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Abstract

In this work, a generalization of the Smith Predictor (SP) is proposed to control linear time-invariant (LTI) time-delay single-
input single-output (SISO) systems. Similarly to the SP, the combination of any stabilizing output-feedback controller for the
delay-free system with the proposed predictor leads to a stabilizing controller for the delayed system. Furthermore, the tracking
performance and the steady-state disturbance rejection capabilities of the equivalent delay-free loop are preserved. In order to
place this contribution in context, some modifications of the SP are revisited and recast under the same structure. The features of
the proposed scheme are illustrated through simulations, showing a comparison with respect to the corresponding delay-free loop,
which is here considered to be the ideal scenario. In order to emphasize the feasibility of this approach, a successful experimental
implementation in a laboratory platform is also reported.
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1. Introduction

Time delays appear naturally in control applications. They
can be either intrinsic to the physical process to be controlled
or originated in the implementation of the feedback loop [1].
Furthermore, industrial processes usually operate in a fixed set-
point during long periods of time and thus disturbance rejection
is a fundamental issue.

An LTI time-delay SISO process subject to input distur-
bances can be described by

y(s) = G(s)e−hs[u(s) + w(s)] , ȳ(s)e−hs (1)

where y ∈ R is the measurable output, ȳ ∈ R is the unmeasur-
able non-delayed output, u ∈ R is the control input, w ∈ R

is an input disturbance, h ≥ 0 is a constant time delay and
G(s) = C(sI − A)−1B is referred to as the delay-free system.

When controlling a time-delay system, an ideal scenario is
depicted in Fig. 1. It is “ideal” in the sense that the delay is
pushed out of the feedback loop, the non-delayed output ȳ is
available, and thus the controller K(s) can be simply designed
for the rational part of the model, G(s), using conventional tech-
niques. Since ȳ is not accessible, a reasonable approach consists
of constructing an output prediction ˆ̄y, so that it can be used
to control the system as in the ideal scenario. The prediction
should be based on the available input/output information, hav-
ing the following structure:

ˆ̄y(s) , F1(s)u(s) + F2(s)y(s) (2)

where the filters F1(s) and F2(s) must be stable and derived
from the plant model.
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In the seminal work [2], the Smith Predictor (SP) makes use
of the filter FSP

1 (s) , G(s) −G(s)e−sh, sometimes referred to
as the SP block, whereas FSP

2 (s) , 1. It is easy to verify
that the prediction ˆ̄ySP(s) , FSP

1 (s)u(s) + FSP
2 (s)y(s) satisfies

ˆ̄ySP(s) = G(s)u(s) = ȳ(s), if there are no disturbances. Indeed,
the SP removes the delay element from the denominators of all
the closed-loop sensitivity functions, reducing the control prob-
lem to that of a delay-free system. The methodology described
above has been referred to as the “Smith’s Principle” in the lit-
erature. However, the SP cannot be applied to open-loop unsta-
ble plants and regardless of the main controller, only constant
disturbances can be rejected [3].

r +
K(s) G(s) e−hs

yu +

w

+ ȳ

+

−

n+

Figure 1: An ideal control loop (unfeasible)

Many structures, commonly referred to as dead-time com-
pensators (DTCs), have been developed to mitigate these issues
[4, 5], either to achieve load disturbance rejection for pure inte-
grating processes with long dead-time [6, 7, 8, 9, 10, 11, 12], or
to control unstable time-delay systems [13, 14, 15, 16, 17, 18,
19, 20, 21]. Some works have been also focused on counter-
acting periodic disturbances [22, 23, 24]. These schemes com-
monly have an inner stabilizing loop and employ more con-
trollers. Furthermore, most solutions are highly specific on the
control goals and/or the plant structure, and they fail in com-
pletely removing the delay element from the feedback loop,
making the design process more complicated. To the best of
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the author’s knowledge, for integrating and unstable systems,
none of the aforementioned works except those proposed in
[6, 18, 19], fulfill the Smith’s Principle. Next, these schemes
are reviewed and recast under the same structure, in order to
place the present work in context.

1.1. The Smith’s Principle

As aforementioned, few schemes have been proposed to gen-
eralize the Smith Predictor to unstable systems, avoiding the
instability of the predictor block while fulfilling the Smith’s
Principle. The first attempt in this direction can be found
in [6]. In that work, the SP block was modified by choos-
ing FMSP

1 (s) , G†(s) − G(s)e−sh and FMSP
2 (s) = 1, where

G†(s) , Ce−Ah(sI − A)−1B. However, it was later where
this approach was generalized and named as the Modified
Smith Predictor (MSP) [25]. The key feature of this scheme
is that the MSP block can be computed in the time domain
as1 L−1{FMSP

1 (s)u(s)} = Ce−Ah
∫ h

0
eAξBu(t − ξ) dξ, which is a

definite integral and therefore, stable. Regarding disturbance
rejection, the MSP alters the low frequency gain of the pri-
mary controller because it has non-zero static gain, that is,
FMSP

1 (0) , 0. Consequently, constant disturbances cannot be
rejected even if the primary controller contains integral ac-
tion. This drawback was already addressed in [6] by choosing
G†(s) = −C

∫ h

0
e−Aξ dξB +Ce−Ah(sI − A)−1B, with the inconve-

nient that G†(s) is no longer strictly-proper and the correspond-
ing controller may be more complicated.

Other proposals were developed inspired on the discrete-time
framework. In [19], the SP was complemented with an ad-
ditional filter, FFSP

2 (s) , Fr(s), leading to the Filtered Smith
Predictor (FSP). The resulting predictor block was FFSP

1 (s) ,

G(s) − G(s)Fr(s)e−sh, where the new filter Fr(s) played a
key role, being used to avoid the unstable modes in FFSP

1 (s).
In continuous-time, this pole-zero cancellation cannot be per-
formed by the use of polynomial division because the numer-
ator of FFSP

1 (s) is a non-rational expression. However, in the
discrete-time framework, this can be done analytically by solv-
ing a Diophantine equation. In the same process, the block can
be also adjusted to reject any class of disturbances [26, 27].

The Generalized Predictor (GP), originally proposed in [18],
was originated from a discrete-time reasoning. However,
the formulation next presented is developed in continuous-
time for the sake of comparison. Similarly to the MSP,
the instability of the GP block was avoided by select-
ing FGP

1 (s) , G(s) −G∗(s)e−sh with G∗(s) , CeAh(sI − A)−1B,
whereas FGP

2 (s) = G∗(s)/G(s). As a result, the GP block can be

computed as L−1{FGP
1 (s)u(s)} = C

∫ h

0
eAξBu(t − ξ) dξ, which is

a stable block. In order to cancel the effect of constant distur-
bances, the GP made use of an extra loop, making the analysis
more complicated [28].

The schemes previously reviewed lead to a control structure
as depicted in Fig. 2, with filters given in Table 1.

1Here L−1{·} denotes the inverse Laplace transform operator.
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K(s) G(s) e−hs
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ˆ̄y

−

predictor

Figure 2: A general structure for predictor-based control schemes

Table 1: Filters in Fig. 2 for each scheme reviewed in Section 1.1
Scheme F1(s) F2(s) Proposed in

SP G(s) −G(s)e−sh 1 [2]
MSP G†(s) −G(s)e−sh 1 [6]
FSP G(s) −G(s)Fr(s)e−sh Fr(s) [19]
GP G(s) −G∗(s)e−sh G∗(s)/G(s) [18]

1.2. Contribution

In this paper, with special emphasis on transparency and de-
sign simplicity of the resulting control strategy, a generalization
of the SP is proposed to solve the following problem:

Problem 1. Consider a controller K designed to meet some

requirements based on the delay-free loop depicted in Fig. 1.

Then, find a predictor, that is, design filters F1 and F2, such

that the same controller K in Fig. 2:

A) guarantees internal stability

B) achieves the same nominal tracking performance

C) achieves rejection of the same type of disturbances

2. Problem reformulation

As already mentioned, a celebrated feature of the SP is that
it exactly reduces the control problem to its delay-free counter-
part, by constructing an “exact” prediction. In what follows, a
prediction ˆ̄y for the system (1) is said to be exact if ˆ̄y(s) = ȳ(s)
hold in the nominal case. It is easy to show that a prediction
computed by (2) is exact if and only if

F1(s) =
(

1 − F2(s)e−hs)G(s). (3)

The main advantage of obtaining an exact prediction is that the
design and analysis of the resulting control-loop are drastically
simplified, which is a highly appreciated feature of the original
SP. This is formally stated by the following proposition:

Proposition 1. If the output prediction computed by (2) is ex-

act, then the input-output transfer functions of the predictor-

based control loop depicted in Fig. 2 satisfy:

Gr,y(s) = Ḡr,y(s) (4)

Gw,y(s) = Ḡw,y(s) + Ḡr,y(s)F1(s) (5)

Gn,y(s) = Ḡn,y(s)F2(s) (6)

Gn,u(s) = Ḡn,u(s)F2(s) (7)

where Ḡr,y, Ḡr,w, Ḡr,n, Ḡn,u are the input-output transfer func-

tions of the ideal loop in Fig. 1.
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Proof. The proposition follows simply by solving the block di-
agrams in Figs. 1-2 and using (3).

Remark 1. Inspecting Table 1, the condition (3) holds for all

the schemes reviewed in Section 1.1 but the MSP, in which the

controller has to be designed for the modified plant G†(s). This

can be an inconvenient in some cases, as already mentioned.

Now, Problem 1 is translated into finding a predictor with
some constraints. To that purpose, let us introduce the follow-
ing assumption:

Assumption 1. The external disturbance can be expressed as

w(s) = w̄w0(s), with unknown amplitude w̄ ∈ R and known

dynamics w0(s)

Assumption 1 implies that the type of disturbance to be re-
jected should be known, e.g., step, ramp, or sine wave with
a given frequency. Although this may seem restrictive, some
attenuation of disturbances not described by w0(s) is also ex-
pected. This can be analyzed in detail by looking at the bode
plot of (5).

Lemma 1. Let us consider the control loop in Fig. 2 with a

predictor such that:

i.) the prediction ˆ̄y is exact

ii.) the filters F1(s), F2(s) are stable

iii.) the following equivalent conditions hold

lim
t→∞

(

ȳ(t) − ˆ̄y(t)
)

= 0 ⇐⇒ lim
s→0

sF1(s)w0(s) = 0

Then, that predictor solves Problem 1.

Proof. If i.) holds then Proposition 1 is valid and the control
loop in Fig. 2 is internally stable iff (4)-(7), the so-called “gang
of four”, are stable . Recall that K(s) is designed such that
all transfer functions of the ideal loop, denoted with an upper
bar are stable, whereas the filters are stable by ii.). Then A) in
Problem 1 is fulfilled. Also, the set-point responses in (4) for
both loops are the same and thus B) is fulfilled. Finally, using
(1)-(3), the output prediction error due to the input disturbance
satisfies

e(s) , ȳ(s) − ˆ̄y(s) = F1(s)w(s) (8)

The equivalence in iii.) follows from (8) and Assumption 1.
Furthermore, notice that if iii.) holds, from (5), the load dis-
turbance response of the ideal loop is recovered in steady-state,
and then, C) is fulfilled. This completes the proof.

3. Proposed generalized SP

The main contribution of this paper, a generalized SP, is pre-
sented next.

Lemma 2 (GSP). Let us consider an arbitrary decomposition

of the delay-free plant such that

G(s) = Γ(s)G̃(s) (9)

where Γ(s) is proper, stable and may have non-minimum phase

zeros; and G̃(s) = C̃(sI − Ã)−1B̃ = Ñ(s)/D̃(s) is strictly proper,

minimum phase and may have unstable poles. Then, the com-

putation of (2) with the stable filters

F1(s) = ΦG̃(s)Γ(s) F2(s) =
Ñ∗(s)

Ñ(s)
(10)

where G̃∗(s) = C̃eÃh(sI − Ã)−1B̃ = Ñ∗(s)/D̃(s) and ΦG̃(s) =
C̃

(

I − e−(sI−Ã)h
)

(sI − Ã)−1B̃, provides an exact output predic-

tion.

Proof. See Appendix A.

Intuitively, Lemma 2 implies that, regarding prediction, the
plant can be decomposed into: G̃(s), which is projected h units
of time ahead by the operator ΦG̃(s); and Γ(s), which appears
explicitly in the predictor. The usefulness of the GSP intro-
duced above lies on the fact that the prediction is exact no mat-
ter what decomposition is chosen. Therefore, Γ(s) can be ap-
propriately selected so that F1(s) has some desired properties.

Theorem 1. Let us consider the following decomposition

Γ(s) =
N+(s)N−

Γ
(s)

D−
Γ
(s)

Q(s)
w0(s)

G̃(s) =
N−

G̃
(s)

D+(s)D−
G̃

w0(s)
Q(s)

(11)

where: i.) the unstable poles and non-minimum phase ze-

ros of G(s) are collected in D+(s) and N+(s), respectively;

ii.) its stable poles D−(s), and minimum phase zeros N−(s),
are arbitrarily partitioned so that D−

Γ
(s)D−

G̃
(s) = D−(s) and

N−
Γ

(s)N−
G̃

(s) = N−(s); and iii.) Q(s) is a strictly-proper filter

such that G̃(s) is strictly-proper and Γ(s) is at least proper.

Then, the GSP introduced in Lemma 2 with Γ(s), G̃(s) given

above, solves Problem 1.

Proof. Recall that Problem 1 is solved if the conditions in
Lemma 1 are fulfilled. By Lemma 2, the items i.) and ii.) hold.
Using (8), the limit of the output prediction error (assuming it
exists) can be computed as limt→∞ e(t) = lims→0 sF1(s)w(s).
Using (10), (11) and Assumption 1, it follows that

lim
t→∞

e(t) = lim
s→0

sΦG̃(s)
N+(s)N−

Γ
(s)

D−
Γ
(s)

Q(s)
w0(s)

w̄w0(s)

= lim
s→0

sΦG̃(s)
N+(s)N−

Γ
(s)

D−
Γ
(s)

Q(s)w̄ = 0 (12)

Notice that the limit always exists becauseΦG̃(0) is well defined
and the other transfer functions in (12) have stable poles. This
completes the proof.

Remark 2. It should be remarked that although there are infi-

nite choices for Q(s), its relative degree, denoted by rq, is con-

strained. In order to fulfill the third condition in Theorem 1 , it

can be shown that rq ∈ [r
q
, rq] , [z+ + rw0 − p−, p + rw0 − 1],

where rw0 is the relative degree of w0(s), z+ is the number

of non-minimum phase zeros, p is the number of total poles

and p− is the number of stable poles. A simple choice is

Q(s) = (s + ω)−rq , rq ∈ [r
q
, rq], which leaves only two param-

eters to be adjusted.
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4. Predictor-based control

The main features of the control-loop resulting from apply-
ing the proposed predictor are discussed in this section. First,
performance and robustness indices are derived in comparison
to those of the ideal delay-free loop. Later, the stability of the
digital implementation is thoroughly analyzed as it is a critical
issue, specially for unstable plants.

4.1. Performance and robustness

From (4) in Proposition 1, the proposed strategy recovers the
tracking performance of the ideal loop. Also, it can be verified
from (5) that

S (s) = S̄ (s)
(

1 + K(s)F1(s)
)

(13)

where S (s) and S̄ (s) are the sensitivity functions of the con-
trol loops in Fig. 1 and Fig. 2, respectively. On the other
hand, let us consider a multiplicative uncertainty such that
G(s) = G0(s)

(

1 + ∆(s)W∆(s)
)

with ‖∆‖∞ ≤ 1, and thus the
robust stability condition for Fig. 1 is ‖M̄(s)‖∞ ≤ 1 where
M̄ = L̄(s)W∆(s)/

(

1 + L̄(s)
)

and L̄(s) = G0(s)K(s). Then, de-
noting by ‖M(s)‖∞ ≤ 1 the new robust stability condition for
the loop Fig. 2, it can be show that

M(s) = M̄(s)F2(s) (14)

The robustness with respect to a delay mismatch is also a matter
of concern [29]. Considering h = h0+δh, the robust stability can
be checked by modeling it as multiplicative uncertainty (very
conservative), or the analytic bounds on δh can be computed by

max
{

−h0,
φ−

i

ωi

}

< δh < min
φ+

i

ωi

, (15)

where ωi are crossover frequencies at which L( jωi) = 1,
φ+

i
> 0, φ−

i
< 0 are the corresponding signed phase margins, and

L(s) is the loop transfer function of Fig. 2, given by

L(s) =
G(s)K(s)F2(s)e−hs

1 + K(s)F1(s)
.

Since K(s) should be designed for the delay-free system, one
can use (13)-(14) along with Theorem 1 to design a filter Q(s)
so that the desired disturbance rejection performance and ro-
bustness are achieved, if possible. However, it is worth men-
tioning that there are fundamental limitations [30]. For exam-
ple, it is not possible to achieve S̄ (s) = S (s) at all frequencies
because F1(s) = 0 implies F2(s) = esh, which is not realizable.
Also, M̄(s) = M(s) can only be achieved for stable systems, be-
cause it implies that F2(s) = 1 and thus F1(s) = G(s)

(

1 − e−hs
)

,
which is the conventional Smith Predictor. It should be also re-
marked that, although predictors achieve nominal stability for
any h > 0, there is a limitation on the achievable delay mar-
gin for unstable systems using LTI controllers [31]. Therefore,
above that value, an infinitesimal delay would lead to instabil-
ity, making the controller unfeasible in practice.

4.2. Discrete-time implementation

Some details regarding the digital implementation will be
discussed next. Since predictive schemes are sensitive to non-
minimum phase zeros and unstable poles, it is important to
consider a discretized plant from the beginning. Let us define
the sampling period T s > 0, and the discretized process model
G(z) = Z{G(s)}, where Z{·} is the Z-transform operator. The
delay is assumed to be a multiple of the sampling period, i.e.,
h = T sd for some d ∈ N. Then, the discrete-time counterpart of
(1) is given by

y(z) = G(z)z−d[u(z) + w(z)] (16)

where G(z) = Cz(zI − Az)−1Bz. The discrete form of the pro-
posed predictor for the system (16) is introduced in the follow-
ing lemma:

Lemma 3 (Discrete-time GSP). Let us consider an arbitrary

decomposition of the delay-free plant such that

G(z) = Γ(z)G̃(z) (17)

where Γ(z) is proper, stable and may have non-minimum phase

zeros; and G̃(z) = C̃z(zI−Ãz)−1B̃z = Ñ(z)/D̃(z) is strictly proper,

minimum phase and may have unstable poles. Then, the com-

putation of
ˆ̄y(z) = F1(z)u(z) + F2(z)y(z) (18)

with the stable filters

F1(z) = ΦG̃(z)Γ(z) F2(z) =
Ñ∗(z)

Ñ(z)
(19)

where G̃∗(z) = C̃zÃ
d
z (zI − Ãz)−1B̃z = Ñ∗(z)/D̃(z) and ΦG̃(z) =

C̃z

∑d
j=1 Ã

j−1
z z− jB̃z, provides an exact output prediction.

Proof. It can be readily seen that the following identity holds
∑d

j=1 Ã
j−1
z z− j =

(

I − Ãd
z z−d

)

(zI − Ãz)−1. Pre-multiplying by
C̃z and post-multiplying by B̃z in the previous identity yields
ΦG̃(z) = G̃(z) − G̃∗(z)z−d. Therefore, from (19), if follows that
F1(z) =

(

G̃(z) − G̃∗(z)z−d
)

Γ(z). Also, since G̃(z) and G̃∗(z) have
the same poles, then F2(z) = Ñ∗(z)/Ñ(z) = G̃∗(z)/G̃(z). Plug-
ging these expressions into (18) and after some manipulations,
it follows that ˆ̄y(z) = G(z)u(z) for the nominal case, i.e., w = 0.
This completes the proof.

Remark 3. Notice that the decomposition introduced in The-

orem 1 applies to the discrete-time case, simply replacing the

argument s of the transfer functions by z. It is important to

perform the decomposition of the plant using the discretized

model, because additional zeros may be introduced during the

discretization process.

Remark 4. The digital implementation of the distributed terms

arisen in F1(s) has been a major concern for many years [32].

The implementation structure given in Lemma 3 mitigates this

problem. Another implementation issue was devised in [33]

for the case of systems with fast stable modes, where the Uni-

fied Smith Predictor (USP) was proposed. This problem can

be avoided in the proposed scheme by placing the fast stable

modes in Γ(s) and selecting Q(s) accordingly.
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Table 2: Absolute performance and robustness for different values of τq
GM PM IAE/IAE∗ ωc δh

delay-free [0.79, inf] 35.9◦ 1 1.3 rad/s -
τq = 0.1 s [0.83, 1.20] 11.5◦ 1.04 51.3 rad/s ±0.02 s
τq = 0.75 s [0.87, 1.18] 7.71◦ 1.07 11.4 rad/s ±0.09 s
τq = 1.5 s [0.89, 1.18] 6.4◦ 1.12 8.5 rad/s ±0.12 s
τq = 2 s [0.91, 1.18] 5.9◦ 1.20 7.8 rad/s ±0.13 s
τq = 5 s [0.94, 1.18] 5.0◦ 2.10 6.5 rad/s ±0.15 s

For the convenience of potential users, the set-up of the pro-
posed strategy can be summarized as follows: 1.) Obtain a
discrete-time model of the plant as shown in (16); 2.) Design
a primary controller K(z), for the delay-free system (using con-
ventional design techniques); 3.) Find a suitable decomposition
G(z) = Γ(z)G̃(z) satisfying the conditions in Theorem 1 (choos-
ing Q(z) as simple as possible, e.g., a low-pass filter, for design
simplicity); 4.) Construct the filters F1(z), F2(z) and implement
the output predictor ŷ(z) as described in Lemma 3; 5.) Use ŷ(z)
as the input to the controller; and 6.) Adjust the parameters in
Q(z) to reach a trade-off between performance and robustness.

5. Simulations

In this section, simulations are carried out to validate the pro-
posed strategy. Let us consider (1), being

G(s) =
1

s − 1
and h = 1.5 s.

Remark 5. It should be remarked that this is a rather challeng-

ing example. To the best of the authors’ knowledge, this system

has not been robustly controlled with such a large delay [4].

Furthermore, it is pointed out in [31] that no LTI controller

can stabilize this system for delays h > 2 s.

The equivalent ZOH sampled system (16), with a sampling
period T s = 0.01 s is obtained as G(z) = bz/(z − az) with
az = eTs , bz =

∫ Ts

0
eθ dθ = 1 − eTs and a discrete delay d = 150.

The controllers below are designed taking into account only
the delay-free system, using conventional procedures. The pre-
dictor is adjusted to yield zero steady-state prediction error for
some type of disturbances. Then it is showed how the straight-
forward combination of the predictor with the main controller
stabilizes the delayed system, keeping the same tracking perfor-
mance while maintaining the disturbance rejection capabilities.

5.1. Constant disturbance rejection

Rejection of constant disturbances is a typical requirement
in practice, and it is here chosen to illustrate the main features
of the proposed strategy. Primary controller design: A sim-
ple 2-DoF PI-controller K(s) with a set-point filter Fr(s) is de-
signed, in the Laplace domain for convenience, for the equiva-
lent delay-free system as follows

K(s) = k
ti s + 1

ti s
Fr(s) = Gr(s)/T (s)

τq

0 1 2 3 4 5
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Figure 3: Relative robustness and performance indices as a function of τq

with k = 2β + 1 and ti = k/β2, which yields a closed-loop
characteristic polynomial (s + β)2. For the prefilter,

T (s) =
G(s)K(s)

1 +G(s)K(s)
, Gr(s) =

1
τr s + 1

,

leading to a characteristic response time for the set-point track-
ing, τr . For the simulations below, the parameters β = 1/8
and τr = 2 s are arbitrary selected. Notice that this controller
is able to reject constant disturbances in the delay-free case
and it has been designed without considering the time delay.
Predictor design: The predictive scheme is implemented ac-
cording to Lemma 3, with N−

Γ
(z) = bz, N−

G̃
(z) = 1, N+(z) = 1,

D+(z) = (z + az), D−
Γ
(z) = 1, D−

G̃
(z) = 1 and w0(s) = 1/s, to re-

ject constant disturbances. Notice that according to Remark 1,
in this case rq ∈ [1, 1] and thus the simplest possible choice for
the filter is taken, Q(s) = 1/(τqs + 1), being τq an adjustable
parameter. The following discretization can be obtained

Z

{

Q(s)
w0(s)

}

= Z

{

s

τqs + 1

}

=
z − 1

τqz + (T s − τq)
(20)

and thus, applying the decomposition in Theorem 1 yields

Γ(z) =
bz(z − 1)

τqz + (T s − τq)
and G̃(z) =

τqz + (T s − τq)

(z − 1)(z − az)
.

A state-space realization of G̃(z) = C̃z(zI − Ãz)−1B̃z is given by

C̃z = [T s − τq, τq], Ãz =

[

0 1
1 + az −az

]

and B̃z =

[

0
1

]

.

According to Lemma 3, the filter F1(z) can be computed by

F1(z) = ΦG̃(z)
bz(z − 1)

τqz + (T s − τq)

with ΦG̃(z) = C̃z

∑d
j=1 Ã

j−1
z z− j B̃z and Ãz, B̃z, C̃z given above. In

order to compute F2(z), notice that, because of the canonical
form of the state-space representation of G̃(z) = Ñ(z)/D̃(z), it

5
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Figure 4: Nominal performance for different values of τq

follows that Ñ(z) = τqz+ (T s−τq) =
〈

C̃z, [1, z]
〉

, where 〈·, ·〉 de-
notes the dot product. In other words, the coefficients of the nu-
merator of the transfer function are simply given by C̃z. Then,
according to Lemma 3, the numerator of G̃∗(z) is obtained as
Ñ∗(z) =

〈

C̃zÃ
d
z , [1, z]

〉

and thus the filter F2(z) can be computed
by

F2(z) =

〈

C̃z, [1, z]
〉

〈

C̃zÃ
d
z , [1, z]

〉

In the current configuration, there is only one parameter left to
be tuned, namely, τq. Its influence can be illustrated through a
plot like the one depicted in Fig. 3. In this representation, one
can see the phase margin reduction (green), the gain margin re-
duction (red) and the integral absolute error (IAE) increment
for a load step disturbance (blue), all of them expressed as rel-
ative values over the corresponding delay-free loop character-
istics. According to the previous indicators, lower values of τq

increase both robustness and performance. However, the allow-
able delay uncertainty (black) approaches to zero as τq → 0.
The data shown in Table 2 (absolute GM, absolute PM, rela-
tive IAE and absolute delay mismatch, δh) illustrates with more
details the same behavior depicted in Fig. 3. Furthermore, an
additional measure is added, namely, the crossover frequency
of the transfer function (6), denoted by ωc. It can be concluded
that the improvement in GM, PM and IAE comes at the expense
of more noise and less tolerance to delay mismatch.

Therefore, a trade-offmust be reached, which is mainly con-
strained by how accurate the delay is known. From Fig. 3,
for this particular example, values τq > 2 should be discarded,
as they reduce performance substantially (fast grow of relative
IAE) whereas the other indices are barely improved. On the
other hand, values in the range τq < 0.5 offer a tolerance of less
than 5% to a delay mismatch, and thus they should also be ruled
out. An interval of interest in practice for this example is hence
given by 0.5 < τq < 2.

The discussion above is illustrated next through
some simulations. The system is driven by a step ref-
erence r(t) = 1,∀t ≥ 10 s; and an input disturbance
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Figure 5: Robustness to −10% gain variation for different values of τq
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Figure 6: Robustness to −10% gain and +5% delay variations

w(t) = −0.1,∀t ≥ 100 s is applied. The first scenario is
shown in Fig. 4, where the different values of τq are simulated
in nominal conditions. One can clearly see how the disturbance
rejection performance improves as τq is reduced. A second
simulation shows the effect of τq in the robust performance.
The gain of the actual plant is decreased by 10% while the
delay is kept with its nominal value. The results are shown in
Fig. 5. It is verified that, as discussed before, if the delay is
accurately known, lower values of τq provide better robustness.
The output corresponding to τq = 1.5 s is not included here
because it is almost unstable. The third simulation considers
the same scenario as before but the actual delay is increased by
5%. In this case, the value τq = 0.1 s leads to instability, as it
has a very small tolerance to a delay mismatch (see Table 2).
However, the performance for τq = 0.75 s, shown in Fig. 6, is
satisfactory.

5.2. Sinusoidal disturbance rejection

The design process to reject a sinusoidal input disturbance
is illustrated next. A resonant controller K(s) with a set-point

6
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Figure 7: Rejection of a sinusoidal input disturbance

filter Fr(s) is designed for the equivalent delay-free system as
follows

K(s) = k
(s + ω)2

s2 + ω2
Fr(s) = Gr(s)/T (s) (21)

with k = 5, ω = 0.2 rad/s which yields a stable closed-loop with
phase margin 60◦. The prefilter is the same as in the previous
example, with τr = 2 s. Notice that this controller is able to
reject sinusoidal disturbances of frequency ω = 0.5 rad/s in the
delay-free case. The predictive scheme is implemented accord-
ing to Lemma 3, with the same decomposition as in the previous
example but choosing w0(s) = ω/(s2 + ω2). Again, in this case
rq ∈ [2, 2] according to Remark 1, and thus the simple choice
Q(s) = 1/(τqs + 1)2 is made, being τq an adjustable parameter.

The simulation is shown in Fig. 7, where the adjustable pa-
rameter is selected as τq = 1 s; the system is driven by a
step reference r(t) = 1,∀t ≥ 10 s; and an input disturbance
w(t) = −0.2 sin 0.2(t − 40), ∀t ≥ 40 s is applied. It can be
seen how the disturbance is finally rejected in spite of the large
time delay, as it happens in the delay-free case. Regardless of
whether the frequency of sinusoidal disturbances is accurately
known in practice, the main purpose of the previous simulation
is to show that the proposed predictor can be easily adjusted to
keep the same steady-state disturbance rejection capabilities of
the corresponding delay-free loop.

6. Experimental results

An experimental validation is reported using the 3D Hover
laboratory platform manufactured by Quanser c©, depicted in
Fig. 8. It consists of a quadrotor mounted on a 3-DoF pivot
joint so that the body can freely rotate in roll, pitch and yaw.
The angular position is the controlled variable, which is mea-
sured by a encoder with a resolution of 0.04 deg, while the in-
put is the voltage sent to the motors. The experiment is per-
formed in one of the roll/pitch axes, which is modeled as a
double integrator G(s) = 0.1/s2. The control loop is imple-
mented at T−1

s = 100 Hz, where T s is the sampling period,

Figure 8: Experimental device

using a POSIX thread in a computer running Linux with a soft
real-time patched kernel. An artificial delay of h = 250 ms
(or d = 25 sampling periods) is introduced by software. The
resulting controller is required to reject step disturbances. It
should be remarked that the double integrator model is just an
approximation of the real plant. In fact, the experimental device
has a large uncertainty due to the motor dynamics, which is ne-
glected in the design process. Furthermore, although the num-
ber of samples in the artificial delay is known, the actual delay
depends on the computational time, which is slightly varying
and thus, another source of uncertainty.

Following the Step 1, described at the end of Section 4, a dis-
cretization of the plant, G(z) = 0.5T 2

s (z+1)/(z−1)2, is obtained.
In the Step 2, a primary PID-controller is designed

K(s) = kp

(

1 +
td s

τ f s + 1
+

1
ti s

)

with a set-point filter Fr(s) = 1/(τrs + 1) and τr = 2 s, kp =

50 V/rad, td = ti = 0.5 s, with τ f = 0.2, which leads to a
large phase margin of 80◦ and fast step disturbance rejection for
the delay-free system. Following the Steps 3-4, the predictor
is implemented according to Lemma 3, with N−

Γ
(z) = 0.5T 2

s ,
N−

G̃
(z) = 1, N+(z) = z + 1, D+(z) = (z − 1)2, D−

Γ
(z) = D−

G̃
(z) =

1. Notice that the zero (z + 1) is treated as a non-minimum
phase term in order to avoid numerical issues. According to
Remark 2, the relative degree of Q(s) needs to be rq = 2, and
thus

Q(z)
w0(z)

= Z

{

s

(τqs + 1)2

}

=
T (z − 1)e−T/τq

τ2
q(z − e−T/τq)2

.

The parameter τq is tuned online and finally set to τq = 0.25 s.
Two experiments with the same pattern are carried out. A step
reference of 5 deg is commanded at t = 1 s and an input dis-
turbance of −4 V is applied at t = 20 s. One can see in Fig. 9
that, the designed PID-controller in combination with the pro-
posed predictor stabilizes the system and rejects load distur-
bances (full blue). An experiment without the predictor is also
reported, simply to illustrate that this delay is large enough to
be considered, as the designed PID-controller cannot stabilize
the system by itself (dashed red).
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Figure 9: Experimental results of the proposed scheme applied to an unstable
plant with a delay of h = 250 ms

7. Conclusions

A generalization of the Smith Predictor has been proposed,
which retains the main features of the SP but is also applicable
to stable/unstable minimum/non-minimum systems. Further-
more, the predictor can be easily adjusted so that the steady-
state disturbance rejection capabilities of the primary controller
are preserved. The design process is thus drastically simpli-
fied. In the simplest configuration, the predictor can be ad-
justed with just one parameter that can be easily tuned to reach
a trade-off between disturbance rejection performance and ro-
bustness, while the parameters of the primary controller can be
tuned using conventional delay-free techniques. The discrete-
time implementation, which is usually a handicap, has been also
addressed, and its feasibility has been demonstrated with exper-
iments using an unstable laboratory system.

Appendix A. Proof of Lemma 2

Let us consider the system (1) with w(t) = 0 and the de-
composition (9). The auxiliary variable v(t) is defined such that
v(s) = Γ(s)u(s), which implies that y(s) = G̃(s)e−shv(s). Let us
also introduce the following internal representation

{

ẋ(t) = Ãx(t) + B̃v(t)
y(t) = C̃x(t − h)

so that G̃(s) = C̃(sI − Ã)−1B̃. A non-delayed state prediction is
given by

ˆ̄x(t) = eÃh x(t − h) +
∫ h

0
eÃξ B̃u(t − ξ) dξ (A.1)

Since the state is not accessible, an output prediction ˆ̄y(t) =
C̃ ˆ̄x(t), is sought instead. Using (A.1), it follows that

ˆ̄y(t) = C̃eÃhx(t − h) + C̃

∫ h

0
eÃξ B̃v(t − ξ) dξ (A.2)

It can be shown that [34]

C̃

∫ h

0
eÃξ B̃v(t − ξ) dξ = L−1{ΦG̃(s)v(s)} (A.3)

where ΦG̃(s) , C̃
(

I − e−(sI−Ã)h
)

(sI − Ã)−1B̃. Also, since
L{x(t − h)} = (sI− Ã)−1B̃e−shv(s) and v(s) = G̃−1(s)eshy(s), one
can write

CeÃhx(t − h) = L−1

{

G̃∗(s)

G̃(s)
y(s)

}

(A.4)

where G̃∗(s) = C̃eÃh(sI − Ã)−1B̃. Plugging (A.3)-(A.4) and
v(s) = Γ(s)u(s) into (A.2) yields

ˆ̄y(s) = L{ ˆ̄y(t)} =
G̃∗(s)

G̃(s)
y(s) + ΦG̃(s)Γ(s)u(s) (A.5)

The lemma follows by using the fact that G̃∗(s)/G̃(s) =
Ñ∗(s)/Ñ(s) because the transfer functions G̃∗(s) and G̃(s) have
the same denominator.
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M. Berenguel, Interactive tool for analysis of time-delay systems with
dead-time compensators, Control Engineering Practice 16 (7) (2008)
824–835.

[4] Q.-G. Wang, H.-Q. Zhou, Y. Zhang, Y. Zhang, A comparative study on
control of unstable processes with time delay, in: Control Conference,
2004. 5th Asian, Vol. 3, IEEE, 2004, pp. 1996–2004.

[5] J. E. Normey-Rico, E. F. Camacho, Dead-time compensators: A survey,
Control Engineering Practice 16 (4) (2008) 407–428.

[6] K. Watanabe, M. Ito, A process-model control for linear systems with
delay, IEEE Transactions on Automatic control 26 (6) (1981) 1261–1269.

[7] K. J. Åström, C. Hang, B. Lim, A new smith predictor for controlling
a process with an integrator and long dead time, IEEE Transactions on
Automatic Control 39 (1994) 343-345.

[8] M. R. Matausek, A. Micic, On the modified smith predictor for control-
ling a process with an integrator and long dead-time, IEEE Transactions
on Automatic Control 44 (8) (1999) 1603–1606.

[9] J. Normey-Rico, E. Camacho, A unified approach to design dead-time
compensators for stable and integrative process with dead-time, IEEE
Transactions on Automatic Control 47 (2002) 299-305.

[10] P. Garcı́a, P. Albertos, A new dead-time compensator to control stable
and integrating processes with long dead-time, Automatica 44 (4) (2008)
1062–1071.

[11] S. Uma, M. Chidambaram, A. S. Rao, Set point weighted modified smith
predictor with PID filter controllers for non-minimum-phase (nmp) in-
tegrating processes, Chemical Engineering Research and Design 88 (5)
(2010) 592–601.

8



[12] S. Chakraborty, S. Ghosh, A. K. Naskar, All-PD control of pure integrat-
ing plus time-delay processes with gain and phase-margin specifications,
ISA Transactions 68 (2017) 203–211.

[13] S. Majhi, D. Atherton, Obtaining controller parameters for a new smith
predictor using autotuning, Automatica 36 (2000) 1651-1658.

[14] W. Tan, H. J. Marquez, T. Chen, IMC design for unstable processes with
time delays, Journal of Process Control 13 (3) (2003) 203–213.

[15] C. Hang, Q.-G. Wang, X.-P. Yang, A modified smith predictor for a pro-
cess with an integrator and long dead time, Industrial & Engineering
Chemistry Research 42 (3) (2003) 484–489.

[16] T. Liu, W. Zhang, D. Gu, Analytical design of two-degree-of-freedom
control scheme for open-loop unstable processes with delay, Journal of
Process Control 15 (2005) 559-572.

[17] X. Lu, Y.-S. Yang, Q.-G. Wang, W.-X. Zheng, A double two-degree-of-
freedom control scheme for improved control of unstable delay processes,
Journal of Process Control 15 (2005) 605-614.
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[32] S. Mondié, W. Michiels, Finite spectrum assignment of unstable time-
delay systems with a safe implementation, IEEE Transactions on Auto-
matic Control 48 (12) (2003) 2207–2212.

[33] Q.-C. Zhong, G. Weiss, A unified smith predictor based on the spectral de-
composition of the plant, International Journal of Control 77 (15) (2004)
1362–1371.

[34] Q.-C. Zhong, On distributed delay in linear control laws-part I: discrete-
delay implementations, IEEE Transactions on Automatic Control 49 (11)
(2004) 2074–2080.

9


