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Abstract: The purpose of this paper is to show the influence of the edge-effect on the electric field distribution, and hence on the inner 
capacitance and outer capacitance of a cylindrical capacitor surrounded by an insulating medium. To generalize the results, a 
two-dimensional axisymmetric finite element model of a cylindrical capacitor has been generated and the problem has been resolved 
taking into account the distance between the conductors for a complete set of dimensions. The available obtained results have been 
compared with previous published works. Finally, using statistical tools, the mathematical expression for computing the relationship 
between capacitance and insulation gap and cylindrical plates dimensions has been obtained. 
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1. Introduction 

In the field of electrical engineering, cylindrical 

capacitors are used frequently. The manufacture of 

these capacitors, from a technological point of view, 

does not show any unusual difficulty, but from the 

designer point of view, it turns out a complex matter 

the accurate calculation of the capacitance [1-3]. The 

calculation of the capacitance of a cylindrical capacitor, 

when it is a cylindrical capacitor of finite height h, but 

great with respect to the R1 radius and to the thickness 

of the dielectric between cylindrical plates d, does not 

involve any difficulties, whenever the disturbance of 

the electric field near the bases of the cylinders, also 

called edge effect [4-7], is neglected. Nevertheless, if 

the length of the cylinders is similar to the radius of the 

cylinders that compose the capacitor, the edge effect is 

not despicable and therefore the problem involves a 

high level of complexity [8-10]. 

The aim of this paper is to calculate the effect of the 

edges on the capacitance of a cylindrical capacitor in 
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vacuum for several geometrical configurations. 

With this objective, a base model has been generated 

using the FEM (finite element method), that allows to 

calculate the capacitance of a cylindrical capacitor 

varying the thickness, the length and the relative 

position of the cylinders. 

2. Ideal Cylindrical Capacitors 

2.1 Theoretical Capacitance 

The capacitance of a cylindrical capacitor [11, 12] of 

height h finite, but great with respect to the R1 radius 

and to the thickness of the dielectric between plates d, 

as shown in Fig. 1, is given by Eq. (1). This equation is 

valid whenever the edge effect is disregarded [13]. 

Eq. (1) shows that the capacitance of this type of 

capacitor is inversely proportional to the natural 

logarithm of the distance between the plates d that 

constitute the capacitor and is directly proportional to 

the capacitor height h. Graphically, the aspect of this 

ideal behavior of the capacitance is shown in Fig. 2. In 

order to generate this figure, a number of values for R1, 

d and h have been taken. These values are shown in 

Table 1. 

D 
DAVID  PUBLISHING 



FEM Edge Effect and Capacitance Evaluation on Cylindrical Capacitors 

  

2064

 
Fig. 1  Cylindrical capacitor geometric model. Where: e is 
the external conductor thickness, d is the distance between 
cylinders, h is the conductor’s length, R1 is the radius of 
inner conductor, ε1 is the relative dielectric permittivity of 
the dielectric medium between conductors, and ε2 is the 
relative dielectric permittivity of the dielectric medium 
around the external conductor. 
 

 
Fig. 2  Capacitance of an ideal cylindrical capacitor. 
 

Table 1  Values of geometric variables. 

R1 (m) d (m) h (m) 

min max min max min max 

0.5 4.5 0.5 4.5 1.12 9.0 
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In Fig. 2, the effect of the logarithm function is 

remarkable for values of 1 + d/R1 near the unit. This 

fact causes that the interval of values between 1 and 2 is 

the zone where more varies the capacitance vs. small 

increases of the geometric variables ratio. In 

accordance, the results obtained in this research are 

focused in this zone (Fig. 3). 

 
Fig. 3  Capacitance of an ideal cylindrical capacitor in the 
investigated geometric region. 

2.2 Model Capacitance 

In this section, the internal capacitance of an ideal 

cylindrical capacitor by means of a model based on 

FEM is calculated. By means of this calculation, the 

FEM model is validated provided that the error 

compared to the ideal case is very limited. 

For the case of a cylindrical capacitor, an 

axisymmetric 2D model is used because this type of 

capacitors is cylindrically symmetrical. In addition, the 

resulting geometry is symmetrical, so the model is reduced 

to one half. The resulting model is shown in Fig. 4. 

The use of a reduced model diminishes the number 

of nodes that take part in the FEM calculation and, 

therefore, the time of calculation. However, it must be 

taken into account that, if the mesh is not well adapted, 

the error in the solution may be very high. 

The relative error has been evaluated by means of 

Eq. (2). 
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        (2) 

After the simulation, the obtained error is between 

0.0028% and 0.0015%. This small error provides a 

primary validation of the FEM calculation model. 

2.3 Electric Field 

A secondary result of the used model is the 

calculation of the electric field between the plates of 

the cylindrical capacitor. 
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Fig. 4  2D axisymmetric ideal capacitor model. 
 

In Fig. 5, the distribution of the electric field in the 

dielectric material located between the conductors of 

the capacitor is shown. 

The obtained values of the electric field in the 

simulation agree with those obtained using Eq. (3), that 

is, with the theoretical expression for the calculation of 

the electric field between the conductors of a 

cylindrical capacitor (Fig. 6). 
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where: 

EF(r) is the electric field between the plates of the 

cylindrical capacitor; 

C is the capacitance calculated with Eq. (1); 

ΔV is the difference of potential between plates (100 

V); 

h is the height of the cylinders; 

r is the distance to the center of the capacitor (Fig. 1). 

3. Real Cylindrical Capacitors 

3.1 Model Capacitance 

The capacitance of a real capacitor [14, 15] is the 

sum of its inner capacitance and its outer capacitance 

[16, 17], as it is stated in Eq. (4). 

in outC C C      (4) 

The inner capacitance is the capacitance between the 

plates that conform the capacitor, and agree generally 

with the calculated ideal capacitance by means of   

Eq. (1). On the other hand, the outer capacitance is the 

 
Fig. 5  Electric field distribution in the dielectric medium 
between conductors. Where: R1 = 0.01 m, d = 0.01 m, e = 2 
E-3 m and h = 0.044 m. 
 

 
Fig. 6  Electric field distribution in simulated model. Where: 
R1 = 0.01 m, d = 0.01 m, e = 2 E-3 m and h = 0.044 m. The 
dashed line is EF calculated with Eq. (3). 
 

capacitance that appears in the outside of the plates due 

to the deformation of the electric field lines. This 

deformation is a function of the dielectric permittivity 

and by the effect of the edges of the cylinders. 

In order to calculate accurately the values of the 

capacitance of a cylindrical capacitor, to the validated 

model that has been used previously, an area that 

surrounds externally to the conductors as shown in Fig. 

7, has been added. This area allows modeling the outer 

dielectric material. 

The results obtained in the simulation (Fig. 8) for 

different models generated from the values from the 

variables of Table 2 have been statistically analyzed to 

obtain a mathematical expression that allows to 

calculate the capacitance of a real cylindrical capacitor 

[18]. 
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Fig. 7  2D axisymmetric real capacitor model. 
 

 
Fig. 8  Simulated real capacitance/length ε0 related to 
distance and length. 
 

In Fig. 8, it can be observed that the simulated real 

capacitance grows very quickly with respect to the 

theoretical capacitance when the variable 

length/thickness is reduced and to a lesser extent, when 

the variable separation/thickness increases. 

The outer capacitance has been calculated with the 

Eq. (4), and the ratios of simulated real 

capacitance/theoretical capacitance and outer 

capacitance/inner capacitance are shown in Figs. 9 and 

10, respectively. 

A detailed statistical analysis of the 9,261 calculated 

values shows that the best fit is obtained relating the 

quotients of capacities with separation d and length h. 

Table 2  Values of the geometric variables. 

e (m) d (m) h (m) 

0.100000 E-2 0.100000 E-2 0.100000 E-2 

0.112202 E-2 0.112202 E-2 0.121604 E-2 

0.125893 E-2 0.125893 E-2 0.147876 E-2 

0.141254 E-2 0.141254 E-2 0.179823 E-2 

0.158489 E-2 0.158489 E-2 0.218672 E-2 

0.177828 E-2 0.177828 E-2 0.265915 E-2 

0.199526 E-2 0.199526 E-2 0.323364 E-2 

0.223872 E-2 0.223872 E-2 0.393224 E-2 

0.251189 E-2 0.251189 E-2 0.478176 E-2 

0.281838 E-2 0.281838 E-2 0.581482 E-2 

0.316228 E-2 0.316228 E-2 0.707107 E-2 

0.354813 E-2 0.354813 E-2 0.859871 E-2 

0.398107 E-2 0.398107 E-2 0.104564 E-1 

0.446684 E-2 0.446684 E-2 0.127154 E-1 

0.501187 E-2 0.501187 E-2 0.154625 E-1 

0.562341 E-2 0.562341 E-2 0.188030 E-1 

0.630957 E-2 0.630957 E-2 0.228653 E-1 

0.707946 E-2 0.707946 E-2 0.278051 E-1 

0.794328 E-2 0.794328 E-2 0.338122 E-1 

0.891251 E-2 0.891251 E-2 0.411170 E-1 

0.100000 E-1 0.100000 E-1 0.500000 E-1 

The radius of the inner conductor R1 is 0.01 m, the relative 
dielectric permittivity of the dielectric medium between conductors 
ε1 and the relative dielectric permittivity of the dielectric medium 
around the external conductor ε2 is equal to 1. The assumed 
dielectric permittivity of the medium is 8.8541878 E-12 F/m. 
 

The relation of the quotient of capacities to the 

separation is slightly parabolic almost linear. The 

relation of the quotient of capacities with the variable 

length is hyperbolic. 

The simplest Eq. (5) that adjusts simulated to ideal 

values is: 
஼೑೔೟೟೔೙೒

ఌబ
ൌ ඥ݇ଵ ൉ ݄ଶ൅݇ଶ ൉ ݄మ   ൉ ݀௞య  (5) 

where k1 = 0.622088, k2 = 0.00546281, k3 = -0.615925 

and ε0 is the dielectric permittivity of the medium, air 

in this case. With this adjustment r-Squared is 

98.97%. 

3.2 Electric Field 

A secondary result of the used model is the 

calculation of the distribution of the electric field 

between plates of the cylindrical capacitor and in the 

space that surrounds it. This distribution is shown in 

Fig. 11. 
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Fig. 9  Ratio of the simulated real capacitance and the 
theoretical capacitance related to distance and length. 
 

 
Fig. 10  Simulated real capacitance minus theoretical 
capacitance related to the theoretical capacitance as a 
function of the distance and length. 
 

The obtained values of the electric field between 

plates agree very well with those obtained using Eq. (3) 

that is the theoretical expression for the calculation of 

the electric field between the conductors of a 

cylindrical capacitor (Fig. 12). 

It is necessary to notice that the electric field is very 

high in the edges of the capacitor. The reason of this 

increase is the edge effect: the surface charge density 

increases in the edges and this causes an increase on the 

electric field [19-21]. This is an interesting result 

because it clearly shows that the lines of electric field 

outside of the inner dielectric are non-negligible [4, 5]. 

These two combined effects confirm the validity of 

Eq. (4). 

 
Fig. 11  Electric field distribution in the dielectric medium. 
Where: R1 = 0.01 m, d = 0.01 m, e = 2 E-3 m and h = 0.044 m. 
 

 
Fig. 12  Electric field distribution in simulated model. 
Where: R1 = 0.01 m, d = 0.01 m, e = 2 E-3 m and h = 0.044 m. 

The dashed line is EF calculated with Eq. (3). 

4. Conclusions 

In this paper, the validity of the method of the finite 

elements has been demonstrated to calculate the 

capacitance of a cylindrical capacitor. Firstly, the 

capacitance between two conductors has been 

calculated and an expression has been obtained that 

allows calculating the real capacitance of a cylindrical 

capacitor. 

It has been observed that in plates of small 

dimensions, the thickness of the conductors 

dramatically modifies the value of the capacitance 

compared to an ideal capacitor. 

It has been shown that it is possible to calculate the 

capacitance of any system of conductors for the 
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industrial elaboration of multiwire complex systems. 

Nowadays, different iterative algorithms are used to 

calculate the capacitance of any model [8, 22-26], 

thanks to the performance that offer the computers. 

These algorithms are designed to obtain the surface 

charge distributions, the charge density and the 

capacitance. The disadvantage of these algorithms is 

that they are designed for a few specific cases, so that if 

the model changes, the algorithm must be 

reconstructed almost entirely. 

In contrast to the disadvantage of the custom 

iterative algorithms, there are commercial software 

based on the FEM (finite elements method), which 

integrate generic algorithms applicable to the most 

popular problems of electrostatics, independently of 

the geometry. This increases the flexibility while cost 

and time of development are minimized. In this work, 

the authors have used the commercial software 

ANSYS [27] since this software has a specific module 

to solve problems of electrostatics. 

References 

[1] R. Bansevicius, J.A. Virbalis, Distribution of electric 
field in the round hole of plane capacitor, Journal of 
Electrostatics 64 (3-4) (2006) 226-233. 

[2] R. Bansevicius, J.A. Virbalis, Two-dimensional Braille 
readers based on electrorheological fluid valves 
controlled by electric field, Mechatronics 17 (10) (2007) 
570-577. 

[3] C.J. Bouwkamp, A simple method of calculating 
electrostatic capacity, Physica 24 (1-5) (1958) 538-542. 

[4] J.M. Bueno-Barrachina, C.S. Cañas-Peñuelas, S. 
Catalan-Izquierdo, Capacitance evaluation on 
non-parallel thick-plate capacitors by means of finite 
element analysis, Journal of Energy and Power 
Engineering 5 (4) (2011) 373-378. 

[5] S.B. Chakrabarty, S. Das, B.N. Das, Capacitance of 
dielectric coated cylinder of finite axial length and 
truncated cone isolated in free space, IEEE Transactions 
on Electromagnetic Compatibility 44 (2) (2002) 394-398. 

[6] C. Chakraborty, D.R. Poddar, A. Chakraborty, B.N. Das, 
Electrostatic charge distribution and capacitance of 
isolated cylinders and truncated cones in free space, IEEE 
Transactions on Electromagnetic Compatibility 35 (1) 
(1993) 98-102. 

[7] V. Cooray, Charge and voltage characteristics of corona 
discharges in a coaxial geometry, IEEE Transactions on 

Dielectrics and Electrical Insulation 7 (6) (2000) 
734-743. 

[8] T.R. Ferguson, R.H. Duncan, Charged cylindrical tube, 
Journal of Applied Physics 32 (7) (1961) 1385-1387. 

[9] S. Ghosh, A. Chakrabarty, Estimation of capacitance of 
different conducting bodies by the method of rectangular 
subareas, Journal of Electrostatics 66 (3-4) (2008) 
142-146. 

[10] J.A. Given, J.B. Hubbard, J.F. Douglas, A first-passage 
algorithm for the hydrodynamic friction and 
diffusion-limited reaction rate of macromolecules, The 
Journal of Chemical Physics 106 (9) (1997) 3761-3771. 

[11] J.A. Given, C.O. Hwang, Edge distribution method for 

solving elliptic boundary value problems with boundary 

singularities, Physical Review E 68 (4) (2003) 046128. 

[12] J.A. Given, C.O. Hwang, M. Mascagni, First- and 

last-passage Monte Carlo algorithms for the charge 

density distribution on a conducting surface, Physical 

Review E 66 (5) (2002) 056704-056708. 

[13] D.J. Griffiths, Y. Li, Charge density on a conducting 

needle, American Journal of Physics 64 (6) (1996) 

706-714. 

[14] C.O. Hwang, T. Won, Edge charge singularity of 
conductors, Journal of the Korean Physical Society 45 
(2004) S551-S553. 

[15] C.O. Hwang, T. Won, Last-passage algorithms for corner 

charge singularity of conductors, Journal of the Korean 

Physical Society 47 (2005) S464-S466. 

[16] C.O. Hwang, J.A. Given, Last-passage Monte Carlo 
algorithm for mutual capacitance, Physical Review E 74 
(2) (2006) 027701-027703. 

[17] J.L. Manglano de Mas, Lecciones de Física, in: S.A. 
Artes Gráficas Soler (Ed.),Valencia, Spain, 1995. 

[18] K. Sakai, D. Labrado Abella, J. Suehiro, M. Hara, 

Charging and behavior of a spherically conducting 

particle on a dielectrically coated electrode in the 

presence of electrical gradient force in atmospheric air, 

IEEE Transactions on Dielectrics and Electrical 

Insulation 9 (4) (2002) 577-588. 

[19] K. Sakai, S. Tsuru, D.L. Abella, M. Hara, Conducting 

particle motion and particle-initiated breakdown in DC 

electric field between diverging conducting plates in 

atmospheric air, IEEE Transactions on Dielectrics and 

Electrical Insulation 6 (1) (1999) 122-130. 

[20] T. Takuma, Field behaviour at a triple junction in 

composite dielectric arrangements, IEEE Transactions on 

Electrical Insulation 26 (3) (1991) 500-509. 

[21] H.J. Wintle, Linear and nonlinear data fitting for 

dielectrics, IEEE Transactions on Dielectrics and 

Electrical Insulation 9 (5) (2002) 845-849. 

[22] Y. Xiang, The electrostatic capacitance of an inclined 
plate capacitor, Journal of Electrostatics 64 (1) (2006) 



FEM Edge Effect and Capacitance Evaluation on Cylindrical Capacitors 

  

2069

29-34. 
[23] Y. Xiang, Further study on electrostatic capacitance of an 

inclined plate capacitor, Journal of Electrostatics 66 (7-8) 
(2008) 366-368. 

[24] L. Xiaoyun, C. Rulung, Potential distribution and 
capacitance between two concentratric square conductors, 
Journal of Electrostatics 17 (2) (1985) 209-212. 

[25] B.P. Yong, Capacitance of multiple annular apertures 
with floating inner conductors, IEEE Microwave and 
Wireless Components Letters 17 (11) (2007) 766-768. 

[26] F.R. Zypman, Off-axis electric field of a ring of charge, 
American Journal of Physics 74 (4) (2006) 295-300. 

[27] Release 9.0 Documentation for ANSYS, Inc. © 2005 
SAS IP, 2006. 

 


