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INTEGRAL CLOSURE AND BOUNDS FOR QUOTIENTS OF

MULTIPLICITIES OF MONOMIAL IDEALS

CARLES BIVIÀ-AUSINA

Abstract. Given a pair of monomial ideals I and J of finite colength of the ring of analytic

function germs (Cn, 0) → C, we prove that some power of I admits a reduction formed by

homogeneous polynomials with respect to the Newton filtration induced by J if and only if

the quotient of multiplicities e(I)/e(J) attains a suitable upper bound expressed in terms

of the Newton polyhedra of I and J . We also explore other connections between mixed

multiplicities, Newton filtrations and the integral closure of ideals.

1. Introduction

Let us denote by On the ring of complex analytic function germs f : (Cn, 0) → C. Let

g : (Cn, 0)→ (Cn, 0) be a complex analytic map. We say that g is finite when g−1(0) = {0};
in this case, we refer to the number e(g) = dimCOn/I(g) as the multiplicity of g, where I(g)

denotes the ideal of On generated by the components of g (see [1, §5], [8, §2] or [9, §2] for

several characterizations of this number). More generally, if I is any ideal of On of finite

colength, then the multiplicity of I, in the sense of Hilbert-Samuel, is denoted by e(I) (see

[10, 12, 23]). We recall that, when I admits a generating system formed by n elements, then

e(I) = dimCOn/I. It is well-known that, if we fix a vector w = (w1, . . . , wn) ∈ Zn>1 and g is

semi-weighted homogeneous with respect to w, then e(g) can be expressed as

e(g) =
d1 · · · dn
w1 · · ·wn

where di is the degree of gi with respect to w, for all i = 1, . . . , n (see for instance [1, §12.3]

or [8, §10.3]). This result was generalized in [7] by replacing the weighted homogeneous

filtration induced by w by the Newton filtration induced by a given Newton polyhedron of

Rn
>0 (see Theorem 4.2). That is, let Γ+ ⊆ Rn

>0 be a Newton polyhedron such that Γ+ 6= Rn
>0

and Γ+ intersects each coordinate axis. Let Γ be the union of all compact faces of Γ+ and let

νΓ be the Newton filtration induced by Γ+ (see Section 4 for details). If g : (Cn, 0)→ (Cn, 0)

is any finite analytic map, then

(1) e(g) >
d1 · · · dn
Mn

Γ

n! Vn

(
Rn
>0 r Γ+

)
,
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2 CARLES BIVIÀ-AUSINA

where di = νΓ(gi), for all i = 1, . . . , n, Vn denotes the n-dimensional volume and MΓ is the

value of νΓ over the monomials whose exponent belongs to Γ. The maps g : (Cn, 0)→ (Cn, 0)

for which equality holds in (1) are called non-degenerate on Γ+. This class of maps is

characterized in [7, Theorem 3.3].

If K is a monomial ideal of On of finite colength, then we recall that the multiplicity of K

is expressed as e(K) = n! Vn(Rn
>0 r Γ+(K)), where Γ+(K) denotes the Newton polyhedron

of K (see for instance [21, 22]). Therefore, relation (1) also shows a lower bound for the

quotient e(g)/e(J), where J is the integrally closed monomial ideal such that Γ+ = Γ+(J).

We also refer to non-degenerate maps on Γ+ as J-non-degenerate maps. We show that

equality holds in (1) if and only if there exists some integers a1, . . . , an, d ∈ Z>1 such that

〈ga1
1 , . . . , g

an
n 〉 = Jd, where the bar denotes integral closure.

Moreover, if I is a monomial ideal of On of finite colength, then we use the respective

Newton polyhedra of I and J to define an increasing sequence of positive rational numbers

a1,J(I), . . . , an,J(I) that leads to an upper bound for the quotient e(I)/e(J), that is,

(2)
e(I)

e(J)
6
a1,J(I) · · · an,J(I)

Mn
J

,

where MJ is a positive integer defined in terms of the Newton filtration of J (see Section

4). We prove that equality holds in (2) if and only if there exists some s > 1 such that

Is = 〈g1, . . . , gn〉, for some map (g1, . . . , gn) : (Cn, 0) → (Cn, 0) which is J-non-degenerate.

This result appears in Theorem 5.5. The proof of this result is preceded by a characterization

of the notion of J-non-degeneracy of n-tuples of monomial ideals (see Theorem 4.10 and

Definition 4.3), which in turn depends on previous combinatorial results proven in Section

3. Let us remark that, by interchanging the roles of I and J in (2) we automatically obtain

a lower bound for e(I)/e(J) (see Corollary 5.7).

The motivation of our work in this article arises from our previous work [4], where we

characterized when the integral closure of a given monomial ideal of On of finite colength is

equal to the integral closure of the ideal generated by n homogeneous polynomials. In turn,

[4] was motivated by the results of Hickel in [11].

The article is organized as follows. In Section 2 we recall some definitions and results

related with mixed multiplicities, joint reductions of families of ideals and Newton polyhedra

that we will need in the article. Let I1, . . . , In be n monomial ideals of On. Due to its

importance in subsequent sections, we recall in Theorem 2.3 the result of Rees and Sally (see

[15, Theorem 1.6] and [12, §17.3]) about the existence of joint reductions of (I1, . . . , In), in

the sense of Rees [14].

Section 3 is devoted to showing a combinatorial characterization of the finiteness of

σ(I1, . . . , In) (see Theorem 3.2), where σ(I1, . . . , In) denotes what we call the Rees’ mixed

multiplicity of I1, . . . , In (see (5)) and I1, . . . , In are monomial ideals of On. This result will

be fundamental in the proofs of some results of Section 4.

The objective of Section 4 is to show a combinatorial characterization of those pairs

formed by an n-tuple (I1, . . . , In) of monomial ideals of On such that σ(I1, . . . , In) <∞ and
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a monomial ideal J of On of finite colength for which (I1, . . . , In) is J-non-degenerate (see

Definition 4.3), which is a generalization of the notion of J-non-degenerate map. This is

given in Theorem 4.10.

In Section 5 we prove the existence of what we call central maps with respect to a given

pair of monomial ideals of On of finite colength (see Theorem 5.3 and Corollary 5.4). The

existence of central maps supports the proof of the upper bound mentioned in (2) and the

characterization of the equality in (2) (see Theorem 5.5). We remark that in Corollary

5.7(c) we show a characterization of the equality in (2) that is expressed only in terms of

the respective Newton filtrations induced by I and J .

2. Preliminary concepts

This section is devoted to recalling some definitions and fundamental facts that we will

use along the paper.

2.1. Mixed multiplicities and joint reductions

Along this section we suppose that (R,m) is a Noetherian local ring with infinite residue

field k = R/m and of dimension n. We recall some concepts and results from [2, 3, 5]. If I

is an ideal of R, then we denote by I the integral closure of I (see [10, 12, 23]).

Let I1, . . . , In be ideals of R of finite colength. We denote by e(I1, . . . , In) the mixed

multiplicity of I1, . . . , In defined by Teissier and Risler in [19, §2] (see also [12, Section 17.4]

or [16, Section 2.5]). We recall briefly the definition of e(I1, . . . , In). Let us consider the

function H : Zn>0 → Z>0 given by

(3) H(r1, . . . , rn) = `

(
R

Ir11 · · · Irnn

)
,

for all (r1, . . . , rn) ∈ Zn>0, where `(M) denotes the length of a given R-module M . It is

proven in [19, §2] that there exists a polynomial P (x1, . . . , xn) ∈ Q[x1, . . . , xn] of degree n

such that

H(r1, . . . , rn) = P (r1, . . . , rn),

for all sufficiently large r1, . . . , rn ∈ Z>0. Moreover, the coefficient of the monomial x1 · · ·xn
in P (x1, . . . , xn) is a positive integer. This integer is called the mixed multiplicity of I1, . . . , In
and is denoted by e(I1, . . . , In).

We remark that if I1, . . . , In are all equal to a given ideal I of finite colength of R, then

e(I1, . . . , In) = e(I), where e(I) denotes the Samuel multiplicity of I. We refer to [12, §17.4]

or [18] for fundamental results concerning mixed multiplicities of ideals.

Moreover Rees showed in [14] that the mixed multiplicity e(I1, . . . , In) can be computed

in terms of Samuel multiplicities via the following formula:

e(I1, . . . , In) =
1

n!

∑
J⊆{1,...,n}

J6=∅

(−1)n−|J|e

(∏
j∈J

Ij

)
,

where we denote by |X| the cardinal of a given finite set X.
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Given two ideals I and J of R of finite colength and an integer i ∈ {1, . . . , n}, we define

(4) ei(I, J) = e(I, . . . , I, J, . . . , J),

where I is repeated i times and J is repeated n− i times.

Let I1, . . . , In be proper ideals of R (not necessarily of finite colength). In [2] we studied

the following number:

(5) σ(I1, . . . , In) = sup
r∈Z>0

e(I1 + mr, . . . , In + mr).

When the set of integers {e(I1 + mr, . . . , In + mr) : r ∈ Z>0} is bounded, then we refer to

σ(I1, . . . , In) as the Rees’ mixed multiplicity of I1, . . . , In. Obviously, if Ii has finite colength,

for all i = 1, . . . , n, then σ(I1, . . . , In) = e(I1, . . . , In).

In Proposition 2.2 we recall a result from [2] that interprets σ(I1, . . . , In) as a multiplicity

in the usual sense. First we need to introduce a preliminary concept.

Definition 2.1. Let I1, . . . , Ir be proper ideals of R. Let ai1, . . . , aisi be a minimal generating

system of Ii, where si ∈ Z>1, for all i = 1, . . . , r. Let s = s1 +· · ·+sr. We say that a property

holds for sufficiently general elements (g1, . . . , gr) ∈ I1 ⊕ · · · ⊕ Ir if there exists a non-empty

Zariski-open set U in ks verifying that if

(a) gi =
∑

j uijaij, where uij ∈ R, for all j = 1, . . . , si, i = 1, . . . , r, and

(b) the image of (u11, . . . , u1s1 , . . . , ur1, . . . , ursr) in ks belongs to U ,

then the said property holds for (g1, . . . , gr).

Proposition 2.2. [2, 2.9] Let I1, . . . , In be proper ideals of R. Then σ(I1, . . . , In) < ∞ if

and only if there exist elements gi ∈ Ii, for i = 1, . . . , n, such that 〈g1, . . . , gn〉 has finite

colength. If σ(I1, . . . , In) < ∞, then σ(I1, . . . , In) = e(g1, . . . , gn) for sufficiently general

elements (g1, . . . , gn) ∈ I1 ⊕ · · · ⊕ In.

Let I and J be ideals of R such that J ⊆ I. We recall that an ideal J is called a reduction

of I if there exists some r ∈ Z>0 such that Ir+1 = JIr. It is well known that J is a reduction

of I if and only if I = J (see for instance [12, Corollary 1.2.5]). In turn, if we assume that

the ideals I and J have finite colength, J ⊆ I and R is quasi-unmixed, then the celebrated

Rees’ multiplicity theorem says that the equality I = J holds if and only if e(I) = e(J) (see

[10, p. 147] or [12, p. 222]).

Let I1, . . . , In be ideals of R. Let g1, . . . , gn ∈ R such that gi ∈ Ii, for all i = 1, . . . , n.

Then (g1, . . . , gn) is called a joint reduction of (I1, . . . , In) when g1I2 · · · In+ · · ·+gnI1 · · · In−1

is a reduction of I1 · · · In. By the relation between reductions and integral closure mentioned

before, this condition is equivalent to saying that

(6) g1I2 · · · In + · · ·+ gnI1 · · · In−1 = I1 · · · In.

Let us fix a family I1, . . . , Ip of proper ideals of R. We recall that dim(R) = n. In [14,

Theorem 1.3], D. Rees showed that there exists a family of elements {xij : i = 1, . . . , p, j =

1, . . . n} ⊆ R such that xi1, . . . , xin ∈ Ii, for all i = 1, . . . , p, and if yj = x1j · · ·xpj, for
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all j = 1, . . . , n, then the ideal 〈y1, . . . , yn〉 is a reduction of the product ideal I1 · · · Ip.
We remark that p is not assumed to be equal to n in this result. Any set of elements xij
satisfying the above properties is called a complete reduction of (I1, . . . , Ip) (see [14, p. 402]

or [12, Definition 17.1.3]).

Now let us suppose that p = n. In [14, Theorem 1.4] D. Rees easily proved that, if

{xij : i, j = 1, . . . , n} is a complete reduction of (I1, . . . , In), then x1σ(1), . . . , xnσ(n) is a joint

reduction of (I1, . . . , In), for any permutation i 7→ σ(i) of {1, . . . , n}. In [15, Theorem 1.6]

Rees and Sally proved that joint reductions of sets of n ideals exist, we next recall this result

(see also [12, §17.3]).

Theorem 2.3. Let I1, . . . , In be ideals of R. Then (g1, . . . , gn) is a joint reduction of

(I1, . . . , In), for sufficiently general elements (g1, . . . , gn) ∈ I1 ⊕ · · · ⊕ In.

2.2. Newton polyhedra of ideals and non-degeneracy conditions

Let us fix a coordinate system x1, . . . , xn in Cn. If k = (k1, . . . , kn) ∈ Zn>0, then we denote

the monomial xk1
1 · · ·xknn by xk. Given a proper ideal J of On, we will say that J is monomial

when J admits a generating system formed by monomials.

If h ∈ On and h =
∑

k akx
k is the Taylor expansion of h around the origin, then the

support of h, denoted by supp(h) is defined as the set {k ∈ Zn>0 : ak 6= 0}. Given a subset

∆ ⊆ Rn
>0, we denote by h∆ the sum of those terms akx

k such that k ∈ ∆ ∩ supp(h). If

∆∩ supp(h) = ∅, then we set h∆ = 0. If I is an ideal of On, then the support of I is defined

as supp(I) = ∪g∈Isupp(g).

If A ⊆ Zn>0, A 6= ∅, then we define the Newton polyhedron determined by A, denoted by

Γ+(A), as the convex hull in Rn of the set {k + v : k ∈ A, v ∈ Rn
>0}. A subset Γ+ ⊆ Rn

>0 is

called a Newton polyhedron when Γ+ = Γ+(A), for some A ⊆ Zn>0.

Let us fix a Newton polyhedron Γ+ ⊆ Rn
>0. If v ∈ Rn

>0, then we define

`(v,Γ+) = min
{
〈v, k〉 : k ∈ Γ+

}
∆(v,Γ+) =

{
k ∈ Γ+ : 〈v, k〉 = `(v,Γ+)

}
,

where 〈 , 〉 stands for the standard scalar product in Rn. A face of Γ+ is any set ∆ of the

form ∆ = ∆(v,Γ+), for some v ∈ Rn
>0 r {0}; in this case we say that ∆ is supported by

v. Given a face ∆ of Γ+, we observe that ∆ is compact if and only if it is supported by a

vector v ∈ Rn
>0. The dimension of ∆ is defined as the minimum of the dimensions of the

affine subspaces of Rn containing ∆. We denote by C(∆) the cone formed by all half-lines

emanating from the origin and passing through some point of ∆. Let us denote by R∆ the

subring of On formed by the functions h ∈ On such that supp(h) ⊆ C(∆).

The faces of dimension 0 and the faces of dimension n− 1 of Γ+ are known, respectively,

as the vertices and the facets of Γ+. We denote by v(Γ+) the set of vertices of Γ+. The union

of all compact faces of Γ+ will be denoted by Γ. We will refer to Γ as the Newton boundary

of Γ+. We remark that Γ+ is univocally determined by the set Γ, since Γ+ = Γ + Rn
>0. We

denote by Γ− the union of all segments joining the origin and some point of Γ.
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If h ∈ On, then the Newton polyhedron of h is defined as Γ+(h) = Γ+(supp(h)). Moreover,

if I is an ideal of On, then the Newton polyhedron of I is defined as Γ+(I) = Γ+(supp(I)).

We recall that Γ+(I) = Γ+(I) (see for instance [7, Lemma 2.3]).

If {g1, . . . , gr} is a generating set of I, then it is straightforward to see that Γ+(I) equals

the convex hull of Γ+(g1)∪ · · · ∪ Γ+(gr). We denote the Newton boundary of Γ+(I) by Γ(I)

and the union of all segments joining the origin with some point of Γ(I) by Γ−(I).

Let I be a proper ideal of On and let g1, . . . , gs be a generating system of I. We recall

that I is called Newton non-degenerate (see [2, 7, 17]) when{
x ∈ Cn : (g1)∆(x) = · · · = (gs)∆(x) = 0

}
⊆
{
x ∈ Cn : x1 · · ·xn = 0

}
,

as set germs at 0 ∈ Cn, for each compact face ∆ of Γ+(I). It was proven by Saia [17] that

an ideal I of On is Newton non-degenerate if and only if the integral closure of I is equal to

the ideal generated by those monomials xk such that k ∈ Γ+(I) (see also [7, Corollary 2.6]

or [2, Proposition 3.6]).

As a consequence of [2, Proposition 3.6] we have that, if I is a monomial ideal of On
and J ⊆ I, then J is a reduction of I if and only if J is Newton non-degenerate and

Γ+(I) = Γ+(J).

We remark that, if f ∈ On, then the condition of Newton non-degeneracy of the ideal

〈x1
∂f
∂x1
, . . . , xn

∂f
∂xn
〉 allows to obtain a lot of information about the topology of f by means

of Γ+(f) (see [13] and [24]).

3. The Rees’ mixed multiplicity of a family of monomial ideals

Given a non-empty subset L ⊆ {1, . . . , n}, if K = R or C, then we define Kn
L = {x ∈

Kn : xi = 0, for all i /∈ L}. Let r = |L| and let us write L = {j1, . . . , jr}, for some integers

1 6 j1 < · · · < jr 6 n. If S ⊆ Kn, then we denote by SL the intersection S ∩ Kn
L . Let us

define

H =
{
x ∈ Cn : x1 · · ·xn = 0

}
HL =

{
(xj1 , . . . , xjr) ∈ Cr : xj1 · · ·xjr = 0

}
.

Hence, if |L| = 1, then HL = {0} ⊆ C.

If we fix a non-empty subset L ⊆ {1, . . . , n}, then hL will denote the sum of all terms

akx
k, such that k ∈ supp(h)L. Then supp(hL) = supp(h)L. Let On,L denote the subring

of On formed by all elements h ∈ On with supp(h) ⊆ Rn
L . Let us remark that the map

πL : On → On,L given by πL(h) = hL, for all h ∈ On, is a ring morphism. In order to simplify

the notation, if I is an ideal of On, then we also denote the ideal πL(I) by IL.

If I = 〈g1, . . . , gr〉 is an ideal of On, then we denote by V(I), or by V(g1, . . . , gr), the zero

set germ of I at 0. Let mn denote the maximal ideal of On.

Proposition 3.1. Let I be a proper ideal of On. Then I has finite colength if and only if

V(IL) ⊆ HL, for all L ⊆ {1, . . . , n}, L 6= ∅.
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Proof. Let us prove first the only if part. Let us fix a subset L ⊆ {1, . . . , n}, L 6= ∅. Since

I has finite colength, there exists some integer r > 1 such that mr ⊆ I. If we apply πL to

both sides of this inclusion, we conclude that the ideal IL has also finite colength in On,L. In

particular, V(IL) = {0} ⊆ HL.

Let us prove the if part. Let g1, . . . , gr be any generating system of I and let L ⊆ {1, . . . , n},
L 6= ∅. The condition V(IL) ⊆ HL implies that IL 6= 0; otherwise V(IL) = Cn

L . Therefore

{i : gLi 6= 0} 6= ∅. Then we have that

V(I) ∩ Cn
L = V(g1, . . . , gr) ∩ Cn

L = V(gL1, . . . , g
L
r) = V(IL).

By the same reason, we have

(7) V(IL
′
) ∩ Cn

L = V(IL)

for all L′ ⊆ {1, . . . , n} containing L.

Let L ⊆ {1, . . . , n} such that |L| = 1. By hypothesis we have V(IL) ⊆ HL = {0} ⊆ C.

Since I ⊆mn, we have IL ⊆mL
n and then {0} ⊆ V(IL). Thus V(IL) = {0}.

Let j ∈ {1, . . . , n − 1} and let us suppose that V(IL) = {0}, for all L ⊆ {1, . . . , n} such

that |L| 6 j. Let us fix a subset L′ ⊆ {1, . . . , n} such that |L′| = j + 1. The condition

V(IL
′
) ⊆ HL′ implies that

V(IL
′
) =

⋃
L⊆{1,...,n}
|L|=j, L⊆L′

(
V(I) ∩ Cn

L

)
=

⋃
L⊆{1,...,n}
|L|=j, L⊆L′

V(IL)

where the first equality comes from (7). Then V(IL
′
) = {0}. By finite induction on |L| we

deduce that V(I) = V(I{1,...,n}) = {0}.
�

Theorem 3.2. Let I1, . . . , In be monomial ideals of On. Then the following conditions are

equivalent.

(a) σ(I1, . . . , In) <∞.

(b) For each L ⊆ {1, . . . , n}, L 6= ∅, we have |{i : ILi 6= 0}| > |L|.

Proof. Let us prove (a) ⇒ (b). If σ(I1, . . . , In) < ∞, then there exist some (g1, . . . , gn) ∈
I1⊕· · ·⊕In such that, if I denotes the ideal generated by g1, . . . , gn, then I has finite colength

in On and e(I) = σ(I1, . . . , In), by Proposition 2.2. In particular, there exists some r ∈ Z>1

such that mr
n ⊆ I. Given a subset L ⊆ {1, . . . , n}, L 6= ∅, if we apply πL to both sides of

the inclusion mr
n ⊆ I, then we obtain that the ideal IL has also finite colength. This implies

that the set {gL1, . . . , gLn} contains at least |L| non-zero elements, since dimOn,L = |L|. Then,

as supp(gLi ) ⊆ ILi , for all i = 1, . . . , n, condition (b) holds.

Let us prove (b)⇒ (a). By Proposition 2.2, it suffices to see that there exists an element

(g1, . . . , gn) ∈ I1 ⊕ · · · ⊕ In such that the ideal generated by g1, . . . , gn in On has finite

colength.
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Let us fix a subset L ⊆ {1, . . . , n}, L 6= ∅. By hypothesis we can choose a set of indexes

BL ⊆ {1, . . . , n} such that |BL| = |L| and ILj 6= 0, for all j ∈ BL. Let us write BL as

BL = {jL,1, . . . , jL,|L|} ⊆ {1, . . . , n}, for some integers 1 6 jL,1 < · · · < jL,|L| 6 n.

Let Gi be a fixed minimal generating system of Ii formed by monomials, for all i =

1, . . . , n, and let G = (G1, . . . , Gn). Let us denote by GL
i be the set of monomials of Gi

whose support belongs to Rn
L . Hence GL

i is a generating system of ILi , for all i = 1, . . . , n.

Let GL = (GL
jL,1
, . . . , GL

jL,|L|
). Let us identify the set of GL-maps with CNL , where NL =

|GL
jL,1
|+ · · ·+ |GL

jL,|L|
|.

Since dimOn,L = |L|, we can apply Theorem 2.3 to the |L|-tuple of ideals (ILjL,1 , . . . , I
L
jL,|L|

).

Thus, there exist a Zariski-open subset UL ⊆ CNL , such that any GL-map with coefficients

in UL is a joint reduction of (ILjL,1 , . . . , I
L
jL,|L|

). Hence there exists a G-map (g1, . . . , gn) ∈
I1 ⊕ · · · ⊕ In such that the set of coefficients of (gLjL,1 , . . . , g

L
jL,|L|

) belongs to UL, for all non-

empty L ⊆ {1, . . . , n}.
Let us fix again a subset L ⊆ {1, . . . , n}, L 6= ∅. Since (gLjL,1 , . . . , g

L
jL,|L|

) is a joint reduction

of (ILjL,1 , . . . , I
L
jL,|L|

), by (6), we obtain that

gLjL,1I
L
jL,2
· · · ILjL,|L| + · · ·+ gLjL,|L|I

L
jL,1
· · · ILjL,|L|−1

= ILjL,1 · · · I
L
jL,|L|

.

Hence ILjL,1 · · · I
L
jL,|L|
⊆ 〈gLjL,1 , . . . , g

L
jL,|L|
〉, which in turn implies that

V(gL1, . . . , g
L
n) ⊆ V(gLjL,1 , . . . , g

L
jL,|L|

) ⊆ V(ILjL,1 · · · I
L
jL,|L|

) ⊆ HL,

where the last inclusion follows from the fact that I1, . . . , In are monomial ideals. Then

we have deduced that V(gL1, . . . , g
L
n) ⊆ HL, for all non-empty subsets L ⊆ {1, . . . , n}. In

particular, the ideal 〈g1, . . . , gn〉 has finite colength in On, by Proposition 3.1, and the result

follows. �

4. Characterization of J-non-degeneracy of sequences of ideals

This section is devoted to characterize those sequences of ideals whose Rees’ mixed mul-

tiplicity attains a lower bound formulated in terms of a fixed Newton filtration.

4.1. The Newton filtration and the computation of multiplicities

Let Γ+ ⊆ Rn be a Newton polyhedron. We say that Γ+ is convenient when Γ+ 6= Rn
>0

and Γ+ intersects each coordinate axis. If Γ+ is convenient, then Γ− is equal to the closure

of Rn
>0 r Γ+ (in the usual Euclidean sense). We observe that, if I is an ideal of On of finite

colength, then Γ+(I) is convenient.

Let v ∈ Zn>0, v 6= 0, we say that v is primitive when the non-zero coordinates of v are

mutually prime integer numbers. Then any facet of Γ+ is supported by a unique primitive

vector of Zn>0. Let us denote by F(Γ+) the set of primitive vectors of Zn>0 supporting some

facet of Γ+ and let Fc(Γ+) = F(Γ+) ∩ Zn>1. Let us remark that, if Γ+ is convenient, then

F(Γ+) = Fc(Γ+) ∪ {e1, . . . , en}, where e1, . . . , en is the canonical basis of Rn.

Let us fix a convenient Newton polyhedron Γ+ ⊆ Rn
>0. Let us write Fc(Γ+) = {v1, . . . , vr}.

Then `(vi,Γ+) > 0, for all i = 1, . . . , r. We denote by MΓ the least common multiple of the
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set of integers {`(v1,Γ+), . . . , `(vr,Γ+)}. We define the filtrating map associated to Γ+ as

the map φΓ : Rn
>0 → R>0 given by

φΓ(k) = min

{
MΓ

`(vi,Γ+)
〈k, vi〉 : i = 1, . . . , r

}
, for all k ∈ Rn

>0.

We observe that φΓ(Zn>0) ⊆ Zn>0, φΓ(k) = MΓ, for all k ∈ Γ, and the map φΓ is linear

on each cone C(∆), where ∆ is any compact face of Γ+. As mentioned in [13, p. 10], given

a, b ∈ Zn>0, it is easy to prove that φΓ(a+b) > φΓ(a)+φΓ(b). Moreover, it is a straightforward

exercise to see that equality holds if and only if there exists some compact face ∆ of Γ+ such

that a, b ∈ C(∆).

Let us define the map νΓ : On → R>0 ∪ {+∞} by νΓ(h) = min{φΓ(k) : k ∈ supp(h)}, for

all h ∈ On, h 6= 0; we set νΓ(0) = +∞. We refer to νΓ as the Newton filtration induced by

Γ+ (see also [7, 13]).

By abuse of notation, if A ⊆ Rn
>0 denotes a non-empty closed set, then we define νΓ(A) =

min{φΓ(k) : k ∈ A}. Hence νΓ(h) = νΓ(supp(h)), for all h ∈ On, h 6= 0. If I is a non-zero

ideal of On, then we also define νΓ(I) = νΓ(supp(I)). Given a proper ideal J of On of finite

colength, then we denote by φJ the filtrating map associated to Γ+(J) and the integer MΓ(J)

by MJ . We will also write νJ instead of νΓ(J) and we will also refer to νJ as the Newton

filtration induced by J .

Definition 4.1. Let us fix a convenient Newton polyhedron Γ+ ⊆ Rn
>0. If h ∈ On and

h =
∑

k akx
k is the Taylor expansion of h around the origin, then we define the principal

part of h with respect to Γ+, denoted by pΓ(h), as the polynomial obtained as the sum of all

terms akx
k such that νΓ(h) = νΓ(xk). If ∆ is a compact face of Γ+, we define the principal

part of h over ∆, denoted by pΓ,∆(h), as the sum of all terms akx
k such that k ∈ C(∆) and

νΓ(h) = νΓ(xk). If no such terms exist, then we set pΓ,∆(h) = 0. When there is no risk of

confusion, then we denote pΓ,∆(h) simply by p∆(h).

Let us fix a monomial ideal J of On of finite colength. Let ∆ be a compact face of Γ+(J).

If h ∈ On, then we denote the polynomials pΓ(J)(h) and pΓ(J),∆(h) by pJ(h) and pJ,∆(h),

respectively. If I is an arbitrary ideal of On, then we define the ideals:

pJ,∆(I) =
〈

pJ,∆(h) : h ∈ I, νJ(h) = νJ(I)
〉

(8)

IC(∆) =
〈
hC(∆) : h ∈ I

〉
.(9)

Given a polynomial h ∈ C[x1, . . . , xn], we say that h is J-homogeneous when νJ(xk) =

νJ(h), for all k ∈ supp(h). If H = (h1, . . . , hp) : (Cn, 0)→ (Cp, 0) is a polynomial map, then

we say that H is J-homogeneous when hi is J-homogeneous, for all i = 1, . . . , p.

We denote the n-dimensional volume of a compact set K ⊆ Rn by Vn(K). Joining [7,

Theorem 3.3] and [5, Proposition 3.5, Corollary 3.8], we have the following result.

Theorem 4.2. Let g = (g1, . . . , gn) : (Cn, 0) → (Cn, 0) be an analytic map germ such that

g−1(0) = {0}. Let Γ+ ⊆ Rn
>0 be a convenient Newton polyhedron, let di = νΓ(gi), for all
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i = 1, . . . , n. Then

(10) dimC
On

〈g1, . . . , gn〉
>
d1 · · · dn
Mn

Γ

n! Vn(Γ−)

and the following conditions are equivalent:

(a) equality holds in (10);

(b) for each compact facet ∆ of Γ+, the ideal of R∆ generated by p∆(g1), . . . , p∆(gn) has

finite colength in R∆;

(c) the set germ at 0 of common zeros of p∆(g1), . . . , p∆(gn) is contained in {x ∈ Cn :

x1 · · ·xn = 0}, for all compact faces ∆ of Γ+.

If I is a non-zero ideal of On, then we define the order of I, denoted by ord(I), as

ord(I) = max{r ∈ Z>0 : I ⊆mr
n}. We set ord(0) =∞.

It is a well-known fact that if J denotes a monomial ideal of finite colength of On, then

e(J) = n! Vn(Γ−(J)) (see for instance [22, p. 239]). Let I1, . . . , In be ideals of On such that

σ(I1, . . . , In) < ∞. By Proposition 2.2 we have that σ(I1, . . . , In) = e(g1, . . . , gn), for some

(g1, . . . , gn) ∈ I1 ⊕ · · · ⊕ In. In particular νJ(Ii) 6 νJ(gi), for all i = 1, . . . , n. Hence relation

(10) implies that

(11) σ(I1, . . . , In) >
νJ(I1) · · · νJ(In)

Mn
J

e(J).

Definition 4.3. Under the conditions of the above paragraph, we say that the n-tuple of

ideals (I1, . . . , In) is J-non-degenerate when equality holds in (11).

We will denote the term of the right hand side of (11) by AJ(I1, . . . , In). We remark that

Amn(I1, . . . , In) = ord(I1) · · · ord(In). If h ∈ On, h 6= 0, then we will write AJ(h, I2, . . . , In)

instead of AJ(〈h〉, I2, . . . , In) and we accordingly extend this notation when any other ideal

appearing in AJ(I1, . . . , In) is principal. In particular, if g1, . . . , gn are non-zero elements of

On, then we write AJ(g1, . . . , gn) instead of AJ(〈g1〉, . . . , 〈gn〉).
Let g = (g1, . . . , gn) : (Cn, 0)→ (Cn, 0) be an analytic map germ. We denote by I(g) the

ideal of On generated by the components of g. We say that g is J-non-degenerate when the

n-tuple of ideals (〈g1〉, . . . , 〈gn〉) is J-non-degenerate.

Proposition 4.4. Let J be a monomial ideal of On of finite colength and let I1, . . . , In be

ideals of On such that σ(I1, . . . , In) <∞. Then (I1, . . . , In) is J-non-degenerate if and only

if there exist a1, . . . , an, d ∈ Z>1 such that σ(Ia1
1 , . . . , I

an
n ) = e(Jd) and νJ(Ia1

1 ) = · · · =

νJ(Iann ) = dMJ .

Proof. Let M = MJ . Let us see the only if part. So, let us assume that

σ(I1, . . . , In) =
d1 · · · dn
Mn

e(J),
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where di = νJ(Ii), for all i = 1, . . . , n. Let us define d = d1 · · · dn and ai = d
di
M , for all

i = 1, . . . , n. Clearly we have νJ(Iaii ) = aiνJ(Ii) = d
di
Mdi = dM , for all i = 1, . . . , n, and

σ(Ia1
1 , . . . , I

an
n ) = a1 · · · anσ(I1, . . . , In) =

dn

d
Mnd1 · · · dn

Mn
e(J) = dne(J) = e(Jd).

Let us see the if part. Let a1, . . . , an, d ∈ Z>1 such that σ(Ia1
1 , . . . , I

an
n ) = e(Jd) and

νJ(Ia1
1 ) = · · · = νJ(Iann ) = dMJ . In particular νJ(Ii) = d

ai
M , for all i = 1, . . . , n.

The equality σ(Ia1
1 , . . . , I

an
n ) = e(Jd) is equivalent to saying that a1 · · · anσ(I1, . . . , In) =

dne(J). Therefore

σ(I1, . . . , In) =
dn

a1 · · · an
Mn 1

Mn
e(J) =

νJ(I1) · · · νJ(In)

Mn
e(J).

Hence the result follows. �

As we will see in Theorem 4.10, the J-non-degeneracy of sequences (I1, . . . , In) of monomial

ideals admits a combinatorial characterization.

Proposition 4.5. Let J be a monomial ideal of On of finite colength and let g : (Cn, 0) →
(Cn, 0) be a complex analytic map such that g−1(0) = {0}. Let a1, . . . , an, d ∈ Z>1. Then the

following conditions are equivalent.

(a) e(ga1
1 , . . . , g

an
n ) = e(Jd) and νJ(ga1

1 ) = · · · = νJ(gann ) = dMJ .

(b) 〈ga1
1 , . . . , g

an
n 〉 = Jd.

Proof. Let M = MJ . Let us suppose that (a) holds. The condition νJ(ga1
1 ) = · · · = νJ(gann ) =

dM implies that gaii ∈ Jd, for all i = 1, . . . , n. Then relation (b) follows, by the Rees’

multiplicity theorem [12, p. 222].

Let us now assume that (b) holds. Then the relation e(ga1
1 , . . . , g

an
n ) = e(Jd) follows

automatically, since the Samuel multiplicity is invariant by integral closures.

Since Jd is a monomial ideal of finite colength, there exists at least one compact face ∆ of

Γ+(Jd) of dimension n− 1. Let R∆ be the subring of On given by all h ∈ On whose support

is contained in C(∆). The equality (b) implies that the ideal 〈ga1
1 , . . . , g

an
n 〉 is a reduction

of Jd, which is to say that 〈ga1
1 , . . . , g

an
n 〉 is Newton non-degenerate and Γ+(ga1

1 , . . . , g
an
n ) =

Γ+(Jd) (see [7, Theorem 2.11] for the characterization of reductions of monomial ideals). In

particular, the ideal of R∆ generated by (ga1
1 )∆, . . . , (g

an
n )∆ has finite colength in R∆. Hence

(gaii )∆ 6= 0, for all i = 1, . . . , n, since dimR∆ = n. In particular, this says that νJ(gaii ) = dM ,

for all i = 1, . . . , n, and then (a) follows. �

For the sake of completeness we add the following consequence of Propositions 4.4 and

4.5.

Corollary 4.6. Let J be a monomial ideal of On of finite colength and let g : (Cn, 0) →
(Cn, 0) be a complex analytic map such that g−1(0) = {0}. Then g is J-non-degenerate if

and only if there exist a1, . . . , an, d ∈ Z>1 such that 〈ga1
1 , . . . , g

an
n 〉 = Jd.
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Proof. By Proposition 4.4, the map g is J-non-degenerate if and only if there exist some

a1, . . . , an, d ∈ Z>1 such that σ(〈ga1
1 〉, . . . , 〈gann 〉) = e(Jd) and νJ(ga1

1 ) = · · · = νJ(gann ) = dMJ .

Since σ(〈ga1
1 〉, . . . , 〈gann 〉) = e(ga1

1 , . . . , g
an
n ) (see Proposition 2.2), then the result follows from

Proposition 4.5. �

Corollary 4.6 motivates the following definition in the context of an arbitrary Noetherian

local ring.

Definition 4.7. Let (R,m) be a Noetherian local ring and let J be a proper ideal of

On. Let g1, . . . , gn be a sequence of non-zero elements of R. We say that the n-tuple

(g1, . . . , gn) is J-non-degenerate if and only if there exists some a1, . . . , an, d ∈ Z>1 such that

〈ga1
1 , . . . , g

an
n 〉 = Jd.

It is interesting to remark that if g : (Cn, 0) → (Cn, 0) is J-non-degenerate, where J is a

monomial ideal of On of finite colength, then the sequence of mixed multiplicities ei(I(g), J),

i = 1, . . . , n, is determined by the Newton filtration induced by J .

Proposition 4.8. Let J be a monomial ideal of On of finite colength and let g = (g1, . . . , gn) :

(Cn, 0) → (Cn, 0) be a J-non-degenerate map. Let di = νJ(gi), for all i = 1, . . . , n. Let us

suppose that d1 6 · · · 6 dn. Then

ei(I(g), J) =
d1 · · · di
M i

e(J).

Proof. Let I = I(g). By the Theorem of existence of joint reductions (see [18, p. 4] or [12,

p. 336]), there exist a sufficiently general element (f1, . . . , fi, fi+1, . . . , fn) of I⊕· · ·⊕ I⊕J ⊕
· · · ⊕ J such that

(12) ei(I, J) = e(I, . . . , I, J, . . . , J) = e(f1, . . . , fi, fi+1, . . . , fn).

Since fj is a generic linear combination of g1, . . . , gn, for all j = 1, . . . , i, we observe that

(13) 〈f1, . . . , fi〉 =
〈
g1 +

n∑
`=i+1

α1`g`, . . . , gi +
n∑

`=i+1

αi`g`
〉
,

for some constants αj` ∈ C, j = 1, . . . , i, ` = i+ 1, . . . , n. Let hj = gj +
∑n

`=i+1 αj`g`, for all

j = 1, . . . , i.

By appropriately taking the coefficients αj`, by virtue of Theorem 4.2, we obtain that

(h1, . . . , hi, fi+1, . . . , fn) is J-non-degenerate with νJ(hj) = νJ(gj) = dj, for all j = 1, . . . , i,

and νJ(fj) = M , for all j = i+ 1, . . . , n. Hence, by (12) and (13) we obtain that

ei(I, J) = e(h1, . . . , hi, fi+1, . . . , fn) =
d1 · · · diMn−i

Mn
e(J) =

d1 · · · di
M i

e(J).

�

Remark 4.9. Under the hypothesis of Proposition 4.8, we observe that the condition

(14) e0(I(g), J) = e1(I(g), J) = · · · = en(I(g), J)
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is equivalent to saying that d1 = · · · = dn = M , which in turn is equivalent to the condition

〈g1, . . . , gn〉 = J , by Proposition 4.5. Then we recovered a particular case of the result of

Teissier characterizing the equality I = J when no inclusion relation between I and J is

assumed (see [20, Théorème 4.2, p. 341]).

4.2. Characterization of J-non-degeneracy of sequences of monomial ideals

Let I1, . . . , In be monomial ideals of On such that σ(I1, . . . , In) < ∞. We denote by

S(I1, . . . , In) the family of maps g = (g1, . . . , gn) : (Cn, 0) → (Cn, 0) for which g−1(0) =

{0}, gi ∈ Ii, for all i = 1, . . . , n, and σ(I1, . . . , In) = e(g1, . . . , gn). The elements of

S(I1, . . . , In) were characterized in [2, Theorem 3.10]. We denote by S0(I1, . . . , In) the maps

g ∈ S(I1, . . . , In) for which Γ+(gi) = Γ+(Ii), for all i = 1, . . . , n.

Theorem 4.10. Let I1, . . . , In, J be monomial ideals of On such that σ(I1, . . . , In) <∞ and

J has finite colength. Then the following conditions are equivalent:

(a) (I1, . . . , In) is J-non-degenerate.

(b) (g1, . . . , gn) is J-non-degenerate, for every (g1, . . . , gn) ∈ S(I1, . . . , In);

(c) (g1, . . . , gn) is J-non-degenerate, for some (g1, . . . , gn) ∈ S0(I1, . . . , In);

(d) for any compact face ∆ of Γ+(J) we have∣∣{i : pJ,∆(Ii) 6= 0}
∣∣ > dim(∆) + 1.

Proof. Let M = MJ . As remarked before relation (11), given an element (g1, . . . , gn) ∈
S(I1, . . . , In), we have that

(15) σ(I1, . . . , In) = e(g1, . . . , gn) >
νJ(g1) · · · νJ(gn)

Mn
e(J) > AJ(I1, . . . , In).

Let is prove (a) ⇒ (b). So, let us suppose that σ(I1, . . . , In) = AJ(I1, . . . , In). If

(g1, . . . , gn) ∈ S(I1, . . . , In), then (15) shows that e(g1, . . . , gn) = AJ(g1, . . . , gn), which is

to say that g is J-non-degenerate.

The implication (b) ⇒ (c) is obvious. Let us prove (c) ⇒ (d). Let (g1, . . . , gn) ∈
S0(I1, . . . , In) such that (g1, . . . , gn) is J-non-degenerate and let us fix a compact face ∆

of Γ+(J). Let r = dim ∆. The ideal of R∆ generated by p∆(g1), . . . , p∆(gn) has finite

colength in R∆, by Theorem 4.2. Since dimR∆ = r + 1, at least r + 1 elements of

{p∆(g1), . . . , p∆(gn)} are not zero. By definition, the condition (g1, . . . , gn) ∈ S0(I1, . . . , In)

implies that Γ+(gi) = Γ+(Ii), for all i = 1, . . . , n. Thus νJ(gi) = νJ(Ii), for all i = 1, . . . , n.

Then condition (d) follows, by the definition of the ideals pJ,∆(I1), . . . , pJ,∆(In) (see (8)).

Let us prove (d) ⇒ (a). Let Gi be a fixed minimal generating system of Ii formed by

monomials, for all i = 1, . . . , n, and let G = (G1, . . . , Gn). Let us fix a compact face ∆ of

Γ+(J) and let r = dim(∆). By hypothesis, there exist a set of indices B∆ ⊆ {1, . . . , n} such

that |B∆| = r + 1 and pJ,∆(Ij) 6= 0, for all j ∈ B∆. Let us write B∆ = {j∆,1, . . . , j∆,r+1},
for some 1 6 j∆,1 < · · · < j∆,r+1 6 n. Let us denote by G∆

j be the set of monomials xk of

Gj such that k ∈ C(∆) and φJ(k) = νJ(Ij), for all j = 1, . . . , n. By the definition of B∆, we

have that G∆
j 6= ∅, for all j ∈ B∆. Let G∆ = (G∆

j∆,1
, . . . , G∆

j∆,r+1
).
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As in the proof of Theorem 3.2, we can apply Theorem 2.3 to the (r + 1)-tuple of ideals

(pJ,∆(Ij∆,1
), . . . , pJ,∆(Ij∆,r+1

)). That is, let us identify the set of G∆-maps with CN , where

N = |G∆
j∆,1
|+ · · ·+ |G∆

j∆,r+1
|, via the vector of coefficients of the G∆-maps. Then, there exist

a Zariski-open subset U∆ ⊆ CN , such that any G∆-map whose vector of coefficients belongs

to U∆ is a joint reduction of (pJ,∆(Ij∆,1
), . . . , pJ,∆(Ij∆,r+1

)).

Since Γ+(J) has a finite number of compact faces, the above discussion shows that there

exists a G-map (g1, . . . , gn) : (Cn, 0) → (Cn, 0) with the property that, for any com-

pact face ∆ of Γ+(J), the map (pJ,∆(gj∆,1
), . . . , pJ,∆(gj∆,dim(∆)+1

)) is a joint reduction of

(pJ,∆(Ij∆,1
), . . . , pJ,∆(Ij∆,dim(∆)+1

)).

Let us fix a compact face ∆ of Γ+(J) and let r = dim(∆). In order to simplify the

notation, let us suppose that B∆ = {1, . . . , r + 1}. Then, by (6), we obtain that

pJ,∆(g1) p∆(I2) · · · p∆(Ir+1) + · · ·+ pJ,∆(gr+1) p∆(I1) · · · p∆(Ir) = p∆(I1) · · · p∆(Ir+1).

In particular,

p∆(I1) · · · p∆(Ir+1) ⊆
〈

pJ,∆(g1), . . . , pJ,∆(gr+1)
〉

and this implies that

V
(
pJ,∆(g1), . . . , pJ,∆(gr+1)

)
⊆ V(p∆(I1) · · · p∆(Ir+1)) ⊆ H,

where the last inclusion is a consequence of the fact that p∆(I1) · · · p∆(Ir+1) are monomial

ideals of On.

Therefore, we conclude that, for each compact face ∆ of Γ+(J), the set of common zeros

of the polynomials pJ,∆(g1), . . . , pJ,∆(gn) is contained in H, which means that (g1, . . . , gn) is

J-non-degenerate, by virtue of Theorem 4.2. Then, all inequalities of (15) become equalities.

Hence (a) holds and we have completed the proof. �

Corollary 4.11. Let I1, . . . , In be monomial ideals of On such that σ(I1, . . . , In) < ∞.

Then σ(I1, . . . , In) > ord(I1) · · · ord(In) and equality holds if and only if for all non-empty

L ⊆ {1, . . . , n} we have that ∣∣{i : ord(ILi ) = ord(Ii)}
∣∣ > |L|.

Proof. Let m = mn. Let us apply Theorem 4.10 in the case J = m. The filtrating map

φm : Rn
>0 → R>0 is given by φm(k) = |k|, for all k ∈ Rn

>0. Hence νm(I) = ord(I). Moreover,

if ∆ ⊆ Γ+(m) and j ∈ {0, 1, . . . , n− 1}, then ∆ is a compact face of dimension j of Γ+(m)

if and only if there exists some L ⊆ {1, . . . , n} such that |L| = j + 1 and ∆ = Γ(m)L, where

we recall that Γ(m) denotes the Newton boundary of Γ+(m).

Let us fix a non-empty subset L ⊆ {1, . . . , n} and let ∆ = Γ(m)L. If i ∈ {1, . . . , n}, then

pm,∆(Ii) 6= 0 if and only if there exists some k ∈ supp(ILi ) such that |k| = ord(Ii), which is

to say that ord(Ii) = ord(ILi ). Then the result follows as a consequence of Theorem 4.10. �
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5. Central maps with respect to pairs of ideals

Given two monomial ideals I and J of On of finite colength, it is obvious that it is always

possible to find a J-non-degenerate n-tuple (K1, . . . , Kn) of monomial ideals contained in I.

It suffices to take each Ki equal to some power of J contained in I. However, we will see

that, by replacing I by suitable powers Is, such an n-tuple can be constructed so that the

Newton boundary of Γ+(Ki) intersects the Newton boundary of Γ+(Is), for all i = 1, . . . , n

(roughly speaking this means that the ideals K1, . . . , Kn will not be far away from Is). This

fact will lead to a characterization of when the integral closure of some power of I is equal

to the integral closure of the ideal generated by the components of a J-non-degenerate map

g = (g1, . . . , gn) : (Cn, 0)→ (Cn, 0).

Definition 5.1. Let I and J be monomial ideals of On of finite colength. For any i ∈
{1, . . . , n}, we define the following number:

ai,J(I) = max
{
νJ
(
Γ+(I) ∩ C(∆)

)
: ∆ is a compact face of Γ+(J) of dimension n− i

}
,

where we recall that if A is a closed subset of Rn
>0, then νJ(A) = min{φJ(k) : k ∈ A}.

Therefore ai,J(I) ∈ Q>0, for all i = 1, . . . , n. It easily follows that a1,J(I) 6 · · · 6 an,J(I).

We denote the vector (a1,J(I), . . . , an,J(I)) by aJ(I).

Under the conditions of the above definition, since Γ+(I) = Γ+(I), it follows immediately

that ai,J(I) = ai,J(I), for all i = 1, . . . , n.

Remark 5.2. Let I be a monomial ideal of On and let m = mn. We denote ai,m(I)

simply by ai(I), for all i = 1, . . . , n. Since the set of compact faces of Γ+(m) is given by

{Γ(m)L : L ⊆ {1, . . . , n}, L 6= ∅} and φm(k) = |k|, for all k ∈ Rn
>0, then

(16) ai(I) = max
{

ord(IL) : L ⊆ {1, . . . , n}, |L| = n− i+ 1
}

and we recover the definition of the integers ai(I) given in [4, p. 197], which in turn was

motivated by the expression for the sequence of mixed  Lojasiewicz exponents of I given in

[6, Corollary 4.2]. We will show some connections between the numbers ai,J(I) and mixed

 Lojasiewicz exponents (in the sense of [3, 5, 11]) in a subsequent work.

Let I and J be monomial ideals of On of finite colength and let u ∈ Zn>0, u 6= 0. We

denote by kIu the point of intersection of Γ(I) with the half-line {λu : λ ∈ R>0}. Therefore

an,J(I) = max
{
φJ(kIu) : u ∈ v(Γ+(J))

}
.

We also observe that, under the conditions of Definition 5.1, the maximum that leads to the

computation of ai,J(I) is attained at some point of v(Γ+(I)) ∪ {kIu : u ∈ v(Γ+(J))}.
The point kIu has rational coordinates, for all u ∈ Zn>0, u 6= 0. So, we define

cJ(I) = min
{
c ∈ Z>1 : ckIu ∈ Zn>0, for all u ∈ v(Γ+(J))

}
.
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Theorem 5.3. Let I and J be monomial ideals of On of finite colength. Let c = cJ(I) and

let M = MJ . For any i ∈ {1, . . . , n}, let us consider the ideal

(17) Ki =
〈
xk : k ∈ supp

(
IcM

)
, φJ(k) = ai,J(IcM)

〉
.

Then (K1, . . . , Kn) is J-non-degenerate.

Proof. Let Γ+ = Γ+(J) and let φ = φJ . We recall that cΓ+(I) = Γ+(Ic) and hence cΓ(I) =

Γ(Ic). Thus ckIu is the point where Γ(Ic) meets the half-line {λu : λ ∈ R>0}, for all u ∈
v(Γ+(J)). Let us remark that ckIu has integer coordinates, for all u ∈ v(Γ+(J)).

Let us define the ideal K = IcM . Hence supp(K) = (cMΓ+(I)) ∩ Zn>0. Let us remark

that, since ai,J(I) is attained at some point belonging to v(Γ+(I)) ∪ {kIu : u ∈ v(Γ+(J))},
then ai,J(K) = cMai,J(I) ∈ Z>1, for all i = 1, . . . , n. Moreover, by the definition of c we

have that, if ∆ denotes any compact face of Γ+(J), then the intersection of C(∆) with

Γ+(K) has integer vertices. Hence νJ(KC(∆)) = νJ(Γ+(K) ∩ C(∆)), where by (9) and the

fact that K is integrally closed, the ideal KC(∆) is generated by the monomials xk such that

k ∈ Γ+(K) ∩ C(∆).

From the definition ofKi we obtain that νJ(Ki) = ai,J(K) = cMai,J(I), for all i = 1, . . . , n.

In order to prove the result we will check that condition (d) of Theorem 4.10 applied to

(K1, . . . , Kn) holds. Let ∆ be a compact face of Γ+ and let r = dim(∆), r ∈ {0, 1, . . . , n−1}.
Then the objective is to prove the inequality |{i : pJ,∆(Ki) 6= 0}| > r + 1.

Let i ∈ {n−r, . . . , n}. Then r > n− i, and this implies that there exists some face ∆′ ⊆ ∆

of dimension n− i.
From the definition of ai,J(K), we have that νJ(KC(∆′)) = νJ(Γ+(K) ∩ C(∆′)) 6 ai,J(K).

Let us consider a point k ∈ supp(KC(∆′)) such that φ(k) = νJ(KC(∆′)). By the definition of

K, it follows that νJ(KC(∆′)) = cMνJ(Γ+(I) ∩C(∆′)). Let u be any vertex of ∆′ and let us

consider a point k′ ∈ Rn
>0 of the form k′ = k + γu, for some γ ∈ R>0. Since k and u belong

to the same cone C(∆′), then φ(k + γu) = φ(k) + φ(γu). Hence we obtain the following

equivalences

νJ(xk
′
) = ai,J(K)⇐⇒ φ(k + γu) = ai,J(K)

⇐⇒ φ(k) + γM = cMai,J(I)

⇐⇒ γ =
cMai,J(I)− νJ(KC(∆′))

M
= cai,J(I)− cνJ(Γ+(I) ∩ C(∆′)).(18)

Since dim(∆′) = n − i, then νJ(Γ+(I) ∩ C(∆′) 6 ai,J(I), by the definition ai,J(I). Let

us assign to γ the value determined in (18). Then γ is a non-negative integer. Therefore

k′ ∈ Zn>0. Since k, u ∈ C(∆′) and k′ = k + γu, then k′ ∈ C(∆′) and thus xk
′ ∈ KC(∆′) ⊆

KC(∆) ⊆ K. In particular, k′ ∈ supp(K) and, by the definition of γ, we have that νJ(xk
′
) =

ai,J(K). This means that xk
′ ∈ pJ,∆(Ki). Hence we have proved that pJ,∆(Ki) 6= 0, for all

i ∈ {n−r, . . . , n}. Therefore |{i : pJ,∆(Ki) 6= 0}| > r+1 = dim(∆)+1 and thus (K1, . . . , Kn)

is J-non-degenerate, by Theorem 4.10. �
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Corollary 5.4. Let I and J be monomial ideals of On of finite colength. Let c = cJ(I)

and let M = MJ . Then there exists a J-homogeneous polynomial map F = (F1, . . . , Fn) :

(Cn, 0)→ (Cn, 0) such that F is J-non-degenerate, νJ(Fi) = ai,J(IcM) and Fi ∈ IcM , for all

i ∈ {1, . . . , n}.

Proof. As in the proof of Theorem 5.3, let K = IcM . Let K1, . . . , Kn be the ideals defined

in (17). By Theorem 5.3, (K1, . . . , Kn) is J-non-degenerate. Then, by Theorem 4.10, there

exists a polynomial map F = (F1, . . . , Fn) : (Cn, 0)→ (Cn, 0) such that F ∈ S0(K1, . . . , Kn),

F is J-non-degenerate and νJ(Fi) = νJ(Ki) = cMai,J(I), for all i = 1, . . . , n. The set

{xk : k ∈ K,φJ(k) = ai,J(K)} is a generating system of Ki, for all i = 1, . . . , n. Therefore,

by Proposition 2.2, we can take each polynomial Fi as a generic C-linear combination of

this generating system of Ki. Then we conclude that Fi can be taken as a J-homogeneous

polynomial, for all i = 1, . . . , n, and the result follows. �

If F is any map satisfying the thesis of Corollary 5.4, then we say that F is a central map

with respect to the pair (I, J).

Theorem 5.5. Let I, J ⊆ On be monomial ideals of On of finite colength. Let M = MJ .

Then

(19)
e(I)

e(J)
6
a1,J(I) · · · an,J(I)

Mn

and the following conditions are equivalent:

(a) equality holds in (19);

(b) there exists a polynomial map F = (F1, . . . , Fn) : (Cn, 0) → (Cn, 0) and some s ∈
Z>1 such that F is J-non-degenerate and J-homogeneous, νJ(Fi) = sai,J(I), for all

i = 1, . . . , n, and Is = 〈F1, . . . , Fn〉;
(c) there exists a polynomial map F = (F1, . . . , Fn) : (Cn, 0)→ (Cn, 0) and some s ∈ Z>1

such that F is J-non-degenerate and J-homogeneous and Is = 〈F1, . . . , Fn〉;
(d) there exists a polynomial map g = (g1, . . . , gn) : (Cn, 0)→ (Cn, 0) and some s ∈ Z>1

such that g is J-non-degenerate and Is = 〈g1, . . . , gn〉.

Proof. By Corollary 5.4, there exists a central polynomial map F : (Cn, 0) → (Cn, 0) with

respect to the pair (I, J). Let c = cJ(I) and let K = IcM . Hence F is J-non-degenerate

and J-homogeneous with νJ(Fi) = ai,J(K), for all i = 1, . . . , n. Moreover, Fi ∈ K, for all

i = 1, . . . , n. Hence, if we define the ideals K1, . . . , Kn as in (17), then

σ(K1, . . . , Kn) = e(F1, . . . , Fn) =
a1,J(K) · · · an,J(K)

Mn
e(J)(20)

= (cM)n
a1,J(I) · · · an,J(I)

Mn
e(J)(21)

= cna1,J(I) · · · an,J(I)e(J).(22)
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Since Ki ⊆ K = IcM , for all i = 1, . . . , n, then σ(K1, . . . , Kn) > e(K) = (cM)ne(I). Joining

this with (20) and (22) we obtain that

cna1,J(I) · · · an,J(I)e(J) > (cM)ne(I).

Thus inequality (19) follows.

Let us prove (a)⇒ (b). If equality holds in (19), then (20)-(22) imply that e(F1, . . . , Fn) =

e(K). Then, by the Rees’ Multiplicity Theorem (see [10, p. 147] or [12, p. 222]), we conclude

that 〈F1, . . . , Fn〉 = K = IcM = K and thus (b) follows by taking s = cM .

Let us prove (b) ⇒ (a). If F = (F1, . . . , Fn) : (Cn, 0) → (Cn, 0) denotes any map

satisfying the conditions of (b), for some s ∈ Z>1, then e(F1, . . . , Fn) = e(Is) = sne(I).

Moreover e(F1, . . . , Fn) = νJ(F1) · · · νJ(Fn) e(J)
Mn = sna1,J(I) · · · an,J(I) e(J)

Mn , by Theorem 4.2.

Then equality holds in (19).

The implications (b) ⇒ (c) ⇒ (d) are obvious. Let us prove (c) ⇒ (b). Let F =

(F1, . . . , Fn) : (Cn, 0)→ (Cn, 0) be a complex analytic map such that F is J-non-degenerate,

F is J-homogeneous and Is = 〈F1, . . . , Fn〉, for some s ∈ Z>1. Therefore, we have that

e(Is) = e(F1, . . . , Fn) = AJ(F1, . . . , Fn). Let di = νJ(Fi), for all i = 1, . . . , n. By reordering

the components of F , we can assume that d1 6 · · · 6 dn. Since e(Is) = sne(I) and we have

already proved relation (19), we have

(23)
d1 · · · dn
snMn

=
e(I)

e(J)
6
a1,J(I) · · · an,J(I)

Mn
.

Then it suffices to prove that ai,J(I) 6 di/s, for all i = 1, . . . , n. Thus (23) would imply

that ai,J(I) = di/s, for all i = 1, . . . , n, and hence (b) follows by considering the same map

F coming from assuming (c).

Let us fix an index i ∈ {1, . . . , n} and let ∆ be a face of Γ+(J) of dimension n − i. The

condition Is = 〈F1, . . . , Fn〉 implies that Γ+(Is) = Γ+(F1, . . . , Fn). In particular,

νJ
(
Γ+(Is) ∩ C(∆)

)
= νJ

(
Γ+(F1, . . . , Fn) ∩ C(∆)

)
= min

{
di : supp(p∆(Fi)) 6= 0

}
.(24)

Since F is J-non-degenerate and dimR∆ = n− i+1, there exist at least n− i+1 non-zero

elements in the set {pJ,∆(F1), . . . , pJ,∆(Fn)}, by Theorem 4.2. This implies, by (24), that

νJ
(
Γ+(Is) ∩ C(∆)

)
6 dn−(n−i+1)+1 = di.

Therefore sai,J(I) = ai,J(Is) 6 di, for all i = 1, . . . , n. That is, ai,J(I) 6 di/s, for all

i = 1, . . . , n.

Finally, let us prove (d) ⇒ (c). Let g = (g1, . . . , gn) be a J-non-degenerate map and

let s > 1 such that Is = 〈g1, . . . , gn〉. Let Fi = pJ(gi), for all i = 1, . . . , n, and let F =

(F1, . . . , Fn). We observe that F is J-non-degenerate and J-homogeneous. In particular,

e(Is) = e(g1, . . . , gn) = e(F1, . . . , Fn). Moreover Γ+(Fi) ⊆ Γ+(gi) ⊆ Γ+(Is), for all i =

1, . . . , n. Since I is a monomial ideal, the integral closure of Is is also a monomial ideal.

Therefore 〈F1, . . . , Fn〉 ⊆ Is. Then we obtain the equality 〈F1, . . . , Fn〉 = Is, by the Rees’

multiplicity theorem, and thus item (c) follows. �
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Remark 5.6. As we showed in the proof of Theorem 5.5, if equality holds in (19), then we

can take s = cJ(I)MJ in items (b), (c) and (d) of Theorem 5.5.

Let I be a monomial ideal of On of finite colength. Let us observe that cmn(I) = 1

and Mmn = 1. Hence, by Theorem 5.5 and (16) we obtain that e(I) 6 a1(I) · · · an(I) and

equality holds if and only if there exist polynomials F1, . . . , Fn ∈ C[x1, . . . , xn] such that Fi
is homogeneous of degree ai(I), for all i ∈ {1, . . . , n}, and I = 〈F1, . . . , Fn〉. Hence, by using

different techniques, we deduce Theorem 3.5 of [4] as the case J = mn of Theorem 5.5.

Let I and J be monomial ideals of On of finite colength. Then we define

CJ(I) =
a1,J(I) · · · an,J(I)

Mn
J

.

In (25) we will see that 1 6 CI(J) CJ(I), where equality does not hold in general, as we

show in Example 5.8.

Corollary 5.7. Let I, J ⊆ On be monomial ideals of On of finite colength. Then

(25)
1

CI(J)
6
e(I)

e(J)
6 CJ(I)

and the following conditions are equivalent:

(a) equality holds in some part of (25);

(b) equality holds in both parts of (25);

(c) CI(J) CJ(I) = 1.

Proof. Relation (25) is an immediate application of relation (19), in Theorem 5.5.

Let us see the implication (a)⇒ (b). Let us assume that e(I)/e(J) = CJ(I). By Theorem

5.5, there exists a J-non-degenerate map g = (g1, . . . , gn) : (Cn, 0)→ (Cn, 0) and an integer

s > 1 such that Is = 〈g1, . . . , gn〉. By Proposition 4.6, there exist r, a1, . . . , an ∈ Z>1 such

that Jr = 〈ga1
1 , . . . , g

an
n 〉.

Since I is a monomial ideal, then Is is also a monomial ideal and hence the equality

Is = 〈g1, . . . , gn〉 implies that 〈g1, . . . , gn〉 is a Newton non-degenerate ideal whose New-

ton polyhedron is equal to sΓ+(I), by [7, Corollary 2.6] or [2, Proposition 3.6]. Then

(gα1
1 , . . . , gαn

n ) is I-non-degenerate, for any α1, . . . , αn ∈ Z>1. In particular, (ga1
1 , . . . , g

an
n )

is I-non-degenerate. Joining this fact with the equality Jr = 〈ga1
1 , . . . , g

an
n 〉, we conclude

that e(J)/e(I) = CI(J), by Theorem 5.5. Following an analogous argument, we obtain that

if e(J)/e(I) = CI(J) then e(I)/e(J) = CJ(I).

The implication (b)⇒ (a) is trivial. The equivalence between (b) and (c) is an immediate

consequence of (25). �

If I, J is any pair of monomial ideals in On of finite colength, then we write I ∼ J if

CI(J) CJ(I) = 1. Let us observe that ∼ is a reflexive and symmetric relation. However ∼ is

not a transitive relation, as the following example shows.

Example 5.8. Let us consider the ideals of O2 given by I = 〈xy, x5, y5〉, J = m2 = 〈x, y〉
and K = 〈x, y2〉. We observe that aI(J) = (1, 5

2
), aJ(K) = (1, 2) and aI(K) = (2, 10

3
).
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Moreover MI = 5, MJ = 1, MK = 2, e(I) = 10, e(J) = 1 and e(K) = 2. Therefore

CI(J) CJ(I) = 1 and CJ(K) CK(J) = 1. However CI(K) = 4
15

and CK(I) = 15
2

and hence

1 < CI(K) CK(I) = 2.
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[5] C. Bivià-Ausina and S. Encinas,  Lojasiewicz exponent of families of ideals, Rees mixed multiplicities

and Newton filtrations, Rev. Mat. Complut. 26 (2013), No. 2, 773—798. 2.1, 4.1, 5.2
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