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A simple holonomic compatible homogenization approach for the non-linear analysis of masonry 

walls in-plane loaded is presented.  

The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) 

and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar 

joints. It is shown how the mechanical problem in the unit cell is characterized by very few 

displacement variables and how homogenized stress-strain behavior can be evaluated semi-

analytically. At a structural level, it is therefore not necessary to solve a FE homogenization 

problem at each load step in each Gauss point.  

Non-linear structural analyses are carried out on a windowed shear wall, for which experimental 

and numerical data are available in the literature, with the aim of showing how quite reliable results 

may be obtained with a limited computational effort. 

1. Introduction 

Masonry is a traditional composite material obtained by the assemblage of bricks and mortar. The 

variability of the pattern, the shape and dimension of the blocks, as well as the fragile behavior of 

the constituent materials, make the simulation of masonry still a very challenging task. The elastic 

behavior is quite limited because masonry is typically characterized by a reduced, almost vanishing 

tensile strength. Therefore, numerical models traditionally exhibit a moderate level of complexity, 

because they are native non-linear. As a matter of fact, either macro- or micro-modeling strategies 

are adopted to deal with masonry over elasticity. 
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Macro-modeling substitutes bricks and mortar with a homogeneous, sometimes orthotropic material 

with softening. Abundant is the literature in this regard, see for instance [1]-[3], with the noticeable 

example of no-tension material modelling (e.g. [1]), which traditionally was conceived to deal with 

non-linear problems exhibiting predominant mode I fracture of the joints (e.g. arches or pillars 

under rocking) and masonries with very good compressive strength, where crushing and orthotropic 

behavior are not paramount. Macro-modelling allows studying even large scale structures without 

the need of meshing separately bricks and mortar. It is therefore very convenient where efficient 

computations on engineering structures are needed. Nevertheless, the calibration of model 

parameters is typically done by means of comprehensive experimental campaigns. When the level 

of sophistication of the model increases [2]-[3], to better reproduce anisotropy, post-peak softening 

in tension and compression and a Mohr-Coulomb shear behavior with compression cap, the number 

of inelastic parameters grows and the experimental characterization may become costly and 

cumbersome. Theoretically, such approaches may be capable of adequately estimating the non-

linear masonry behavior for an arbitrary load combination, even if some meaningful limitations 

occur in specific cases (see [4] for a detailed discussion), but in practice the needed experimental 

data fitting would require –at least in principle- new calibrations case by case. 

The alternative micro-modeling is simply characterized by a distinct modelling of mortar joints and 

blocks at a structural level. The reduction of joints to interfaces [5]-[9] helps in limiting variables, 

especially in the non-linear range, but the approach still remains computationally very demanding, 

because bricks and mortar are meshed separately. In order to obtain sufficiently reliable solutions in 

terms of displacements and stresses, constituent materials should be meshed with more than one 

element, with the consequent grow of the number of non-linear equations to deal with, even for 

small masonry panels. Furthermore, the pre-processing phase regarding the model generation is not 

straightforward. Partitioning methods have been recently proposed to overcome such computational 

limitations and speed up structural analyses. 
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For the previous reasons, it can be affirmed that macro-scale computations with FEs [10][11] still 

remain preferable when non-linear analyses for engineering structures are needed.  

In such a scenario, homogenization [12]-[23] may represent a fair compromise between micro- and 

macro-modelling, because it allows in principle to perform non-linear analyses of engineering 

interest without a distinct representation of bricks and mortar, but still considering their mechanical 

properties and the actual pattern at a cell level.  

Homogenization (or related simplified approaches) is essentially an averaging procedure performed 

at a meso-scale on a representative element of volume (REV), which generates the masonry pattern 

under consideration by repetition. 

On the REV, a Boundary Value Problem BVP is formulated, allowing an estimation of the expected 

average masonry behavior to be used at structural level. As a matter of fact, the resultant material 

obtained from meso-scale homogenization turns out to be orthotropic, with softening in both tension 

and compression. A straightforward approach to solve BVPs at the meso-scale is obviously based 

on FEs [15][20]-[23], where bricks and mortar are either elasto-plastic with softening or damaging 

materials. It is also known as FE2 and essentially is a twofold discretization, the first for the unit cell 

and the second at structural level. However, FE2 appears still rather demanding, because a new BVP 

has to be solved numerically for each load step, in each Gauss point. 

Alternatively, in this paper, a simplified homogenization two-step model is proposed for the non-

linear structural analysis of masonry walls in-plane loaded. The first step is applied at the meso-

scale, where the assemblage of bricks and mortar in the REV is substituted with a macroscopic 

equivalent material through a so called compatible identification, belonging to the wide family of 

the homogenization procedures. The unit cell is meshed by means of 24 triangular constant stress 

(CST) plane stress elements (bricks) and interfaces for mortar joints. Triangular elements are 

assumed linear elastic, whereas the mechanical response of the interface elements includes two 

dominant deformation modes, namely peel (mode I) and shear (mode II) or a combination of two 

(mixed mode). Such elements are equipped with a constitutive relationship referred to as 
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“holonomic” since expressed in terms of normal and tangential tractions   and   as a path 

independent function of the normal and tangential relative displacements at the interface. Both a 

piecewise linear and an exponential law formally identical to an improved version of the Xu-

Needleman law and proposed in another context [24]-[26] are implemented. Such cohesive 

relationships are characterized by a post-peak softening branch, eventually with a coupling between 

normal and shear relationships in the case of the improved Xu-Needleman model. 

The second step, performed at a structural level, relies into the implementation of the homogenized 

stress-strain relationships into either a FE code dealing with softening materials (nested multi-scale 

technique) or a rigid element approach (RBSM) where contiguous rigid elements are connected by 

shear and normal non-linear homogenized springs.  

The first approach (nested multi-scale technique) is very similar to FE2, but has the advantage that 

the BVP at the meso-scale level is solved in quasi-analytical form. Limitations of FE2 are therefore 

totally superseded, since the solution in terms of displacements and stresses is found at a cell level 

in a semi-analytical fashion, with an implementation of the routine used at a meso-level to evaluate 

homogenized quantities directly at a structural level. As a consequence, the scale passage does not 

require the huge computational effort needed by FE2.  

The second approach (RBSM) has the advantage that meso- and macro-scale are fully decoupled, 

i.e. homogenized stress-strain non-linear relationships of the springs connecting rigid elements are 

evaluated in a previous phase, without the need of solving new BVPs at each load step in each 

Gauss point. The disadvantage of RBSM is the intrinsic mesh dependence of the results in case of 

global softening.  

In both cases, it is worth mentioning that any commercial code can be suitably used for the 

implementation of the homogenization model proposed. 

The procedure is quite efficient and reliable because it is not necessary to discretize with refined 

meshes the elementary cell (only three kinematic variables are needed at the meso-scale) and hence 

it is possible to drastically speed up computations. In addition, the holonomic laws assumed for 
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mortar allow for a total displacement formulation of the model, where the only variables entering 

into the homogenization problem are represented by displacements. 

Notation: Vectors and tensors are indicated in bold. E  and Σ  indicate strain and stress 

homogenized tensors, x (y) is the horizontal (vertical) in plane direction, xxE  ( yyE , 2/xyxyE  ,

nnE ) is the macroscopic horizontal (vertical, shear, on direction n) strain, xx  ( yy , homT ) is the 

homogenized horizontal (vertical, shear) stress, 
)(k

xx  (
)(k

yy ,
)(k ) is the local horizontal (vertical, 

shear) stress on element k, )(k

xx  ( )(k

yy , 2/)()( k

xy

k

xy   ) is the local horizontal (vertical, shear) strain on 

element k, L ( H ) is the brick semi-length (height), HL 2/ , A is the elementary cell (REV) 

area, 2 ve  ( he , e ) is head (bed, generic) joint thickness, 0

xU  (
0

yU ) indicate an imposed boundary 

horizontal (vertical) displacement in the biaxial strain problem, i

xU  (
i

yU ) is the i-th node unknown 

horizontal (vertical) displacement, n  ( t ) is the interface normal (tangential) jump of 

displacements, III

nf
,  ( III

tf
, ) is the joint (I: head, II: bed) normal (shear) stress, 

90

xx UU  , 

65

yy UU  , bE  ( b , bG ) is the brick Young modulus (Poisson’s ratio, shear modulus), mE  ( mG ) is 

mortar Young (shear) modulus, 
ijhkD  is the homogenized elastic stiffness ijhk component, ul

n  ( ul

t

) is the ultimate joint normal (tangential) jump of displacements in the multi-linear model, tf ( c ) is 

joint tensile strength (cohesion), n  t  n  and t  are Xu-Needleman interface parameters, t =

65

xx UU  , t = 3

yU , =  
bv Ge /1 , t

xU  ( t

yU ) indicate an imposed boundary horizontal (vertical) 

displacement in the shear problem,  xxyy EE /tan 1 .  

2. The simplified (compatible homogenization) holonomic model 

One of the basic concepts of homogenization is the utilization of averaged quantities for the 

macroscopic strain and stress tensors (respectively E  and Σ ) [15][20]-[22][27] on a representative 

element of volume Y (REV or elementary cell, Figure 1), i.e.

 

dY
A

Y

 )(
1

uεεE  and 

dY
A

Y

 σσΣ
1

, where A is the area of the elementary cell, ε and σ  are local quantities (strains 

and stresses respectively) and <*> is the averaging operator. Anti-periodicity is imposed on σ  and 

periodicity on the displacement field u:  









Y

Y

onperiodic-anti

on~ perper

σn

uuxEu
 

( 1 ) 
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where u  is the total displacement field, per
u  is a periodic displacement field,  zyxx~  is the 

local frame of reference (see Figure 1) and E is the homogenized strain tensor.  

In the model proposed, which is a simplified homogenization that will be called from here ongoing 

“compatible identification” (and already used by one of the authors in [28] but with different 

material models and a FE implementation), joints are reduced to holonomic zero thickness 

interfaces and bricks are coarsely discretized with triangular constant stress elastic elements, see 

Figure 1. It is necessary to mesh 1/4 of the unit cell through at least 6 triangular brick elements, 

labeled in Figure 1 as (1)-(2)-(3)-(1')-(2')-(3'), in order to suitably reproduce shear stress on the bed 

joint (element 2) in horizontal stretching. When dealing with the non linear approach presented 

hereafter [14], all the non-linearity in the REV is therefore concentrated on joints reduced to 

interfaces. Brick-brick interfaces are assumed not active (i.e. the jump of normal and tangential 

displacements is assumed to vanish) in order to reduce variables. 

Indicating with 
)(n  a stress component belonging to the n-th element, the stress tensor inside the n-

th element 
)(n

σ  is constituted by the components 
)(n

xx  (horizontal stress), 
)(n

yy  (vertical stress) 

and 
)(n  (shear stress). Equilibrium inside each element is automatically satisfied, 0σdiv , 

whereas two equality constraints involving stress tensors of contiguous triangles has to be imposed 

for each internal interface. In particular, for 1-2 interface, the stress vector (normal and tangential 

component) must be equal passing from element 1 to element 2, i.e.  )2()1()1()2(   xxxx  

and  )2()1(1)1()2(   

yyyy , with   defined as the ratio between the semi-length of the bricks 

and its height, i.e. HL 2/ . Analogous equations can be written for 3-2, 3'-2', 2-2' and 2'-1' 

interfaces. 

Assuming that the triangular elements are linear elastic, the following relationship in Voigt notation 

between strains and stresses can be written: 
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
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b
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G
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EE













 ( 2 ) 

Where bE , b  and bG  are block elastic modulus, Poisson’s ration and shear modulus, respectively. 

The semi-analytical approach proposed in the paper for the compatible homogenization of running 

bond masonry is therefore constituted by elastic triangular elements at constant stress and strain 

fields and all non-linearity concentrated on joints reduced to interfaces. Interfaces non-linear 

behavior is holonomic, which appears suitable for non-linear static analysis of masonry elements. 

 

 

 

 
Figure 1: The compatible homogenization presented. REV mesh with 24 CST brick elastic elements 

and holonomic mortar interfaces. Anti-periodicity of the micro-stress field. 

 

2.1. Holonomic relationships for mortar joints reduced to interfaces 

Under mixed-mode loading conditions, expected to occur in mortar joints, two interface 

relationships, in a sense alternative, are considered in what follows and comparatively assessed. (a) 

A multi-linear relationship, including at a first attempt normal and tangential responses completely 
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independent on each other (de-coupled approach), i.e. ( )
n n

  and ( )
t

  . Although not fully 

realistic, this approach is very straight-forward and allows for an impressive stability and rapid 

convergence of the algorithms. As an alternative, the cohesive relationship at the previous point (i) 

can be modified to take into account the frictional behavior among bricks. In this case the peak 

tangential stress lim  is assumed to depend on the current normal stress level at the interface 𝜎𝑛 by 

a classic Mohr-Coulomb criterion, namely 𝜏𝑙𝑖𝑚 = −𝜎𝑛 + 𝑐 tan𝜑, whereτlim   and c  denotes the 

friction angle and the cohesion, respectively. This choice may be useful to describe frictional sliding 

among the bricks. (b) The second choice is an improved version of the Xu–Needleman exponential 

law [24]-[26], hereafter called simply “Xu-Needleman” for the sake of conciseness. In this law the 

stress vector  
T

n
   at the interface is given the following closed-form expression: 

2

2

2 1

t n

t n

t n

t n

n n
n

n n

t t n

t t n

e e

e e

 

 




 




  

  
   
 

  
   
 

 
   

 

   
     

  

 

( 3 ) 

  
Figure 2: Qualitative comparison between multi-linear and Xu-Needleman relationships adopted in 

the paper to model non-linear behavior of mortar joints under normal actions (left) and shear (right).  

 

Symbols n  and t  denote the work of separation under pure Mode I (i.e. when 0t  ) and Mode 

II (i.e. when 0n  ), respectively, while n  and t  indicate the relevant characteristic lengths. It 

is interesting to point out that Eq. ( 3 ) may or may not derive from a potential, but still remains 
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holonomic, i.e. expressed in terms of jumps of displacements instead of increments. There is no 

unloading rule to define, meaning that load-unload paths are the same, making therefore the 

approach unsuited for non-linear dynamics. In order to extend the model to non-linear dynamic 

loads, a damage plasticity model fitting homogenization curves at a structural level should be used.   

It is also worth emphasizing that equations ( 3 ) imply a strongly coupled response: softening occurs 

for both the tractions although the interface is being stressed along one direction only. In 

compression the response of mortar joints is assumed to be linear elastic until the interpenetration 

constraint is activated through a very high stiffness, acting as a penalty factor. Whilst there is 

theoretically the possibility to model masonry crushing, this matter goes beyond the scopes of the 

present paper, because would involve bricks failure and 3D effects, not easily reproducible with 

simplified approaches. A qualitative comparison of the two models investigated is provided in 

Figure 2. 

2.2. The numerical model in the non-linear range 

For the computations, reference is made to the general approach called “compatible identification”, 

proposed by one of the authors in e.g. [28] to solve the homogenization problem in case of rigid 

blocks. Roughly it consists in applying a priori-assumed deformation modes on the boundary of the 

unit cell, deduced from the application of non-null components (one or more) of the homogenized 

strain tensor and in the subsequent derivation of the homogenized stress tensor.  
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Figure 3: Biaxial stress state problem. 

 

In case of rigid blocks and mortar joints reduced to interfaces, the deduction of stresses acting on 

interfaces is very straightforward, whereas in case of deformable bricks a FE non-linear problem 

should be solved. 

From here ongoing, the symbols indicated in Figure 3 will be used. 

2.2.1. Horizontal stretching ( 0xxE ) 

Under the application of the single 0xxE  component of the homogenized strain tensor, only ¼ of 

the unit cell can be considered, with the behavior of elements (3’), (2’) and (1’) equal to those of 

elements (3), (2) and (1) respectively. Under such assumptions, it is possible to write both 

equilibrium and compatibility equations. For instance, when dealing with horizontal equilibrium of 
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according to a compatible identification procedure, III

tnf
,

,
 is the head (I) or bed (II) joint stress-

displacement jump holonomic function along either the normal (n) or tangential (t) direction, i

xU  (

i

yU ) is the horizontal (vertical) displacement of the i-th node. The other equilibrium equations –

conceptually very similar- are omitted for the sake of conciseness. 

Horizontal compatibility written along nodes 1, 2 and 3, remembering that the behavior of the 

triangular elements is elastic, leads to the equation 

2222

)3()3()1()1(
090 L

E

L

E

L

E

L

E
UUU

b

yyb

b

xx

b

yyb

b

xx
xxx


  where bE  is the brick elastic modulus and 

b  the Poisson’s ratio. 

Vertical compatibility written on nodes 3-6 and 1-5, after suitable averaging leads to the following 

equation: 0
)3()3()1()1(

65  H
E

H
E

H
E

H
E

UU
b

xxb

b

yy

b

xxb

b

yy

yy


. 

Substituting equilibrium equations into compatibility equations, after suitable rearrangement and 

with the positions 
90

xx UU   and 
65

yy UU  , leads to the following system of equations: 

(a)      


 ,,
2

2
0 II

n

b

bII

t

b

I

n

b

x f
E

L
f

HE

L
f

E

L
U   

(b)       0,
2

,
2

 





 II

t

b

bI

n

b

bII

n

b

f
E

L
f

E

H
f

E

H
 

( 4 ) 

It is interesting to notice that when  II

t

II

t ff   and  II

n

II

n ff  , then equation ( 4 ) reduces to 

     
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bII

t

b

I

n

b

x f
E

L
f

HE

L
f

E

L
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2
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b
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b
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n

b
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E
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f

E

H
f

E

H


22
. 

After proper manipulation, the following equations are further obtained: 

(a) Curve I   g :    
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
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(b) Curve II   f :  

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 
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( 5 ) is a system of non-linear equations that can be solved graphically as follows, see also Figure 4: 

1) Assign a value for   in equation ( 5 )(a) and find immediately the corresponding value of  . 

Curve ( 5 )(a) can thus be plotted in the  -  plane selecting a suitable range for  . Since   

is the tangential jump of displacements of the horizontal joint, typically the range to inspect 

is  ul

t 0 , where ul

t  is the ultimate tangential jump of displacement of the interface. 

2) Assign a value for   in equation ( 5 )(b) and find immediately the corresponding value of  . 

Similarly to Curve I, Curve ( 5 )(b) can thus be plotted in the  -  plane selecting a suitable 

range for  . Again, since   is the normal jump of displacements of the horizontal joint, the 

range to inspect is  ul

n 0 , where ul

n  is the ultimate normal jump of displacement of 

the interface. 

3) The intersection between Curve I and Curve II allows the graphical determination of  -  

values. 

 
Figure 4: Graphical solution in the biaxial strain state. 

 

When shear and normal behaviors of the interfaces are coupled, analogous relations are derived: 

(a)    






 



 








 ,
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2

12
222

0 II
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(b)  






 
 





 ,

1
2

2

2

0 II

n
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b

b

x Hf
EH

L
U  

( 6 ) 

min

max

min max

Curve I: =g( )

Curve II: =f ( )

solution point
g( )

f ( )
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In this latter case, however, the graphical procedure to determine the solution point is slightly more 

cumbersome and requires a recursive approach as follows: 

1) Assign a value for   in equation ( 6 )(a) with  =0 in   ,II

tf  and find an updated value for 

 , say i . Put i  into   ,II

tf  and, through ( 6 )(a), estimate again  = 1i . Repeat until 

1 ii  . Curve ( 5 )(a) is thus plotted in the  -  plane within the range  ul

t 0 . 

2) Assign a value for   in equation ( 6 )(b) with  =0 and find an updated value for i  . Put 

i  into   ,II

nf  and estimate a new 1 i  by means of ( 6 )(b).   range to inspect is 

again  ul

n0 . 

3)  -  values are estimated at the intersection between Curve I and Curve II. 

It is interesting to notice that, when brick Poisson’s ratio b =0, it can be shown that  0 and 

system of equations ( 4 ) may be re-written as: 

   



II

t

b

I

n

b

x

f
HE

L
f

E

L
y

Uy

2

2

2

0

1





 ( 7 ) 

With solution 21 yy  . 1y  is a straight line (with slope equal to 45°) in the y  plane, whereas 

2y <0 for  >0. According to the graphical procedure proposed in Figure 5, it is very straightforward 

to find 0

xU  at each assigned  .  

 
Figure 5: Graphical solution in case of brick Poisson ratio b =0 and 0

yU . 

 

y1

U x
9

y2

assing 

U x
0

P

45°
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2.2.2. Biaxial strain state ( 0xxE , 0yyE ) 

When a biaxial strain state is applied to the unit cell, i.e. with both 0xxE  and 0yyE , it can be 

shown that equations ( 5 ) slightly modifies into: 

(a) Curve I   g :    






 



 








 II

t

b

bI

n

b

b
x

b

y f
EH

L
f

E
LU

L

H
U

222
00 1

2

12
 

(b) Curve II   f :  






 
 





 II

n

b

by

o

b

x Hf
E

U
H

L
U

2

0 1
2

2
 

( 8 ) 

where 0

yU  is an applied vertical boundary displacement, representing 0yyE , according to the 

compatible identification procedure adopted. 

The solution strategy for the non-linear system of equations ( 8 ) is identical to that adopted for 

problem ( 6 ). 

2.2.3. Shear behavior ( 0xy
) 

When dealing with the application, by means of the compatible identification approach adopted, of 

a macroscopic tangential deformation 0 yxxyxy EE , the equilibrated state of stress acting on ¼ 

of the unit cell is the following (the reader is also referred to Figure 6 for symbols meaning): 

 

 

       

       
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
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


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













0

0
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0

0

3

3

)3(
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3131

)2(

1

1

)1(













σ

σ

σ

L

H
H

L

 

Where 
)(i

σ  is the Cauchy stress tensor of the (i)-th element. 

( 9 ) 

After a trivial rearrangement of elements equilibrium equations (not reported here for the sake of 

conciseness), and with the positions 65

xx UU  = 
t , 3

yU = 
t ,  hxy eHE 2 = t

xU ,  vyx eLE 2 =

t

yU , 

 

b

v

G

e1
= , the following equations hold:  
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(a)    





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(c)     tI

t

t

x

tII

t

b

v fUf
G

e
  2  

( 10 ) 

It is interesting to notice that ( 10 ) is a system of non-linear equations of three variables t , t  

and  . 

Assuming an iterative scheme and starting with  =0, equations ( 10 )(a) and (b) allow for graphical 

solution (because they are functions of independent variables t  and t  respectively), similar to 

that found for the biaxial stress state, see the previous section.  

 
Figure 6: Shear problem, displacement and stress variables. 

 

Equation ( 10 )(c), with the values of 
t  and 

t  found in the solution point provides an updated   

and the procedure is repeated ad libitum. Finally, with the converged solution values of 
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t  and 
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 , displacements 2

yU  and 5

xU  (or 6

xU ) are trivially found from equilibrium and compatibility 

equations. 

2.3. Masonry elastic moduli 

In case of linear elastic behavior of the interfaces  I

nf = vm eE / ,   hm

II

t eGf /   and 

  hm

II

n eEf /  .  

Consequently, equations ( 8 ) modify as 





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After trivial algebra, the following system of equations is obtained: 
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 ( 11 ) 

System of equations ( 11 ) allows for a fast evaluation of both  ,   variables and, indirectly, using 

equilibrium equations on bricks and mortar, internal stress variables. Internal stress variables 

knowledge allows to directly determine elastic moduli. 

Similarly, when dealing with the shear problem, from ( 10 ) with a linear elastic behavior of the 

interfaces (     hm

t

x

tt

x

tII

t eGUUf /  ,  tI

tf  =
vm

t eG / ,     hm

ttII

n eEf /  ), and 

after trivial algebra, the following system of equations holds: 
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 ( 12 ) 

( 12 ) allows a straightforward evaluation of 
t , 

t  and   variables, as well as, through 

equilibrium, of 
)1( and 

)3( stresses, and hence of the homogenized elastic shear modulus. 
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In order to evaluate the reliability of the micro-mechanical model proposed in the elastic range, the 

homogenized elastic moduli obtained are benchmarked against FE results that are considered as 

reference. 

A running bond unit cell constituted by common Italian bricks and 10 mm thick mortar joints has 

been considered, discretizing one fourth of the cell with four-noded elements in plane stress and a 

medium refinement, as illustrated in Figure 7. Three values of mortar Young modulus have been 

considered (550, 2200 and 4400 MPa), corresponding to mortars ranging from weak to strong 

according to the Italian code. Seven values of brick elastic moduli have been considered (5000, 

7500 10000, 12500, 15000, 17500, 20000 MPa), in order to investigate the response of the model in 

presence of either quite deformable or stiff blocks. Bricks Poisson’s ratio has been maintained 

always equal to 0.2.  

It is worth noting that similar homogenization approaches in the elastic range can be found in e.g. 

[17][29]-[34]. 

The resultant Dijhk homogenized elastic membrane coefficients are depicted in Figure 8. It can be 

easily deduced that the error against FE results (taken as reference) is always lower than 16%, 

meaning that reliable predictions of the homogenized elastic coefficients may be obtained with the 

model proposed, at a fraction of the time needed by standard FE discretizations of the unit cell.  

Obviously, the obtained vertical elastic stiffness is almost always superimposable with the FE one, 

because the deformation mode of the unit cell is a vertical homogeneous stretching of bricks and 

bed joint. A direct estimation of the stiffness value may be also obtained with the well known 

procedure proposed by Lourenço [31]. It consists in homogenizing a masonry pillar constituted by 

two half bricks (of height H) and a joint (of thickness e). Accordingly, it can be regarded as a 

variation of the procedure by Pande et al. [34] applied to the evaluation of the vertical membrane 

stiffness exclusively. For this structural system, the vertical flexural rigidity can be shown to read: 
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Geometry 

Brick 

2L 
250 

[mm] 
brick length 

2H 
55 

[mm] 
brick height 

Mortar eh=2ev 
10 

[mm] 

mortar joint 

thickness 

Figure 7: Discretization adopted for the FE simulations on the left, on the right geometry of the unit 

cell. 

 

Horizontal elastic stiffness is obviously greater than the vertical one, thanks to the contribution in 

shear of the bed joint. This peculiar behavior is kept by the simplified numerical model, that 

exhibits on average errors lower than 10% in the wide range of combinations between brick and 

mortar elastic moduli. 

  

L+ev 

2H+eh 
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 Homogenized approach  FE model 

  
-a -b 

  
-c -d 

Figure 8: Elastic problem. Dijjhk homogenized moduli obtained with the present model and with FEs 

at different values of Eb and Em moduli. –a: Dxxxx. –b: Dyyyy. –c: Dxxyy. –d: Dxyxy. 
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2.4. Numerical simulations at a cell level: inelastic behavior 

This section presents some results of numerical simulations at a cell level performed in the inelastic 

range and obtained by means of the homogenization model proposed. To this aim, a running bond 

masonry utilized by Raijmakers and Vermeltfoort [39] is considered to test a series of windowed 

shear walls, constituted of Joosten solid clay bricks (dimensions 210x52x100 mm3) and 10-mm 

thick mortar (1:2:9, cement:lime:sand by volume). The same series will be considered at a structural 

level in the next section, to have an insight into the reliability of the procedure proposed when 

utilized to predict the non-linear behavior of full scale panels in-plane loaded. Elastic and inelastic 

material properties are summarized in Table I and are assumed in agreement with those utilized by 

Lourenço and Rots [5] to perform structural analyses by means of a heterogeneous approach. 

 

Table I: Windowed masonry shear wall by Raijmakers and Vermeltfoort. Mechanical properties 

assumed for the constituent materials. 

Mortar joints (eh=10 mm) 

Multi-linear model Xu-Needleman model 

mE  mG  ft c nu  tu  n  n  t  t  

[MPa] [MPa] [MPa] [MPa] [mm] [mm] [N/mm] [mm] [N/mm] [mm] 

800 0.4 mE  0.25 1.35 ft 6eh ft/ mE  3eh c/ mG  0.0028 0.0042 0.0060 0.0160 

Bricks linear elastic ( bE =16700 MPa, b =0.15) 

 

The elementary cell is assumed subjected to a biaxial strain state ( 0xxE , 0yyE ) and pure shear 

separately.  

When dealing with the biaxial strain state case, xxE  and 
yyE  are increased linearly up to the 

formation of a failure mechanism in the unit cell, keeping the ratio xxE /
yyE  constant. 

The effect of the application of different macroscopic biaxial strain states may be investigated in the 

model, characterizing the applied strain path by means of the angle  , defined as 

 xxyy EE /tan 1 . Three different  s are analyzed with both a multi-linear and Xu-Needleman 

approximation for the mortar joints behavior, namely 0°, 90° and 45°. 
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 =0° corresponds to the application of a horizontal macroscopic strain,  =90° to a vertical 

macroscopic strain and  =45° is an intermediate situation where a multi-axial stress state is 

imposed on the unit cell. 

Results obtained for the biaxial strain case are summarized from Figure 9 to Figure 14. In particular 

Figure 9 and Figure 10 refer to the strain case  =0° (horizontal stretching), Figure 11 and Figure 12 

to a vertical stretching  =90° and Figure 13-Figure 14 to an inclined strain state with  =45°. For 

each   angle, two figures are reported. In the first one (e.g. Figure 11 for  =90°), the strain-

homogenized horizontal and vertical stresses 
xx  and 

yy  are depicted in subfigure (-a). In 

subfigure (-b), strain-horizontal stress curves on elements (1) and (3), i.e. )1(

xx  and )3(

xx respectively, 

and strain-shear stress curves on element (2), i.e. )2( , are sketched. Strain-vertical stress curves on 

elements (1) (2) (3), i.e. )1(

yy )2(

yy )3(

yy  are finally shown in subfigure (–c). In all subfigures, both Xu-

Needleman and multi-linear model results are represented.  

In the second relevant figure (Figure 10 for  =0° and Figure 12 for  =90°) the following 

information is provided: subfigures –a and –b show the graphical determination of variables   and 

  at different values of applied macroscopic strains (solution points are identified by blue circles), 

whereas subfigures –c and –d show values of  ,  , 9

xU  variables, compared with applied 

macroscopic strains  vxxx eLEU 20   and  hyyy eHEU  20 . Subfigures –a and –c refer to 

multilinear model, whereas subfigures –b and –d to Xu-Needleman one.  

By means of such representations, load cases may be synoptically compared, as well as the response 

of the unit cell in case of Xu-Needleman and multi-linear behavior of the joints may be evaluated. 

From an overall analysis of simulations results, the following considerations may be drawn: 

1) The behavior under vertical macroscopic stretching is characterized by the non linear 

behavior of the bed joint, which fails under pure normal actions, as clearly visible from the 

deformed shape of Figure 11. It is interesting to notice that the head joint results slightly 



22 

 

loaded, because   variable is not always zero during the loading process (see Figure 12) 

mainly for Poisson’s effect on the brick. Figure 12 shows also that   and 0

yU , again for the 

elastic deformation of the brick, do not coincide. Such a discrepancy justifies the value of 

the homogenized elastic modulus, which is obviously a weighted average between brick and 

mortar ones. The graphical solution of problem ( 5 ), see also Figure 4, and represented in 

Figure 12-a &-b for both the multi-linear and Xu-Needleman cases, clearly shows that   

monotonically increases, whereas   reaches a peak value and then decreases at larger 

deformations. This is obviously due to the decrease of the stress state within the brick, 

which obviously corresponds to a decrease of the elastic deformation, and hence of   

variable. Such conclusion is supported also by the stresses acting on elements (1) and (3), 

that decrease with the imposed macroscopic deformation and are associated with the elastic 

strain state of the bricks. 

2) The elastic modulus along the vertical direction is 3700 MPa, a value in very good 

agreement with that used by Pelà and co-workers [40] (3960 MPa) to analyze the same 

structural problem with an orthotropic macroscopic damage model. The stiffness along the 

horizontal direction is obviously larger, as it will be discussed in the sequel.  

3) Peak strength in vertical stretching is obviously equal to peak joint tensile strength, in both 

models, see again Figure 11. The post peak behavior is again ruled by bed joint inelastic 

law. Conversely, the behavior under horizontal stretching is characterized by the formation 

of tangential actions on element (2), i.e. on the bed joint, see Figure 9. The collapse 

mechanism of the elementary cell is characterized by shear failure of the bed joint and 

tensile failure on the head joints, see deformed shape sketched again in Figure 9. Due to the 

presence of different vertical and horizontal stresses on elements (1) and (3), bricks 

deformation is non uniform, as it is clearly visible either from the deformed shape or from 
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vertical (Figure 9-c) and horizontal stresses (Figure 9-b) evolution during the imposed 

deformation. 

4) Peak strength when a horizontal macroscopic strain is applied is obviously much higher than 

that found in vertical stretching, due to the contribution of the bed joint in shear. Such a 

result is in perfect agreement with limit analysis considerations, as already shown by many 

authors, in e.g. [4][12][17][19].  

5) When a multi-linear holonomic law for mortar joints is adopted, a homogenized stress-strain 

curve characterized in the pre-peak range by a roughly bi-linear behavior is observed, see 

for instance Figure 9-a. When dealing with the Xu-Needleman model in the same figure, the 

response is obviously smoother, due to the exponential relationships adopted to evaluate 

tangential and normal stresses on the interfaces. In agreement with intuition, it can be stated 

that the observed bi-linear (or irregular) response of the homogenized stress-strain curves is 

linked to the fact that both head and bed joints contribute independently to the homogenized 

horizontal stress, the first under deformation in pure mode I, and the second under a slightly 

mixed mode I/mode II. Considering that very small values of   (see Figure 10) are 

observed, even vanish after the peak stress, it can be stated that in both models the 

deformation mode of the bed joint when  =0° is almost in pure shear. In light of such 

considerations, the observed stiffness degradation of the homogenized stress-strain curve 

within the multi-linear model may be regarded as the activation of non-linearity (more 

precisely softening) in the bed joint. The average elastic modulus of the homogenized 

material, intended as the weighted average slope of the bilinear portion of the curve in 

Figure 9-a is 6314 MPa, is in acceptable agreement with that utilized [40] (7520 MPa). 

6) Xu Needleman and multi-linear responses are very similar when the unit cell is deformed 

separately with a horizontal ( =0°) or a vertical ( =90°) macroscopic strain, with an 

obvious smoother result found when a Xu-Needleman law is used for joints. However, it is 

worth noting that, when a biaxial macroscopic strain state is applied, as for instance for 
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=45°, the results may be slightly different, as clearly shown in Figure 13. Such a result is not 

surprising because, when a biaxial macroscopic strain state is applied to the unit cell, joints 

are generally subjected to both shear and normal actions and, whilst the multi-linear model 

is fully uncoupled, Xu-Needleman model exhibits strong coupling between   and  , see 

relations ( 3 ). In order to find with the Xu-Needleman model a response similar to that 

obtained with the multi-linear approach with  =45°, it is necessary to considerably reduce 

the biaxial stress state of the joints. For the case at hand, it is found that when it is assumed 

 =15°, see results shown in Figure 15, Xu-Needleman model provides results comparable 

to those provided by the fully uncoupled multi-linear approach subjected to 
xxE =

yyE . From 

the results obtained, it appears clear the intrinsic limitation of a multi-linear fully uncoupled 

model (which is essentially mono-dimensional), especially in light of its utilization in case 

of more complex or general loading conditions, which is the typical case of real structure 

simulations.  

Shear behavior according to the proposed model and obeying equations ( 10 ), is depicted in 

Figure 16 and Figure 17 for both the multi-linear and the Xu-Needleman model. In Figure 16, in 

particular, the homogenized shear strain-shear stress curves are depicted in subfigure –a, 

whereas the shear stresse curves on elements (1) and (3) are depicted in subfigures –b and –c, 

respectively. In Figure 17-a and –b the graphical determinations of variables t  and 
t  obtained 

according to equations ( 10 ), at different values of applied macroscopic strain are represented 

(the solution points are identified by blue circles). In addition, in Figure 17-c & -d, values of 
t

, 
t , 10

xU ,  hxy eH  22/ ,  vxy eL 22/   are depicted. Deformed shapes of the unit cell at peak 

values of shear deformation 
xy  are embedded in Figure 16. 

From an overall analysis of results obtained with the model proposed subjected to macroscopic 

shear deformation, both in presence of holonomic multi-linear and Xu-Needleman mortar joints, 

the following considerations can be drawn: 
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1) Shear behavior is characterized by the presence of different tangential stresses on elements 

(1) and (3), clearly visible from the deformed shapes obtained at different increments and 

from the stress-strain diagrams acting on single elements. Elastic modulus found is equal to 

1351 MPa, in very good agreement with literature data and Pelà and co-workers [40] 

macroscopic numerical model (1460 MPa). The different values of )1(  and )3(  found (see 

Figure 16-b & -c are responsible for non null tensile stresses on bed joint, and hence for an 

axial elongation (or compression) of the joint, again visible from deformed shapes. 

2) In agreement with the previous point, t  variable indicates a jump of displacement normal to 

the bed joint. It is interesting to notice from Figure 17-a (multi linear) and -b (Xu-

Needleman model) that t  is not null, especially at early deformation stages, say before the 

peak load is reached. This is clearly evident from deformed shapes represented in Figure 16 

where one half of the bed joint undergoes a mixed shear-traction condition, whereas the 

remaining half a shear-compression condition. After the peak load, t  decreases and the bed 

joint tend to flow under pure shear condition. The mixed state of stress experienced on bed 

joints is also responsible for the different values of tangential stresses observed within brick 

elements (1) and (3), i.e.  1  and  3 , as it is clearly evident from stress-strain output curves 

depicted in Figure 16. 

3) The behaviors (both homogenized stresses and local stresses on single elements) of the 

multi-linear and Xu-Needleman model result very similar, with obviously a peak strength 

exclusively ruled by the cohesion assigned to mortar joints. 
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-a 

 

-b 

 

-c 

Figure 9:  =0° (horizontal direction of the macroscopic strain). Stress-strain 

curves. –a: Homogenized horizontal ( xx ) and vertical (
yy ) stresses. –b: 

micro stresses )1(

xx , )3(

xx , )2( . –c: micro stresses )1(

yy , )2(

yy , )3(

yy . 
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-c -d 

Figure 10:  =0° (horizontal direction of the macroscopic strain). Graphical determination of 

variables   and   at different values of applied macroscopic strain. –a and -b:   f  and 

  g  functions. –c and -d: values of  ,  , 9

xU ,  vxxx eLEU 20  ,  hyyy eHEU  20 . –a and –c: 

multi-linear model. –b and –d: Xu-Needleman model. 
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-a 

 

-b 

 

-c 

Figure 11:  =90° (vertical direction of the macroscopic strain). Stress-strain 

curves. –a: Homogenized horizontal ( xx ) and vertical (
yy ) stresses. –b: 

micro stresses )1(

xx , )3(

xx , )2( . –c: micro stresses )1(

yy , )2(

yy , )3(

yy . 
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-c -d 

Figure 12:  =90° (vertical direction of the macroscopic strain). Graphical determination of 

variables   and   at different values of applied macroscopic strain. –a and -b:   f  and 

  g  functions. –c and -d: values of  ,  , 9

xU ,  vxxx eLEU 20  ,  hyyy eHEU  20 . –a and –c: 

multi-linear model. –b and –d: Xu-Needleman model. 
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-a 
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-c 

Figure 13:  =45° (inclined direction of the macroscopic strain). Stress-

strain curves. –a: Homogenized horizontal ( xx ) and vertical ( yy ) stresses. 

–b: micro stresses )1(

xx , )3(

xx , )2( . –c: micro stresses )1(

yy , )2(

yy , )3(

yy . 
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-c -d 

Figure 14:  =45° (inclined direction of the macroscopic strain). Graphical determination of 

variables   and   at different values of applied macroscopic strain. –a and -b:   f  and 

  g  functions. –c and -d: values of  ,  , 9

xU ,  vxxx eLEU 20  ,  hyyy eHEU  20 . –a and –c: 

multi-linear model. –b and –d: Xu-Needleman model. 
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-a -b 

Figure 15:  =15° (inclined direction of the macroscopic strain). Stress-strain curves, Xu-

Needleman model. –a: Homogenized horizontal stress xx . –b: Homogenized vertical stress 
yy . 
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Shear Problem, multi-linear (left) and Xu-Needleman (right) models 

 

-a 

 

-b 

 

-c 

Figure 16: Shear problem. Stress-strain curves, multi-linear (left) and Xu-Needleman (right) models. –a: 

Homogenized shear stress homT . –b: Shear stress on element (1) )1( . –c: shear stress on element (3) )3( . 
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-a -b 

  

-c -d 

Figure 17: Shear problem, multi-linear model (-a and –c) and Xu-Needleman model (-b and –d). –a 

and –b: Graphical determination of variables t  and 
t  at different values of applied macroscopic 

strain,  ttt f    and  ttt g    functions. –c and -d: values of 
t , 

t , 10

xU ,  hxy eH  22/ , 

 vxy eL 22/  .  
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3. Structural level model implementation 

Two possible implementations of the semi-analytical homogenization model proposed are possible 

at structural level, the first is a so-called “nested multi-scale technique” (adopted by Kouznetsova et 

al. [44] and then applied to the modeling of damage by Massart and co-workers [20]-[22][45] and 

non-stationary transport processes [46] in masonry), the second is a RBSM (Rigid Body and Spring 

Model [47]), already used -but without homogenization concepts embedded- by different 

researchers, among the others Casolo and co-workers [48] [49].  

A multi-scale continuum implementation is rigorous, but rather complex to deal with from a 

computational standpoint. Essentially, such a procedure homogenizes the heterogeneous materials 

at the meso-scale with the aim of evaluating an average stress-strain response of the unit cell, 

usually solving a Boundary Value Problem (BVP) on the unit cell by means of FEs. The utilization 

of softening laws on the unit cell typically exhibits localization in narrow zones. Softening at the 

meso-scale coupled with a macroscopic local solver is characterized by loss of ellipticity of the 

governing equations, where the width of the softening band is undetermined at a structural level.  

The second procedure is very-straightforward, because obtained by means of a simple discretization 

with rigid triangular or quadrilateral elements interconnected by axial and shear springs exhibiting 

softening. The procedure is not new, it is indeed originally due to Kawai [47] who solved a variety 

of different structural problems, showing how mechanical systems constituted by rigid elements 

interconnected by (eventually non-linear) springs (RBSM) turn out to provide quite accurate results 

when compared with FEs. 

The efficiency of RBSM in the non-linear static and dynamic analysis of masonry structures is well 

known from more than two decades, thanks to valuable contributions of different authors (e.g. 

Casolo and co-workers [48][49]) on conceptually different RBSM models applied to masonry 

loaded in- and out-of-plane. 

The intrinsic advantage of RBSM discretizations applied to homogenization (which is the original 

contribution of the present paper) within a multi-scale technique is that meso- and macro-scale 
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problems are fully decoupled. In this way, the implementation of the homogenization model occurs 

directly at a structural level, without needing a solution at each load step of a non-linear FE 

homogenization problem for each Gauss-point. The implementation to any robust commercial FE 

code is therefore very straightforward and in principle does not require interfacing with any User 

defined MATerial subroutine (UMAT). Non-linearity and softening can be dealt with by means of a 

very intuitive approach, using exclusively mono-dimensional elements. In addition, the number of 

variables involved in the discretized structural problems is generally lower than that of classic FEM. 

The present implementation of the homogenized RBSM code is done within the commercial code 

Abaqus [42]. 

Unfortunately the simplicity of RBSM that made it popular in common structural applications is 

also its relevant limitation in all those problems (as the present one) exhibiting softening of the 

constituent materials. As a matter of fact, cracks can zigzag only between contiguous rigid 

elements, thus making such approach intrinsically affected by localization of damage and non-

objectivity of the response, with potentially strong mesh dependence. 

Whilst such limitation cannot be superseded, it has been however shown that both structured and 

unstructured meshes are able to provide in the majority of the cases, results quite reliable from an 

engineering point of view. As a consequence, having in mind the theoretical limitations of RBSM in 

presence of softening, they are accepted in dealing with common practical applications, where it is 

preferred efficiency, maintaining the numerical models conceptually simple. 

Another remarkable issue of RBSM applied to masonry is that shear and normal behavior are 

uncoupled. Simplified Mohr-Coulomb relations are usually adopted to rule shear spring strength, to 

mitigate such further limitations, as in [48][49].  

In what follows, some basic features of the two different approaches adopted at a structural level, 

i.e. “nested multi-scale technique” and “homogenized RBSM”, will be reviewed. 
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3.1. Nested multi-scale technique 

This technique is implemented in a non-commercial Matlab FE code [50] which was previously 

utilized with a different homogenization model (elasto-plastic with softening) in [16]. 

The principle of nested multi-scale technique within masonry homogenization is well known from 

past studies, e.g. by Massart [45], and can be summarized in few steps. 

First, a macroscopic strain E  is obtained at each iteration of the nonlinear macroscopic solution 

procedure for all Gauss points. E  is transferred from the macro- to the meso-scale (unit cell) in the 

so-called meso/macro-scale transition. The macroscopic stress tensor Σ  is then found solving the 

homogenization problem and transferred again to the macro-scale until convergence at each 

iteration step. The meso-macro transition also permits to extract the constitutive tangent, relating 

variations of Σ  to variations of E . 

Since the constitutive relationship of the interfaces is holonomic (hence a total strain formulation is 

adopted), local unloading in some Gauss points (which is possible even in monotonic static 

analyses) cannot be correctly reproduced with the approach proposed, but it has been shown that 

globally such limitation has not meaningful effects.  

Apart some numerical routines that the FE code used should own to deal with softening (such as a 

robust arc-length routine), mesh objectivity is a controversial issue, i.e. the requirement that the 

results are unaffected by the adopted discretization.  

In a strain-softening material, strain tends to localize into a narrow zone where energy is dissipated 

according to its size, while outside the continuum unloads elastically. If standard local models are 

used (i.e. the material response is computed as a function of local strains), localization is related to 

the finite element dimension. As a rule, in presence of softening, the band where dissipation occurs 

coincides with only one strip of elements through the mesh. This outcome could be also technically 

acceptable, however the energy of dissipation is proportional to the size of the finite elements, thus 

going down as the elements become smaller and smaller upon mesh refinement. In such cases, non-

objective results depending on the FE size are obtained. 
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The strategy adopted here to circumvent this problem is simply to approximate in tension the 

horizontal and vertical homogenized stress-strain curves with an exponential softening (least square 

approximation) and adopt exactly the same procedure proposed by Lourenço and co-workers in [3] 

to achieve mesh objectivity, i.e. scaling the fracture energies by means of the equivalent length h  

defined as: 



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







 
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heh wJwAh
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Where 
w , 

w  are weight factors of the Gaussian integration scheme, J  the Jacobian of the 

transformation, eA  the element area and h  a modification factor which is equal to 1 for quadratic 

elements and 2  for linear elements. 

It is indeed possible to avoid the quite cumbersome procedure proposed in [45], because the BVP at 

the mesoscale is solved without the need of a FE discretization, but in “quasi” analytical form. 

3.2. Homogenized RBSM model 

In Abaqus [42], RBSM is implemented using plate and shell elastic elements with high Young 

modulus (to approximate the hypothesis of infinite stiffness) and shear and normal springs 

interconnecting contiguous elements.  

The mechanical model adopted for the springs is a Concrete Damage Plasticity (CDP) one, already 

available in the standard versions of Abaqus. Values to assign to different parameters are those to 

match exactly the elastic, peak and post peak behavior provided by the holonomic homogenization 

model. Each interface, depending on its orientation with respect to masonry material axes, has its 

own characteristics and therefore requires different CDP mechanical parameters to tune. Apart the 

simplicity of implementation (which requires only the availability of a standard non-linear FE 

commercial code), noticeable advantages are the possibility to consider masonry orthotropy in the 

inelastic range and –thanks to the utilization of a damage plasticity model- the possible 

generalization to non-linear dynamic loads. Finally, the extension to out-of-plane loads and the 
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study of vaults and domes is in principle very straightforward. On the other hand, the strong 

limitation of an almost fully uncoupled behavior between shear and normal actions is worth 

mentioning, because the role played by vertical pre-compression can be taken into account in the 

model only in an approximate way, i.e. increasing springs tangential strength with respect to the 

level of vertical pre-compression. 

The most general implementation of RBSM requires the utilization of unstructured meshes. Indeed, 

for complex geometries, auto-meshing routines are usually needed to deal with geometric 

irregularities. Therefore, and this is the approach classically adopted by Kawai [47], triangular 

elements should be preferred. Hereafter, however, we will refer in general to rigid elements that can 

be either triangular or quadrilateral with irregular shape, as sketched in Figure 18-a. 

The mechanical properties of the springs connecting two contiguous rigid elements are typically set 

equating the stored elastic energy in the RBSM discretization to that of the elastic continuum. In 

case of homogenized masonry, the continuum is orthotropic. 

Two contiguous rigid elements with a common edge 12  (length equal to L12) are considered. They 

are thought as interconnected by two axial (shear) springs with the same stiffness 
nk  (

tk ).  

Langrangian variables of a rigid element M  are centroid displacements ( M

xu  and 
M

yu ) and rotation 

M

z  around centroid, all collected into vector 
T

MU =[ M

xu ; 
M

yu ; 
M

z ].  

Displacement field of points on the edge 12  are provided by the following trivial formula: 
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Where 0x  and 0y  are the coordinates of 0P  point on 12  edge and 0xu  (
0yu ) is the horizontal 

(vertical) displacement of the point. 

Indicating with 
e

s  (
e

r ) the unitary vector parallel (perpendicular) to 12 , the transformation matrix 

from the global to the interface local coordinate system is: 
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where the symbol   indicates the internal product. 

The jump of displacements on the interface 12  between M  and N  turns out therefore to be: 
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where 
ru  and 

su  are the normal and tangential jumps of displacement on the interface, 

respectively. 

Assuming the elastic energy equivalence between the discrete RBSM model and the orthotropic 

continuum, from relation ( 17 ), it can be easily shown applying the Castigliano’s theorem and 

separately to the mechanical systems 0 ru  and 0 su , that the axial and shear stiffnesses of 

the interface springs are: 
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The formula is conceptually identical for triangular and quadrilateral elements, with 1h  and 2h  

meaning shown in Figure 18-a. The utilization of triangular elements in RBSM would be preferable, 

because crack propagation can occur along inclined lines, especially for unstructured meshes, but 

even the utilization of quadrilateral elements proved good performance in the non-linear range [48].  

nnE  and ntG  are estimated once the elastic orthotropic behavior of the homogenized material is 

known, according to results shown in Figure 8.  

Elastic and inelastic behavior of a homogenized interface having normal  Tyx nnn  and 

direction  Txy nnt  is found assuming that the interface is subjected to the following 

homogenized strains: 
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From (19), to directly find the homogenized elastic modulus nnE  along n , we further impose nt =0, 

which trivially corresponds to applied boundary displacements on the unit cell in such a way that: 
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Similar considerations are made for the determination of ntG , assuming in such a case nn =0. 

Equation (20) allows to tune both the elastic and inelastic behavior of the homogenized interface 

with normal n . A detailed description of the technical passages adopted to identify spring stiffness 

(elastic part) in the RBSM model from masonry elastic moduli found at the meso-scale can be 

found in [43][51]. Inelastic behavior is scaled accordingly to the elastic part, again following 

[43][51], where the reader is referred for a comprehensive discussion. 

For benchmark purposes in the elastic range, the windowed panel studied in the inelastic range in 

the following Section is here modeled in the elastic range by means of (a) continuum quadrilateral 

finite elements, (b) rectangular and (c) quadrilateral irregular RBSM meshes with increasing 

refinement. The masonry material is orthotropic, according to the elastic properties of joints and 

bricks assumed in the sequel. The convergence of the RBSM meshes upon mesh refinement to the 

elastic solution found with classic orthotropic FEs is depicted in Figure 18-b ( FEMP

xU ,  is the 

horizontal displacement of the top edge of the panel found with a FE mesh constituted by 1000 

rectangular finite elements).  

It is finally interesting to notice that, when the RBSM model is constituted by rigid rectangular 

elements linked by normal and shear springs at the interfaces, with interface either vertical or 

horizontal, only 
xxxxE  , 

yyyyE   and 
xyxy T  homogenized relationships are needed to tune 
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normal and shear springs, without the need to obtain homogenized stress-strain relationships along 

inclined interfaces. The disadvantage is obviously a certain mesh dependence of the result, as it is 

shown hereafter. The static implementation adopted uses either standard arc-length or displacement 

based procedures, depending on the available implementation of the commercial code used. Finally, 

the discrete formulation adopted allows for an easy extension to the non-linear dynamic case. 

 

  
-a -b 
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xU                                                          P

xU  

 
-c 

Figure 18: -a: general procedure adopted to tune shear and normal interface springs in 

RBSM with irregular mesh- -b: performance of unstructured and structured meshes in 

the elastic stiffness evaluation of the windowed panel analyzed in the paper. .-c elastic 

deformed shapes obtained with one unstructured and one regular rigid element mesh. 

 

3.3. Validation on a windowed shear panel 

The structural simulations performed as benchmark refer to a set of windowed panels 

experimentally tested in [39]. The homogenized behavior utilized for the interfaces is that discussed 
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in the previous section. A multi-linear model for joints is assumed in the structural simulations for 

the sake of simplicity, but very similar results are obtained in the Xu-Needleman case.  

 
-a 

 
-b 

Figure 19: Windowed masonry shear wall by Raijmakers and Vermeltfoort. Geometry (-a) and (-b) 

meshes utilized (left: RBSM rectangular structured; center: nested multi-scale; right: RBSM 

triangular unstructured). 

 

Experimentally, two identical walls were tested, labeled as J2G and J3G. The width/height ratio 

(L/H) of the shear walls is 990 /1000 ([mm]/[mm]); the panels were built up with 18 courses of 

bricks, from which 16 courses were active and 2 were clamped in stiff steel beams, Figure 19. A 

vertical pre-compression of 0.3 N/mm2 was applied on the top and its resultant was kept constant 

during the complete loading procedure. The stiff steel beam did not allow rotations of the top and 

was subsequently pushed with an increasing horizontal force. The central opening defines two small 

relatively weak piers and forces the compressive strut that develops under horizontal loading to 

spread around both sides of the opening. 
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Figure 20: Windowed masonry shear wall by Raijmakers and 

Vermeltfoort. Comparison among external load-horizontal displacement 

provided by the present model, previously presented numerical 

approaches and experimental behavior.  

 

The experimental crack patterns as reported in [39] are illustrated in Figure 19-a. Diagonal 

zigzagging cracks arose initially from two corners of the opening at four possible locations. Shortly 

afterwards, tensile cracks arose from the outside of the wall at the base and top of the small piers. 

Under increasing deformation, predominant diagonal cracks occurred, leading to partial closing of 

the cracks that were open before. Finally, a collapse mechanism formed with failure of the 

compressed toes, located at the bottom and top of the wall and at the bottom and top of the small 

piers. 

Meshes used for the non-linear structural analyses are depicted in Figure 19-b. In particular, one 

RBSM rectangular structured mesh (left), one nested multi-scale (center) and one RBSM triangular 

unstructured (right) discretization are adopted, in order to have an insight into the possible mesh 

dependence of the result obtained by means of the rectangular RBSM structured mesh. In all cases, 
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a medium size discretization is adopted, in order to speed up computations without losing numerical 

accuracy. 

   

A B C 

Figure 21: Deformed shape at different time steps: a- elastic phase, b- peak load, b- end of the 

simulation (magnified 100 times in A and B, and 10 times in C) 
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Figure 22: Results provided with the present model: a- damage map in compression, b- damage map in 

tension, at the end of the simulation 

 

 
Tension compression 

-a 

 
                 Tension Compression Shear                                     

 -b  

Figure 23: deformed shapes at collapse, with indication of damage. –a: nested multi-scale 

approach. –b: RBSM approach with unstructured mesh. 

 

Mechanical properties assumed for the constituent materials are summarized in Table I and are 

taken in agreement with both experimental data provided by Raijmakers and Vermeltfoort [39] 

(where available) and Lourenço [5] [30], where the same numerical analyses were performed within 

a heterogeneous approach. 
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In Figure 20, a comparison among external shear load-horizontal displacement provided by the 

present model, previously presented numerical approaches [5] [16] [30] and experimental data is 

depicted. As can be observed, the model proposed seems to provide very satisfactory results, both 

using a RBSM and a nested multi-scale approach. It is also interesting to notice that the presence of 

rectangular rigid elements in the RBSM structured mesh seems not to represent a strong limitation 

for the formation of a reasonable failure mechanism, as can be observed by the three deformed 

shapes at instants A-C (indicated in the pushover curve of the RBSM structured mesh in Figure 20, 

A: elastic, B: peak, C: failure) depicted in Figure 21. However, since inelastic deformations are 

allowed only on pre-assigned crack lines –dependent on the initial mesh- unavoidable mesh 

dependence is still present especially in the softening branch (as demonstrated by the deviations 

exhibited by the unstructured RBSM mesh when compared with nested multi-scale response). As a 

consequence, particular care is recommended in the meshing phase, in order to avoid a drastic 

overestimation of the load carrying capacity of the structure or a fictitious damage concentration on 

some interfaces. Figure 22 and Figure 23 finally illustrate damage maps obtained at the end of the 

numerical analyses. Figure 22 refers to the RBSM structured mesh: circles indicate shear failure, 

triangles axial horizontal failure and squares axial vertical failure. Figure 23 finally shows on the 

obtained deformed shapes damage patterns for the nested multi-scale approach (-a) and the RBSM 

unstructured mesh (-b). Damage is represented with a red square, the dimension indicating its 

amount. In the nested multi-scale approach it is obviously not possible a distinction between normal 

and shear damage, being the procedure native 2D (only damage in tension and compression can be 

distinguished), whereas in the unstructured RBSM approach three sub-figures are utilizing, 

separating normal damage in tension, compression and shear damage. 

Comparing all the results obtained (deformed shapes and crack patterns), it can be concluded that 

all the numerical models proposed show common features, with the formation of failure 

mechanisms fully in agreement with experimental evidences, i.e. diagonal cracks propagation on 
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two opposite corners of the central window and tension crack opening/compression crushing of the 

two piers, that clearly exhibit a rocking failure with rotation around the compressed toe. 

4. Conclusions  

A quasi-analytical simplified compatible homogenization model accounting for the softening 

behavior of mortar joints in the case of in-plane loads has been presented. In the first step, a 

rectangular elementary cell has been discretized by means of a few triangular elastic FEs and non-

linear joints reduced to interfaces. Homogenized stress-strain diagrams have been found by means 

of a quasi-analytical approach, where kinematic variables are found graphically at each imposed 

external macroscopic strain. The procedure allows a direct estimation of displacements in the unit 

cell, since a holonomic behavior of mortar is assumed. The second step (structural level) is 

performed by means of rigid quadrilateral elements interconnected by holonomic shear-nornal 

springs, where all the non-linearity is concentrated and with mechanical properties directly 

determined from the homogenization problem. The main innovative aspects of the numerical model 

proposed are twofold. At a cell level, the FE discretization adopted allows for a quasi-analytical 

determination of the homogenized stress-strain behavior of running bond masonry. At a structural 

level, the procedure can be directly implemented into any general purpose FE commercial code 

(either using elasto-damaging 2D elements or rigid elements interconnected by elasto-damaging 

springs), because it does not require the recursive solution of a homogenization problem in each 

Gauss point at each load step. 
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