the sequence of path knot points: 

{(Θ1, Θ2, Θ3)1(Θ1, Θ2, Θ3)2…(Θ1, Θ2, Θ3)i…(Θ1, Θ2, Θ3)n} (1.1) 

where i = l, 2, ..., n designates the order of execution according to the 

ascending value. A trajectory could be found which minimized the sum of the 

position errors at each of the knot points along the path. 

Khoogar and Parker 1991 also examined the path-planning problem in a 

two-dimensional space by developing an offline approach that used Cartesian 

space, which is simpler than configuration space and does not require complex, 

time-consuming mapping of the whole workspace. They also used a planar 3 

degrees of freedom robot and introduced rectangular obstacles into the work 

envelope. The GA was used to plan a collision free trajectory of the robot from an 

arbitrary starting point to a desired goal point. The encoding method involved 

specifying N incremental moves, each of which had a small finite value. In an 

unusual coding scheme, the direction of the incremental joint moves for each joint 

were coded with ternary numbers ∆ = (-1, 0, 1), where -1 represents a small 

rotation in the negative direction, 0 represents no move, and 1 represents a small 

rotation in the positive direction. Therefore, for a three degrees of freedom robot a 

set of 3*N ternary numbers can represent N successive moves all coded within a 

single string: 

{(∆1, ∆2, ∆3)1(∆1, ∆2, ∆3)2…(∆1, ∆2, ∆3)i…(∆1, ∆2, ∆3)N} (1.2) 
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The fitness function incorporated the distance from the goal at the end of the 

N moves, and a penalty if any part of the trajectory involved a collision with the 

obstacle. This algorithm did not guarantee that the path would reach the goal 

point; if it did not, the GA would be restarted with the final set of joint angles as 

the new start point. In addition, a heuristic was involved to move the robot out of a 

trapped configuration. 

Shiller and Dubowsky 1991 proposed a method to solve optimal trajectory 

with collision-free problem. Their method searched for a small number of 

candidates of optimal trajectory in a discretized workspace. Then the trajectory 

was improved using the gradient method. It is easy predicted that it takes too much 

time all over the workspace. 

Ahuactzin et al. 1992 introduced a GA technique to solve the inverse 

kinematic problem. Moreover, they used a GA to search over a set of Manhattan 

paths to find collision-free paths for planner manipulators with multiple degrees of 

freedom. They apply a similar technique, coding the search space in terms of a list 

of “rotate” and “move” commands for the individual joints to plan paths for 

holonomic mobile robots. Many years later, this author with others extended this 

work through the development of the Ariadne’s Clew algorithm, Mazer et al. 

1998, which utilizes both an explore function to build a representation of 

accessible space and a search function which looks for the target end state. This 

algorithm proved capable of planning collision-free paths for a six degree of 

freedom manipulator allowing it to avoid a separate six degrees of freedom 

manipulator driven by random trajectory commands. 

Zhao et al. 1992 addressed a path-planning problem for a mobile 

manipulator system using genetic algorithms. Their simulation system was 3 

degrees of freedom arm mounted on 2 degrees of freedom mobile base. 
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Shibata and Fukuda 1993 proposed an approach for multi-agent system 

coordinated motion planning by using GAs and fuzzy logic. In their approach, 

each mobile robot planned its motion while considering the known environment 

and using empirical knowledge for the unknown environment that included the 

other robots. Each robot had a starting point in the graph under the assumption that 

each robot passed a node only once or not at all. A path for a mobile robot was 

encoded based about traversed nodes. These points were selected randomly at first, 

while adjacent numbers must be connected with a link in the graph. Since order 

based strings were used, specialized operations of crossover and mutation were 

implemented. 

In another interesting application, Ram et al. 1994 applied GAs to the 

learning of local robot navigation behaviors for a reactive control system. The 

method was applied to a mobile robot simulation in a two-dimensional world with 

stationary obstacles and known start and goal positions. They employed GAs to 

optimize the control parameters of the robot navigation in the system. Three 

motion primitives (move to goal, avoid obstacle, and noise) were embedded in the 

robot controller. A GA was used to determine optimum combinations of these 

primitives for three different global behaviors of the mobile robots (safe, fast, and 

direct) in three environments of varying degrees of obstacle ‘clutter’. A safe robot 

was optimized to avoid hitting obstacles. While both avoid collisions, fast robots 

prioritized speed whereas direct robots preferred shortest trips. 

Toogood et al. 1995 a GA was used to find a collision-free trajectories for 

3R (three degrees of freedom revolute manipulator) robot with specific start and 

goal joint configurations, among known stationary obstacles. A local XY-

coordinate system was defined on each search plane with the origin located at the 

node point and the local X-axis parallel to the Θ1 - Θ2 plane. The parameters X and 

Y on each search plane are each coded as an M-bit binary number (typically, M 
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was in the range of 4 to 8). Parameters that describe the entire trajectory are then 

concatenated into a 2*N*M binary string for processing by the GA as: 

{(X1, Y1), (X2, Y2), …, (XN, YN)} (1.3) 

Thus, all three angles (Θ1, Θ2, Θ3) at node i are able to be defined by any 

point generated on the search plane through the mapping (Xi, Yi) → (Θ1, Θ2, Θ3), 

which reduce the number of variables from 3 to 2 to describe each knot point. In 

this way, the entire path was given by: 

S{(Θ1, Θ2, Θ3)1, (Θ1, Θ2, Θ3)2, …(Θ1, Θ2, Θ3)i,…(Θ1, Θ2, Θ3)N}G (1.4) 

where S and G represent the start and goal points respectively. 

Shibata et al. 1995 proposed a motion planning method using a GA in order 

to cut a three-dimensional work-piece using six degrees of freedom redundant 

manipulator. In this case, the rotational angles of end-effector along a path are 

used as the evaluation function. 

Sugihara and Smith 1996 proposed a GA for three-dimensional path 

planning of a mobile robot en an environment possibly with unknown obstacles 

and moving obstacles, where the three-dimensional space was approximated with 

grid cells in a rectangular discrete space. 

Yun and Xi 1996 used GAs for optimum motion planning problem in joint 

space. Yun and Xi algorithm incorporates kinematics, dynamics, and control 

constraints. They used a binary string as a way to represent the variables 

parameters. Each parameter is coded with l bits (genes), so the encoding form is as 

follows: 
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where mixi ,...,1; =  are parameters, jib ,  is the jth bit of the ith parameter. 

This method works well only when the number of parameters is small. To verify 

their algorithm, a simulation results was carried out for two and three degrees of 

freedom robots. 

Kubota et al. 1998 presented a hierarchical trajectory planning method for a 

redundant manipulator based on a virus evolutionary genetic algorithm. Firstly, 

they generate a set of configurations that are collision-free by using outputs of the 

learned neural network, and then apply their virus evolutionary genetic algorithm 

to refine the collision free trajectory. 

Vadakkepat et al. 2000 combined GAs with the artificial potential field to 

derive optimal potential field functions, introducing a new methodology named 

Evolutionary Artificial Potential Field (EAPF). This is done to extend the basic 

artificial potential field approach, which is efficient at finding safe paths, but not 

typically optimal ones. Rather than adjusting the path explicitly, this technique 

adjusts the potential functions around the goal and obstacles in order to implicitly 

optimize the resulting path through the aggregate potential fields. The search space 

is represented by a set of tunable values parameterizing or “shaping” the various 

potential fields (multiplicative factors and powers). In this approach, the authors 

used genotype structures that represent local distance and direction in contrast to 

represent the whole path because of their simplicity to process and allow for faster 

real-time performance, while this way may not allow the robot to reach its target. 

Tian and Collins 2005 analyzed the reachable workspace of two degrees of 

freedom robot and derived a condition for singularity avoidance. Afterwards, they 
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applied GA method (with the property of keeping the elitists results in the current 

generation to the next generation) to search for the optimal of the two degrees of 

freedom robot base. The robot end-effector moves in XY plane. They encoded the 

coordinates ( )bb yx ,  of the location of the robot base into a chromosome, which is 

a binary string. 

1.5. OBJECTIVES 

The principle objective of this thesis is to provide efficient algorithms using 

genetic algorithms to solve the path planning and trajectory planning problems for 

industrial robots in complex environments and making clear the difference 

between them. 

The proposed method has been built in a way such to be applicable to any 

robotic system working in an industrial environment. Particular examples have 

been developed on robot Puma 560. 

In this work the kinematic and dynamics of the serial chain manipulators are 

worked out. In the formulation, it is assumed that the mechanical system is formed 

by rigid links interconnected with ideal revolution joints. The direct and inverse 

kinematic problems have been focused on, in addition to recursive relations for 

calculating the position, velocity and acceleration of each reference system 

contained as a function of the generalized coordinate. The recursive Newton-Euler 

for dynamic formulation has been addressed. 

An efficient collision detection algorithm has been built to check the 

collisions between robot's arms and obstacles in the workspace. The key here is 

the way of building the obstacles by means of basic patterns. 
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1.6. ORGANIZATION OF THE THESIS 

This thesis is organized as follows: in  Chapter 2 the formulation of the 

kinematics and dynamics of the serial chain manipulator is performed for 

obtaining the equations of motion of the mechanical system, particular example 

Robot Puma 560. In addition, the workspace modeling is developed and the 

collision detection algorithms. 

 Chapter 3 introduces path planning problem and an optimization technique 

using genetic algorithm to find the shortest path between two given configurations 

of the robot. 

Meanwhile, in  Chapter 4 the trajectory planning optimization is addressed. 

Adjacent configuration concept has been treated and a detailed formulation has 

been produced. A genetic algorithm procedure to solve the adjacent configuration 

problem and trajectory-planning problem with new crossover and mutation 

operators has been discussed. Finally, a genetic algorithm procedure has been 

produced to solve the clamped cubic spline to obtain smooth trajectory with 

continuous derivatives. 

Finally,  Chapter 5 contains some conclusions about the most relevant 

aspects covered in this work. In addition, it provides some guidelines for future 

subjects that still need more investigation in the dynamic identification and 

simulation fields. 



 

CHAPTER 2  

PROBLEM MODELING 

The strategy used to solve the problem requires the modeling of the robot as 

a function of generalized coordinates moving in a complex workspace discretized 

and constructed in Cartesian coordinates. This will facilitate the ramification 

process used by the genetic algorithm procedure to construct and find the best 

collision free path or trajectory in the discrete workspace between two given 

configurations of the robot. 

In this chapter, the kinematics and dynamics formulation of robotic system, 

application example Puma 560, is defined as well as the formulation of obstacle 

avoidance process. 

2.1. ROBOT MODELING 

The robotic system has been modeled as function of generalized coordinates 

and considered as a wired model. This model consists of rigid links joined together 

by the corresponding kinematic joints. Although the robot configuration has been 
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modeled as a function of joint variables ( )i
j qC , the workspace and obstacles have 

been modeled in Cartesian coordinates (Section ( 2.4)) to facilitate the definition of 

the whole collision avoidance process. To achieve that, the robot configuration 

should be expressed in Cartesian coordinates. 

 

Figure 2.1: Robot Wired Model. 

The robot configuration can be expressed in Cartesian coordinates as a set 

of points called significant points ( )i
j

m qγ  and interesting points ( )i
j
k qλ , see Figure 

(2.1). Significant points have been modeled as a function of joint coordinates and 

expressed in Cartesian coordinates to facilitate the formulation of the collision 

avoidance process. The selection of these points is made based on the degrees of 

freedom of the robot. These points should be as minimum as possible to define sin 

ambiguity the configuration of the robot. It is important to emphasize that they do 
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not constitute an independent set of coordinates. To improve the efficiency of the 

collision detection algorithm, interesting points ( )i
j
k qλ  have been modeled as 

function of joint coordinates and expressed in Cartesian coordinates. The 

interesting points’ coordinates are obtained from the significant points and the 

geometric characteristics of the robot. The robot configuration ( )i
j qC  has been 

converted to the Cartesian coordinates ( )j
k

j
m

jC λγ ,  to facilitate the collision 

avoidance technique. 

In the Figure (2.1), an application example is shown for Puma 560 robotic 

system with four significant points ( ) ( )jjjj
i

j
m q 4321 ,,, γγγγγ ⇒  and four interesting 

points ( ) ( )jjjj
i

j
k q 4321 ,,, λλλλλ ⇒ . 

2.2. KINEMATIC PROBLEM 

The scope of this Section is about the kinematic position analysis of an open 

chain mechanical system in a recursive way. Kinematics is part of the science of 

motion that treats motion regardless of the forces that cause it. For instance, and 

depending on the geometric description of the manipulator, it is necessary to find 

the mathematical relations between the positions in coordinates of the workspace 

and the joint variables that conform the configuration space, Lozano-Pérez 1983. 

These relations denominate forward (or direct) and inverse kinematics 

respectively, depending on the transformation sense. Within the science of 

kinematics, the position, the velocity, the acceleration, and all higher order 

derivatives of the position variables (with respect to time or any other variable(s)) 

can be studied. 
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In this thesis, the positioning problem of the manipulator linkages will be 

considered. Forward kinematics is defined as the geometrical problem to obtain 

the Cartesian position and orientation of a robot’s end-effector given its joint 

coordinates, see sub-Section ( 2.2.2). However, inverse kinematics is the opposite 

problem, where a set of joint angles should be found for a given position and 

orientation of the end-effector. Later, in Chapter 4, the velocities and accelerations 

will be derived from the interpolating polynomial (represents the moving curve of 

the end-effector) to use them in the inverse dynamic solver. 

In the following sub-sections, the analytical relationship between the joint 

angles and the end-effector position and orientation will be described. In order to 

study them, the structure of the kinematic chain has to be considered first. 

2.2.1. Coordinate System 

A kinematic chain maybe thought of as a set of rigid bodies connected by 

joints. These bodies are called links. The joints are usually rotational, but may also 

be prismatic. The rotation maybe performed in three orthogonal directions depends 

on the type of joint. This is called the degree of freedom (DOF) of the joint. Any 

joint with n degrees of freedom may be modeled as n joints of one degree of 

freedom connected with n - 1 links of zero length. Therefore, without loss of 

generality, we only have to consider kinematic chain consisting entirely of joints 

each having just one degree of freedom. The two ends of the kinematic chain are 

called the base and the end-effector respectively. The base of the chain is fixed at 

one position while the end-effector can move freely around the space. 

In order to describe the kinematic chain accurately and effectively, a 

convention is required. Denavit and Hartenberg 1955 proposed a matrix method 

that systematically establishes coordinate systems attached to the rigid body for 
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each element in the articulated chain. D-H has a 4*4 homogenous transformation 

matrix representation, which represents the coordinate systems of each link/body 

of the articulated chain with respect to the coordinate system of the previous one. 

Thus, through a sequential transformation, the end-effector expressed in its local 

coordinate system can be transformed and expressed in the global coordinate 

system. In this thesis, the Modified Denavit-Hartenberg (Modified-DH) notation, 

presented by Craig 2005, that defines the geometry of each link by means of four 

independent parameters and defines the location of the corresponding reference 

frame is used. These parameters allow the calculation of the vector between the 

origin of the coordinate systems for different links and the rotation matrix between 

them. Figure (2.2) shows the assignment of these parameters considering revolute 

joints type. As can be seen, each link has four parameters, namely ai, αi, di, and θi. 

 

Figure 2.2: Modified Denavit-Hartenberg Assignation Criteria for Link with Revolute Joint. 

Depending on the type of the joint, one of them is the joint variable, or 

generalized coordinate, and the other three are constants. If the joint is revolute, as 

shown in the figure, then its variable is θi, whereas, for a prismatic one it is di. 

Here, the generalized coordinates “θi” will be denoted by the symbol qi. 
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2.2.2. Forward Kinematics 

Forward kinematics is the issue to find the position and orientation of the 

end-effector relative to some coordinate system given a set of joint angles. Using 

the link parameters defined in the previous section, the transformation matrix Ti
i
1−  

that transforms a vector in frame i - 1 to frame i can be defined. 
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From the transformation matrix, the position vector 
ii OO

i r ,
1

1−
− r  and the 

rotation matrix i
i R1−  that describe the relative position and orientation, 

respectively between any two consecutive local reference frames can be extracted 

as following, 

 
cos

sin,
1

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

−

−

ii

ii

i

OO
i

d
d

a
r

ii

α
α

r   (2.2) 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

−−−

−−−
−

111

111
1

cossincossinsin
sincoscoscossin

0sincos

iiiii

iiiii

ii

i
i

qq
qq

qq
R

ααα
ααα   (2.3) 



Problem Modeling   - 53 - 

2.2.2.1. Application: Robot Puma 560 

The methods presented in this thesis have been verified and tested over 

Puma 560 robotic system. Puma 560 is a robot with six degrees of freedom and all 

are rotational joints. It is shown in Figure (2.3) with link frame assignments in the 

position corresponding to all joint angles equal to zero. 

 

Figure 2.3: Some Kinematic Parameters and Frame Assignments for the Puma 560 Manipulator. 

After the calculation of 
ii OO

i r ,
1

1−
− r  and i

i R1− , Equations (2.2) and (2.3) 

respectively, the vector 
ji OO

ir ,
r  denotes the position vector from the origin of the 

ith reference frame to the jth reference frame expressed in ith reference frame. 

Hence, the significant points and the interesting points can be found from the 

following equation 
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where pOr ,
0

0

r
 is the vector from the origin of the reference system attached to the 

base of the robot to the significant or interesting point located in the link i, and p is 

one of the points γ1, γ2, γ3, γ4, λ1, λ2, λ3, and λ4. 

The partial derivatives of the previous positions relative the generalized 

coordinates could be obtained according to the following equation: 

pOi
i
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r
dq
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,
00,
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0 rr

r

×=
∂

∂
=  (2.5) 

where iZ
r0  is a unit vector in the z-axis direction of the reference frame i 

expressed in the base reference system 0, Yoshikawa 1990. 

With the definitions of these points and their derivatives, it will be easy to 

obtain and derive the minimum distances between each obstacle in the workspace 

and the robot’s links needed for the prevention of collisions constraints. This will 

be explained in details in Section ( 2.5). 

2.2.3. Inverse Kinematics 

The inverse kinematic problem is about finding the generalized coordinates 

of a kinematic chain that give rise to a particular end-effector position and 

orientation. This problem has been extensively studied in robotics. Since computer 

based, robots are usually driven in joint space, though the objects to be 

manipulated are expressed in the global coordinate system; the inverse kinematic 

solution is essential in controlling the position and orientation of the end-effector 

of the robot arm to reach its goals. The inverse kinematic problem is much more 

difficult due to the existence of multiple algebraic solutions. There are two classes 
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of solution methods for the inverse kinematics problem: closed form and 

numerical. In robotics, a closed form solution is usually desired for the kinematic 

chain of a robot arm rather than a numerical solution. Numerical solutions are 

generally much slower than the corresponding closed form solution. The closed 

form solution of a kinematic chain can be obtained by one or both of the two 

solution methods: algebraic and geometric. In this thesis the algebraic method 

explained in Craig 2005 will be used to solve the inverse kinematic problem for an 

application Puma 560. 

2.2.3.1. Application: Robot Puma 560 

In this sub-section, the inverse kinematic problem for an industrial Puma 

560 robot will be formulated. All the following relations are extracted from Craig 

2005. Considering the joint variables (q1, q2, …, q6), the transformation matrix of 

the end-effector {T} with respect to the global reference system (the base) is 

represented 
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 is the position vector of the end-effector of the robot with 

respect to frame 0, 
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is the orientation of the end-effector, where 

( )[ ] ( )64654165236465423111 scccsscsssscccccr ++−−=  (2.7) 

( )[ ] ( )64654165236465423121 scccsccssssccccsr ++−−=  (2.8) 

( ) 6523646542331 cscsscccsr −−−=  (2.9) 

( )[ ] ( )65464165236465423112 scsccsssscssccccr −++−−=  (2.10) 

( )[ ] ( )65464165236465423122 scscccssscsscccsr −−+−−=  (2.11) 

( ) 6523646542332 ssccssccsr +−−−=  (2.12) 

( ) 5415235423113 ssscsscccr −+−=  (2.13) 

( ) 5415235423123 ssccssccsr ++−=  (2.14) 

523542333 ccscsr −=  (2.15) 

[ ] 13234233221 sdsdcacacPX −−+=  (2.16) 

[ ] 13234233221 cdsdcacasPY +−+=  (2.17) 

23422233 cdsasaPZ −−−=  (2.18) 
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where si = sin(qi) & ci = cos(qi),   i = 1, 2, …, 6 

s23 = sin(q2+q3) & c23 = cos(q2+q3) and so on. 

Then, the joint variables can be calculated using the following equations, as 

presented by Craig 2005. 
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Note that there are two possible solutions for 1q  corresponding to the plus-

or-minus sign in Equation (2.19). 
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The plus-or-minus sign in Equation (2.21) leads to two different solutions 

for q3. 
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Equation (2.22) computes four values of q23 according to the four possible 

combinations of solutions for q1 and q3. Then, four possible solutions for q2 are 

computed as follows 

3232 qqq −=  (2.23) 
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where the appropriate solution for q3 is used when forming the difference. 

As long as s5 ≠ 0, we can solve for q4 as 
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Hence, q5 can be solved as 

( )555 ,Atan2 csq =  (2.26) 

Finally, q6 can be solved as follows: 
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( )666 ,Atan2 csq =  (2.28) 

Because of the plus-or-minus signs appearing in Equations (2.19) and 

(2.21), these equations compute four solutions. Additionally, there are four more 

solutions obtained by flipping the wrist of the manipulator. For each of the four 

solutions computed above, the flipped solution can be obtained by 
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After all eight solutions have been computed, some (or even all) of them 

might have to be discarded due to joint-limit violations. Of any remaining valid 

solutions, usually the one closest to the present manipulator configuration is 

chosen after applying the check collision algorithm over these valid solutions, 

Craig 2005. 

2.3. THE DYNAMIC MODEL 

The scope of this section deals with the dynamics of robot manipulators. 

Whereas the kinematic equations describe the motion of the robot without 

consideration of the forces and torques producing the motion, the dynamic 

equations clearly describe the relationship between motion and the force. The 

equations of motion are important to consider in the design of robots, in simulation 

and animation of robot motion, and in the design of control algorithms. The 

equations of motion provide the basis for a number of computational algorithms 

that are useful in mechanical design, control, and simulation. There are two main 

problems in robot dynamics: 

• Forward dynamics problem: consist in finding the characteristics of 

motion that the robot acquire as a consequence of given actions (the forces 

are given and the motion is the result). It is used mainly in simulation. 

• Inverse dynamics problem (IDP): consist in computing the generalized 

forces from a specification of the manipulator’s trajectory (position, 
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velocity, acceleration). It has a variety of uses, such as motion control 

systems, mechanical design and trajectory planning. Several researchers 

developed O(n) algorithms for inverse dynamics for robotics used a 

Newton-Euler (NE) formulation of the problem. Stepanenko and 

Vukobratovic 1976 developed a recursive NE method for human limb 

dynamics, and Orin et al. 1979 made the recursive method more efficient 

by expressing forces and moments to local link coordinates for real-time 

control of a leg of a walking machine. Luh et al. 1980 developed a very 

efficient Recursive NE Algorithm (RNEA) by expressing most quantities 

to link coordinates. The RNEA is the most cited method. Hollerbach 1980 

developed an O(n) recursive Lagrangian formulation, but found that it was 

much less efficient than the RNEA in terms of the number of 

multiplications and additions/subtractions required in the algorithm. 

Provenzano 2001 introduced an algorithm using Gibbs-Appell equations 

leads to computationally efficient direct and inverse dynamic problem 

algorithms. Concerning the formulation that rewrite the inverse dynamic 

problem in its linear form Benimeli 2006 presented an analytical 

algorithms for this purpose. In these algorithms the equation of motion are 

provided in their linear matrix form. Mata et al. 2002 introduced an 

algorithm for the inverse and direct dynamic problem constructed based 

on the formulation of Gibbs-Appell. Links only were considered and the 

inertia matrices were assumed to be given with respect to the center of 

gravity. 

In this thesis, as the IDP is not the main concerns, the recursive Newton-

Euler formulation proposed by Luh et al. 1980 will be used because of its intuitive 

and efficiency. 
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2.3.1. Inverse Dynamics Problem 

As mentioned above, the inverse dynamic is the problem of determining the 

forces required to produce a prescribed motion, as well as the constraint moments 

and forces, i.e., the reactions at the joints. In this thesis, the dynamic model of the 

manipulator is obtained by solving the recursive Newton-Euler formulation to 

obtain the joint torques required for a given set of positions, velocities, and 

accelerations ( )qqq &&&,,  (see sub-Section  4.1.2)) of the joint angles for Puma 560 

robot. 

The iterative Newton-Euler dynamic formulation has two-step processes 

consisting of an outward loop and an inward loop. The forward recursion or 

outward iteration propagates kinematic information — such as angular velocities, 

linear and angular accelerations— from the base reference frame (inertial frame) 

to the end-effector. The backward recursion or inward iteration propagates the 

forces and moments exerted on each link from the end-effector of the manipulator 

to the base reference frame. 

2.3.1.1. Outward Loop: 

To calculate the inertial forces acting on each link of the model we have to 

calculate the angular velocity and linear and angular acceleration of the centre of 

masses of each link. This is done by the outward loop starting from link 1 and 

going up to link n (last link). 

Angular velocity propagation from link i to link i +1 expressed in reference 

frame i + 1 can be determined using the following equation, 

1
1

1
1

1
1 ˆ

+
+

+
+

+
+ += i

i
ii

ii
ii

i ZqR &ωω  (2.30) 



- 62 - Trajectory Planning for Industrial Robots Using Genetic Algorithms 

where: 1
1

+
+

i
i ω = Angular velocity of the link i + 1 expressed in the reference 

frame i + 1. 

1
1 ˆ

+
+

i
i Z  = Unit vector in Z direction in frame i + 1. 

Ri
i
1+  = Rotation matrix describing orientation of frame i in frame i + 1. 

1iq +&  = First time-derivative of joint angle i + 1. 

The angular acceleration can be transformed from one link to the next by, 
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i ZqZqRR &&&&& ωωω  (2.31) 

where:  

1
1

+
+

i
i ω& = Angular acceleration of the link i + 1 expressed in the reference 

frame i + 1 

1iq +&&  = Second time-derivative of joint angle i + 1. 

The linear acceleration for point iPi+1 is computed by the following 

equation, 

( )( )i
i
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i

i
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i PPR νωωων &&& +××+×= ++

+
+

+
11
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1  (2.32) 

Linear acceleration for the centre of mass 
1+iCP in link i + 1 is calculated as 

follows, 
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where: Cν&  is the acceleration of centre of mass  

Having obtained the linear and angular acceleration of each link, the next 

step is to find the inertial force and torque acting at the centre of mass of each link. 

1
1

11
1

+

+
++

+ =
iC

i
ii

i mF ν&  (2.34) 
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where: mi is the total mass of link i. 

IC  is the inertia tensor of the link written in a frame, {C}, about the centre 

of mass, Craig 2005. 

2.3.1.2. Inward Loop: 

In this section, the joint torques required for the motion will be calculated. 

The iteration in this step are inward due to the fact that calculations now start at 

the terminal link and work backwards toward the base of the robot. The equations 

adopted are based on the force and moment dynamic equilibrium equations of a 

link. All the following equations are extracted from Craig 2005. 

From the force balance equation, the following iterative relationship can be 

deduced: 

i
i

i
ii

ii
i FfRf += +

+
+ 1

1
1  (2.36) 

while from the moment balance equation, the following iterative 

relationship can be deduced: 
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Finally, the joint torques for revolute joints are calculated using the 

following relationship: 

i
iT

i
i

i Zn ˆ=τ  (2.38) 

where ni is the torque exerted on link i by link i – 1. 

The inverse dynamic problem for an industrial Puma 560 robot will be 

developed by solving the iterative Newton-Euler dynamic formulation, Equations 

from (2.30) to (2.38). The point iPi+1 in Equation (2.32), is the position vector 

declared in Equation (2.2). In the outward iterations, i = 0 → 5. In the inward 

iterations, i = 6 → 1. For Puma 560 robot, the number of links n = 6. 

2.4. ENVIRONMENT MODELLING 

The workspace and obstacles have been modeled in Cartesian coordinates. 

The details of the modeling strategy will be found in the next two sub-Sections. 

2.4.1. Workspace Modeling 

The workspace of a given manipulator has been defined by Craig 2005 as 

the existence or nonexistence of a kinematic solution. The workspace in this thesis 

is a subset of Craig definition and is defined as the space that contains at least a set 

of robot configurations obtained based on a discrete set of end-effector’s positions. 

To achieve that definition, let’s consider a rectangular prism between the initial C 

i 



Problem Modeling   - 65 - 

and goal C 

f robot configurations. The end points of the prism’s diagonal 

(represented by i
4γ  and f

4γ  in Figure (2.4)) are corresponding to the positions in 

Cartesian coordinates of the end-effector of the initial C 

i and final C 

f respectively. 

The prism edges are parallel to the global Cartesian reference system. 

 

Figure 2.4: Workspace Modeling. 

A uniform grid of points is considered inside the prism. These points are far 

a magnitude small enough (∆x, ∆y, ∆z) to prevent the existence of obstacles 

between two adjacent points in the grid. Thus, the workspace contains a discrete 

set of configurations such that the position of the end-effector for each 

configuration must belong to the previously defined grid. This means that the 

robot configurations must keep the end-effector inside the prism. The set of 

positions that can be occupied by the robot’s end-effector inside the prism are 

restricted finite number of points provided by discretizing the prism according to 

the following increments: 

γ4
i

γ4
f 



- 66 - Trajectory Planning for Industrial Robots Using Genetic Algorithms 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
+=

−
−

=Δ
D

ceilPtswhere
Pts

i
x

f
x

x
x

i
x

f
x

x
4444 1;

1

γγγγ
 (2.39) 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
+=

−

−
=Δ

D
ceilPtswhere

Pts

i
y

f
y

y
y

i
y

f
y

y
4444 1;

1

γγγγ
 (2.40) 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
+=

−
−

=Δ
D

ceilPtswhere
Pts

i
z

f
z

z
z

i
z

f
z

z
4444 1;

1

γγγγ
 (2.41) 

where ceil(number) returns the smallest integer value that is not less than that 

number. D is less than the size of the smallest obstacle in the workspace or less 

than the smallest robot’s link diameter (depends which is smaller). (Ptsx – 1, Ptsy – 

1, Ptsz – 1) are the number of points steps that discretize the prism. The points 

( )f
z

f
y

f
x 444 ,, γγγ  and ( )i

z
i

y
i

x 444 ,, γγγ  are the coordinates of the end-effector positions 

of the initial and final configurations of the robot. 

2.4.2. Obstacle Modeling 

One of the objectives of path and trajectory planning algorithms is to 

generate collision-free configurations. To facilitate and systematize the calculation 

of the distances between the robot links and the obstacles, a generic obstacle 

models have been constructed in terms of a combination of three basic patterns: 

Spheres, cylisphere, and quadrilateral planes since they are computationally 

simple. Very little information has to be stored in order to fully define such 

elements. Any type of obstacle can be modeled using one or set of these elements. 
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Qsk 

rsk 

Qck1 

Qck2 

rck 

A sphere is the most basic element that can be used to model an object since it 

defined by its centre position and the radius. On the other hand, the cylisphere is a 

cylinder with hemispheres on each end. The position and orientation of the 

cylisphere can be defined by locating the position of the end points of the cylinder 

axis and its radius. Finally, the quadrilateral plane is a basic building block for a 

wide variety of shapes. It is defined by three points and thickness, Table (2.1).  

Qsk → Centre 
a) Sphere 

 

rsk → Radius 

Qck1 → Centre 1 

Qck2 → Centre 2 b)  Cylisphere 

 

rck → Radius 

Vpk1 → Vertex 1 

Vpk2 → Vertex 2 

Vpk3 → Vertex 3 

c) Quadri-lateral 
plane 

epk → Height 

Table 2.1: The Obstacle Three Basic Elements. 

The minimum distance is obtained among these basic elements and the 

robot’s links. In this thesis, obstacles are considered to be static, which means, 

their positions and orientations do not change with time. The three basic elements 

can be defined in the space as follows: 

According to Lozano-Pérez and Wesley 1979 a process of growing 

obstacles has been used in order to obtain the actual dimensions of the robot. 

Vk3 

Vk2 

Vk1 epk 
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2.5. COLLISION AVOIDANCE FORMULATION 

As mentioned previously, one of the objectives of path and trajectory 

planning algorithm is generating free-collision paths or trajectories. For the 

purpose of preventing collisions between the robot and the obstacles, the distances 

calculated between the robot’s links and the obstacles are considered as constraints 

in the optimization problem. A method to facilitate the formulation of the shortest 

distance between any obstacle and robot links, is by shrinking robot links, Section 

( 2.1), and expanding the obstacles, Lozano-Pérez and Wesley 1979. 

In the next three sub-Sections, the shortest distance between the three 

obstacle patterns (Spheres, Cylispheres, Quadri-lateral plane) and the robot links 

will be calculated. Before starting with the distances derivations, some 

terminologies should be specified. 

1v  is a vector from the global reference system to the point 1v , its length is 1v . 

1221 vvvv −= is a vector from point 2v  to point 1v , and its length is 21vv . 

" " ⋅  will be used for multiply a scalar “a” with vector “ 1v ”; i.e. 1va ⋅ . 

""o  will be used for Vectors Dot Product; i.e. θcos2121 vvvv ⋅=o . 

" "×  will be used for Vectors Cross Product; i.e. nvvvv ⋅⋅=× θsin2121 , where 

n  is unit vector normal to 1v  and 2v . 

2
22

211
2

v
vv
vvprojv

v
o

o
=  is the projection of 1v  on 2v  and in the direction of 2v . 

In all cases, the robot link is considered as a cylisphere with radius rm. This 

link will then shrinking it to line segment defined by two points: Significant point 

γm and Interesting point λm, where m = 1 → 4 for Puma 560 robot. 
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2.5.1. Spherical Obstacles 

 

Figure 2.5: Minimum Distance Derivation Between Robot Link and Sphere. 

An algorithm has been built to find the shortest distance between sphere and 

robot links (considered as segments), taking into account the growing obstacle 

technique. Let’s consider the case of the ith spherical obstacle denoted by Si(Qsi, rsi) 

and the link segment of the robot defined by γm and λm. 

Consider the Figure (2.5), the minimum distance between the sphere Si and 

the robot link will be simQλ , simQγ , or simQP . The key to know the answer 

is by calculating the projection of  vector simQλ  on vector mmγλ . 

sim
mm

Q
mm projP λ

γλλ =  (2.42) 

If the mmP λ  more than mmγλ  then simQγ  should be compared with 

msi rr + , otherwise mmP λ  should be checked if it has a value less than zero. In 

rsi 

rsi+rm 

Qsi 

mλ  

mγ
Pm 

X

Y
Z

O
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this case simQλ  should be compared with msi rr + , otherwise simQP  should be 

compared with msi rr + . So the collision prevention with spherical obstacles can 

be achieved. 

 

Figure 2.6: The Flow-Chart of the Algorithm to find the Shortest Distance Between Robot Link and 

Sphere. 

The derivatives of those distances with respect to the generalized 

coordinates are obtained as follow: First the derivative of the length simQγ  with 

respect to the problem variables (generalized coordinates of the robot qj). 
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where j = 1 → 6 for robot Puma 560, i index relates to the number of spheres and j 

relates to joint variables. 
j

m

dq
dγ

 can be found using Equation (2.5) 

The derivative of simQλ  and simQP  with respect to the problem variables is: 
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where 
j

m

dq
dλ

 can be found using Equation (2.5). 
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The derivative of the length mmγλ  with respect to the problem variables is: 

( )

( )

( )

( ) ⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅−

⋅⎟
⎠

⎞
⎜
⎝

⎛=

zj

m

j

m
mm

yj

m

j

m
mm

xj

m

j

m
mm

mmj

mm

dq
d

dq
d

dq
d

dq
d

dq
d

dq
d

dq
d

γλ
γλ

γλ
γλ

γλ
γλ

γλ
γλ 1  (2.48) 

2.5.2. Cylispherical Obstacles 

Cylisphere is a cylinder with hemispheres on each end. A cylisphere is 

symmetrical about its ‘long’ axis. The collision avoidance algorithm between the 



Problem Modeling   - 73 - 

robot links and cylispheres has been built considering robot links and cylispheres 

as line segments. Then the minimum distance between two segments has been 

determined as following. Let’s consider the case of the kth cylisphere obstacle 

denoted by Cyk(Qck1, Qck2, rck) and the robot’s link segment is defined by γm and λm. 

 

Figure 2.7: Minimum Distance Derivation Between Robot Links and Cylispheres. 

In Figure (2.7), Line 1 represents the robot link while Line 2 represents a 

zero-radius cylisphere. Points Qck1, Qck2 with the radius rck represents the 

cylisphere obstacle. Points Pm and Pk are the ends of the shortest line between the 

two segments. Pm is located on Line 1 and Line 3, and Pk is located on Line 2 and 

Line 3. By representing each line parametrically and utilizing what is known about 

Line 3 and points Pm and Pk, a system of equations can be solved to determine the 

coordinates of points Pm and Pk in terms of the coordinates of points λm, γm, 

successively and Qck2. 

Any point PLine1 on Line 1 can be represented parametrically as 

( ) 11 xP mmmLine ⋅−+= λγλ  (2.49) 
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Any point PLine2 on Line 2 can be represented parametrically as 

( ) 21212 xQQQP ckckckLine ⋅−+=  (2.51) 

02 =
j
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dq

dP  (2.52) 

Although the locations of points Pm and Pk are unknown, any point PLine3 on 

Line 3 can be represented in parametric form as 
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 Since Line 3 must be simultaneously perpendicular to Line 1 and Line 2, 

0=kmmm PPoγλ  (2.55) 

and 021 =kmckck PPQQ o  (2.56) 

where mmmm λγγλ −= , 1221 ckckckck QQQQ −= .and mkkm PPPP −=  Since 

Pm is a point on Line 1, and Pk is a point on Line 2, Pm can be expressed as 

( ) 1xP mmmm ⋅−+= λγλ  (2.57) 
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And its derivative can be determined as Equation (2.50) 

and Pk can be expressed as 

( ) 2121 xQQQP ckckckk ⋅−+=  (2.58) 

And its derivative can be determined as Equation (2.52) 

In Equations (2.57) and (2.58), x1 and x2 represent the parameter values for 

Pm and Pk, respectively. Taking the difference of Equations (2.58) and (2.57) 

results in 

( ) ( ) 12121 xxQQQPP mmmckckckmk ⋅−−−⋅−+=− λγλ  (2.59) 

Now, Equation (2.59) can be substituted into Equations (2.55) and (2.56) 

such that 
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And 

( ) ( )( ) 01212121 =⋅−−−⋅−+ xPxQQQQQ mmmckckckckck λλo  (2.61) 

Collecting terms and putting Equations (2.60) and (2.61) into matrix form 

leads to 
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Or 



- 76 - Trajectory Planning for Industrial Robots Using Genetic Algorithms 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=⋅

B
A

xm  (2.63) 

Solving Equation (2.63) via Cramer’s rule for t leads to 
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Since the parametric equations for Line 1 and Line 2 represent any point on 

segments through the given points while the cylispheres represented are 

constrained to the line segments connecting the given points, new parameters must 

be defined such that: 
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and 
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Now potential coordinates for Pm and Pk can be calculated such that: 

( ) 11xP mmmm ⋅−+= λγλ  (2.67) 

( ) 22121 xQQQP ckckckk ⋅−+=  (2.68) 
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A potential minimum distance, dk, between the robot link and cylisphere is 

kmk PPd =1,  (2.69) 

and the magnitude of this potential minimum distance, 1,kd , is 

kmkmkmk PPPPPPd o==1,  (2.70) 

 

Figure 2.8: Minimum Distance WHEN x1 ≠ x11 or x2 ≠ x22. 

If x1 = x11 and x2 = x22, the values calculated using Equations (2.69) and (2.70) are 

correct. However, if x1 ≠ x11 or x2 ≠ x22, further checks need to be done. Figure 

(2.8) shows a sample case of when the calculated minimum distance is incorrect. 

In order to find the coordinates for the desired Pm, the algorithm for calculating the 

minimum distance between a line segment and a sphere will be used, with Line 1 

represents the robot link and point Qck2 represents the sphere. Overall, if x1 ≠ x11 or 

x2 ≠ x22, the algorithm for calculating the minimum distance between a line 
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segment and a sphere must be used with each of the Lines endpoints. Figure (2.9) 

shows the steps of finding the minimum distance in such cases. 

 

Figure 2.9: The Flow-Chart to find the Shortest Distance Between Robot Link and Cylisphere. 

The smallest of the five minimum distance magnitudes calculated kd  is 

chosen along with its respective Pm and Pk coordinates. Finally, the radii of the 

robot link and cylisphere jck rr +  are subtracted from kd  to get the true 

minimum distance magnitude value, Harden 2002. 

2.5.3. Quadri-lateral Plane Obstacles 

A quadrilateral plane is a basic building block for a wide variety of shapes. 

It is defined by three points P1, P2, and P3, and a half thickness, ep. The fourth 

point of the quadrilateral plane is calculated as 

The critical 
distance is 1,kd  

yes 

no 

kd  = min{ 1,kd , 2,kd , 3,kd , 4,kd , 5,kd } 

1x = 11x  and 2x = 22x  

2,kd  =minimum distance between Point mλ  and Segment 21 ckck QQ  

3,kd  = minimum distance between Point mγ  and Segment, 21 ckck QQ  

4,kd  = minimum distance between Point 1ckQ  and Segment, mmγλ  

5,kd  = minimum distance between Point 2ckQ  and Segment, mmγλ  
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1324 PPPP −+=  (2.71) 

The minimum distance between quadrilateral plane and robot links has been 

calculated as the minimum distance between segment and plane as following: 

 

Figure 2.10: Minimum Distance Derivation Between Robot Link and a Quadri-Lateral Plane. 

Figure (2.10) shows the picture used to derive the minimum distance 

between a robot link represented by a line segment and a quadri-lateral plane. This 

derivation process can also be used for an infinite plane. In the figure, Line 1 

represents the robot link. Let’s consider the case that the link line segment of the 

robot is defined by λm and γm. Points Pn1, Pn2, Pn3 and Pn4 represent the nth zero-

thickness quadri-lateral planar surface QPn(Pn1, Pn2, Pn3, epn). Points λm, γm, Pn5, 

and Pn6 are potential observation points, and Line 2 is the desired minimum 

distance line. The symbols r , s , and n  represent a mutually orthogonal set of 

unit vectors. Here, r  and s  are both located in the plane, and n  is normal to the 

plane. For the derivation, it is assumed that Line 1 cannot intersect with the Planar 

Surface because such an intersection indicates a collision, which we are trying to 

avoid. 
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The minimum distance between a line segment and an infinite plane is 

always the difference between one of the line endpoints and the corresponding 

projection of the same endpoint onto the surface of the plane. If the plane is a 

quadri-lateral, then checks must be performed to ensure the line endpoint 

projection is inside the quadri-lateral and that both line endpoints are on the same 

side of the plane. 

For the example shown in Figure (2.10), the first step in determining the 

minimum distance is to calculate the unit vectors r , s , and n . 

The unit vector r  is calculated as 

12

12

nn

nn
PP
PPr

−
−

=  (2.72) 

Then, n  can be calculated as 

13

13

nn

nn
PP
PPrn

−
−

×=  (2.73) 

Finally, s  can be calculated as 

rns ×=  (2.74) 

Once these unit vectors are known, the projections of points λm and γm onto 

the plane can be calculated as 

( ) ( ) 1115 nnmnmn PsPrPP +−+−= oo λλ  (2.75) 
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and 

( ) ( ) 1116 nnmnmn PsPrPP +−+−= oo γγ  (2.77) 
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A potential minimum distance magnitude, nd , can then be calculated as 

{ } ,  min 65 nmnmn PPd −−= γλ  (2.79) 
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If the obstacle is an infinite plane, then the result in Equation (2.79) is 

correct and no further calculation is needed. For the example shown in Figure 

(2.10), Equation (2.79) gives the result that 6nmn Pd −= γ . Therefore, a check 

must be made to ensure that the potential obstacle witness point, Pn6, is inside the 

quadri-lateral, Pn1Pn2Pn4Pn3. The obstacle observation point, Pn6, is inside the 

quadri-lateral if all of the following equations are true, 
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If all of the Equations (2.83) are satisfied, the obstacle observation point Pn5 

is inside the quadri-lateral.  If all of the Equations (2.82) are satisfied, a final check 
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must be made to ensure that the line endpoints λm and γm are located on the same 

side of the plane. This is the case if 

( ) ( )
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γ
γ

λ
λ  (2.84) 

If any of the Equations (2.82) are not satisfied, then the minimum distance 

magnitude calculated using Equation (2.79) is incorrect, and the true minimum 

distance must be determined using the process for calculating the minimum 

distance between two line segments, sub-Section ( 2.5.2). If Equation (2.84) is not 

satisfied, then the minimum distance calculated may be correct; but must be 

compared with the four potential minimum distances that can be calculated using 

the distance calculation algorithm for two line segments, see the block diagram in 

Figure (2.12). An illustration of this situation is shown in Figure (2.11). 

 

Figure 2.11: Minimum Distance When Line Endpoints Outside Quadri-Lateral. 

In the figure, dotted lines represent potential minimum distances that are 

considered. Line 2 is the actual minimum distance because points λm and γm are on 

opposite sides of the plane. Calculation proceeds by treating each edge of the 

quadri-lateral plane as a line segment and computing four new potential minimum 

distances. Of all the valid potential minimum distances, the one with the smallest 
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magnitude is chosen along with its respective witness points. Finally, the radius of 

the robot link and the thickness of the plane are subtracted from the chosen 

minimum distance magnitude to get the true minimum distance magnitude value, 

Harden 2002. 

 

Figure 2.12: The Algorithm to Find the Distance Between Robot Link and Quadri-Lateral. 

If all the equations 
(2.82) and (2.83) 
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where:  

2,nd =minimum distance between segments λmγm and Pn1Pn2,  

3,nd = minimum distance between segments λmγm and, Pn2Pn3,  

4,nd = minimum distance between segments λmγm and, Pn3Pn4,  

5,nd = minimum distance between segments λmγm and, Pn4Pn1. 





 

CHAPTER 3  

PATH PLANNING 

A principle problem in robotics, which will concern us in this chapter of this 

dissertation, is the path planning. We want to devise algorithms that will enable a 

robot to move from one position to another without any collisions. Path planning 

is becoming increasingly important in many areas, for example, industrial robotics, 

autonomous systems, assembly planning and virtual prototyping, Chang and Li 

1995, computer graphics simulations, Kuffner and Latombe 2000, and computer-

aided drug design, Finn et al. 1997. This chapter deals with the basic path-

planning problem for industrial robot moving in a well-defined static environment 

using genetic algorithms. Path planning deals with the problem of finding motion 

strategies for movable objects or articulated structures. An articulated structure can 

be used to model things like, e.g., the motion of a computer-animated character, a 

robotic manipulator or a complex protein molecule. 

The path planning problem; trying to solve in this thesis; is to find a 

sequence of configurations in which  the robot moves from an initial configuration 

C 

i to a goal configuration C 

f without colliding with obstacles in the environment. 
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In path planning problems, the number of feasible paths between the initial 

and final position of a robot are often very large, and the goal is not necessarily to 

determine the best solution, but to obtain an acceptable one according to certain 

requirements and constraints. Various search methods have been developed (e.g., 

calculus-based methods, enumerative schemes, random search algorithms, etc.) for 

the robot path-planning problem. In this work, genetic algorithm has been used. 

Genetic Algorithm (GA) based search and optimization techniques have 

recently found an increasing use in machine learning, robot motion planning, 

scheduling, pattern recognition, image sensing and many other engineering 

applications. In principle, GAs are search algorithms based on mechanics of 

natural selection and natural genetics. They combine survival of the most fitting 

among the string structures with randomized yet structured information exchange 

to form a search algorithm with innovative flair of natural evolution. 

In the proposed method, generating such path is used to minimize the 

distance between its initial and final configurations. The genetic algorithm (GA) 

appears here to solve such problem by minimizing the traveling distance of the 

end-effector and the significant points (Section  2.1)) between the initial and final 

point avoiding obstacles. The workspace will be modeled in such way to provide a 

discrete configuration space based on the positions of the end-effector between the 

initial and final configurations of the robot. 

In this procedure, two optimization processes using genetic algorithms are 

involved. The first one, an optimization process for the obtaining of the adjacent 

configurations (detailed in Section ( 3.1)). The order in which the adjacent 

configurations are generated will condition the Space of Configurations generated 

and, therefore, the path to be obtained. Second optimization process is used for the 

obtaining of the path, which consist of a set of adjacent configurations. This 
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algorithm will be applied on an industrial robot Puma 560 modeled with six degree 

of freedom. 

3.1. ADJACENT CONFIGURATIONS FOR PATH 

PLANNING 

In this section, the process of generating a discrete space of configuration is 

presented. This space of configurations is based on the obtaining of adjacent 

configurations concerning kinematics compatibility and feasibility with collision 

avoidance regardless the dynamics concerns. 

3.1.1. Adjacent Configurations Definition 

The configuration C 

k is adjacent to a given configuration C 

P, if they are 

feasible and the three following conditions are satisfied: 

1. The end-effector position γ4 (see Figure (2.1)) corresponds to a point of the 

discrete workspace. In addition, it is one increment far from the point 

corresponding to the C 

P configuration, so it is said that, the two 

configurations are neighboring and there must be a given increment 

between them less than the smallest obstacle size in the workspace. 

2. Verification of the absence of obstacles between adjacent configurations  

C 

k and C 

P. Also, to verify that the distance between significant points 

meet the following condition, 
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where rj is the minimum characteristic dimension of the obstacles in the 

workspace. 
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where A, B are coefficient and the expression is expressed in Cartesian 

coordinates, which aims to minimize the distance between significant 

points and the distance between the joints values of the current 

configuration and the final global one. 

Adjacent configuration for path planning concern in finding a set of via 

points (intermediate points) that constructed the path. This path can be tracked 

after that to find an optimal time scaling subjected to the dynamic constraints of 

the manipulator. 

3.1.2. Workspace Discretization 

The first step of the optimization process is generating a discreet space. See 

Section ( 2.4.1) for more details about the workspace discretization. 
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3.1.3. Obtaining The Configuration C 

k 

In the building process of the path, a random search procedure will be 

applied to search from the C 

i for the next adjacent configuration and so on until it 

reaches the C 

f. The main concern in this part is finding a sequence of robot 

configurations between the initial and final configurations that fulfils the early 

listed three conditions. A methodology of two distinct routines has been 

constructed to obtain a robot configuration C 

k adjacent to C 

P. In first place, the 

inverse kinematic problem; explained in  2.2.3); will be used to find the C 

k for a 

given γ4. If the new configuration C 

k doesn’t fulfill the condition, a genetic 

algorithm procedure will be used to solve the problem. 

Genetic algorithm maintains a population of solutions or individuals 

throughout the search. It initializes the population with a pool of potential 

solutions to the problem and seeks to produce better solutions, by combining the 

better of the existing ones through the use of genetic operators. Individuals are 

selected at each iteration through a selection scheme depends on the fitness or the 

objective function value for each individual. 

A Steady State Genetic Algorithm (SSGA) procedure is used to obtain a 

robot configuration C 

k adjacent to a given one C 

P considering the three conditions 

mentioned previously. A SSGA uses overlapping populations. This means, the 

ability to specify how much of the population should be replaced in each 

generation. Newly generated offspring are added to the population, and then the 

worst individuals are destroyed (so the new offspring may or may not make it into 

the population, depending on whether they are better than the worst in the 

population). 
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• Chromosome 

The individual or the chromosome represents the robot configuration. Each 

chromosome consists of six genes; the robot generalized coordinates (qi; i = 1, 2, 

…, 6). 

 

Figure 3.1: Adjacent Configuration for Path Planning GA Chromosome. 

The initial population consists of a defined number of chromosomes. The 

initial values of each gene in the chromosome are selected randomly between the 

two limits of the generalized coordinates for that gene. For example: 

gene(i) = RV(qi,min, qi,max);     i = 1 → 6 (3.3) 

where RV = Random Value (between low and high). 

In fact, this way of generating the genes value and then checking the validity of 

the resulting chromosome is computationally expensive. To improve that, by 

looking at the workspace modeling and the conditions to produce adjacent 

configurations, it will be concluded that the movement between the two 

configurations is small (less then the robot width). Because of that, the previous 

Equation can be modified. Consider that p
iq  is the given configuration and ∆q is a 

small increment. Therefore, the new interval for each q can be calculated, as the 

next flow chart indicates: 

Robot 
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q1 q2 q3 q4 q5 q6 
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Figure 3.2: Flow-Chart Indicates How to calculate the qi Intervals. 

This means that the Equation (3.3) will be as follows: 

gene(i) = RV( new
iq min, , new

iq max, );     i = 1 → 6 (3.4) 

where RV = Random Value (between low and high). 

• Selection: 

A roulette-wheel selection method is applied to select individuals for 
crossover and mutation. This method is based on the magnitude of the fitness 
score of an individual relative to the rest of the population. The higher score, the 
more likely an individual will be selected. 

• Crossover: 

The crossover operator defines the procedure for generating a child from 

two selected parents. A single point crossover used in this procedure, see Figure 

(3.3). 
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• Mutation: 

The mutation operator defines the procedure for mutating each genome. In 

this procedure, an offspring will be selected randomly, then a gene will be selected 

randomly from that offspring. This gene will be mutated with respect to the 

following equation. 

gene(i) = gene(i) + RV(qi,min, qi,max) × [RV(qi,min, qi,max) - RV(qi,min, qi,max)](3.5) 

where RV = Random Value (between low and high), i = 1 → 6. 

 

Figure 3.3: Adjacent Configuration Crossover and Mutation. 

• Objective: 

Minimize Equation (3.2). 

3.2. GA PROCEDURE FOR PATH PLANNING 

The search technique consists of generating an initial population of strings 

at random. Each solution is assigned a numerical evaluation of its fitness by an 
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Single-Point 
Mutation 
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objective function, which is a mathematical function that maps a particular 

solution on a single positive number, that is a measure of the solution’s worth. 

During each iteration (generation), each individual string in the current population 

is evaluated using this measure of fitness. New strings (children) for the next 

generation are selected from the current population of strings (parents) by a 

process known as “selection”. A random selection process is used with a higher 

probability given for strings with higher fitness values. Such selection scheme 

systematically eliminates low-fitness individuals from the population of one 

generation to the next. New generations can be produced either synchronously, so 

that the old generation is completely replaced, or asynchronously, in which the 

generations overlap. 

The genetic algorithm for path planning uses parallel populations with 

migration technique. The genetic algorithm has multiple, independent populations. 

It creates the populations by cloning the genome or population that you pass when 

you create it. Each population evolves using steady-state genetic algorithm, but at 

each generation, some individuals migrate from one population to another. The 

migration algorithm is deterministic stepping-stone; each population migrates a 

fixed number of its best individuals to its neighbor. The master population is 

updated each generation with best individual from each population. 

Two genetic operators, crossover and mutation, are probabilistically applied 

to create a new population of individuals. Parent individuals are selected as 

candidates for crossover or mutation using the roulette-wheel selection method. 

Genetic algorithms are domain independent because they require no explicit 

notion of a neighborhood. Hence, crossover and mutation may not always produce 

feasible solutions. Therefore, the feasibility of a newly created individual is 

ascertained before inserting it in the population to replace a parent string. 
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In the GA based solution procedure, a number of new individuals are 

created at each iteration. The remaining individuals are obtained by 

deterministically copying the individuals with the top fitness from the previous 

generation. 

3.2.1. Genetic Algorithms Operators and Parameters 

The main operators and characteristics in the exposed GA are: 

• Individual: 

The individual or the chromosome is composed of set of intermediate points 

(end-effector positions) including end points (initial and final position of the end 

effector). This means that each chromosome represent a complete path between 

initial and final configurations. Each triplet cells comprising one point (the 

Cartesian coordinates of the end-effector) in the chromosome and considered as a 

gene, Figure (3.4). 

 

Figure 3.4: Path Planning GA Chromosome. 

The first point of each individual is the initial position of the end-effector of 

C 

i. The second point will be selected randomly from the discretized workspace 

without repetition in one of seven directions: X-direction, Y-direction, Z-direction, 

XY-direction, XZ-direction, YZ-direction, and XYZ-direction. This strategy will be 

repeated for the next point and so on until the goal position is achieved. Note that 

this definition is based on the number of intermediate points that constitute the 

Point 1 Point i Point f 

Initial Position Intermediate Position Final Position 
X1 Y1 Z1 … Xi Yi Z i Xf Yf Zf … 
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path, which means that paths do not have equal lengths, which leads to more 

complexity in crossover and mutation. 

• Objective Function: 

The objective of this optimization problem is to find the optimal path 

between initial and final positions of a robot end-effector. Because of the 

possibility of existing obstacles, and geometric constraints, the algorithm will try 

to find the shortest possible path. The shortest path will be calculated by 

minimizing the sum of the straight-line segments of the corresponding significant 

points of the robot, from the initial to the final point. In this case, the objective of 

GA is to minimize the following equation: 
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where: j is the number of the significant points of the robot, and m = 4 for 

Puma 560 robot; the case demonstrated in this thesis. i = 1, 2, …, n is the 

number of robot configurations included in the path. 

• Selection: 

The selection operation is made using the roulette-wheel method. 

• Crossover: 

The crossover is made through the exchange of a part of the path 

(chromosome) between two selected paths through the selection operation 

mentioned earlier; being that, it is executed only if the probability of the crossover 

is satisfied. This is done by searching groups of individuals that have been selected 

for crossover, and then, select pair of individuals randomly. In each pair, the 

algorithm searches the genes of each individual for the intersection configurations. 
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The intersection in this case is to find a (Cj
p) configuration p in path i that can be 

adjacent to a (Cj
k) configuration k in the path j. The search for the adjacent 

configuration occurs in the positive direction. The algorithm looks for all possible 

intersections between two selected chromosomes (paths) for crossover. I.e., given 

two paths: Dad with length n and Mom with length m. 

n
Dad

i
DadDadDad CCCCDad UKUUKUU 21=  (3.7) 

m
Mom

j
MomMomMom CCCCMom UKUUKUU 21=  (3.8) 

( ) ( ) ( ){ }121 ,,...,,,, l
p
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k
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p
Mom

k
Dad

p
Mom

k
Dad CCCCCCMomDad =I  (3.9) 

( ) ( ) ( ){ }221 ,,...,,,, l
p
Dad

k
Mom

p
Dad

k
Mom

p
Dad

k
Mom CCCCCCDadMom =I  (3.10) 

where ( )p
Mom

k
Dad CC ,  are adjacent configurations, l1 = 0, 1, 2, …, n-2 in 

case of Dad . l2 = 0, 1, 2, …, m-2 in case of Mom number of adjacent 

configurations found. 

This way of intersection means that DadMomI and MomDad I  are not 

necessary to be equal, which leads to the possibility to produce only one offspring 

rather than two in some cases. 

The algorithm then will select one intersection randomly in case of many 

are found satisfying these criteria. The new offspring (path) will be: 

m
Mom

j
Mom

i
DadDadDad CCCCCsisOffspring ULUUULUU 211 ==  (3.11) 

n
Dad

i
Dad

j
MomMomMom CCCCCbroOffspring ULUUULUU 212 ==  (3.12) 
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Note: If there are no such points, the crossover will be cancelled. 

This means that the resulting path (offspring) will consist of two parts: a 

part from Dad (from the initial configuration until the selected Configuration C i), 

and a part from Mom (from C 

j until the final configuration). This crossover 

method doesn’t need equal chromosomes lengths. This process is illustrated in 2-D 

in Figure (3.5). 

 

Figure 3.5: Crossover Between Two Robot Paths. 

• Mutation: 

Mutation is done by selecting a configuration (gene) randomly from a 

selected path (chromosome). The first and the final configurations are not 
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considered for mutation. The configuration is then compared to the previous and 

next configurations in the path. All the possible changes with which the path will 

remain incremental and quantum are applied to the configuration. To illustrate, 

let’s consider three consecutive robot configurations C i-1, C i, C i+1 (three 

consecutive genes) in which their end-effector have the positions (0, 0, 0), (1, 0, 

1), (1, 1, 2) with a step value of 1 in the x, y and z-coordinates. If mutation is to be 

applied on the C i, where its end-effector position lies at (1, 0, 1), the algorithm 

will consider how each of the coordinates changed. The x-coordinate changed 

from 0 (previous position) to 1 and remained 1 in the next position. It is clear that 

changing the x-coordinate from 1 to 0 will not affect the validity of the path since 

the positions will become (0, 0, 0), (0, 0, 1), (1, 1, 2); i.e. x-coordinate changed 

from current position to next, while remains the same when going from the 

previous position to the current one. The same thing can be said about the y-

coordinate, since it has not changed when going from the previous position to the 

current one, while changed when going to the next position. The mutation will 

cause the y-coordinate to change from 0 to 1. Finally, the z-coordinate cannot be 

modified since it changed from 0 to 1 to 2. If the mutation would change the z-

coordinated to 0 or 2, the step would be greater than the predefined step. The 

mutation will not affect the coordinates that has not changed at all. For example, 

the x-coordinate in (0,0,0),(0,0,1),(0,1,1) since any changes will result invalid 

path. For this new position, the adjacent configuration algorithm will take places 

to move the robot from the position (0, 0, 0) to (0, 0, 1) and then to (1, 1, 2).This 

process is illustrated in Figure (3.6). 
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Figure 3.6: Path GA Mutation. 

3.3. TRAJECTOY PLANNING: INDIRECT METHOD 

As mentioned before, in the introduction, one of the approaches deals with 

trajectory planning is the indirect or decoupled approach. Indirect approaches 

firstly seek for a path in the configuration space, and then the trajectory adjusts; 

subjected to the dynamic constraints of the manipulator, see Saramago and Steffen 

2001, Valero et al. 2006 for more details. Indirect approaches are the most widely 

used in path planning (For depth knowledge you should refer to Piazzi and Visioli 

1997a, 2000, Saramago and Steffen 2001, Plessis and Snyman 2003, Behzadipour 
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and Khajepour 2006, Valero et al. 2006, Bertolazzi et al. 2007, Gasparetto and 

Zanotto 2007). 

In next Chapter 4 of this thesis, the trajectory-planning problem will be 

discussed in details. However, in this section, after the path-planning problem has 

been solved by the mentioned procedure in the previous section, the trajectory can 

be adjusted by finding an optimal time scaling for the path subjected to the 

dynamic constraints of the manipulator. To achieve that, the clamped cubic spline 

(the time optimizer algorithm) explained in next section can be used. 

3.4. TIME OPTIMIZER 

A genetic algorithm procedure is fed by a path (sequence of configurations) 

obtained (from previous section), its aim is to schedule the time intervals between 

two adjacent configurations such that the total traveling time is minimized using 

Clamped Cubic Spline subjected to: (1) Physical constraints on joint velocities, 

accelerations, and jerks. (2) Dynamic constraints on actuators torques, powers, and 

energies. 

3.4.1. Formulation of Cubic Polynomial Joint Trajectory 

The philosophy of spilining is to use low order polynomials to interpolate 

from grid point to grid point. This is ideally suited when one has control of the 

grid locations and the values of data being interpolated. As this control is 

dominated, the relative accuracy can be controlled by changing the overall space 

between the grid points. 
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Cubic splines are the lowest order polynomial endowed with inflection 

points. If one would think about interpolating a set of data points using parabolic 

(quadratic) functions without inflection points, the interpolation would be 

meaningless. 

The formulation of the cubic spline is based on the n joint vectors (n 

configurations) that construct the joint trajectory. Joint vectors are denoted as j
iq  

which represents the position of the joint i with respect to configuration j. The 

cubic polynomial trajectory is then constructed for each joint to fit the joint 

sequence 0
iq , 1

iq , … , n
iq . Let t0< t1< … < tn-2< tn-1< tn be an ordered time 

sequence, at time t = tj the joint position will be j
iq . Let )(tq j

i  be a cubic 

polynomial function defined on the time interval [tj, tj+1]; 0 ≤ j ≤ n-1. The problem 

of trajectory interpolation is to spline )(tq j
i , for j = 0,1,2,…,n-1, together such 

that the required displacement, velocity and acceleration are satisfied; and the 

displacement, velocity and acceleration are continuous on the entire time interval 

[t0, tn]. 

Consider the cubic spline function as follows: 
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The cubic spline function S(t) satisfies these properties: 

1) S(t) will interpolate all data points. 
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This means that S(t) (represents robot trajectory) is presented by cubic 

polynomials, each one has 4 coefficients, and all its derivatives (represents robot 

joint velocities and accelerations) are continuous for any time t in the open interval 

(tj, tj+1). 

This results in a matrix of n - 1 equations and n + 1 unknowns. The two remaining 

equations are based on the border conditions for the starting point s0(t0), and end 

point sn-1(tn). One of the following border conditions can be used. 

a) Free or Natural splines: The second order derivatives of the splines at 

the end points are zero. 

       0)()( 0
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n
ii tqtq &&&&  (3.16) 

b) Parabolic runout splines: The second order derivatives of the splines at 

the end points are the same as at the adjacent points. The result is that 

the curve becomes a parabolic curve at the end points. 
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c) Cubic runout splines: The curve degrades to a single cubic curve over 

the last two intervals by setting the second order derivative of the 

splines at the end points to: 
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d) Clamped spline: The first order derivative of the splines at the end 

points are set to known values. 
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This algorithm will be applied to an industrial robot (In this case Puma 560) which 

means that the starting and ending velocities in the application examples will be 

ZERO. So the border condition used is clamped spline, from more details see 

Henrici 1982, Press et al. 1992. 

Construction: Apply above conditions: 
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Solve for dj in Equation (3.28) and substitute into Equations (3.24) and (3.26) to 

get: 
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Then solve for bj in Equation (3.29) 
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Substitute bj and bj-1 into Equation (3.30): gives 
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Since hj and aj = qi(tj) (the robot configuration at each intermediate point of the 

trajectory) are known. Moreover, the first order derivatives of the splines at the 

end points (represent the initial configuration C i of the robot and the final one C f) 

are set to zero, Equation (3.19). The system of equation will be in matrix form 

like: 

Ax = b  (3.34) 

where is A is (n + 1) × (n + 1) matrix. 
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3.4.2. Optimization of Cubic Polynomial Joint Trajectory 

For industrial applications, the speed of operation affects the productivity. 

To maximize the speed of operation, the traveling time for the robot should be 

minimized. Thus, the optimization problem is to adjust the time intervals between 

each pair of adjacent configurations such that the total traveling time is minimum. 

That is, the problem is to determine a set of optimum values for time intervals t1, , 

t2, …, tn-1. Note that there are N joints that must be considered simultaneously. A 

GA procedure with parallel populations with migration technique has been 

implemented to optimize the time intervals needed to move the robot between 

adjacent configurations in the pursued trajectory. The GA operators for this 

procedure are as follows: 

• Chromosome: 

The individual or the chromosome consists of set of genes. Each gene 

contains a real number represents the time interval. Number of genes in each 

chromosome is varied, depends on the length of the fed trajectory. 
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The value of each gene is selected randomly from an interval. The interval 

limits are 0 and tj,max. tj,max is set by the user or obtained from the adjacent 

configuration algorithm for trajectory planning explained in next Chapter, Section 

( 4.1). The value of tj,max will change in each generation depending on the new 

generated offsprings. 

• Selection: 

A roulette-wheel selection method is applied to select individuals for 
crossover and mutation. 

• Crossover: 

The crossover operator defines the procedure for generating a child from 

two selected parents. In this procedure, an arbitrary number “arr” should be 

calculated. 

arrj =  RV(0, tj,max) * [RV(0, tj,max) - RV(0, tj,max)] (3.37) 

where RV = Random Value (between low and high). 

After that, the genes of the new offspring will be calculated by mixing the 

parents genes. 

genej
Bro = arrj × genej

Dad + (1 - arrj) × genej
Mom (3.38) 

genej
Sis = arrj × genej

Mom + (1 - arrj) × genej
Dad (3.39) 

where j = 1, 2, …, n – 1. 
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• Mutation: 

The mutation operator defines the procedure for mutating each genome. In 

this procedure, an offspring will be selected randomly then a gene j will be 

selected randomly from that offspring. The mutation will occur with respect to the 

following equation. 

genej = genej + RV(0, tj,max) × [RV(0, tj,max) - RV(0, tj,max)] (3.40) 

where RV = Random Value (between low and high). 

3.5. APPLICATION EXAMPLES 

In this Section, application examples “particularized” for robot Puma 560 

have been implemented and analyzed to validate the efficiency of the proposed 

algorithms. Two groups of examples will be demonstrated; one to verify the path-

planning algorithm, while the other one to verify the time optimizer algorithm. 

The introduced procedure has been executed using a computer with Intel 

Xeon CPU E5440 @ 2.83 GHz, 8 GB of RAM. 

3.5.1. Path Planning Procedure Examples 

Many examples have been executed to verify the path-planning algorithm. 

These examples have different initial and final configurations with different types 

and quantities of obstacles in the workspace. 
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Four operational parameters have been studied when the procedure was 

applied to a numerous different examples. The parameters are: 

a) The objective function: minimize the summation of significant points 

traveling distance, Equation (3.6), denoted by “ds”. 

b) End-effector traveling distance, denoted by “de”. 

c) Computational time, denoted by “tc1” for path planning algorithm and “tc2” 

for time optimizer algorithm: 

d) Finally, the execution time: The minimum time produced by the Time 

Optimizer Algorithm to adjust a trajectory on the produced path, denoted 

by “te”. 

3.5.1.1. Example 1: Comparison with Rubio et al. 2009a 

This example demonstrates the effectiveness of the mentioned algorithm. 

This example has been solved by Rubio et al. 2009a. Thus, a comparison results 

will be done. 

The robot initial and final configurations are shown in Table (3.1). 

Obstacles are shown in Table (3.2), these obstacles are used to create 10 different 

environments, starting with the case without obstacles and then the cases of 1, 2, 3 

obstacles for each obstacle type. 

Joint No. 1 2 3 4 5 6 
Initial 

configuration 59.09º -145.38º 13.03º 1.13º 31.68º 0.00º 

Final 
configuration -34.65º - 169.14º 58.56º 0.00º 15.78º 0.00º 

Table 3.1: Initial and Final Configurations for Example 1. 
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 1st Spherical 
obstacle 

2nd Spherical 
obstacle 

3rd Spherical 
obstacle 

Centre 
SOC1  = 

(-0.85, -0.40, 0.50) 

SOC2 = 
(-0.75, 0.00, 0.50) 

SOC3 = 
(-0.60, 0.20, 0.30) 

Radius SOr1  = 0.15 SOr2  = 0.15 SOr3  = 0.15 

 1st Cylindrical 
obstacle 

2nd Cylindrical 
obstacle 

3rd Cylindrical 
obstacle 

Centre 
1 

1,
1
CylC  = 

(-0.85, -0.5, 0.0) 

1,
2
CylC = 

(-0.75, 0.0, 0.0) 

1,
3
CylC = 

(-0.7, 0.2, 0.0) 
Centre 

2 
2,

1
CylC = 

(-0.85, -0.5, 2.0) 

2,
2
CylC = 

(-0.75, 0.0, 2.0) 

2,
3
CylC = 

(-0.7, 0.2, 2.0) 
Radius Cylr1  = 0.15 Cylr2 = 0.15 Cylr3 = 0.15 

 1st Prismatic 
obstacle 

2nd Prismatic 
obstacle 

3rd Prismatic 
obstacle 

Point 1 P11 = 
(-0.7, -0.35, 0.0) 

P21 = 
(-0.5, 0.0, 0.0) P31 = (-0.5, 0.3, 0.0) 

Point 2 P12 = 
(-0.7, -0.35, 2.0) 

P22 = 
(-0.5, 0.0, 2.0) P32 =(-0.5, 0.3, 2.0) 

Point 3 P13 = 
(-1.5, -0.35, 2.0) 

P23 = 
(-1.3, 0.0, 2.0) P33 = (-1.3, 0.3, 2.0) 

Point 4 P14 = 
(-1.5, -0.35, 0.0) 

P24 = 
(-1.3, 0.0, 0.0) P34 = (-1.3, 0.3, 0.0) 

Table 3.2: Obstacles Locations (in m) for Example 1. 

The next Figures (3.7), (3.8), and (3.9) show the robot in the initial 

configuration for three different runs for the same example with different 

environments. It’s shown clearly in the figures that the workspace dimensions can 

be modified as needed. This is considered as one of the effectiveness of this 

algorithm. 
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Figure 3.7: Example 1 – The Case of Three Spherical Obstacles. 

 
Figure 3.8: Example 1– The Case of Three Cylispherical Obstacles. 

 
Figure 3.9: Example 1– The Case of Three Quadri-Lateral Plane Obstacles. 
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The numerical results of this example and the comparison with Rubio et al. 

2009a results are tabulated in the next Table  (3.3). The cases of the three basic 

obstacle elements with different quantities are presented here. The column titled as 

“Results of this thesis” contains the results of the proposed GA procedure. The 

column titled by Rubio et al. 2009a contains 4 sub-columns (correspond to the 

results of 4 different approaches used by him). These approaches are: (1) In-direct 

algorithm: seq, (2) Simultaneous algorithm: A*, (3) Simultaneous algorithm: 

uniform cost, and (4) Simultaneous algorithm: greedy. For more details about 

these approaches please refer to their article; Rubio et al. 2009a. 
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Rubio et al. 2009a Results 
  

Results 
of this 
thesis seq A * unifor

m cost greedy 

ds (m) 3.7358 4.07 3.83 3.83 3.73 
de (m) 1.5199     
tc1 (s) 5532 66.31 112.14 651.25 4.94 
tc2 (s) 7881     

0 Obstacles 

te (s) 2.00408     
ds (m) 3.8029 4.01 4.03 4.03 4.46 
de (m) 1.5199     
tc1 (s) 10567 201.11 257.99 1267.8 10.48 
tc2 (s) 9238     

1 Spherical 
Obstacle 

te (s) 2.11442     
ds (m) 4.0187 5.18 4.63 4.63 5.38 
de (m) 1.5346     
tc1 (s) 3806 211.85 484.03 1685.8 44.86 
tc2 (s) 12486     

2 Spherical 
Obstacle 

te (s) 2.37418     
ds (m) 4.1585 5.19 4.63 4.63 5.38 
de (m) 1.5199     
tc1 (s) 4013 193.44 485.36 1682.4 44.98 
tc2 (s) 17395     

3 Spherical 
Obstacle 

te (s) 3.36064     
ds (m) 3.7692 4.68 5.05 5.05 6.21 
de (m) 1.5199     
tc1 (s) 3932 122.97 149.02 744.30 28.78 
tc2 (s) 6946     

1 Cylispherical 
Obstacle 

te (s) 2.24456     
ds (m) 4.1915 5.56 5.23 5.23 5.99 
de (m) 1.6149     
tc1 (s) 8139 260.63 270.52 987.85 15.03 
tc2 (s) 14505     

2 Cylispherical 
Obstacle 

te (s) 2.62379     
ds (m) 4.3138 5.95 8.20 8.20 6.84 
de (m) 1.5917     
tc1 (s) 8366 230.48 869.02 1457.4 23.80 
tc2 (s) 18371     

3 Cylispherical 
Obstacle 

te (s) 3.15649     



- 116 - Trajectory Planning for Industrial Robots Using Genetic Algorithms 

ds (m) 3.9348 4.37 4.13 4.13 6.93 
de (m) 1.5364     
tc1 (s) 10272 76.17 110.36 529.52 16.14 
tc2 (s) 14019     

1 Quadri-
lateral Plane 

Obstacle 
te (s) 3.03276     

ds (m) 4.5412 5.60 5.70 5.70 8.98 
de (m) 2.1387     
tc1 (s) 19523 198.45 346.43 869.47 67.80 
tc2 (s) 20833     

2 Quadri-
lateral Plane 

Obstacle 
te (s) 3.29023     

ds (m) 4.9628 7.42 5.94 5.94 10.71 
de (m) 1.8353     
tc1 (s) 24322 1676.1 602.91 1407 82.27 
tc2 (s) 25710     

3 Quadri-
lateral Plane 

Obstacle 
te (s) 4.19822     

Table 3.3: Example 1 Results. 

0 O 1 SO 2 SO 3 SO 1 CO 2 CO 3 CO 1 QPO 2 QPO 3 QPO

Results of this thesis

seq

A *
uniform cost

greedy

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

Results of this thesis
seq
A *
uniform cost
greedy

 

Graph 3.1: Example 1 – A Comparison Results of ds (m) Between GA Procedure and Rubio Algorithms. 
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3.5.1.2. Example 2: 

In this example, a group of 50 examples with different initial and final 

configurations and different obstacles will be discussed. These examples have 

been solved by Rubio et al. 2009a. 

0

2

4

6

8

10

12

Tr
av

el
le

d 
D

is
ta

nc
e 

(m
)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
GA

Seq
A*

UC
G

Examples  

Graph 3.2: Traveled Distance Comparison Between GA Procedure and Rubio 

Procedures. 
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Graph 3.3: Travelled Distance Comparison Between GA Procedure 

& Seq Procedure Produced by Rubio et al. 2009a. 
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Graph 3.4: Travelled Distance Comparison Between GA Procedure & 

A* Procedure Produced by Rubio et al. 2009a. 
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Graph 3.5: Travelled Distance Comparison Between GA Procedure 

& UC Procedure Produced by Rubio et al. 2009a. 



Path Planning    - 119 - 

40%

50%

60%

70%

80%

90%

100%

110%

120%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Examples

Pe
rc

en
ta

ge
 %

Travelled Distance Relation (GA / G)

Average = 68,8%

 

Graph 3.6: Travelled Distance Between GA Procedure & G 

Procedure Produced by Rubio et al. 2009a. 
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Graph 3.7: Computational Time Comparison Between GA and Rubio Procedures. 

3.5.1.3. Example 3: Industrial Application – Comparison Results 

This example demonstrates the effectiveness of the mentioned algorithm. 

The robot initial and final configurations are shown in Table (3.4). Obstacles are 

shown in Table (3.5). 

Joint No. 1 2 3 4 5 6 
Initial 

configuration -7.50º -174.80º 46.40º 4.30º 16.50º -6.50º 
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Joint No. 1 2 3 4 5 6 
Final 

configuration -95.10º -101.20º 15.59º 0.00º 0.00º 0.00º 

Table 3.4: Initial and Final Configurations for Example 3. 

1st Cylindrical 
obstacle 

2nd Cylindrical 
obstacle 

3rd Cylindrical 
obstacle 

4th Cylindrical 
obstacle 

1,
1
CylC = 

(-0.7,0.5,0.0) 

1,
2
CylC = 

(-0.7,0.0,0.0) 

1,
3
CylC = 

(-0.7,-0.15,0.7) 

1,
4
CylC = 

(-0.7,-0.15,0.15) 
2,

1
CylC = 

(-0.7,0.5,0.8) 

2,
2
CylC = 

(-0.7,0.0,0.8) 

2,
3
CylC = 

(-0.7,0.65,0.7) 

2,
4
CylC = 

(-0.7,0.65,0.15) 
Cylr1 = 0.15 Cylr2 = 0.15 Cylr3 = 0.15 Cylr4 = 0.15 

1st Prismatic 
obstacle 

2nd Prismatic 
obstacle 

3rd Prismatic 
obstacle 

4th Prismatic 
obstacle 

P11 = 
(0.31,0.79,1.42) 

P21 = 
( 0.31,0.79,1.42) 

P31 = 
(-0.03,0.79,1.42) 

P41 = 
(-0.03,0.79,0.97) 

P12 = 
(0.31,0.99,1.42) 

P22 = 
( 0.31,0.99,1.42) 

P32 = 
(-0.03,0.99,1.42) 

P42 = 
(-0.03,0.99,0.97) 

P13 = 
(0.31,0.79,0.97) 

P23 = 
(-0.03,0.99,1.42) 

P33 = 
(-0.03,0.99,0.97) 

P43 = 
( 0.31,0.99,0.97) 

P14 = 
(0.31,0.99,0.97) 

P24 = 
(-0.03,0.79,1.42) 

P34 = 
(-0.03,0.79,0.97) 

P44 = 
( 0.31,0.79,0.97) 

Table 3.5: Obstacles Locations (in m) for Example 3. 

The next Figure (3.10) shows the path evolution from the initial robot 

configuration to the final configuration in a complex environment. 
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Figure 3.10: Example 3. 

In this example, the path-planning problem has been solved in first place, 

and then the trajectory has been adjusted. This in-direct method of obtaining the 

trajectory has been compared with the direct method developed by  Rubio et al. 

2009b. The comparison of results for this example is shown in Table (3.6): 

 ds (m) de (m) tc (s) te (s) 
A * 5.82  17049.94 35.61 

uniform cost 5.41  16233.08 29.23 Rubio et al. 
2009b 

greedy 5.43  2674.69 45.70 
Thesis Results 4.3181 1.7858 17782 1.63415 

Table 3.6: Example 3 Results. 
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3.5.2. Time Optimizer Examples 

In this approach, many examples have been solved to show the efficiency of 

the time optimizer algorithm. The first example is a comparison example, while 

the other examples are illustrated by calculated the minimum time needed to adjust 

trajectories on paths resulting from path planning procedure examples group. 

3.5.2.1. Example 1: Comparison Results with Tse and Wang 1998 

For illustration, consider a Puma 560 type robot with six revolute joints. 

Eight intermediate configurations from a Cartesian path of the hand are selected, 

Table (3.7). The robot is at rest initially, and comes to a full stop at the end of the 

minimum time interval. In this example, only the physical constraints will be 

considered. The velocity, acceleration, and jerk constraints are given in Table 

(3.8). This example published by Tse and Wang 1998, so a comparison between 

results will be made. Tse and Wang tested their algorithm using combinations of 

crossover rate (0.35, 0.65, 0.95) and mutation rate (0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 

0.4). 

Nº of 
Configuration

Joint 
1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

1 10 15 45 5 10 6 
2 35 20 112.5 12.5 20 23 
3 60 25 180 20 30 40 
4 75 30 200 60 -40 80 
5 130 -45 120 110 -60 70 
6 110 -55 15 20 10 -10 
7 100 -70 -10 60 50 10 
8 -10 -10 100 -100 -40 30 
9 -30 0 75 -65 -15 25 

10 -50 10 50 -30 10 20 
Table 3.7: Sequence of Configurations [degree]. 
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 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 
Velocity (deg/s) 100 95 100 150 130 110 

Acceleration 
(deg/s2) 45 40 75 70 90 80 

Jerk (deg/s3) 60 60 55 70 75 70 
Table 3.8: Velocity, Acceleration, and Jerk Constraints. 

After exploring the experiments, the GA parameters that give the best 

solution are listed in the next table. 

Description Parameter Value 
Population size popsize 30 
Nº of populations numpop 3 
Generation number ngen 150 
Crossover rate pcross 0.95 
Mutation rate pmut 0.05 
Number of migration nmig 7 
Number of solutions replaced by new generation nReplacement 5 

Table 3.9: Parameter Values for the Genetic Algorithm Procedure. 

The next graph demonstrates the evolution of the time over generations in 

different crossover rates (0.35, 0.65, 0.95) combined with mutation rate 0.05. 
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Graph 3.8: Objective Function (Time in seconds) vs. No. of Generations, Example 1. 
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The next table demonstrates the comparison of results between this GA 

procedure and Tse and Wang procedure. The results are about different runs with 

crossover rate 0.95 combined with mutation rates 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 

0.4. 

 0.001 0.01 0.05 0.1 0.2 0.3 0.4 
Tse and 

Wang 1998 20.156 19.880 18.211 18.226 18.929 18.957 19.062

Thesis 
algorithm 18.091 17.726 17.706 17.971 17.896 17.897 17.931

Table 3.10: Best Minimum Time with Crossover Rate = 0.95, Example 1. 

From the above results, the best minimum time found is 17.706 seconds 

obtained from the GA search with crossover rate = 0.95 and mutation rate = 0.05. 

Besides, the rest of results in Table (3.10) are better than the Tse and Wang 

results. In addition, the results obtained from the combinations of crossover rate = 

0.35, 0.65 and mutation rate = 0.01 and 0.05 are 18.087 and 18.009 respectively, 

are better than the Tse and Wang results 18.356 and 18.258. 

The next graphs show the optimum joint trajectories. 
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Graph 3.9: Joint Variables and Derivatives vs. Time. 

3.5.2.2. Example 2: 

In graph (3.10), the kinematic parameters (position, velocity and 

acceleration), the actuators torques, and the power developed in the first three 

actuators are shown. The graph corresponds to example sub-Section ( 3.5.1.2). The 

torques in the actuators are limited due to the following values: 1401 ≤τ  N.m, 

1802 ≤τ  N.m, 1403 ≤τ  N.m, 804 ≤τ  N.m, 805 ≤τ  N.m, 406 ≤τ  N.m. The 

power limits are 2751 ≤Pot Watt, 3502 ≤Pot Watt, 2753 ≤Pot Watt, 

1504 ≤Pot Watt, 1505 ≤Pot Watt, 756 ≤Pot Watt. 
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Graph 3.10: Joints (Coordinates, Velocities, Accelerations, Torques, and Power) vs. Execution Time. 

3.6. DISCUSSION OF RESULTS 

The examples illustrated in previous section prove the ability of the 

presented procedure to solve the Path planning problem for industrial robots. 
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The traveled distance by the significant points of the robot, are very 

acceptable, and by comparing the results with other works, in the most of cases, 

the traveled distance of the presented procedure is more desirable than the ones of 

the other works. 

In the example (1), sub-Section ( 3.5.1.1), the comparison of results shows 

the efficiency of the proposed GA procedure over the four procedures (Seq, A*, 

UC, G) provided by Rubio et al. 2009a. The GA procedure improved the results of 

the traveled distance for path planning by an average of percentage 87.7%, 84.3%, 

84.4%, and 68.6%, respectively. 

The computation time in all examples is high which may considered as the 

main disadvantage of the genetic algorithm in general. Referring to In the example 

(1), sub-Section ( 3.5.1.1), the computational time for GA procedure is higher than 

the one obtained by the four procedures (Seq, A*, UC, G) provided by Rubio et al. 

2009a by an average of percentage 28821%, 7316%, 1044% and 50872%. 

The presented procedure shows a significant ability to adapt the robot and 

its path to any workspace characteristics. 

  





 

CHAPTER 4  

TRAJECTORY PLANNING 

For industrial robots, the problem of minimum time trajectory planning has 

been addressed by numerous researchers motivated by the direct relation between 

the tasks executed in minimum time and the productivity in manufacturing 

systems. 

The trajectory-planning problem aims at finding a relationship between two 

elements belonging to two different domains: time and space. Accordingly, the 

trajectory is usually expressed as a parametric function of the time, which provides 

at each instant the corresponding desired position. Obviously, after having defined 

this function, other aspects related to its implementation must be considered, such 

as time discretization, saturation of the actuation system, and so on. 

The main distinction among the various categories of trajectories consists in 

the fact that they can be one- or multi-dimensional. In the first case, they define a 

position for a one DOF system, while in the latter case a multidimensional 

working space is considered. From a formal point of view, the difference between 
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these two classes of trajectories consists in the fact that they are defined by a scalar 

(p = p(t)) or a vectorial ( )(tqq = ) function. 

The working scope of this thesis deals with the multidimensional 

trajectories. The Merriam-Webster dictionary defines the trajectory as “the curve 

that a body describes in space”. Although in the case of a machine composed by 

several motors each of them can be independently programmed and controlled 

(control in the joint space), many applications require coordination among the 

different axes of motion with the purpose of obtaining a desired multidimensional 

trajectory in the operational space of the machine. This is the case of tool 

machines used to cut, mill, drill, grind, or polish a given workpiece, or of robots, 

which must perform tasks in the three-dimensional space, such as spot, welding, 

arc welding, handling, gluing, etc. 

Actually, as mentioned before in Section ( 1.3), trajectory-planning problem 

for multidimensional trajectories has been analyzed using two different 

approaches: direct or global approaches and decoupled or indirect approaches. 

Indirect approaches firstly seek for a path in the configuration space, and then the 

trajectory adjusts; subjected to the dynamic constraints of the manipulator, see 

Saramago and Steffen 2001 and Valero et al. 2006. On the other hand, the search 

takes place in the system’s state space in the direct approaches. These approaches 

involve optimal control and numerical optimization (see Saramago and Steffen 

2001, Plessis and Snyman 2003, Gasparetto and Zanotto 2007). 

Most of the existing methods belong to one or other of these types, although 

the indirect methods are the most widely used. For depth knowledge you should 

refer to Piazzi and Visioli 1997a, 2000, Saramago and Steffen 2001, Plessis and 

Snyman 2003, Behzadipour and Khajepour 2006, Valero et al. 2006, Bertolazzi et 

al. 2007, Gasparetto and Zanotto 2007. 
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A characteristic of indirect methods is that the path is known previously; 

either because it depends on the activity to be done by the industrial robot or 

because it has been generated by a path planner. Generally speaking, the indirect 

methods combine the path planning with the obtaining of the time history of 

motion usually in a sequential way. 

By contrast, direct methods are characterized primarily because they do not 

separate the path planning from the time history of motion rather they directly 

solve the problem in the state space of the robot. They try to solve the trajectory 

directly based on the evolution of dynamic variables, taking into account 

geometrical constraints and setting out an optimization problem to optimize some 

cost function. Some examples of direct methods are presented in Constantinescu 

and Croft 2000, Chettibi et al. 2004, Abdel-Malek et al. 2006. 

The basic trajectory can be analytically expressed by polynomials, 

harmonics, exponential, etc. In this thesis, a polynomial presentation is used for 

simplicity. The degree n of the polynomial depends on the number of conditions to 

be satisfied and on the desired “smoothness” of the resulting motion. Since the 

number of boundary conditions is usually even, the degree n of the polynomial 

function is odd, i.e. three, five, seven, and so on. In our case, a third degree 

polynomial will be used. 

In this thesis, the trajectory planning will be obtained in means of adjacent 

configurations concepts, these adjacent configurations have a new definition a 

slightly differs from the definition used in the path planning explained in Section 

( 3.1). 
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4.1. ADJACENT CONFIGURATIONS FOR 

TRAJECTORY PLANNING 

In this section, the process of generating a discrete space of configuration is 

presented. This space of configurations is based on the obtaining of adjacent 

configurations developed by Valero 1990, Valero et al. 1997, Valero et al. 2006, 

and redefined by Abu-Dakka et al. 2007, Abu-Dakka et al. 2008. 

Adjacent configurations are useful in two means. Firstly, it can be used to 

generate a space of adjacent configurations between the initial and goal 

configurations. After that, by applying a search algorithm (such as A*, etc.), the 

pursued trajectory between the initial and final configurations can be found. This 

strategy is not the goal of this thesis, but a test has been done to ensure the 

capability of the algorithm to construct a space of adjacent configurations, see 

Section ( 4.1.6). The second functionality of the adjacent configurations generation 

is that it can be used to construct a pursued trajectory directly without the need of 

a complete space of adjacent configuration. The only need is to find the adjacent 

configurations necessary to build the pursued trajectory gradually. 

4.1.1. Adjacent Configurations Formulation 

The adjacent configurations can be defined as follows: The configuration 
kC  is adjacent to a given configuration pC , if they are feasible and the three 

following conditions are satisfied, Valero et al. 2005, Valero et al. 2000: 

1. The end-effector position 4γ  (see Figure (2.1)) corresponds to a point of 

the discrete workspace. In addition, it is one increment far from the point 
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corresponding to the pC  configuration, so it is said that, the two 

configurations are neighboring and there must be a given increment 

between them less than the smallest obstacle size in the workspace. 

2. Verify the absence of obstacles between adjacent configurations kC  and 

pC . Also, to verify that the distance between significant points satisfy the 

following condition, 

( ) ,...2,1;3,2,1;min2 ==⋅≤ jirj
k
i

p
i γγ  (4.1) 

where jr  is the minimum characteristic dimension of the obstacles in the 

workspace. 

3. kC should be such as to minimize the function: 
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where A,B, and C are coefficients. 

The first term 2t  is the time needed to move the end effector between 

adjacent configurations through a third degree polynomial trajectory 

expressed in the next Section ( 4.1.2). 
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The second term ( )2k
i

f
i qq −  is the joint coordinates, which aims to 

minimize the difference between the joint coordinates of the 

generated configuration kC , and the joint coordinates of the goal 

configuration of the robot, where iq  is the joint value. 

The last term 
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expressed in Cartesian coordinates, aims to minimize the distance 

between significant points. 

4.1.2. Third-Order Polynomial Trajectory Planning Between 

Adjacent Configurations 

The motion of the robot between adjacent configurations ( )k
i

k qC  and 

( )p
i

p qC  has been presented by a third-order polynomial function as following: 
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where pk
i

pk
i

pk
i

pk
i dcba ,,, are the polynomial coefficients, pk

iq is the 

generalized coordinates, and pkt  is the minimum time necessary to go 

from pC  to kC , satisfying the robot’s torque constraints i
maxτ  and i

minτ . 

The verification of the maximum and minimum torque in each actuator is 

done by dividing the interval pkt  into intermediate points, and then, 

solving the corresponding inverse dynamic problem, using the recursive 

Newton-Euler formulation (Section ( 2.3)) to obtain the joint torques 

required for a given set of joint angles, velocities, and accelerations. 

For a solution of pkt , the coefficients of the polynomial function can be 

determined from the following four equations: 

For 
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Requiring zero velocity at the ends does not fit in the motion conditions 

between the configurations pC  and kC  as if they were part of the pursued 

trajectory. However, it facilitates the comparison between the configurations that 

constitute the discrete space since common initial and goal velocity requirements 

are imposed. 

The coefficients of the polynomial could be determined as following: 
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The solution of the optimization problem is obtained by using two different 

algorithms. The first one is based on nonlinear Sequential Quadratic Programming 

(SQP) method using an optimization routine provided by the NAG (Numerical 

Algorithms Group) commercial library, for more details see Abu-Dakka et al. 

2007. The other algorithm solve the problem using genetic algorithms, Abu-Dakka 

et al. 2008. 

4.1.3. Workspace Discretization 

The first step of the optimization process is generating discreet space of 

configurations. This space is defined basing on the position of the end-effector and 

is considered as a rectangular prism between the initial and final configurations of 

the robot, with its axis parallel to the Cartesian reference system, see Figure (4.1). 

This space has been modeled in the same way as the space explained in sub-

Section ( 3.1.2). 
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Figure 4.1: Workspace Generation. 

As mentioned before, to generate this space of configurations, two 

optimization algorithms are tested: SQP and Genetic algorithms. The information 

(like: C 

k, C 

p, tpk, from where you can access current position, etc.) that can be 

resulted from the algorithm, are stored in a database with the same form as the 

discretized prism. 

4.1.4. Sequential Quadratic Programming Algorithm 

As was observed in the previous part of this chapter and  Chapter 2, the 

optimization process for trajectories consists of nonlinear cost function and 

nonlinear constraint equations. The problem variables are seven; the generalized 

coordinates ( 6,..,2,1; =iiq ) and the time pkt . The problem constraints are varied as the 

following: 
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1) 6,..,2,1max,min, =<< iiii τττ  (4.9) 

2) size obstaclesmallest 4,3,2,1 ==<− DjDp
j

k
j γγ (4.10) 

3) 02.0,4 ≤− position goalobtained Pγ  meter (4.11) 

4) Obstacle avoidance constraints. 

The nonlinear actuators torques constraints, which are considered as 

dynamic constraints, see Section ( 2.3). The derivative of equation (4.9) cannot be 

obtained analytically, but it can be calculated numerically by NAG routine. 

Equation (4.10) aims to restrict the distance between the significant points 

in C k and their corresponding in C p. The derivative is: 
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where 
i

j

dq
dγ

 can be calculated by Equation 2.5. 

Equation (4.11) aims to restrict the distance between the end-effector 

position of C k and the goal position. The derivative is: 
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The analytical partial derivatives with respect to the generalized coordinates 

( 6,..,2,1; =iiq ) and time for the nonlinear collision avoidance constraints were 

provided, see Section ( 2.5). 

The cost function partial derivatives were calculated analytically as follows: 
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tA
dt

CCd pk

⋅⋅=
−

2  (4.14) 

where 
idq

d 4γ  can be calculated by Equation 2.5. 

The obtained solution guarantees the prevention of collisions and the 

dynamic feasibility of the movement. In this problem, the objective function had 

been generated by heuristically adjustment of coefficients as in Equation (4.2). 

This mathematical model has been solved using a nonlinear Sequential 

Quadratic Programming (SQP) optimization routine provided by the NAG 

(Numerical Algorithms Group) commercial library, see Abu-Dakka et al. 2007. 
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4.1.5. Genetic Algorithm Optimization Procedure 

In this section, a genetic algorithm procedure will be introduced to obtain a 

space of adjacent configurations, see Abu-Dakka et al. 2008. 

A SSGA procedure is used to obtain the C k for a given 4γ . In this algorithm, 

a real presentation (coding scheme) has been used. The main GA operators exposed 

for this algorithm will be as follows: 

• Chromosome 

The individual or the chromosome represents the robot configuration and 

the time to be optimized. Each chromosome consists of seven genes; six are the 

robot generalized coordinates ( 6,..,2,1; =iiq ) and the seventh is the time needed to 

move the robot end-effector between the adjacent configurations. 

 

Figure4.2: Adjacent Configuration GA Chromosome. 

• Selection 

A roulette-wheel selection method is applied to select individuals for 

crossover and mutation. 

• Crossover 

The crossover operator defines the procedure for generating a child from 

two selected parents. A single point crossover used in this procedure, see Figure 

(3.3). 

Robot 

Gene 

q1 q2 q3 q4 q5 q6 tpk 

Gene Gene 

Time to be optimized
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• Mutation 

The mutation operator defines the procedure for mutating each genome. In 

this procedure, an offspring will be selected randomly then a gene will be selected 

randomly from that offspring, Figure (3.3). The mutation will occur with respect to 

the Equation (3.5). 

• Objective Function 

Minimize Equation (4.2). 

The resulting offspring will be tested if it’s a valid robot configuration with 

dynamic compatibility or not, regardless if it’s better or worse than the original 

one (Because GA will deal with that). 

As mentioned in Section ( 1.4), some of the advantages of the Genetic 

Algorithms over other SQP optimization technique are: the SQP are sensitive to 

the initial guess for the variable, while GA searches from a population of points, 

rather than a single one. Using GAs, there is no need for derivatives or any 

mathematical complexion. GAs use probabilistic transition not deterministic rules. 

4.1.6. Comparison Results Between SQP and GA 

Many examples were applied in various cases, next Table (4.1) shows the 

results of 6 different examples with different environments conditions. A space of 

adjacent configurations has been generated using SQP and GA algorithms. In each 

space, the average of the optimized time between each pair of adjacent 

configurations has been calculated. In addition, the average computational time, 

needed to generate a robot configuration adjacent to a given one, has been 

calculated. The GA algorithm shows a high ability of convergence and coverage in 
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comparison with the SQP algorithm, it reaches to 95-98% for cases without 

obstacles. The table results (4.1) shows the average time needed to move the robot 

between adjacent configurations and the percentage of total number of 

convergence; which means the total number of successful adjacent configurations 

generated with respect to the total trials of the algorithm in a specific workspace; 

which depends on the complexity of the workspace. Finally, it will focus on the 

calculation time needed. In the table, Case 1 will demonstrate the results obtained 

from SQP. On the other hand, Case 2 will demonstrate the results obtained from 

the GA procedure. 

 Case 1: SQP Case 2: GA 
 Sphere Cylinder Plane Sphere Cylinder Plane 

Avg. Time of 
motion (sec) 1.4491 1.0244 1.3608 0.3581 0.3478 0.3461 

Avg. Time of 
calculation 

(sec) 
12.97 39.0 16.2 16.19 17.10 19.38 

Percentage 
of 

convergence 
78.6% 58.6% 81.6% 79.4% 78% 78% 

 Two 
Spheres

Three 
Spheres 

Sphere 
and 

cylinder 

Two 
Spheres 

Three 
Spheres 

Sphere 
and 

cylinder
Avg. Time of 
motion (sec) 1.4036 1.5220 1.3608 0.3432 0.3436 0.3513 

Avg. Time of 
calculation 

(sec) 
14.9 15.1 7.8 10.4 14.89 15.56 

Percentage 
of 

convergence 
75.4% 79.7% 61.1% 78% 84% 75% 

Table 4.1: Comparison Results Between GA & SQP. 

As shown in the table, the GA procedure demonstrates higher efficiency 

than the SQP. Hence, the GA procedure for the obtaining of adjacent 

configurations will be used in the process of the obtaining the pursued trajectory. 
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4.2. OBTAINING THE TRAJECTORY 

In this thesis, a mixed method (in two stages) using genetic algorithms for 

obtaining the minimum time pursued trajectory for industrial robots (at least 6 

DOF) working in complex environments, in which the intermediate configurations 

are unknown (i.e., no assumptions are previously made for the path), is presented. 

In the first stage, the algorithm will optimize the trajectory time depending on the 

optimized time from the adjacent configurations explained in the previous Section 

( 4.1); where the pursued trajectory is composed of set of adjacent configurations. 

In the second stage, the obtained trajectory time from the first stage will be 

optimized using genetic algorithms subjected to continuous velocity and 

acceleration between intermediate configurations. 

The method proposed deals with two facts: the obstacles in the workspace 

and unknown intermediate configurations between Ci and Cf. These facts lead to 

uncertainties about the kinematic characteristics of intermediate points, 

highlighting that the knowledge of these kinematic characteristics are 

indispensable to solve the inverse dynamic problem. 

The algorithm works on a discretized configuration space which is 

generated gradually as the direct procedure solution evolves, demands less 

computational effort than the corresponding indirect procedure, Valero et al. 2006. 

The determination of the trajectory from C i is achieved by applying a 

random search algorithm to look for the next adjacent configuration in the 

discretized configuration space and so on till the C f is reached. The problem of the 

obtained trajectory is that it suffers from velocity and acceleration discontinuity 

between the intermediate points. 
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The objective of the algorithm is to minimize the traveling time t between C 

i and C f, where t equal the summation of the optimized time tpk (the time obtained 

while confirming the dynamic compatibility associated with the adjacency 

between the configurations C k and C p) that constructed the trajectory. 

∑
=

=
f

i
ipktt

1
,  (4.15) 

This time t still is not the optimal time as the trajectory suffers from velocity and 

acceleration discontinuity between the via points. As a solution, the clamped cubic 

spline algorithm is applied to make continuous velocity and acceleration 

connections between via points (see Section ( 3.4). 

4.2.1. Genetic Algorithm Procedure 

In this procedure, three optimization processes using genetic algorithms are 

involved. Firstly, optimization process for obtaining the adjacent configurations 

(detailed in Section ( 4.1)). The order in which the adjacent configurations are 

generated will condition the Space of Configurations generated and, therefore, the 

trajectory to be obtained. Second optimization process is applied for obtaining the 

pursued trajectory. Finally, an optimization procedure using clamped cubic spline 

is applied to optimize the trajectory time and to make continuous connections for 

velocities and accelerations between intermediate configurations. 

Genetic algorithm for adjacent configuration uses the technique of steady-

state reproduction without duplicates. This technique creates a certain number of 

children to replace the parents in the population, but discards children, which are 

duplicates of current individuals in the population (see Section ( 4.1.5)). On the 
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other hand, for the trajectory, a parallel populations GA procedure with migration 

technique has been implemented. The objective here is to find the shortest path 

between two configurations of robotic manipulator. Real coding scheme has been 

used to encode the parameters to generate the path. 

In the GA based solution procedure, a number of new individuals are 

created at each iteration. The remaining individuals are obtained by 

deterministically copying the individuals with the top fitness from the previous 

generation. 

4.2.1.1. Genetic Algorithms Operators and Parameters 

As mentioned before, a parallel populations GA procedure with migration 

technique has been implemented to obtain minimum time trajectories. The main 

operators and characteristics in the exposed GA are: 

• Individual: 

The individual or the chromosome is a complete trajectory between C i and 

C f. Each chromosome is composed of a set of genes. Each gene contains the robot 

configuration C{q1,q2,…,qi}, and the time needed to move the robot to this 

configuration. See Figure (4.3). 

 

Figure 4.3: Trajectory GA Chromosome. 

The first gene of each individual contains the initial configuration data. 

Then the ramification process to construct the chromosome will be started by 

 C i(qj) T = 0 C n(qj) T = tn C f(qj) T = tf 

Gene 0 Gene n Gene f 

… … 
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selecting randomly the next gene; based on the random search algorithm; by 

calling the adjacent configuration builder algorithm, and so on till the final 

configuration reached. The ramification can be done without repetition in seven 

directions: X-direction, Y-direction, Z-direction, XY-direction, XZ-direction, YZ-

direction, and XYZ-direction. In this algorithm, there are no restrictions on the 

chromosome length and chromosomes can have different lengths. 

In chromosome construction process, if the algorithm is not able to find the 

next adjacent configuration due to obstacles or dynamic incompatibility, a retuning 

back recursive technique will be applied. This technique depends on tracking back 

process, looking for the last possible configuration in which the robot can continue 

from it. If the tracking back drives the search to the initial configuration, this 

means that there is no possible trajectory in the workspace. In this case, the 

algorithm extends the workspace and starts again. 

• Objective Function: 

The objective of this algorithm is to minimize the equation (4.15). 

• Crossover: 

The crossover is made through the exchange of a part of the path between 

two trajectories chosen through the selection operation mentioned earlier. It is 

executed only if the probability of the crossover is satisfied. The crossover process 

for trajectory planning has been built in the same way detailed in sub-Section 

( 3.2.1), Figure (3.3). 

• Mutation: 

Mutation is done by selecting randomly a point among the intermediate 

points in the trajectory (the first and final points are not considered for mutation). 

The point is then compared to the previous and next points in the trajectory. All 
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the possible changes with which the trajectory will remain incremental and 

quantum, are applied to the point. For more details see Figure (3.3) and sub-

Section ( 3.2.1). 

4.3. APPLICATION EXAMPLES & RESULTS 

The introduced procedure has been applied to a Puma 560 robot using a 

computer with Intel Xeon CPU E5440 @ 2.83 GHz, 8 GB of RAM. 

Four operational parameters have been studied when the procedure was 

applied to a numerous different examples. The parameters are: 

a) Execution time: The time needed to move the robot from the initial to the 

final configuration, denoted by te. 

b) Computational time, denoted by tc: 

c) End-effector traveling distance, denoted by de. 

d) Summation of significant points traveling distance, Equation (4.16), 

denoted by ds. 
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where: j is the number of the significant and interesting points of the robot, 

and m = 4 for Puma 560 robot. i = 1, 2, …, n is the number of robot 

configurations included in the trajectory. 
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4.3.1. Example 1: Comparison Results with Rubio et al. 2009b 

This example demonstrates the effectiveness of the mentioned algorithm. 

The case of 0 obstacles and spherical obstacles of this example were solved by 

Rubio et al. 2009b. Thus, a results comparison will be done. Rubio compared his 

results by using three different approaches: A*, uniform cost (UC), and greedy 

(G). For more details about his procedure, please refer to his article. 

The robot initial and final configurations and obstacles are shown in the 

previous chapter Table (3.1) and (3.2) respectively. 

The results of the part solved by Rubio et al. 2009b are tabulated and 

compared with the results of this thesis in Table (4.2). 

Rubio et al. 2009b Results 
 Operational 

parameters 

Results 
of this 
thesis A * uniform 

cost greedy 

te (s) 1.552 22.15 21.67 26.16 
ds (m) 3.9446 3.65 3.65 4.19 
de (m) 1.68652    

0 
Obstacles 

tc (s) 4876 2691.27 2785.20 555.55 
te (s) 1.80759 21.63 27.61 49.98 

ds (m) 4.0642 4.48 4.11 5.94 
de (m) 1.5925    

1 
Spherical 
Obstacle tc (s) 7321 2360.28 2182.93 294.74 

te (s) 1.96055  32.48 46.32 
ds (m) 4.1335  5.81 5.71 
de (m) 1.5666    

2 
Spherical 
Obstacle tc (s) 6749  735.32 70.30 

te (s) 2.67079 22.30 28.97 38.21 
ds (m) 4.2554 5.35 4.90 5.57 
de (m) 1.6133    

3 
Spherical 
Obstacle tc (s) 6799 257.58 371.74 88.40 

Table 4.2: Example 1 Results. 



Trajectory Planning     - 149 - 

Moreover, Rubio solved a series of 20 examples in his article (Five different 

initial and final configurations * four different environments). These examples 

have been solved using the GA procedure presented in this thesis. The comparison 

of the results is illustrated in the following graphs: 
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Graph 4.1: Execution Time Comparison Between GA Procedure Using 

Cubic Polynomial for Interpolation and Rubio Procedure Using Harmonic 

Interpolation Functions. 
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Graph 4.2:  Travelled Distance Comparison Between GA Procedure 

Using Cubic Polynomial for Interpolation and Rubio Procedure Using 

Harmonic Interpolation Functions. 
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Graph 4.3:  Computational Time Comparison Between GA Procedure 

Using Cubic Polynomial for Interpolation and Rubio Procedure Using 

Harmonic Interpolation Functions. 

Rubio 2006, in his doctoral thesis solved the same series of examples using 

cubic polynomial functions with zero velocities at the ends of intermediate 

configurations trajectories. Then he adjusted the trajectory to obtain a continuous 

velocities and accelerations between intermediate configurations. The comparison 

between Rubio procedure and GA procedure presented in this thesis will be as 

following: 
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Graph 4.4: Execution Time Comparison Between GA Procedure Using Cubic 

Polynomial for Interpolation and Rubio Procedure Using Cubic Polynomial 

Interpolation Functions. 
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Graph 4.5: Execution Time Comparison Between GA Procedure & A* 

Procedure Produced by Rubio 2006. 



- 152 - Trajectory Planning for Industrial Robots Using Genetic Algorithms 

15%

25%

35%

45%

55%

65%

75%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Examples

Pe
rc

en
ta

ge
 %

Execution Time Relation (GA / Amplitud)

Average = 43%

  

Graph 4.6: Execution Time Comparison Between GA Procedure & 

Amplitude Procedure Produced by Rubio 2006. 
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Procedure Produced by Rubio 2006. 
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Graph 4.8: Travelled Distance Comparison Between GA Procedure Using 

Cubic Polynomial for Interpolation and Rubio Procedure Using Cubic 

Polynomial Interpolation Functions. 
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Procedure Produced by Rubio 2006. 
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Graph 4.10: Travelled Distance Comparison Between GA Procedure & 

Amplitud Procedure Produced by Rubio 2006. 
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Graph 4.11: Travelled Distance Between GA Procedure & Voraz 

Procedure Produced by Rubio 2006. 
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Graph 4.12: Computational Time Comparison Between GA Procedure 

Using Cubic Polynomial for Interpolation and Rubio Procedure Using 

Cubic Polynomial Interpolation Functions. 

Observing the comparison of results of the 20 examples, you can see clearly 

that the main objective of this work “execution time” obtained by the GA 

procedure is better than the one published by Rubio 2006 and Rubio et al. 2009b. 

However, the traveling distance by significant points in some cases is not better 

than the ones obtained by him. In addition, the computational time is very high in 

all cases, which may be considered as one of the main disadvantages of the genetic 

algorithm. 

4.3.2. Example 2: Indirect and Direct Methods Comparison 

In this Example, a comparison between the indirect method explained in 

Chapter 3 and the method obtained in this Chapter will be demonstrated. The robot 

initial and final configurations and obstacles are shown in the previous chapter 

Table (3.1) and (3.2) respectively. The results of the indirect method are tabulated 

in Table (3.3) (the case with zero obstacles and spherical obstacles). The 
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corresponding results for the same example using the direct method are tabulated 

in Table (4.3). 

  Execution 
Time (s) 

Travelled 
Distance (m) 

Computational 
Time (s) 

0 Obstacle 2,00408 3,7358 13413 
1 Obstacles 2,11442 3,8029 19805 
2 Obstacles 2,37418 4,0187 16292 

Indirect 
(Chapter 3) 

3 Obstacles 3,36064 4,1585 21408 
0 Obstacle 1,68652 3,9446 4876 
1 Obstacles 1,80759 4,0642 7321 
2 Obstacles 1,96055 4,1335 6749 

Direct 
(Chapter 4) 

3 Obstacles 2,67079 4,2554 6799 
Table 4.3: Comparison Between Direct and Indirect Method. 

As shown in the table, the trajectory time obtained from the direct method 

(the method obtained in this chapter) is better than the trajectory time obtained 

from the indirect one. This is because the direct method is based on the minimum 

time trajectory between adjacent configurations. 

4.3.3. Example 3: Industrial Application – Comparison Results 

This example demonstrates the effectiveness of the mentioned algorithm. 

The next Figure (4.4) shows the robot in the initial and final configuration. This 

example also was solved by Rubio et al. 2009b. The robot initial and final 

configurations are shown in Table (3.4). Obstacles are shown in Table (3.5). 
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Figure 4.4: Example 3. 

The comparison results for this example between the proposed approach and 

the procedure introduced by Rubio are shown in the next Table (4.4): 

Rubio et al. 2009b Results  Results of 
this thesis A * uniform 

cost greedy 

te (s) 1.42842 35.61 29.23 45.70 
ds (m) 4.2556 5.82 5.41 5.43 
de (m) 1.7389    0 Obstacles 

tc (s) 28885 17049.94 16233.08 2674.69 
Table 4.4: Example 3 Results. 
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4.3.4. Example 4: Industrial Application – Case With and Without 

Obstacles 

This example demonstrates the effectiveness of the mentioned algorithm 

and its ability to adapt in absence or presence of obstacle. The robot initial and 

final configurations are shown in Table (4.5). Obstacles are shown in Table (4.6). 

Joint No. 1 2 3 4 5 6 
Initial 

configuration -108.54 -9.88 194.36 -15.98 -86.93 0.00 

Final 
configuration 0.13 -102.36 191.40 0.00 12.47 0.00 

Table 4.5: Initial and Final Configurations for Example 4. 

 1st Cylindrical 
obstacle 

2nd 
Cylindrical 

obstacle 

3rd Cylindrical 
obstacle 

4th Cylindrical 
obstacle 

Centre 
1 

1,
1
CylC  = (-

0.30, -0.70, 
0.00) 

1,
2
CylC = (-0.30, 
-0.70, 0.00) 

1,
3
CylC = (-0.30, 
-0.70, 0.58) 

1,
4
CylC = (0.30, 

-0.70, 0.00) 

Centre 
2 

2,
1
CylC = (0.30, 

-0.70, 0.00) 

2,
2
CylC = (-0.30, 
-0.70, 0.58) 

2,
3
CylC = (0.30, 

-0.70, 0.58) 

2,
4
CylC = (0.30, 

-0.70, 0.58) 
Radius Cylr1  = 0.15 Cylr2 = 0.15 Cylr3 = 0.15 Cylr4 = 0.15 

 
1st Quadri-

lateral 
obstacle 

2nd Quadri-
lateral 

obstacle 

3rd Quadri-
lateral 

obstacle 

4th Quadri-
lateral 

obstacle 

Point 1 P11 = (0.45,  
0.34,  0.89) 

P21 = (0.45,  
0.34,  1.38) 

P31 = (0.45, -
0.0400,  0.89) 

P41 = (0.45,  
0.34,  0.8900) 

Point 2 P12 = (0.45, -
0.04,  0.89) 

P22 = (0.45, -
0.04,  1.38) 

P32 = (0.67, -
0.04,  0.89) 

P42 = (0.45,  
0.34,  1.38) 

Point 3 P13 = (0.67, -
0.04,  0.89) 

P23 = (0.67, -
0.04,  1.38) 

P33 = (0.67, -
0.04,  1.38) 

P43 = (0.67,  
0.34,  1.38) 

Point 4 P14 = (0.67,  
0.34,  0.89) 

P24 = (0.67,  
0.34,  1.38) 

P34 = (0.45, -
0.04,  1.38) 

P44 = (0.67,  
0.34,  0.89) 

Table 4.6: Obstacles Locations (in m) for Example 4. 
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The results for this example in case of obstacle or without obstacles are 

shown in Table (4.7): 

 te (s) tc (s) de (m) ds (m) 
0 Obstacles 2.42217 12915 1.7106 4.7870 

With Obstacles 3.85854 57080 1.7802 5.2227 
Table 4.7: Example 4 Results. 

The next Figure (4.5) shows the robot in the initial and final configuration, 

the end-effector track, and the workspace. The left one is the final and the right 

one is the initial. 

 

Figure 4.5: Example 4 (Case With and Without Obstacles). 
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4.3.5. Example 5: Typical Industrial Application 

Here you can see the ability of the algorithm to modify the search space to 

adapt the robot to find the trajectory between the initial and final configurations. 

  

  

  
Figure 4.6: Example 4. 
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te (s) tc (s) de (m) ds (m) 
1.52102 9720-2173 1.1335 3.2619 

Table 4.8: Example 4 Results. 

4.4. DISCUSSION OF RESULTS 

The examples illustrated in previous section prove the ability of the 

presented procedure to solve the trajectory-planning problem for industrial robots. 

Using cubic polynomial as interpolation functions demonstrate results better 

than harmonic functions, and the proposed GA procedure provides minimum time 

trajectory better than the A* and Amplitude procedures produced by Rubio 2006 

and Rubio et al. 2009b. 

The computation time in all examples is high which may considered as the 

main disadvantage of the genetic algorithm in general. 

The traveled distance by the significant points of the robot, are very 

acceptable, and by comparing the results with other works, in the most of cases, 

the traveled distance of the presented procedure is better than the ones of the other 

works. 

The presented procedure shows a significant ability to adapt the robot and 

its trajectory to any workspace characteristics. 





 

CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

In this thesis, new approaches have been presented to solve the path and 

trajectory planning problems for industrial robots operating in 3D complex 

environment. Genetic algorithms appear in this thesis to solve such problems. 

These approaches have led to two general classes of algorithms that are capable of 

obtaining the solution of the mentioned planning problems. These classes are: 

1) An algorithm to solve the adjacent configuration problem. This algorithm 

in fact has two versions;  

a) Version for solving the adjacent configuration for path planning 

considering just the kinematics, geometric, and obstacles constraints. 

b) Version for solving the adjacent configuration problem for the 

trajectory planning considering dynamic constraints of the robotic 

system.  

2) An algorithm to solve path and trajectory planning problems. This 

algorithm also has two versions.  
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a) Version for path planning. This version aims to find the shortest path 

between two robot configurations subjected to the kinematics, 

geometric, and obstacle avoidance constraints. 

b) Version for trajectory planning. This version aims to find the 

minimum time trajectory between two robot configurations subjected 

to the dynamics constraints of the robotic system and the obstacle 

avoidance constraints.  

The path planning algorithm aims to find the shortest path between two 

given robot configurations; initial configuration C i and final configuration C f; 

avoiding the collision with obstacles in the workspace. In an indirect way, the 

minimum time trajectory has been calculated in this case by adjusting a trajectory 

to the resulting path. This could be achieved by building the clamped cubic spline 

algorithm and solving it by genetic algorithm procedure. 

The trajectory planning algorithm aims to minimize the trajectory time 

needed to move the robot from an initial configuration C i to a final configuration 

C f avoiding the collision with obstacles in the workspace. The workspace has been 

built in a way that gives the capability to modify its dimensions if there is no 

feasible solution in the current one. The effectiveness of this technique has been 

shown clearly in the experimental results. A new crossover and mutation operators 

have been designed in a way to improve the solution and its quality. 

The presented algorithms can be applied to any industrial robotic system. In 

this thesis, an application example has been developed using Puma 560 robot for 

testing the algorithms. In addition, an application program using object oriented 

C++ has been built in a way to simulate the dynamics and kinematic (direct and 

inverse) of the Puma 560 robot. 
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The presented algorithms have been tested and validated using a large 

number of examples. The analysis of the results shed light on the characteristics 

and properties of the algorithms used, and are reflected in two chapters of this 

document. Part of these examples is compared with the work of other authors and 

demonstrates the efficiency of the proposed procedure by an average of 81.3% for 

path planning (see sub-Section Example 1: 3.5.1.2) and 43% for trajectory planning 

(see sub-Section  4.3.1). Another part of the examples is done using close to real 

industrial scenario to show the ability of the presented algorithm to adapt to any 

workspace. 

An important parameter should be discussed here is the computational time. 

As shown in the illustrated example the computational time is relevantly high. 

Moreover, the computational time increases as well as the restrictions increase. 

Furthermore, the number of individuals should be increased, and so the number of 

generations for more accurate results using the GA procedure, especially for more 

complex problems and workspaces, which leads to an increase of the 

computational time. This maybe considered as a disadvantage of the GA in 

general. However, as the industrial robots work on a repetitive trajectories and 

paths, an offline planning normally takes place. This means that the computational 

time cost can be acceptable as the resulting planning and time trajectory are good 

enough. 

Finally, because of the importance of the path and trajectory planning 

problems in the industry, it is necessary to introduce new operating assumptions to 

improve the quality and the functionality of the presented algorithms. These 

assumptions are: 

• Adding a new optimization algorithm to deal with the orientation of the 

Gripper of the robot to achieve some tasks. 
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• Rebuilding the existing algorithms using Ant-Colony optimization instead 

of genetic algorithms could be very interesting. Knowing that, ants are 

very powerful in finding the shortest path and minimum time trajectory 

between their colonies and the food. Many authors like Liu et al. 2005 and 

Maurya and Shukla 2010 used the ant colony optimization procedure to 

solve the path and trajectory planning for mobile robots. It will be an 

opportunity to check their efficiency in planning paths and trajectories for 

industrial robots. 

While there is considerable work yet to be addressed, this thesis provides useful 

approached to deal with path and trajectory planning for industrial robots. 
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APPENDIX A  

PUMA 560 ROBOTIC MANIPULATOR 

   

Figure A.1: Skeleton of the Puma 560 Robot with Local Coordinate Frames 

and Modified-DH Parameters (Out of scale). 
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The Puma 560 is a six degree of freedom robot manipulator. The end-

effector of the robot arm can reach a point within its workspace from any 

direction. In this appendix all parameters and specifications used in this thesis for 

robot Puma 560 will be indicated. 

A.1. DENAVIT-HARTENBERG PARAMETERS 

A table that considers the common Modified Denavit-Hartenberg 

parameters ia , iα , id  and iθ  for Puma 560 like robot, will be presented. 

Link iα  ia  id  iθ  

1 0 0 0 1θ  
2 -90 0 0 2θ  
3 0 431.8 149.09 3θ  

4 90 -20.32 431.8 4θ  
5 -90 0 0 5θ  

6 90 0 0 6θ  

Table A.1: Modified-DH Parameters 

Values for Robot Puma 560, Angles in 

[degrees], Distances in [millimeter]. 
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A.2. DYNAMIC PARAMETERS 

Positions of the Centre of 
Gravity Robot links 

x y z 

Links Masses 
(kg) 

1 0.0 - 0.054 0.0 10.521 
2 0.1398 0.0 0.14909 15.781 
3 - 0.00032 - 0.197 0.0 8.767 
4 0.0 0.0 - 0.057 1.052 
5 0.0 - 0.007 0.0 1.052 
6 0.0 0.0 0.03725 0.351 

 Table A.2: Positions of the Centre of Mass and Masses for 

Puma 560 Links, Values in [meter].  

Robot 
links Ixx Iyy Izz Ixy Ixz Iyz 

1 1.6120 0.5091 1.6120 0.0 0.0 0.0 
2 0.4898 8.0783 8.2672 0.0 0.0 0.0 
3 3.3768 0.3009 3.3768 0.0 0.0 0.0 
4 0.1810 0.1810 0.1273 0.0 0.0 0.0 
5 0.0735 0.0735 0.1273 0.0 0.0 0.0 
6 0.0071 0.0071 0.0141 0.0 0.0 0.0 

 Table A.3: Inertia Tensor for Puma 560 Links, Values in [kg/m2].  
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A.3. LOCAL POSITIONS OF SIGNIFICANT AND 

INTERESTING POINTS 

Significant Points are 1γ , 2γ , 3γ , and 4γ . Interesting Points are 1λ , 2λ , 

3λ , and 4λ  

Significant Points 

 Reference 
frame Local Position 

1γ  2 0.0, 0.0, 0.255 
2γ 3 0.0, 0.0, 0.105 
3γ 3 0.0, -0.351, 0.0 
4γ 6 0.0, 0.0, 0.267 

Interesting Points 

 Reference 
frame Local Position 

1λ  2 -0.229, 0.0, 0.255 
2λ 3 0.0, 0.1, 0.0 
3λ 4 0.0, 0.0, -0.081 
4λ 5 0.0, 0.0, 0.0 

Table A.4: Significant and 

Interesting Points used for Puma 

560 in This Thesis, Values in 

[meter]. 
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A.4. JOINTS LIMITS 

Joint Minimum 
Value 

Maximum 
Value 

1 -160 160 
2 -215 35 
3 -45 225 
4 -140 140 
5 -100 100 
6 -266 266 

Table A.5: Admissible Movement Range for 

Each Joint, Values in [degree]. 
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