
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://doi.org/10.1002/app.45751

http://hdl.handle.net/10251/103500

John Wiley & Sons

Ferri, J.; Garcia-Garcia, D.; Carbonell-Verdu, A.; Fenollar, O.; Balart, R. (2018). Poly(lactic
acid) formulations with improved toughness by physical blending with thermoplastic starch.
Journal of Applied Polymer Science. 135(4). doi:10.1002/app.45751



“Poly(lactic acid) formulations with improved toughness by physical blending with 

thermoplastic starch” 

 

J.M. Ferri, D. Garcia-Garcia, A. Carbonell-Verdú, O. Fenollar, R. Balart 

 

Instituto de Tecnología de Materiales (ITM) 

Universitat Politècnica de València (UPV) 

Plaza Ferrándiz y Carbonell s/n, 03801, Alcoy, Alicante, Spain 

Corresponding author: joferaz@upvnet.upv.es  

mailto:joferaz@upvnet.upv.es


Abstract 

 

 This work focuses on poly(lactic acid) (PLA) formulations with improved 

toughness by physical blending with thermoplastic maize starch (TPS) plasticized with 

aliphatic-aromatic copolyester (AAPE) up to 30 wt%. A noticeable increase in 

toughness is observed, due to the finely dispersed spherical TPS domains in the PLA 

matrix. It is worth to note the remarkable increase in the elongation at break that 

changes from 7% (neat PLA) up to 21.5% for PLA with 30 wt% TPS. The impact-

absorbed energy is markedly improved from the relatively low values of neat PLA (1.6 

J m-2) up to more than three times. Although TPS is less thermally stable than PLA due 

to its plasticizer content, in general, PLA/TPS blends offer good balanced thermal 

stability. The morphology reveals high immiscibility in PLA/TPS blends, with TPS-

rich domains with an average size of 1 µm, finely dispersed which, in turn, is 

responsible for the improved toughness. 

 

  



1. Introduction. 

The packaging industry is facing an important challenge, which is the 

increasing use of environmentally friendly materials to avoid waste generation. For 

this reason, the use of biodegradable (disintegrable in controlled compost conditions) 

polymers is continuously growing. Biodegradable polymers include some petroleum-

based polyesters such as poly(caprolactone) (PCL) [1], poly(butylene succinate) (PBS) 

[2], poly(butylene succinate–co–adipate) (PBSA) [3], poly(butylene adipate-co-

terephthalate)  (PBAT) [4], etc, among others. In addition, some biodegradable 

polymers can be obtained from renewable resources as it is the case of poly(lactic acid) 

(PLA) [5], bacterial polyesters such as poly(hydroxybutyrate) (PHB)[6], 

poly(hydroxybutyrate-co-valerate) (PHBV)[7], protein-based polymers (gluten, casein, 

soy protein, etc.), and polysaccharide polymers (chitosan, cellulose, starch, etc.).  

PLA offers good perspectives at present and in the near future for use in the 

packaging industry [8-11]. Its possesses good mechanical properties, together with 

balanced barrier properties; in addition, it can be disintegrated in soil compost [12]. All 

these features, along with its increasingly competitive price, have led PLA to an 

advantageous position against other biodegradable polymers. PLA can be obtained 

from starch-rich materials such as some cereals (wheat, corn) and some roods 

(beetroot, cassava, yucca, etc.) [13, 14]. However, not all are advantages; some of its 

disadvantages are related to its low elongation at break, low flexibility and toughness. 

To overcome these drawbacks, different strategies have been proposed. 

Copolymerization is highly interesting from a technical standpoint but it is not a cost-

effective solution. Plasticization is a cost-effective approach but it is important to take 

into account the plasticizer migration. However, many plasticizers of natural origin are 

permitted for use in packaging, such as those normally used in formulations of TPS. 

Physical blending with ductile and flexible polymers is an interesting solution but 

there are some issues related with the miscibility between the components that must be 

addressed to obtain optimum properties. Blending with thermoplastic starch (TPS) is a 

cost-effective solution as it can provide increased flexibility, elongation at break and, 

subsequently, a marked improvement on toughness can be achieved [13, 15]. 

Therefore, TPS is a plasticized polymer and obtained from starch-rich plants or foods 

such as pea, corn, sorghum, barley, amaranth, yucca, sweet potato, etc. [16], etc. 

Industrial formulations of TPS need certain amounts of a plasticizer such as water [17, 

18], glycerol, sorbitol, xylitol, glucose or combinations [19, 20] to improve ductility, 



cohesion, elongation at break and resistance to retrogradation as well as to increase the 

overall thermal stability [21, 22]. Starch is chemically constituted of two types of 

polysaccharides: amylose and amylopectin and, in a less extent, some lipids. 

Depending on the origin, the amylose/amylopectin ratio varies and this has a direct 

influence on mechanical properties [23-25]. Furthermore, the degree of crystallinity of 

starch can vary in the 15-45% range as a consequence of the abovementioned ratio and 

may change in time due to retrogradation phenomena [22]. The plasticizer type and 

content can also influence the degree of crystallinity of starch in industrial TPS 

formulations [21]. TPS is poorly miscible with polyhydroxyacids as it is the case of PLA 

[26, 27]. For this reason, new starch plasticizers are being investigated to allow 

somewhat interactions with other polymers. 

This work explores the potential of a thermoplastic starch, plasticized with a 

biodegradable aliphatic/aromatic copolyester (AAPE), to obtain high toughness PLA 

formulations by physical blending [28]. The effect of TPS content (0 – 30 wt%) in 

PLA/TPS blends is evaluated in terms of mechanical and thermal properties as well as 

morphology. 

 

2. Experimental. 

 

2.1. Materials. 

 

A commercial PLA grade IngeoTM Biopolymer 6201D was obtained in pellet 

form from NatureWorks LLC (Minnetonka, USA). This PLA grade contains 2% D-lactic 

acid and possesses a density of 1.24 g cm-3 at 23 ºC and a melt flow index comprised in 

the 15-20 g/(10 min) range at 210 ºC. A TPS grade Mater-Bi® NF 866 was supplied by 

Novamont (Novara, Italy). This TPS is obtained from maize starch and is characterized 

by a melt flow index of 3.5 g/(10 min) at 150 ºC and a density of 1.27 g cm-3 at 23 ºC. Its 

melting peak temperature is comprised between 110 – 120 ºC and contains more than 

50% of AAPE [28]. With regard to the base starch, it is composed of 73% amylopectin 

and 23% amylose. 

 

2.2. Preparation of PLA/TPS blends. 

 



The TPS content in PLA/TPS varied in the range 0 – 30 wt% as summarized in 

Table 1. Initially all materials were dried at 60 ºC for 24 h, weighed in the appropriate 

proportions and mechanically pre-mixed in a zipper bag. Then, the materials were 

compounded in a twin-screw co-rotating extruder from Dupra (Castalla, Spain) at 60 

rpm. The temperature profile was set to 165 ºC (feeding), 170 ºC, 172.5 ºC y 175 ºC (die). 

After cooling, the compounded materials were pelletized and subsequently processed 

by injection moulding in a Meteor 270/75 from Mateu&Solé (Barcelona, Spain) at an 

injection temperature of 175 ºC. 

 

Table 1. Summary of compositions and labelling of PLA/TPS formulations.  

Code PLA (wt%) TPS (wt%) 

TPS - 100 

PLA - 100 

PLA /7.5TPS 92.5 7.5 

PLA /15TPS 85 15 

PLA /22.5TPS 77.5 22.5 

PLA /30TPS 70 30 

 

2.3. Mechanical characterization of PLA/TPS blends. 

 

Tensile and flexural tests were carried out in a universal testing machine ELIB 

30 from S.A.E. Ibertest (Madrid, Spain) at room temperature according to ISO 527-5 

and ISO 178 respectively at a crosshead speed of 10 mm min-1. At least, five different 

samples were tested and average values of tensile strength (σ), modulus (E) and 

elongation at break (εb) were calculated. Moreover, an axial extensometer (SAE Ibertest 

model IB/MFQ-R2, Madrid, Spain) was used to obtain the Young’s modulus in a more 

accurate way. Hardness measurements were obtained in a Shore D durometer model 

673-D from Instrumentos J. Bot S.A. (Barcelona, Spain) following ISO 868. Impact-

absorbed energy was obtained in a Charpy’s pendulum from Metrotec S.A. (San 

Sebastián, Spain) with an energy of 1 J, as indicated in ISO 179:1993. Five different 

notched (notch type A) samples were tested and average values were calculated. The 

notch was done in a notch machine from HOYTOM S.L.(Leioa, Bizkaia, Spain) with a 

background radius of 0.25±0.05, a remaining width of 8.0±0.2 and a notch angle of 45º± 

1º. 



Dynamic mechanical thermal characterization (DMTA) was carried out using 

an oscillatory rheometer AR G2 from TA Instruments (New Castle, USA) equipped 

with a special clamp system to test solid samples in a torsion/shear mode. The samples 

sized 40x10x4 mm3 and were subjected to a heating program from -80 ºC up to 130 ºC 

at a constant heating rate of 2 ºC min-1. The selected frequency was 1 Hz and the 

maximum shear deformation percentage (%γ) was set to 0.1%. 

 

2.4. Morphology characterization by FESEM. 

 

A field emission scanning electron microscope (FESEM) model ZEISS ULTRA55 

from Oxford Instruments (Abingdon, United Kingdom) was used to characterize the 

morphology of the fractured surfaces from impact tests. The acceleration voltage was 

set to 2 kV. Prior to observation by FESEM, all surfaces were covered with an ultrathin 

platinum layer by a high vacuum sputtering process in a EM MED020 sputter coater 

from Leica Microsystems (Wetzlar, Germany). 

 

2.5.- Thermal characterization. 

 

A thermogravimetric balance TGA/SDTA 851 from Mettler Toledo Inc. 

(Schwerzenbach, Switzerland) was used to characterize the thermal degradation of 

PLA/TPS blends. A dynamic program from 30 ºC to 500 ºC at 20 ºC min-1 in nitrogen 

atmosphere (66 mL min-1) was used. The main thermal transitions of the PLA/TPS 

system were studied by differential scanning calorimetry (DSC) in a Mettler-Toledo 

821 calorimeter using a dynamic heating program from 30 ºC to 350 ºC at a heating rate 

of 10 ºC min-1 in nitrogen atmosphere (66 mL min-1). 

 

 

3. Results and discussion. 

 

3.1. Influence of TPS content on mechanical properties of PLA/TPS blends. 

 

Fig. 1 and Fig. 2 show the evolution of tensile and flexural properties of the 

PLA/TPS system as a function of the TPS content. Neat PLA possesses a tensile 

strength of 64 MPa. This decreases almost linearly down to values of 41.5 MPa for the 



PLA/TPS blend containing 30 wt% TPS. In a similar way, tensile modulus also offers a 

decreasing tendency with increasing TPS content. The initial tensile modulus of neat 

PLA is close to 3.6 GPa and decreases down to values of about 2.5 GPa (PLA/TPS 

blend with 30 wt% TPS). This phenomenon is typical of plasticized PLA formulations. 

Silverajah et al. reported that 5 wt% EPO plasticizer in PLA formulations led to lower 

tensile strength values by 26.3% with regard to neat PLA. Moreover, they reported a 

decrease in Young’s modulus of EPO-plasticized PLA of 7% by adding 5 wt% EPO 

[29]. Despite this decrease in mechanical resistant properties for PLA/TPS blends with 

high TPS content, both tensile strength and modulus are still superior to most 

commodity plastics. With regard to the ductile properties, TPS has a very positive 

effect. Whilst PLA is characterized by a very low elongation at break value of about 

7%, the addition of TPS raises this up to values of 18% and 21.5% for PLA/TPS blends 

containing 22.5 wt% and 30 wt% TPS, respectively. It seems to be a threshold in the 

range 15-22.5 wt% TPS. It is clearly observed that the elongation at break does not 

increase in a marked way below this threshold whilst a noticeable rise is detected over 

this threshold value. This could be related to the plasticizer content in TPS with a clear 

effect above this threshold point. It has been reported a similar effect by using PCL 

with an increase in elongation at break of 85% in PLA/PCL blends with 22.5 wt% PCL 

[30]. Nevertheless, TPS is a more cost-effective solution to PCL due to its lower cost 

compared to PCL and other polyester polymers. In a first approach, TPS offers 

restricted miscibility with PLA [26, 27]. Nevertheless, the results herein shown, indicate 

a synergistic effect that could be related with the particular plasticizer in TPS as it is a 

copolyester-type that could interact with the polyester structure of PLA chains. AAPE 

contains aromatic groups that make this plasticizer increase the solubility between the 

commercial TPS and the PLA, showing benefits in the ductile properties. 

 



 
Figure 1. Plot evolution of mechanical properties from tensile tests as a function of the 

weight % TPS. 

 

Similar tendency can be observed for flexural properties (Fig. 2). The flexural 

strength and modulus of neat PLA, 116.3 MPa and 3.27 GPa, respectively, decrease 

down to values of 64.8 MPa and 2.24 GPa respectively in the PLA/TPS blend with 30 

wt% TPS. Although the plasticizing effect of TPS is not so pronounced as is discussed 

in the thermal analysis section, the effects on mechanical properties are quite similar 

and this could be related to the particular structure of this biphasic polymer system 

with a fragile matrix of PLA in which, spherical particles of a very flexible polymer 

(TPS) are finely dispersed. 

 
Figure 2. Plot evolution of flexural strength and flexural modulus from PLA/TPS 

blends as a function of the weight % TPS. 

 



As expected, as the TPS content increases, Shore D hardness values are lower as 

observed in Table 2.  

 

Table 2. Impact-absorbed energy, Shore D hardness and thermomechanical properties 

of PLA/TPS blends as a function of the weight % TPS. 

 

wt% 

TPS 

Charpy’s impact-

absorbed energy 

(kJ m-2) 

Shore D 

hardness 

Vicat softening 

temperature, VST 

(ºC) 

Heat deflection 

temperature, HDT 

(ºC) 

0 1.6 ± 0.3 76.0 ± 0.5 52.8 ± 1.4 47.6 ± 1.0 

7.5 1.9 ± 0.3 73.8 ± 0.3 52.6 ± 1.2 49.2 ± 1.2 

15 2.8 ± 0.3 72.5 ± 0.7 52.4 ± 0.6 49.0 ± 0.8 

22.5 3.7 ± 0.1 69.9 ± 0.9 51.4 ± 0.8 49.2 ± 1.0 

30 5.3 ± 0.1 68.2 ± 0.6 50.6 ± 1.0 49.4 ± 0.8 

 

It is worthy to note the positive effect of TPS on PLA/TPS blends toughness. 

Neat PLA is characterized by an extremely low toughness, directly related to its 

intrinsic fragility. As we have described previously, addition of TPS to PLA, leads to 

decreased mechanical resistant properties and a marked increase in the elongation at 

break which is directly related to the ability of the material to absorb energy. For this 

reason, the impact-absorbed energy change from 1.6 kJ m-2 (neat PLA) up to more than 

3 times higher values of 5.3 kJ m-2 for PLA/TPS blends with 30 wt% TPS. Once again, 

although it is not expected a high miscibility between PLA and TPS, it is possible that 

the particular biphasic structure of the PLA/TPS systems contributes to improved 

toughness. Ojijo et al. observed a high increase in toughness of PLA by blending with 

poly(butylene succinate-co-adipate)(PBSA). Adding 30 wt% of PBSA, the absorption of 

energy to the impact increased 21.4%. Regarding thermomechanical properties, VST 

and HDT values do not change in a marked way and no clear tendency can be detected 

since the standard deviation is within the typical variation range. 

 

3.2. Effect of TPS content on thermal properties of PLA/TPS blends. 

  

Fig. 3 shows a comparative plot of the DSC curves of neat PLA, TPS and their 

blends. Regarding neat PLA, its glass transition temperature (Tg) is close to 60 ºC and is 



clearly detectable by a change in slope. The exothermic peak comprised between 90 – 

110 ºC is related to the cold crystallization process and, finally, the endothermic peak 

between 150 - 180 ºC corresponds to the melting process. The small exothermic peak 

that appears during heating and just before the melting peak is due to the re-

crystallization of PLA [31]. At temperatures close to the melting temperature (150°), the 

spherulites or crystalline zones (alpha prime form) of the PLA generated at 

temperatures close to 100 ° C, are disordered. Then, the chains of the PLA are ordered 

(re-crystallized) to alpha form (more stable form)(representing an exothermic peak in 

Figure 3), although during this re-crystallization process and because the movement of 

the chains is so high, the chains quickly return to disordered giving rise to the melting 

process (representing an endothermic peak in Figure 3). TPS addition has a slight effect 

on the glass transition temperature thus showing a poor plasticization effect. The Tg of 

PLA is 65.4 ºC and it is decreased by 3 ºC whatever the TPS content as it can be seen in 

Table 3, which gathers the main thermal transitions and parameters of PLA and its 

blends with TPS. This slight decrease in Tg is representative for poor miscibility 

between PLA and TPS [26, 27]. This poor plasticization effect is also assessed by the 

slight decrease in the cold crystallization peak which changes from 102 ºC for neat PLA 

down to 98 - 99 ºC for almost all PLA/TPS blends. This low decrease in the cold 

crystallization peak could be related to the nucleating effect of TPS [26]. López-

Rodriguez et al. reported a decrease of almost 20 ºC by the addition of 40 wt% of PCL. 

On the other hand, PLA plasticized by oligomeric plasticizers revealed a decrease in Tc 

in a range 10 to 15ºC. 

 

Table 3. Summary of the main thermal transitions and parameters of PLA/TPS blends 

obtained by DSC. 

wt% TPS 
Tg Tc ΔHc Tm ΔHm %X 

(ºC) (ºC) (J g-1) (ºC) (J g-1)  

0 65.4 102 26.71 168.3 40.19 14.5 

7.5 62.4 98.7 16.53 170.4 36.31 23.0 

15 62.1 99.0 15.42 170.4 30.51 19.1 

22.5 61.5 98.6 16.47 170.1 27.92 15.9 

30 62.8 98.5 16.64 170.3 26.25 14.7 

  



 
Figure 3. Comparative DSC thermograms of neat PLA, TPS and PLA/TPS blends with 

different weight % TPS.  

 

With regard to the degree of crystallinity (%X) of the PLA-rich domain, low TPS 

addition provides elevated %X values of almost 23% which is noticeably higher than 

that observed for neat PLA (14.5%). Nevertheless, this effect is lost as the TPS content 

increases to 30 wt% TPS thus leading to similar crystallinity to neat PLA. Similar 

behavior has been reported by Shin BY et al. [32]. Adding 20% of modified TPS to 

PLLA 2002D, the %X increased from 0.2% to 24%. TPS acts as a nucleating agent for the 

crystallization of PLA. For low TPS contents (7.5%) increases the effective contact 

surface (The TPS are distributed in small domains and the specific area is higher than 

when the TPS content is higher) between the PLA and the TPS therefore increases the 

degree of crystallinity of the PLA. As the TPS content increases, the area in contact of 

the TPS domains with the PLA matrix is lower and therefore, although the TPS acts as 

a nucleating agent, the specific nucleation area is lower and the crystallinity is lower, 

but in all cases, higher than virgin PLA.” 

With regard to the thermal stability at high temperatures, Fig. 4 shows a 

comparative plot of the TGA curves of neat PLA and TPS and their corresponding 

blends. PLA degrades in a single step process with onset degradation temperature of 

310 ºC. Regarding TPS, its degradation process occurs in two main stages. The first one 

occurs in the 300 – 360 ºC range with a weight loss of about 29%; this degradation stage 

could be attributed to the starch pyrolysis [33]. The second stage is comprised between 



360 – 500 ºC with a weight loss of 61% which is related to the decomposition of the 

biodegradable copolyester component in TPS [34].  

  

Figure 4. a) Thermogravimetric (TG) and b) derivative thermogravimetric curves 

(DTG) of neat PLA, TPS and their blends with different TPS content.  

 

Table 4 shows some parameters related to the thermal degradation. In 

particular, the temperature at which a 5% and 90% weight loss occurs (T5%, T90%) and 

the maximum degradation rate temperature (Tmax), are summarized. Although slight 

decrease in T5% can be detected, in general, the thermal stability is not highly affected 

by presence of TPS. In fact, as we can observe, a slight increase in T90% is detected but 

in both cases, the change is not significative. 

 

 



 

Table 4. Thermal parameters of unplasticized PLA and PLA/TPS blends with various 

TPS content. 

wt% TPS 
TGA 

T5% (ºC) T90% (ºC) Tmax (ºC) 

0 336.9 365.1 363.5 

7.5 330.7 381.1 365.0 

15 329.9 385.8 364.5 

22.5 319.0 397.7 364.6 

30 311.5 427.2 365.1 

 

 

3.4. Effect of TPS content on dynamic-mechanical thermal behaviour of PLA/TPS 

blends. 

 

Fig. 5 shows the evolution of the storage modulus (G’) as a function of 

increasing temperature for both neat materials, PLA and TPS and their corresponding 

blends. As the TPS content increase, the characteristic G’ curve moves to lower G’ 

values. This also corroborates more flexible materials as previously described in the 

mechanical characterization. As it can be seen for neat PLA, G’ suffers a noticeable 

decrease in the temperature range comprised between 55 – 70 ºC (more than two fold). 

This is directly related to its glass transition relaxation (Tg). If we compare the G’ 

values at 25 ºC, the effect of TPS become clearly evident with a marked decreasing 

tendency. Neat PLA shows a G’ value of 1.34 GPa; addition of 7.5 wt% leads to a G’ 

value of 1.08 GPa. G’ is slightly reduced in PLA/TPS blends with 15-22.5 wt% TPS, 

with values in the 0.95-1.0 GPa whilst minimum values of 0.6 GPa are obtained in 

blends with 30 wt% TPS. The evolution of G’ in the glass transition relaxation zone, 

also indicates poor plasticization effects as the typical curves are not highly moved to 

lower temperatures thus indicating a slight decrease in Tg values as observed in DSC 

analysis. Another important transition of neat PLA is the cold crystallization process 

with occurs in the 80-90 ºC range. During the cold crystallization, amorphous domains 

in PLA tend to rearrange in a packed structure to form crystalline zones that contribute 

to increase its mechanical resistance and rigidity (almost two fold higher regarding the 

minimum values achieved after the glass transition relaxation). As it has been 



previously described in the DSC analysis, the cold crystallization process occurs at 

lower temperatures in PLA/TPS blends, due to the slightly increased chain mobility 

that TPS provides. For this reason, characteristic curves are shifted by almost 10 ºC to 

the left with regard to neat PLA. This is in total accordance with the results shown in 

the DSC analysis and it is in agreement with some other works [29, 35].  

 
Figure 5. Plot evolution of the storage modulus (G’) of neat PLA and PLA/TPS blends 

vs temperature for various TPS contents.  

 
Figure 6. Plot evolution of the damping factor (tan δ) of neat PLA and PLA/TPS blends 

vs temperature for various TPS contents.  

 

The change in the glass transition temperature (Tg) is more clearly detectable by 

analysing the evolution of the damping factor (tan δ) with temperature (Fig. 6). By 



taking the damping factor peak as the criterion to estimate the Tg, neat PLA possesses a 

Tg value of about 68 ºC and this is reduced by not more than 2 ºC for PLA/TPS blends 

with 15-22.5 wt% TPS. This means poor plasticization effect due to restricted 

miscibility between these two polymers. Neat TPS shows a wide relaxation 

temperature range comprised between -50 ºC and -5 ºC with a peak (Tg) value of -28.3 

ºC as it can be seen in Fig. 6. Although the miscibility between PLA and TPS is 

restricted, some PLA chains enter TPS domains and contribute to slightly decrease its 

characteristic Tg value by 4-5 ºC. Similarly, it occurs in the work of Ojijo et al. where 

they modify PBSA by adding triphenyl phosphite (TPP). In this way, the interaction 

between the PLA and PBSA improves significantly contributing a greater tenacity to 

the binary mixture. 

 

3.5. Effect of TPS content on the morphology of PLA/TPS blends. 

 

Fig. 7 gathers typical FESEM images of cryofractured samples of both neat PLA 

and TPS at different magnifications.  

 

Figure 7 

 

Figure 7. FESEM images of cryofractured samples of neat PLA (a and b) and TPS (c 

and d) at different magnifications, 1000x (a and c) and 5000x (b and d). 

 

Figure 8 

 

Figure 8. FESEM images of cryofractured samples of PLA/TPS blends with different 

TPS content: a-b) 7.5 wt%, c-d) 15.0 wt%, e-f) 22.5 wt% and g-h) 30 wt% at different 

magnifications, 1000x (a, c, e and g) and 5000x (b, d, f and h). 

 

PLA (Fig. 7a and Fig. 7b) shows a typical fragile fracture surface with no 

evidence of plastic deformation and a homogenous smooth surface. On the other hand, 

TPS (Fig. 7c and Fig. 7d) shows a different fracture with flake formation typical of the 

growth of crystalline planes in maize starch (crystalline lamellae) which are oriented 

randomly during the fracture process. These planes are stacked in a parallel way due 

to the growth of starch A-type from the seeds. These stacked planes from small blocks 



and the aggregate of blocks form granules that are separated from the amorphous 

zones in which, amylose and plasticizers are located [36]. 

Fig. 8 reveals in a clear way, the biphasic structure of the PLA/TPS system, 

through FESEM images of cryofractured samples. All formulations offer a biphasic 

structure with a PLA-rich matrix in which TPS-rich domains appear randomly 

dispersed. The TPS-rich domains offer different size as the TPS content increases. So 

that, the TPS-rich domains change from 0.2 – 0.4 µm (in PLA/TPS blends with 7.5 wt% 

TPS) up to 1 – 2 µm (in PLA/TPS blend with 30 wt% TPS). A similar result has been 

reported by Mittal V et al. In that work, the authors studied binary and ternary blends 

and showed TPS-rich domains with sizes comprised between 0.5-2 µm in a PLA/TPS 

blend with 50 wt% TPS. As the particle size increases we can also observe the lack (or 

very poor) miscibility between PLA and TPS as some spherical voids appear, thus 

indicating that some TPS-rich domains have been pulled out during the cryofracture 

process. This particular morphology, with TPS-rich domains with a size ranging from 

0.2 to 2 µm, positively contributes to improved toughness as it has been described 

previously. 

 

4. Conclusions. 

 

Addition of TPS is a cost-effective method to improve the low intrinsic ductile 

behaviour of PLA with improved toughness. This widens its uses at industrial scale as 

its fragility is markedly reduced. Indeed, the elongation at break improves from 7.0% 

(neat PLA) up to values of 21.5% in PLA/TPS blend with 30 wt% TPS, which 

represents a percentage increase by more than 300%. It is worthy to note that the 

impact-absorbed energy is increased up to 5.3 J m-2 (PLA/TPS blend with 30 wt% TPS) 

which is more than three times the value of neat PLA (1.6 J m-2). Thermal analysis has 

revealed a poor miscibility between PLA and TPS. In fact, DSC and DMTA revealed a 

reduction of 2-3 ºC in Tg thus showing a restricted miscibility between these polymers. 

The plasticization effects that TPS can provide are restricted duo to the lack of 

miscibility. Nevertheless, the particular biphasic structure revealed by FESEM, with 

small spherical TPS-rich domains (with a size ranging between 0.2 to 2 µm) finely 

dispersed in the rigid PLA-rich matrix, has a positive effect on toughness and energy-

absorption. As a general conclusion, blending PLA with TPS represents a cost-effective 



and environmentally friendly solution to widen the uses of PLA way by improving its 

toughness and ductile properties. 
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