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In this paper an analysis of productivity will be carried out from the resolution of the problem of trajectory planning of
industrial robots. The analysis entails economic considerations, thus overcoming some limitations of the existing literature. Two
methodologies based on optimization-simulation procedures are compared to calculate the time needed to perform an industrial
robot task. The simulation methodology relies on the use of robotics and automation software called GRASP. The optimization
methodology developed in this work is based on the kinematics and the dynamics of industrial robots. It allows us to pose a
multiobjective optimization problem to assess the trade-offs between the economic variables by means of the Pareto fronts. The
comparison is carried out for different examples and from a multidisciplinary point of view, thus, to determine the impact of
using each method. Results have shown the opportunity costs of non using the methodology with optimized time trajectories.
Furthermore, it allows companies to stay competitive because of the quick adaptation to rapidly changing markets.

1. Introduction

Time needed to perform a trajectory for industrial robots is
a very important issue in order to improve productivity in
many economic activities. Specifically, most algorithms seek
to find the minimum time trajectory in order to increase the
working time and subsequently to reduce the unproductive
time. The existing literature shows a lack of studies that con-
sider both the economic issues and the motion of industrial
robots.

In this paper, the working times of industrial robots are
compared between twodifferent approacheswhile taking into
account the corresponding economic impacts. The compari-
son is applied to several examples, which covers a wide range
of parameters that govern the kinematics and dynamics of the
industrial robots.The first methodology is based on a robotic
simulation program called GRASP (BYG System Ltd) and the
second on optimization techniques.

When the working times have been calculated, the
assembly line productivity is estimated by means of the time

difference, so that we can quantify the impact of eachmethod.
Productivity is quantified by conducting an economic study
based on the working times of robotic tasks and, more
specifically, the time needed to manufacture and assemble a
certain product.

A multiobjective optimization problem is posed to assess
the trade-offs between the economic variables by means of
the Pareto fronts (see Section 6). These fronts will serve to
determine those variables that mostly influence the increase
of productivity of the assembly line. We will prove that
working times (not working cycles) are critical from an
economic point of view and so are the methods to obtain
them.

Those times will enable us to set conclusions about which
method is more useful in order to increase the productivity
of the robotic system.

The paper is organized as follows. Initially, we will explain
in detail the main characteristics of the trajectory planning
methodology and how the time is obtained. Consequently,
the economic analysis will provide insight on the productivity
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of assembly lines. Finally, the conclusions will be discussed in
the last section.

2. Background of the Trajectory
Planning Problem

Currently there are a great number of methodologies to solve
the trajectory planning problem for industrial robots which
give the time needed to perform a task. But few papers tackle
the analysis of productivity related to the working times
obtained.

Over the years, the algorithms have been polished and
the working assumptions of the robotic systems have been
increasingly adjusted to real conditions. This fact has been
achieved by analysing the complete behaviour of the robotic
system, particularly the characteristics of the actuators and
the mechanical structure of the robot. To tackle this problem
other important working parameters and variables have been
taken into account, such as the input torques, the energy
consumed, and the power transmitted. Furthermore, the
kinematic properties of the robot’s links, such as the veloc-
ities, accelerations, and jerks, must be also considered. The
aforementioned algorithms provide a smooth robot motion
for the robotic system.

To obtain the best trajectories in terms of minimum
times, some of the working parameters have been included
in the appropriate objective function of the optimization
procedure (input torques, the energy consumed, and the
power transmitted). The optimization criteria most widely
used can be sorted as follows.

(1) Minimum time required, which is directly bounded
to productivity.

(2) Minimum jerk, which is bounded to the quality of
work, accuracy, and equipment maintenance.

(3) Minimum energy consumed or minimum actuator
effort, both linked to savings.

(4) Hybrid criteria, for example, minimum time and
energy.

In the past, the early algorithms that solved the trajectory
planning problem tried to minimize the time needed for
performing the task (see [1–3]). One disadvantage of those
minimum-time algorithms was that the trajectories had
discontinuous values of acceleration and torques which led to
dynamic problems during the trajectory performance. Those
problems were avoided by imposing smooth trajectories to
be followed, such as spline functions which have been used
in both path and trajectory planning.

The early algorithms in trajectory planning sought to
minimize the time needed for performing the task. The
dynamics properties of actuators were neglected. A recent
example of this type of algorithm can be found in [4], which
determines smooth and near time-optimal path-constrained
trajectories. It considers not only velocity and acceleration but
also jerk.

Later, the trajectory planning problem was tackled by
searching for jerk-optimal trajectories. Jerks are highly

important for working with precision and without vibration.
They also have an effect on the control system and thewearing
of mobile parts such as joints and bars. These methods allow
a reduction in errors during trajectory tracking, the stresses
in the actuators and also in the mechanical structure of
the robot, and the excitement of resonance frequencies. Jerk
restriction is introduced by other authors [5, 6].

In [7] a method is introduced for determining smooth
and time-optimal path-constrained trajectories for robotic
manipulators by imposing limits on the actuator jerks.

In [8] a global minimum-jerk trajectory planning algo-
rithm of a space manipulator is presented.

Another different approach to solving the trajectory
planning problem is based on minimizing the torque and
the energy consumed instead of the trajectory time or the
jerk. This approach leads to smoother trajectories. An early
example is seen in [9].

Similarly, in [10], the authors searched for the minimum
energy consumed. They proposed a method for solving
the trajectory generation problem in redundant degree of
freedommanipulators.They used a variational approach and
the B-Spline curve was introduced to minimize the electrical
energy consumed in a robot manipulator system.

Thework in [11] also takes into account energyminimiza-
tion for the trajectory planning problem.

In [12] the authors proposed a technique of iterative
dynamic programming to plan minimum energy consump-
tion trajectories for robotic manipulators. The dynamic
programming method was modified to perform a series of
dynamic programming passes over a small reconfigurable
grid covering only a portion of the solution space at any
one pass. Although strictly no longer a global optimization
process, this iterative approach retained the ability to avoid
certain poor local minima while avoiding the dimensional
issue associatedwith a pure dynamic programming approach.
The modified dynamic programming approach was veri-
fied experimentally by planning and executing a minimum
energy consumed path for a Reis V15 industrial manipulator.

Afterwards, new perspectives appear for solving the
trajectory planning problem. The main point was to use a
weighted objective function to optimize the working param-
eters [13]. There, the cost function is a weighted balance of
transfer time, the mean average of the torques, and power.

In this paper we will introduce two methods to solve the
trajectory planning problem for industrial robots working
in complex environments. The time will be used in the
economical study.

In the first method, the procedure calculates the optimal
trajectory by neglecting initially the potential presence of
obstacles in the workspace. By removing the obstacles (real
or potential) from the optimization problem, the algorithm
will calculate a minimum time trajectory as a starting point.
Then the procedure must take into account the real obstacles
presented in the workspace. When obstacles are considered,
the initial trajectory will not be feasible and will have to
evolve so that it can become a solution. The way this initial
trajectory evolves until a new feasible collision-free trajectory
is obtained is presented in this paper. It is a direct algorithm
that works in a discrete space of trajectories, approaching the
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first solution to the global solution as the discretization is
refined. The solutions obtained are efficient trajectories (i.e.,
the minimum time trajectories). All the trajectories obtained
meet the physical limitations of the robot. The solution also
avoids collisions and takes into account the constraint of
energy consumed.

The second method calculates the times using the kine-
matic properties of the robotic system by means of a simula-
tion program called GRASP.

3. Time Obtained Using the Proposed
Optimization Trajectory Planner

Our objective is to calculate the minimum time trajectory (𝑡)
between the initial and final configurations. Any robot con-
figuration𝐶𝑗 = 𝐶𝑗(𝛼𝑗𝑖 , 𝑝

𝑗

𝑘
) can be expressed unequivocally by

means of the Cartesian coordinates of significant points of the
robot 𝛼𝑗𝑖 = (𝛼

𝑗

𝑥𝑖, 𝛼
𝑗

𝑦𝑖, 𝛼
𝑗

𝑧𝑖).
We calculate the time needed to go from 𝐶𝑖 to 𝐶𝑓.

This process is based on an optimization problem to obtain
the minimum time between these two configurations. The
problem is transformed into obtaining the minimum time
over an interpolated trajectory between both configurations,
subjected to physical constraints in the actuators.

This optimization problem can be stated as in [7] as
follows:

Find 𝑞 (𝑡) , 𝜏 (𝑡) , 𝑡𝑓 (1)

between each of the two configurations (see Section 3.3),

Minimizing min
𝜏∈Ω
𝐽 = ∫

𝑡𝑓

0

𝑑𝑡, (2)

where 𝜏(𝑡) ∈ 𝑅𝑛 is the vector of the actuator torques andΩ is
the space state in which the vector of the actuator torques is
feasible.

The optimization problem is subject to:

(1) the robot dynamics

𝑀(𝑞 (𝑡)) ̈𝑞 (𝑡) + 𝐶 (𝑞 (𝑡) , ̇𝑞 (𝑡)) ̇𝑞 (𝑡) + 𝑔 (𝑞 (𝑡)) = 𝜏 (𝑡) ; (3)

(2) unknown boundary conditions (position, velocity,
and acceleration) for intermediate configurations a
priori

𝑞 (𝑡int−1) = 𝑞int−1; 𝑞 (𝑡int) = 𝑞int,

̇𝑞 (𝑡int−1) = ̇𝑞int−1; ̇𝑞 (𝑡int) = ̇𝑞int−1,

̈𝑞 (𝑡int−1) = ̈𝑞int−1; ̈𝑞 (𝑡int) = ̈𝑞int−1;

(4)

(3) boundary conditions for initial and final configura-
tions

𝑞 (0) = 𝑞𝑜; 𝑞 (𝑡𝑓) = 𝑞𝑓,

̇𝑞 (0) = 0; ̇𝑞 (𝑡𝑓) = 0;

(5)

(4) collision avoidance within the robot workspace

𝑑𝑖𝑗 ≥ 𝑟𝑗 + 𝑤𝑖; (6)

𝑑𝑖𝑗 being the distance from any obstacle 𝑗 (sphere,
cylinder, or prism) to robot arm 𝑖; 𝑟𝑗 is the character-
istic radius of the obstacle and 𝑤𝑖 is the radius of the
smallest cylinder that contains the arm 𝑖;

(5) actuator torque rate limits

𝜏
min
𝑖 ≤ 𝜏𝑖 (𝑡) ≤ 𝜏

max
𝑖 ∀𝑡 ∈ [0, 𝑡min] , 𝑖 = 1, . . . , dof; (7)

(6) maximum power in the actuators

𝑃
min
𝑖 ≤ 𝜏𝑖 (𝑡) ̇𝑞𝑖 (𝑡) ≤ 𝑃

max
𝑖 ∀𝑡 ∈ [0, 𝑡min] , 𝑖 = 1, . . . , dof;

(8)

(7) maximum jerk on the actuators

...
𝑞
min
𝑖 ≤

...
𝑞𝑖 (𝑡) ≤

...
𝑞
max
𝑖 ∀𝑡 ∈ [0, 𝑡min] , 𝑖 = 1, . . . , dof,

(
...
𝑞𝑖 is the jerk of actuator 𝑖) ;

(9)

(8) energy consumed

𝑚−1

∑
𝑗=1

(

dof
∑
𝑖=1

𝜀𝑖𝑗) ≤ 𝐸, (10)

where 𝜀𝑖𝑗 is the energy consumed by the actuator 𝑖 between
the configurations 𝑐𝑗 and 𝑐𝑗+1.

Here, the main definitions and processes used to obtain
the free-collision trajectories of the robot (and subsequently
the time needed to perform the trajectory) are detailed.

3.1. Robot Configuration. It is expressed in joint coordinates
𝑐
𝑘(𝑞𝑖) with a view to define kinematics and dynamics of the
robot. When dealing with collisions, Cartesian coordinates
𝑐𝑘(𝜆𝑗) will be used, being 𝑖 = 1, . . . dof; 𝑗 = 1, . . . , npc; dof:
robot degrees of freedom; npc: number of Cartesian points
used for the wired model of the robot in collision detection;
and 𝑘 is the configuration itself; see [14–16].

3.2. Adjacent Configuration. Given a feasible configuration of
the robot 𝑐𝑘, it is said that 𝑐𝑙 is adjacent to it if it is feasible and
meets the following two conditions.

(i) The robot end-effector occupies a position corre-
sponding to a node of the discretized workspace in
Cartesian coordinates and its distance to the end-
effector position in the configuration 𝑐𝑘 is less than
a given value.

(ii) 𝑐𝑙 is such that it minimizes the function

dof
∑
𝑖=1

(𝑞
𝑙
𝑖 − 𝑞
𝑘
𝑖 )
2
. (11)
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3.3. Trajectory. Given a sequence of 𝑚 robot configurations
= {𝑐1(𝑞1𝑖 ), 𝑐

2(𝑞2𝑖 ), . . . , 𝑐
𝑚(𝑞𝑚𝑖 )}, the trajectory 𝑠 is defined by

means of cubic interpolation functions between adjacent
configurations so that the resulting time 𝑡min to perform the
trajectory is minimum. We have that

∀𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗[ → 𝑞𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑡 + 𝑑𝑖𝑗𝑡
2
+ 𝑒𝑖𝑗𝑡
3
,

(12)

where 𝑖 = 1, . . . , dof, 𝑗 = 1, . . . , 𝑚 − 1.
To ensure continuity, the following conditions associated

with the given configurations are considered.

(a) Position: for each interval 𝑗 the initial and final
positions must match 𝑐𝑗 and 𝑐𝑗+1; this gives a total of
(2 dof (𝑚 − 1)) equations:

𝑞𝑖𝑗 (𝑡𝑗−1) = 𝑞
𝑗

𝑖 ,

𝑞𝑖𝑗 (𝑡𝑗) = 𝑞
𝑗+1

𝑖 .
(13)

(b) Velocity: the initial and final velocities of the
trajectory must be zero, obtaining (2 dof) equations

̇𝑞𝑖1 (𝑡0) = 0,

̇𝑞𝑖𝑚−1 (𝑡𝑚−1) = 0.
(14)

When passing through each intermediate configura-
tion, the final velocity of previous interval must be
equal to the initial velocity of the next interval; that
gives (dof (𝑚 − 2)) equations

̇𝑞𝑖𝑗 (𝑡𝑗) = ̇𝑞𝑖𝑗+1 (𝑡𝑗) . (15)

(c) Acceleration: for each intermediate configuration,
the final actuator acceleration of the previous interval
must be equal to the initial acceleration of the next,
resulting in (dof (𝑚 − 2)) equations

̈𝑞𝑖𝑗 (𝑡𝑗) = ̈𝑞𝑖𝑗+1 (𝑡𝑗) . (16)

Knowing the time required to perform the trajectory
between the different configurations, using the above
equations, the coefficients of the cubic polynomials
can be obtained efficiently bymeans of the calculation
of the normal time [15].
In addition, theminimum time trajectory smustmeet
the following four types of constraints:
(d) maximum torque in the actuators,
(e)

𝜏
min
𝑖 ≤ 𝜏𝑖 (𝑡) ≤ 𝜏

max
𝑖 ∀𝑡 ∈ [0, 𝑡min] , 𝑖 = 1, . . . , dof, (17)

(f) maximum power in the actuators,
(g)

𝑃
min
𝑖 ≤ 𝜏𝑖 (𝑡) ̇𝑞𝑖 (𝑡) ≤ 𝑃

max
𝑖 ∀𝑡 ∈ [0, 𝑡min] , 𝑖 = 1, . . . , dof,

(18)

(h) maximum jerk on the actuators,
(i)

...
𝑞
min
𝑖 ≤

...
𝑞𝑖 (𝑡) ≤

...
𝑞
max
𝑖 ∀𝑡 ∈ [0, 𝑡min] , 𝑖 = 1, . . . , dof, (19)

(j) energy consumed

𝑚−1

∑
𝑗=1

(

dof
∑
𝑖=1

𝜀𝑖𝑗) ≤ 𝐸, (20)

where 𝜀𝑖𝑗 is the energy consumed by the actuator 𝑖
between the configurations 𝑐𝑗 and 𝑐𝑗+1.

To obtain the minimum time, an optimization problem
is solved using variables defined in time increment at each
interval (see [17]) so that in the interval between 𝑐𝑗 and 𝑐𝑗+1,
the variable is Δ𝑡𝑗 = 𝑡𝑗 − 𝑡𝑗−1 and the objective function is

𝑚−1

∑
𝑗=1

Δ𝑡𝑗 = 𝑡min. (21)

3.4. Offspring Trajectory. Let 𝑠𝑗 be aminimum time trajectory
associated to the sequence of 𝑚 configurations 𝐶𝑗 under the
conditions described in Section 3.5. It is said that the trajec-
tory 𝑠𝑘 is an offspring of 𝑠𝑗 when the following conditions are
met:

(a) 𝐶𝑘 = 𝐶𝑗 ∪ 𝑐𝑛;
(b) 𝑛 ̸= 1;
(c) 𝑛 ̸= 𝑚 + 1.

So the trajectories of a certain generation will have one
passing configurationmore than the previous generation, but
they will keep the same initial and final configurations.

3.5. Obtaining of the Collision-Free Trajectory. The problem
of obtaining a feasible and efficient trajectory for a robot in
an environment with static obstacles allowing the motion
between two given configurations (𝑐𝑖 and 𝑐𝑓) is posed. An
efficient trajectory is that performed in a minimum time,
with a reasonable computational cost, and subject to the
limitations of the robot dynamics, the jerk constraints, and
power consumption. Clearly the feasibility of the trajectory
means that there are no collisions.

Theproposed process for solving the problem involves the
following steps which are implemented in the algorithm.

(a) Obtaining the minimum time trajectory: using the
procedure described in Section 3.3, the trajectory
𝑠min is obtained corresponding to the sequence of
configurations 𝐶 = {𝑐𝑖, 𝑐𝑓}.

(b) Search for collisions: the first configuration from 𝑠min
which has collision 𝑐𝑐 is determined, and a previous
configuration 𝑐𝑎 is searched for whose distance is
less than 𝑑seg (so that the smallest patterned obstacle
used to represent the work environment can never be
between 𝑐𝑐 y 𝑐𝑎).
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Table 1: Kinematic characteristics of PUMA 560 robot.

Joint 1 2 3 4 5 6
Minimum angle (∘) −160.0 −215.0 −45.0 −140.0 −100.0 −266.0
Maximum angle (∘) 160.0 35.0 225.0 140.0 100.0 266.0
Maximum velocity (∘/s) 82.0 54.0 122.0 228.0 241.0 228.0

(c) Obtaining adjacent configurations: up to six new
adjacent configurations to 𝑐𝑎 can be achieved as
defined in Section 3.2 (𝑐𝑎𝑗 𝑗 = 1, . . . , 6).

(d) Obtaining offspring trajectories: for each one of the
𝑙 adjacent configurations obtained in the previous
section that have no collision with obstacles, the
offspring trajectory 𝑠𝑘 is obtained from 𝑠min, such that
𝐶𝑘 = 𝐶 ∪ 𝑐𝑎𝑘 (𝑘 = 1, . . . , 𝑙).

(e) Trajectory selection: the generated trajectories are
introduced in previous section (d) on the set of
trajectories ordered by time 𝑇𝑡 = {𝑠1 ⋅ ⋅ ⋅ 𝑠𝑝}, taking
the minimum time trajectory 𝑠1 and checking for no
collisions as it was done in previous section (b). If
𝑠1 has no collision, the algorithm goes to the next
section; otherwise it returns to section (c) and the
process is repeated.

(f) Refining the trajectory: in case that the collision-
free trajectory 𝑠1 does not belong to the first gen-
eration (direct offspring of 𝑠min, with a sequence of
three configurations), we have 𝑠1 such that 𝐶1 =
{𝑐𝑖, 𝑐2, 𝑐3, . . . , 𝑐𝑚−1, 𝑐𝑓} (𝑚 being the number of con-
figurations that define the trajectory).

𝑚 − 2 sets of configurations 𝐶1𝑝 are taken such that 𝐶1 =
𝐶1𝑝∪𝑐
𝑝 for𝑝 = 2, . . . , 𝑚−1, obtaining the corresponding set of

collision-free trajectories𝑇𝑟. If it is empty then it is said that 𝑠1
cannot be reduced; otherwise the process is repeated for the
new trajectories and the results are included in𝑇𝑟.Theprocess
finishes when the algorithm cannot obtain new trajectories.

Finally the trajectory 𝑠1 is included in 𝑇𝑟 and the reduced
trajectory 𝑠𝑟 is defined as the trajectory belonging to 𝑇𝑟 with
minimum time.

The proposed solution to the problem is 𝑠𝑟, which will be
a minimum time offspring trajectory 𝑠min and with a small
number of passing configurations.

4. Time Obtained Using a Robotic
Environment Simulation Program
Called GRASP

The simulation program GRASP10 for robotic environ-
ments is used to obtain the time needed to perform the
motion between two given configurations. Among other
tasks, GRASP10 can model and simulate the robot kinematic
behavior. In this paper we have used the original model
of PUMA 560 robot that comes with the program as a
comparator. It is assumed that the point to point trajec-
tory calculation procedures of GRASP10 correspond to the

real robot. The robot kinematic characteristics are shown
in Table 1.

It should be noted that GRASP10 does not perform
dynamic calculations but only kinematic ones. It is therefore
very important to indicate the maximum working velocities,
which have been obtained from actual robot by considering
the properties of each actuator, primarily its maximum
power, and the working torque.

When the trajectory is generated by GRASP10, the work-
ing actuators act simultaneously and at least one of them is
moved to its maximum speed, calculated as follows for each
actuator: (see Table 1)

𝜔max =
𝑃

𝑡min
, (22)

where 𝑃 stands for the power and 𝑡min for the torque in the
corresponding actuator.

This methodology (use of GRASP10 for calculating the
time required to perform a trajectory) has been applied to the
same examples that have been resolved by the optimization
algorithm explained in Section 3 in order to compare their
efficiency.

For each example, the initial data are the initial and final
configurations and the kinematics of the robot. The obstacle
has been incorporated after the generation of the path, so that
it burdens the previously calculated one.

5. Productivity and Economic Study

In this section the productivity will be quantified by conduct-
ing an economic study based on the working times of robotic
tasks.

The aim is to increase the profitability of production
lines by designing flexiblemanufacturing systems.This allows
companies to stay competitive because of the quick adapta-
tion to rapidly changing markets. For instance, by adjusting
the working hours in assembly lines or by deciding which
products are more suitable to be manufactured according to
the current demand.

This is performed by posing a multiobjective optimiza-
tion problem, which makes use of the optimization algo-
rithm, above presented, to solve the kinematics and dynamics
of robot arms. The optimization method finds the minimum
time trajectory to perform industrial tasks in production lines
while taking into consideration the physical constraints of
the real posed problem and then economic issues are also
considered in the process.

Furthermore, Pareto fronts will be introduced, which will
serve to determine those variables which mainly affect the
improved productivity. To bemore precise, themultiobjective
optimization problem allows obtaining the Pareto frontiers,
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which provides information about the trade-offs between
the competing variables (i.e., execution times and benefits
for the different products that can be manufactured at the
production line).

Therefore, the economic study starts by defining the
economic objective function to be used. It is formulated as
follows:

Max𝐵 = 1

(1 + 𝑟)
𝑇
[

𝑛

∑
𝑝=1

(𝑃𝑝 − 𝐶𝑝) ⋅ 𝑁𝑝 (𝑡)] , (23)

where 𝐵 is the objective function to be maximized and
represents the current value of the net benefit from a
generic product (in C) defined as the revenue of the items
manufactured at a production line minus total costs; 𝑟 is the
annual discount rate; 𝑇 represents number of years; 𝑃𝑝 is the
market unitary price of the product 𝑝 (in C); 𝐶𝑝 stands for
the unitary cost to perform the product 𝑝 (in C), ranging
from costs of rawmaterials, energy, amortization, labor force,
maintenance, and taxes to direct and indirect costs;𝑁𝑝(𝑡) is a
function accounting for the number of products carried out
per hour. It is calculated like

𝑁𝑝 (𝑡) =
𝐾

𝑡(𝑆𝑘)
𝜇 , (24)

where 𝑆𝑘 is the set of tasks needed to manufacture and
assemble a certain product (𝑝) and it constitutes the work
load, where 𝑘 represents the number of tasks. 𝑡(𝑆𝑘) = ∑𝑗∈𝑆𝑘 𝑡𝑗
is the cumulated task time and it is called the product time. A
cubic function of 𝑡min has been considered. 𝜇 is a parameter
that refers to the economic environment and the market
seasonality. 𝐾 is a constant related to the current number of
working hours per year.

Each one of these tasks is performed by the robot arm,
which uses a certain time to describe the optimal trajectory.
As above mentioned, the developed algorithm (Section 3)
returns the minimum time 𝑡min𝑝 to perform the task of the
robot arm in order to obtain the product𝑝, while considering
the time of the other tasks as constant. The lower the time
used by the robot to perform its task, the greater the number
of products manufactured per hour. Then, the cumulative
time of all tasks can be defined as follows:

𝑡 (𝑆𝑘) = 𝑡min𝑝 +
𝑘

∑
𝑗∉𝑆robot

𝑡𝑗. (25)

Besides, the amount that an additional item adds to a
company’s total revenue during a period is called themarginal
revenue of the product (MRP).

This factor is defined as the additional products man-
ufactured per hour because of reducing the time used by
the robot arm (𝑡min𝑝).The additional products manufactured
increase the company’s output and, therefore, the company’s
total revenue.

The marginal revenue product can be obtained by mul-
tiplying the marginal product (MP) of the factor by the
marginal revenue (MR). In a perfectly competitive market,
the marginal revenue a company receives equals the market-
determined price of the product 𝑃𝑝.

Therefore, for companies in perfect competition, the
marginal revenue product MRP can be expressed as follows:

MRP = MP × 𝑃𝑝. (26)

The law of diminishing marginal returns tells us that if
the quantity of a factor is increased while other inputs are
held constant, its marginal product will eventually decline. If
marginal product is falling (MP ↓), MRP must be falling as
well (MRP ↓).

The marginal revenue of a product (calculated in
Section 7)will be used to obtain the total annual benefits in an
assembly line, as well as to determine the trade-offs between
the benefits and the times obtained in the multiobjective
optimization problem.

6. Pareto Optimality

Many real-world problems face two different types of mathe-
matical difficulties.Those difficulties are the existence ofmul-
tiple and conflicting objectives and a highly complex search
space. Contrary to a single optimal solution, competing goals
entail a set of compromise solutions generally denoted by
the Pareto-optimal, for example, [18]. When there is lack of
preference information, none of the corresponding trade-offs
between decision variables could be said to be better than
that of others. The optimal set of solutions in multiobjective
optimization problems is named the Pareto-optimal set.

A solution is defined as Pareto optimal if no improvement
in one objective can be accomplished without adversely
affecting at least one other objective. In the objective space,
the hypersurface that represents all possible Pareto-optimal
solutions is termed as the Pareto front or frontier. A design
that is located along the Pareto front is neither better nor
worse than any other solution along the Pareto front. Hence,
the solutions that compose the Pareto-optimal set are equiv-
alently optimal. The objective of multiobjective optimization
using this technique is to generate as many Pareto-optimal
solutions as possible to adequately represent the Pareto front.
This allows obtaining sufficient information for a trade-off
decision between competing variables. The Pareto front can
be discontinuous, concave, or convex and, in general, is not
known a priori.

The concept of domination enables the comparison of
a set of designs with multiple objectives. Such a concept is
not required for single objective optimization on account of
the fact that the value of the objective function is the only
measure of the quality of the design.

Then, in a direct comparison of two designs, if one
design dominates another, the dominating design is superior
and nearer to the Pareto front. Instead, if neither design
dominates the other, the designs are nondominant to each
other.Therefore, the best designs (with equally good objective
vectors) in an arbitrary set of solutions can be distinguished
because they are not dominated by any other design in
the set; they compose the nondominated subset. Similarly,
the designs that compose the Pareto-optimal set are the
nondominated set associated with the entire feasible space
and are located along the Pareto front.
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Table 2: Working times needed to perform the trajectory for each example.

Optimization
algorithm

Example 1 2 3 4 5 6 7 8 9 10
Working time (s) 0.7488 0.5909 0.7511 1.5557 0.7488 0.5115 1.3920 0.7118 0.4529 1.0000

Example 11 12 13 14 15 16 17 18 19 20
Working time (s) 0.7488 0.5909 0.7511 1.5557 0.7488 0.5115 1.3920 0.7118 0.4529 1.0000

Simulation
software
GRASP

Example 1 2 3 4 5 6 7 8 9 10
Working time (s) 0.7500 0.6200 0.7700 1.6000 0.7600 0.5300 1.4000 0.7200 0.4600 1.2000

Example 11 12 13 14 15 16 17 18 19 20
Working time (s) 0.7500 0.6000 0.7600 1.5600 0.7500 0.5200 1.4300 0.7400 0.4600 1.3000

Consequently, the trajectory planning optimization prob-
lem in robotics can be defined as finding a motion law along
a given geometric path, taking into account some predefined
requirements, while generating minimum trajectory time of
the robot arm.The inputs of the trajectory planning problem
are the geometric path and the kinematic and dynamic
constraints, while the output is the trajectory of the joints
(or of the end-effector). The trajectory is expressed as a time
sequence of position, velocity, and acceleration values. The
optimized trajectory should alsomeet the physical limitations
of the robot, the constraint of energy consumption and
collisions avoidance.

The times obtained from the simulation-optimization
procedures lead to different benefits. Therefore the Pareto
fronts can be determined, thus showing the trade-offs
between the benefits and the obtained times. They show
the opportunity cost of time higher than the minimum (see
Section 7).

7. Results of the Application of the
Methodology to Different Examples

The proposed multiobjective optimization methodology and
the Pareto optimality have been applied to different examples
in order to set the above mentioned trade-offs between
the benefits and the obtained times. Therefore, now the
objective is conducting an economic study to quantify the
productivity of the assembly line by comparing theminimum
time trajectory to perform certain industrial tasks. It is
obtained using two methods: an optimization algorithm and
the simulation software GRASP.

These times are obtained while taking into consideration
the physical constraints of the real working problem and the
economic issues involved in the process. Twenty examples
have been solved. The examples differ in the initial and final
configurations of the robot, that is, the location of the end-
effector (see Table 2). The optimization algorithm simulates
the PUMA 560 robot.

This industrial robot arm is probably the most common
robot in university laboratories. It is a 6-R (revolution)
type robot, with 6 degrees of freedom, and uses direct
current (DC) servo motors as its actuators. This robot is
a compact computer-controlled robot not only to perform
service tasks, but also to carry out medium-to-lightweight
assembly, welding, materials handling, packaging, inspection

applications, personal care, and so forth. The Series 500 is
the most widely used model in the PUMA line of electrically
driven robots.

With a 36-inch reach and 5-pound payload capacity,
this robot is designed with a high degree of flexibility
and reliability. The range of these angles from 𝜃1 to 𝜃6 is
the following (320∘, 250∘, 270∘, 280∘, 200∘, and 532∘). The
corresponding link lengths from L1 to L6 are (432, 432, 433,
56, 56, and 37.5) mm.

Table 2 presents the results obtained for the developed
algorithm and GRASP, that is, the working time required for
the robot to perform the industrial tasks.

With regard to the economic issues associated with
the robot industrial tasks we suppose for all examples the
following quantities and considerations:

unitary cost to produce a certain item: 0.8 C (without
considering the cost of the energy consumed);

item price: 1 C. For the sake of simplicity, we assume
that only one product is produced at this point.

When the cost of the energy consumed is considered,
the different examples have different costs because of the
different working times. Therefore cost of the consumed
energy: 0.0676 C/kWh (it is an average cost). This cost has
been added to the cost of 0.8 C.

For reasons of clarity, the manufactured products are
obtained in only one shift of 8 hours (365 working days in
a year). The benefits 𝐵 are presented for a period of one year.

The time of the other industrial tasks needed to produce
the item has been defined as 90 s, that is, the summation of
times shown in (25), ∑𝑘𝑗∉𝑆robot 𝑡𝑗.

The optimization algorithm presents different working
times for the different examples, thus leading also to different
benefits.

For instance, the case number 19, which has no con-
straints in both the jerk and the energy consumed, presents
the maximum annual revenue (Figure 1). Contrary, case
4, with severe physical constraints, shows the minimum
benefits.

The benefits for all examples obtained by means of the
optimization algorithm are depicted in Figure 1. With the
current demand, the mean value of the benefit for the 20
examples analyzed is 23,142.40 C/year, while the standard
deviation is 90.32.
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Figure 1: Annual revenue for each example based on the current
demand.

The industrial tasks are carried out in only a few seconds,
so that the time scale is based on seconds. Note that the
GRASP working times are similar to those obtained with the
developed optimization algorithm, although slightly higher.

Then total benefits are also similar to those reported in
Figure 1, although the higher working times lead to lower
benefits.

Consequently, a lower mean value of the benefits is
obtained, that is, 23,132.84 C/year with a standard deviation
of 96.02.

Note that different prices, costs, and number of items
produced by year may lead to higher differences in benefits
between the optimization algorithm and GRASP. However,
the selected values are only intended to illustrate the impor-
tance of using efficient algorithms of robot trajectory opti-
mization for saving time and reducing costs in production
lines.

In addition, a new analysis is carried out using Pareto
optimality to illustrate the loss of benefits on account of not
using optimization algorithms.

For that, we consider that three different products can
be manufactured and assembled in the same production
line. The loss of benefits is represented by the Pareto fronts
for three different products. They differ in their cumulative
time to be manufactured and assembled but share the same
working time (𝑡min𝑝) of the robot arm.

Then the minimum trajectory time for case 4 is used for
the three products, in this example, 1.55 s.These products also
differ in the total costs (without considering the energy costs),
prices, and values of the parameter 𝜇, which is intended
to simulate different economic environments and market
seasonality. The total cost of Product 1 is 0.8 C, Product 2 is
0.82 C, and Product 3 is 0.84 C, while the prices are 1.0 C for
Product 1, 1.05 C for Product 2, and 1.03 C for Product 3. In
this analysis, 𝑡(𝑆𝑘) has been defined as a cubic function of
𝑡minp. The parameter 𝜇 takes the values for each product of
0.6, 0.5, and 0.55, respectively.

Consequently, if the market conditions do not change
and the optimization algorithm is not used, the minimum
trajectory time is not obtained.

In this scenario, there is a benefit loss due to the fact that
robot arm may present higher working times.

Moreover, the multiobjective optimization problem
allows obtaining the Pareto frontiers, which provides
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Figure 2: Pareto frontiers obtained with the optimization algorithm
for “example 4” and the three different products manufactured.

information about the trade-off of the decision variables.
One main trade-off is between the benefits and the working
time (i.e., the Pareto frontier). Results for example 4 are
shown in Figure 2, considering the manufacturing of three
different products. That is, the algorithm allows quantifying
the benefit loss because of not using the optimization
algorithm. Each solution in the front will have optimal
objective function value, optimal value of variables, and the
constraints value. All constraints will be satisfied by any
solution in the Pareto optimal front.

It is worth pointing out that for the analyzed examples,
the differences between their annual energy costs are almost
negligible compared with the other costs.

Furthermore, the concept of nondomination sorting can
be used to categorize each design within a set into a hierarchy
of nondominated levels or fronts. Each different level of
nondomination represents a relative distance from the Pareto
front. The best nondominated front is closest to the Pareto
front and each subsequent front lags further behind and is,
hence, increasingly inferior.

Through this sorting, each design is associated with
a front that defines the quality of the design relative to
the rest of the group. To isolate the various fronts, the
designs that belong to the nondominated subset of the entire
group are first identified. These designs are the best in the
group, the closest to (or members of) the Pareto front.
For instance, in our multiobjective trajectory optimization,
the nondominated subset (i.e., the best solution in terms
of greater benefits) is represented by the Pareto frontier of
Product 2 for times higher than 1.96 s (see Figure 2).

Any design belonging to this front is then temporarily
set aside and another comparison process determines the
next level of nondominated designs from the remaining
population.

This nondominated subset is the front of Product 3 and
the procedure is repeated until the entire population has been
sorted into the appropriate level, that is, the Pareto frontier of
Product 1.

Note, however, that for working times lower than 1.76 s
the Pareto frontier of Product 1 dominates the frontier of
Product 2.That is, higher benefits are expected to be achieved
in the assembly line for Product 1.
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Figure 3: Benefits obtained for Product 1 and “example 4” versus
costs.
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Figure 4: Benefits obtained for Product 1 and “example 4” versus
price.

Additionally, for the twenty examples analyzed in this
work, a normal distribution function of the cost (𝐶) and the
price (𝑃) has been defined for a certain product based on the
current market economic fluctuations. The benefits resulting
from these market fluctuations are provided in Figures 3 and
4.

Figure 3 has been obtained when a normal distribution of
the cost fluctuation is considered on account of hypothetical
market changes.The statistics that define the normal distribu-
tion (mean and variance) are based on the current total costs
above mentioned.

Figure 4 has been obtained when a normal distribution of
the price fluctuation is considered on account of hypothetical
market changes. The statistics that define the normal distri-
bution (mean and variance) are based on the current prices.

For the sake of conciseness, the cost and price fluctuations
have been considered only for Product 1. Its current market
values are 𝑚𝑐 = 0.8 C for costs and 𝑚𝑝 = 1 C for prices,
while the standard deviation (𝜎) is defined as𝑚/3.With these
functions, the market changes, regarding costs and prices,
are intended to be modeled. 𝐶(𝐶 = 𝐶𝑝 ∗ 𝑁𝑝) gives the
cost to manufacture 𝑝 products (𝑁𝑝). 𝑃𝑝 gives the revenue as
defined by (2), that is, multiplying the price of the products
manufactured.

These functions are sampled, with these values being used
in the multiobjective optimization problem to obtain the
results presented in Figures 3 and 4.

These figures show a hypothetic fluctuation in the market
conditions with regard to costs and prices for case 4.

The fluctuations can be directly translated into benefits
using the algorithm, thus allowing managers in the decision
making process regarding which products should be manu-
factured, and also to define an efficient scheduling.Therefore,
the design and planning of the robot tasks are considerably
improved.

Finally, the algorithm has also been run for example 4 to
simulate an increase in the future demand of a 20% compared
with the current demand (i.e., a total of 137,778 products
manufactured per year). The aim is to answer the question
about how many extra working hours are needed to respond
to that increase in the demand. The best solution is given
by the optimization algorithm, since it reports the minimum
trajectory time. The solution is that we need an additional
3,504 hours per year to meet such demand. This information
can be used during the decision making process to design an
efficient scheduling.

8. Conclusions

This work deals with trajectory planning of industrial robots
for assembly lines in a cost-efficient way, thus overcom-
ing limitations of the economic analysis methods which
are currently available. It has been demonstrated that the
multiobjective optimization algorithm finds the minimum
time trajectory of industrial robots and the maximum annual
revenue. This means greater annual revenue and better
adaptation to market fluctuations in terms of costs, prices,
and product demands. This is carried out by taking under
consideration the physical constraints of the real working
problem and the economic issues involved in the process.
The proposed procedure has been successfully validated in
different examples of robotic industrial tasks, where a better
planning and design of production lines have been found.

The results from different examples have been compared
using two methodologies, an optimization procedure and a
simulation technique.

We have checked that the results obtained with the
optimization procedure lead to lower working times and
therefore greater annual revenues in comparison with those
obtained with the simulation technique. Consequently the
number of products manufactured and profits are increased
while the number of the shifts required is reduced.The core of
this paper is the procedure to obtain the best working times in
real complex industrial robots with many degrees of freedom
and mechanical constraints.

This has shown the worth of the methodology, with the
overall objective of improving the profitability of production
lines by designing flexible manufacturing systems. Further-
more, an entire set of equally optimal solutions for each
process, the Pareto-optimal sets, are generated.

This provides information about the trade-offs between
the different competing variables of the multiobjective
optimization problem (i.e., working times and profits for
the different products that can be manufactured at the
production line).
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Once the optimal time to perform each process is
obtained in a cost-effective manner the results can be used
for improving a wide variety of robotic industrial tasks. This
can help managers in the decision making process regarding
which products should be manufactured and to define an
efficient scheduling to produce them.This is because it allows
adjusting the number of shifts needed according to the exist-
ing demand of the products manufactured. Then companies
may stay competitive because the algorithm allows a quick
adaptation to rapidly changing markets.

As a further research this methodology will be extended
to deal with new decision variables in the multiobjective
optimization problem such as the energy consumed and time
simultaneously since they are conflicting variables.
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