
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

https://doi.org/10.1109/MSP.2017.2730898

http://hdl.handle.net/10251/103153

Institute of Electrical and Electronics Engineers

Torres Carot, V.; Valls Coquillat, J.; Lyons, R. (2017). Fast- and Low-Complexity atan2(a,b)
Approximation. IEEE Signal Processing Magazine. 34(6):164-169.
doi:10.1109/MSP.2017.2730898



Fast and low-complexity atan2(a,b)
approximation

Vicente Torres
vtorres@eln.upv.es
Universitat Politecnica
de Valencia

Javier Valls
jvalls@eln.upv.es
Universitat Politecnica
de Valencia

Richard Lyons
r.lyons@ieee.org
Besser Associates
Mt. View, California

INTRODUCTION

This article presents a new entry to the class of published algorithms for the fast computation
of the arctangent of a complex number. Our method uses a look-up table (LUT) to reduce
computational errors. We also show how to convert a large sized LUT addressed by two
variables to an equivalent-performance smaller sized LUT addressed by only one variable.
In addition, we demonstrate how and why the use of follow-on LUTs applied to other simple
arctan algorithms produce unexpected and interesting results.

The computation of the arctangent function atan2(a,b), i.e. obtaining the angle of a
complex number c=b+ja, has been the subject of extensive study because this computation is
needed in many applications. For example, in the frequency, phase, and time synchronization
stages of digital communications, digital FM demodulation, target tracking in wireless sensor
networks, and object recognition in the field of image processing. From a designer’s point
of view it is useful to have several computation choices, since the performance requirements
(speed, accuracy, power consumption, etc.) may be different depending on the specific
application, and one of those choices may be better suited than others for a given application.

A high-speed computation of atan2(a,b) can be achieved with look-up tables (LUTs),
where the bit-level concatenation of a and b are the values used to address the ROM that
stores the output of the function. The look-up table method is fast but much memory is
required when a decent arctangent accuracy is needed. Another popular option is to use
high-order algebraic polynomials, like Chebyshev polynomials or Taylor series [1]. These
methods give good precision, but since the arctangent is highly non-linear they lead to long
polynomials and intensive computations. In other cases, approximations based on rational
functions are used [2–4], as they may provide acceptable results with few computations. The
coordinated rotation digital computer (CORDIC) algorithm, which requires only shift and
add operations, is frequently used to compute the arctangent [1]. However, its sequential
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nature makes it less adequate when throughput speed is critical.
Instead of using a single complicated equation to achieve high accuracy, as proposed

by other authors, our proposal is a two-stage process, with a first stage that uses a low-
complexity coarse approximation; and a second stage which improves the accuracy by means
of a small LUT that stores precomputed error values (as a function of the first stage output).
Our proposal computes a full-quadrant arctangent faster than other popular options that
achieve the same accuracy. We now describe the two processing stages of our proposed
atan2(a,b) algorithm.

FIRST STAGE

The idea behind this stage is to conceptually generate a continuous real-valued sinusoid
p(t) that has the same initial phase angle as the phase of our complex number c=b+ja. If
c = |c|ejθ, that sinusoid would be:

p(t) = |c| · cos
(
2πt

T
− θ

)
, (1)

where t is time and T is the sinusoid’s period, as shown in Figure 1.
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[FIG1] Real-valued sequence p[n] and continuous sinusoid p(t) associated
with a given complex number c=|c|ejθ.

The reason we care about this p(t) sinusoid is that the time location of p(t)’s maximum
value, tm in Figure 1, is proportional to the desired phase angle of c=b+ja = |c|ejθ. The
relationship between tm and θ is found by setting the time derivative of p(t) equal to zero
and solving for tm. Doing so gives us:

tm =
Tθ

2π
. (2)
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The time-domain dimensions of variables tm and T must, of course, be identical. With
no loss in generality, and out of convenience, we assume the time between the p[n] samples
is unity. Thus tm is measured in units and T=4 units. So when we use (2) to compute θ
the ratio tm/T will be dimensionless and θ will be measured in radians. In the First Stage
processing we will estimate tm and show how this will yield an estimate of angle θ, for a
given accuracy, more efficiently than performing other atan2(a,b) algorithms.

It can easily be seen that the sequence p[n] = {b, a,−b,−a} is a sampled version of p(t),
as defined by (1) as:

p[n] = {b, a,−b,−a} = |c| · {cos (θ) , sin (θ) ,−cos (θ) ,−sin (θ)}

= |c| · {cos (−θ) , cos
(π
2
− θ

)
, cos

(
2π

2
− θ

)
, cos

(
3π

2
− θ

)
}

= |c| · cos
(nπ

2
− θ

)
= p (t)|t=nT

4
where n = 0, 1, 2, 3. (3)

Our goal is to compute tm from the p[n] samples.

To clarify our scenario here, Figure 2 shows the various p(t) waveforms that result from
various values of our complex number input c. The time location of the absolute maximum
of the sinusoidal p(t) waveform, tm, is proportional to the angle of c.

The first step of the First Stage processing is to determine the time location of the
largest sample of four-sample sequence p[n] (determined from the signs of a+b and a−b), a
parameter that we call “offset”. The second step of the First Stage processing computes the
time location of the maximum value of p(t) relative to offset, a parameter that we call “f ”.

Given the above concepts and relationships, we conclude the first step of the First Stage
processing by determining the value for offset, which will be 0, 1, 2, or 3. In the second step
of the First Stage processing we complete the estimation of tm approximating the value of
time variable f . Specifically we approximate the p(t) signal by a second-order Taylor series
in the vicinity of the largest p[n] sample as detailed in the APPENDIX, which gives us fr,
an approximation of the time location of the maximum value of p(t) relative to that sample:

f ≈ fr ≡
−p′(0)
p′′(0)

=
p(1)

2p(0)
(4)

In a general case, this computation would require three samples: the biggest of the four
samples of the waveform, and also the two samples adjacent to that sample, as depicted for
Case 1) in Figure 2, but since those two adjacent samples have the same absolute value and
opposite sign, only two samples are required in (4): the largest sample p(0) and its following
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[FIG2] The proposed atan2(a,b) algorithm illustrated for 4 different possible
c=b+ja values.

sample p(1). Using (4) we compile our desired processing parameters in Table 1. (Note that
a negative value of fr indicates that p(t) maximum value occurred prior to the largest sample
in p[n].)
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[TABLE 1] Deduction of the expression for fr as a function of the signs of
a+b and a−b.

Case a+b > 0 a−b > 0 p(0) p(1) offset fr =
p(1)
2p(0)

1) 1 0 b a 0 a
2b

2) 1 1 a -b 1 −b
2a

3) 0 1 -b -a 2 a
2b

4) 0 0 -a b 3 −b
2a

Based on the values for offset and fr from Table 1 and using (2), assuming T=4, the
result of the First Stage processing is an approximation of atan2(a,b), normalized to the
range [0, 1), as follows:

atan2(a, b)

2π
=

θ

2π
=
tm
4

mod 1 ≈ offset+ fr
4

mod 1 (5)

where the mod operator is needed to translate negative values to the desired [0, 1) range.
The computation of parameters offset and fr are shown as the First Stage processing in
Figure 3.

Stage 2Stage 1

a

b

offset fr

even a/(2b)

odd -b/(2a)

a+b a−b offset
>0 <0 0
>0 >0 1
<0 >0 2
<0 <0 3

LUT

mod 1 atan2(a,b)
1/4

offset

fr

[FIG3] Building blocks for the proposed atan2(a,b) algorithm.

The neat trick of our proposed algorithm is that neither the p[n] sequence nor the contin-
uous p(t) signal need to be computed. Our First Stage processing produces a rough estimate
of the angle of c=b+ja based upon some simple logic and simple arithmetic using values a
and b. The offset can be computed using the signs of a+b and a−b, as shown in Table 1. The
determination of the two samples needed for the computation of fr can also be performed
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using the signs of a+b and a−b. It should be pointed out that the variable used in the
denominator in both expressions for fr is always the largest absolute value between a and b.

It should be noted that in [5], Shima used an approximation for the one-variable atan(x)
(derived from a first order Lagrange polynomial interpolation of the function in two octants)
that would lead to the same expression as ours assuming our a/b or b/a were substituted for
his x and his expression is extended to the four quadrants using trigonometric identities.

The coarse approximation of atan2(a,b) in this First Stage can be modeled using the
following Matlab-style code, which returns a normalized θ/(2π) value for the arctangent:

f unc t i on angl=ap_atan2 (a , b)
b0=(a+b)>0;
b1=(a−b)>0;
o f f s e t =2∗not ( b0)+not ( xor (b1 , b0 ) ) ;
i f b0==b1

f r =−0.5∗b/a ;
e l s e

f r =0.5∗a/b ;
end
angl=mod( ( o f f s e t+f r ) / 4 , 1 ) ;

end

SECOND STAGE

The normalized error obtained using the First Stage is shown in Figure 4(a), as a function
of the actual angle of the complex number c=b+ja.

This error function should not be directly stored in a LUT, as it needs to be addressed by
the concatenation of the inputs a and b, requiring a large amount of storage. However, we use
the trick of transforming that error function to one that only depends on the coarse approx-
imation calculated in the previous stage. Therefore, our proposed Second Stage improves
the accuracy of the First Stage result using an error LUT addressed by |fr|.

The Matlab function ’errorLUTcontents’ indicates how this two-variable to one-variable
addressing transformation is done where the absolute value of the error is as a function of
the absolute value of variable fr.
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[FIG4] Error curves: a) First Stage arctangent error in degrees; b) contents
of the Second Stage error LUT.

f unc t i on f2=errorLUTcontents (wLUT) ;
x=l i n s p a c e (0 , 0 . 5 , 2^wLUT) ;
t=l i n s p a c e (0 , p i /4 ,2^wLUT) ;
c=exp (1 j ∗ t ) ;
f 1=atan2 ( imag ( c ) , r e a l ( c ) )/ (2∗ pi ) ;
f 2 =0.125∗ abs ( imag ( c ) ) . / abs ( r e a l ( c ) ) ;
e r r o r=f1−f 2 ;
f 2=in t e rp1 (4∗ f2 , e r ro r , x , ’ pchip ’ ) ;

end

The contents of a LUT named table which contains 2wLUT words can be computed using:

t ab l e=errorLUTcontents (wLUT) ;

In function ’ap_atan2’, right after fr is computed, the following two sentences would be
used to include the Second Stage in the model:

f i x=s i gn ( f r )∗ t ab l e (1+ f l o o r ( abs ( f r )∗2^(wLUT+1))) ;
angl=mod( angl+f i x , 1 ) ;

It should be noted that if this method were implemented using finite precision arithmetic,
the least-significant bit of the table would be around 3 positions lower than the target
accuracy desired for the whole operator.

Summarizing, our complete algorithm to approximate the angle of a complex number is
to: 1) identify the maximum of the four p[n] samples in Figure 1 to determine the value
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of offset, 2) compute the time location fr of the p(t)’s maximum and combine that fr with
offset value from step 1), and 3) improve the result of step 2) using a relatively small error
LUT.

RESULTS AND PERFORMANCE

In this section we will compare our approach to several known low-complexity approximations
of the atan2 function.

Table 2 summarizes the computational resources needed by our proposal and a few other
atan2 approximations, grouped for akin accuracies. Whenever an algorithm is proposed
for a two-octant one-variable atan(x), three extra addition/subtractions are included in
this table as the cost of extending the approximation to all the quadrants. In Table 2
we only consider divisions, multiplications, additions/subtractions and storage requirements
to evaluate the computational cost of the algorithms. Other required operations have a
computational cost that can be highly platform-dependent. Operators like binary shifts,
mod(), floor(), bit string concatenations, etc. have no cost at all in fixed-point ASIC or
FPGA implementations, but may result in additional computational time in pure software
implementations. For example, in a fixed-point FPGA implementation the computation
of offset =2∗not(b0)+not(xor(b1,b0)) doesn’t involve multiplications nor additions, just bit
concatenations and simple logic operators. In such a case, the hardware architecture could
be implemented following the data flow illustrated in Figure 3.

When only the First Stage of the algorithm, i.e. without the error LUT, is used, the ap-
proximation of the atan2(a,b), has a maximum error of±4.07◦, which corresponds to 6.5 exact
bits (i.e. the number of most significant bits that are zero in the binary representation of the
maximum absolute value of the error; this value can be obtained as −log2(max(abs(error))),
assuming a [0, 1) normalization of the values). Another coarse approximation was presented
in [6]-(Eq. 12), achieving the same accuracy with higher computational cost.

As shown in Table 2, by using a small error LUT of 32 values our proposal achieves similar
accuracy to Lyons’ [2]-(Eq. 2) and Rajan et al.’s [3]-(Eq. 9), but requiring three and two
fewer multiplications, respectively. If larger LUT sizes are used, similar accuracy to [4]-(Eq.
18 and Eq. 16) can be achieved with fewer arithmetic resources by our method.

Finally, another option considered for comparison purposes is the method described in [7],
which we call the Ratio+LUT method: first, the ratio z=a/b is calculated with a division
operation (to avoid a large LUT storing a two-variable function), second, the one-variable
function atan(z) is computed using a LUT. Note that to extend the computation to a full-
quadrant atan2, 4 additions would be needed. As seen in Table 2, when using the Ra-
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[TABLE 2] Computational cost comparison of our proposed algorithm with
various previously-published arctangent algorithms.

Method / ∗ +
LUT size
(words)

Max. Error
(degrees)

[5]-(Eq. 4.13) 1 0 3 - ±4.075
[6]-(Eq. 12) 2 0 4 - ±4.075
Ours 1 0 5 32 ±0.249
[2]-(Eq. 2) 1 3 5 - ±0.276
Ratio+LUT 1 0 4 128 ±0.224
Ours 1 0 5 64 ±0.126
[4]-(Eq. 18) 1 4 4 - ±0.162
[3]-(Eq. 9) 1 3 5 - ±0.086
Ratio+LUT 1 0 4 256 ±0.112
Ours 1 0 5 1K ±0.008
[4]-(Eq. 16) 1 7 6 - ±0.008
Ratio+LUT 1 0 4 4K ±0.007

tio+LUT, the size of this LUT would be four times larger than in our proposal, for the same
final accuracy. Moreover, in fixed-point implementations of the algorithm, the largest value
stored in the atan2 LUT would be 3.5 bits larger than in our case, making the quantization
noise worse for the same LUT size and word length.

USING A DIFFERENT FIRST STAGE

As we have shown (see Table 2) the First Stage of our algorithm requires the least arithmetic
resources. Nevertheless, in this section we explore the idea of adding a Second Stage based
on an error LUT to other atan2 algorithms. Adding a Second Stage could be an easy way
of improving the accuracy of an existing implementation with minimum design cost.

We have used [6]-(Eq. 12), [2]-(Eq. 2), and [4]-(Eq. 18) as First Stages in a two-stage
algorithm. Their error was computed, using a modified version of the ’errorLUTcontents’
function, and the maximum atan2 error was measured for several LUT sizes. The results are
shown in Figure 5. When a Second Stage LUT is used, the accuracy is improved significantly.
As can be seen, the maximum error is halved (i.e. one exact bit more is achieved) when the
size of the LUT is doubled.
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Another interesting observation is that when the Second Stage is added, the atan2 max-
imum error depends on the maximum first derivative of the error curve stored in the LUT.
This explains why, for example, for the same atan2 accuracy, [6]-(Eq. 12) would require a
LUT twice as large as ours. Figure 6(a) shows the LUT contents for both approaches: ours
with a solid line, [6]-(Eq. 12)’s with a dashed line. Figure 6(b) shows the absolute value of
the difference between consecutive values in the LUT, for the specific case of a LUT with 256
words. As can be seen in those figures, our approach has a smaller maximum of the absolute
value of the first derivative of the error curve. On the contrary, [4]-(Eq. 18) achieves better
accuracy than [2]-(Eq. 2), but when a Second Stage LUT is added their accuracy is similar.
That’s because in this case they have similar maximum values of the first derivative of their
error curves. An important lesson we learn is that atan2 approximations with smaller first
derivative error values are better suited for the addition of a Second Stage LUT.
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CONCLUSIONS

We propose a full-quadrant algorithm for the computation of the arctangent of a complex
number c=b+ja, particularly suitable for implementations in hardware, e.g. FPGA, ASIC,
etc., where there is no penalty incurred when accessing a LUT. The Second Stage of the
method we propose could be applied to other low-complexity algorithms for the approx-
imation of the atan2 function, but for a given accuracy there is a trade-off between the
complexity of the approximation used for the First Stage and the required storage resources
used in the Second Stage. As we have shown, algorithms with a smaller first derivative of
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[FIG6] LUT characteristics: a) LUT contents; b) absolute value for the
derivatives of the LUT contents for our proposal (solid line) and [6]-(Eq. 12)
(dashed line).

their error curve are best suited for improving the accuracy by the addition of a Second
Stage LUT. Because our proposed method can be easily improved by increasing the size of
a memory when higher accuracy is needed, it is an attractive arctan method in high-speed
applications where moderate accuracy is required (e.g., in systems where the precision of the
measured a and b variables is, say, 14 bits or less).

REFERENCES

[1] J.-M. Muller, Elementary functions: algorithms and implementation. Cambridge, MA,
USA; Berlin, Germany; Basel, Switzerland: Birkhäuser, 1997.

[2] R. G. Lyons, “Another contender in the arctangent race,” IEEE Signal Processing Mag-
azine, vol. 21, no. 1, pp. 109–110, January 2004.

[3] S. Rajan, S. Wang, R. Inkol, and A. Joyal, “Efficient approximations for the arctangent
function,” IEEE Signal Processing Magazine, vol. 23, no. 3, pp. 108–111, May 2006.

[4] X. Girones, C. Julia, and D. Puig, “Full quadrant approximations for the arctangent
function,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 130–135, January 2013.

[5] J. M. Shima, “FM demodulation using a digital radio and digital signal processing,”
Master’s thesis, University of Florida, Gainesville, 1995.

[6] S. Winitzki, Uniform Approximations for Transcendental Functions . Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 780–789.

11



[7] R. Gutierrez and J. Valls, “Implementation on FPGA of a LUT-based atan(y/x) oper-
ator suitable for synchronization algorithms.” International Conference on Field Pro-
grammable Logic and Applications, 2007, pp. 472–475.

ACKNOWLEDGEMENTS

This work is funded by the Spanish Ministerio de Economía y Competitividad and FEDER
under the grant TEC2015-70858-C2-2-R.

APPENDIX

The derivation of (4) proceeds in three steps: (i) derive a polynomial expression approxi-
mating Figure A1’s continuous p(t) sinusoid in terms of known p[n] samples; (ii) set that
expression’s time derivative equal to zero; (iii) replace t with f and solve for f.

t

p(t)

p(−h)

p(0)

p(h)

p(h/2)

p(−h/2)
−h

−h
2

0 h
2

hf

[FIGA1] Sinusoidal p(t) signal and the desired time value f.

Our derivation begins by assuming the largest of our known p[n] samples is located at time
t=0. Approximating Figure A1’s p(t) sinusoid with a second-order Taylor series expression
in the vicinity of t=0, we begin by writing:

p(t) ≈ p(0) + p′(0)t+
1

2
p′′(0)t2, (A1)

where p′(0) and p′′(0) represent the first and second derivatives of p(t) at time p(t)=0. Given
the (A1) polynomial we next approximate the unknown p′(0) and p′′(0) coefficients by using
the central difference formula. Doing so we write the first-order derivative p′(0) as:

p′(0) ≈ p(h)− p(−h)
2h

. (A2)
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Having an approximation of p′(0) we next approximate the 2nd-order derivative p′′(0) using
the first-order derivatives centered at the hypothetical p(−h/2) and p(h/2) samples in Figure
A1. Those first-order derivatives are:

p′(−h/2) ≈ p(0)− p(−h)
h

and p′(h/2) ≈ p(h)− p(0)
h

.

Given p′(−h/2) and p′(−h/2) we write our desired 2nd-order derivative p′′(0) as:

p′′(0) ≈ p′(h/2)− p′(−h/2)
h

≈
p(h)−p(0)

h
− p(0)−p(−h)

h

h

=
p(h)− 2p(0) + p(−h)

h2
. (A3)

Assuming the time between our known p[n] samples is unity sets h=1 and recalling that for
our p[n] samples p[−1] = −p[1], we can rewrite (A2) and (A3) as:

p′(0) ≈ p(1)− p(−1)
2

= p(1) (A4)

p′′(0) ≈ p(1)− 2p(0) + p(−1)
12

= −2p(0). (A5)

Substituting (A4) and (A5) as coefficients in (A1) our desired approximation of p(t) is:

p(t) ≈ p(0) + p(1)t− p(0)t2. (A6)

That completes the first step of our derivation. As the second step of our derivation we take
the derivative of p(t) to produce:

p′(t) ≈ p(1)− 2p(0)t. (A7)

Setting (A7)’s p′(t)=0 gives us an approximation of the time location of the maximum value
of Figure A1’s p(t) signal. Doing so and defining that estimated time value as fr we write:

0 = p(1)− 2p(0)fr. (A8)

Finally, solving (A8) for our desired expression for f in terms of known p[n] sample values
we arrive at the final form of (4) as:

f ≈ fr ≡
−p′(0)
p′′(0)

=
p(1)

2p(0)
. (A9)
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