

Design and Implementation of a
Distributed Software Platform

Based on Asynchronous Messages

Nikolas Martens

Escuela Técnica Superior de Ingenieŕıa Informática

Universidad Politécnica de Valencia

Advisor: Javier Jaén

Diploma Thesis

February 2011

mailto:Nikolas.Martens@mytum.de
http://www.etsinf.upv.es/
http://www.upv.es/

iv

Acknowledgements

I would like to thank my advisor, Javier Jaén, for his valuable feedback and

support in many ways during the projects and Prof. Klaus Diepold who

gave me the opportunity to write this thesis. I also feel deepest gratitude

to my friend Robert Jenke who gave me the idea and the courage to write

about this topic. Lastly, I thank my family for their unconditional support.

ii

Abstract

Although personal computing has advanced and spread considerably dur-

ing the last decades, the real computer revolution has not happened yet.

In order to promote computer literacy, a system is needed that enables

the user to use the power of abstraction for building and arguing about

dynamic models. This thesis presents a programming model that follows

the paradigm ”everything is an object” [1] to the utmost in order to build

a software platform upon it that provides this possibility. The result is a

lean yet powerful model based on a single kind computational units which

form a virtual network. All entities of the model are therefore concurrent,

distributed and persistent. Like objects, they encapsulate behaviour and

state and communicate through message passing, but unlike conventional

objects, an entity has no methods, messages are asynchronous, the only

structure is composition and the only association is specialization.

iv

Contents

1 Introduction 1

1.1 Abstraction . 1

1.2 Distribution . 2

1.3 Aims . 4

1.4 Characteristics . 4

1.5 Outline . 5

2 Methods 7

2.1 Software Development . 7

2.2 Prototyping . 9

2.3 Test-Driven Development . 10

3 Programming Model 13

3.1 Concepts . 13

3.1.1 Cells . 13

3.1.2 Names and Paths . 13

3.1.3 Messages . 14

3.1.4 Reaction . 15

3.1.5 Specialisation . 15

3.1.6 Execution . 16

3.1.7 Delivery . 16

3.2 Example . 17

3.2.1 Simple Version . 17

3.2.2 Extended Version . 19

3.3 Implementation . 22

3.3.1 Object Model . 23

3.3.2 Message Passing . 24

3.3.3 Binding . 25

3.3.4 Execution . 26

3.3.5 Aliases . 28

3.3.6 Inheritance . 30

3.3.7 Adoption . 30

v

CONTENTS

4 Environment 33

4.1 Storage . 33

4.1.1 Syntax . 33

4.1.2 File Format . 35

4.1.3 Implementation . 35

4.2 Distribution . 36

4.2.1 Architecture . 36

4.2.2 File Format . 36

4.2.3 Implementation . 37

4.3 Kernel Cells . 38

4.4 Library . 39

4.4.1 General . 39

4.4.2 Data Types . 39

4.4.3 Control Structures . 41

4.4.4 Reflection . 41

5 Development Tools 43

5.1 Description . 43

5.1.1 Message Sender . 43

5.1.2 Cell Browser . 44

5.1.3 Message Inspector . 45

5.1.4 Delivery Analyser . 45

5.2 Implementation . 46

6 Discussion 49

6.1 Related Work . 49

6.2 Design Process . 50

6.2.1 Genesis . 50

6.2.2 Responses . 51

6.2.3 Binding & Context . 51

6.3 Experience . 53

7 Outlook & Conclusions 57

7.1 High Level Language . 57

7.1.1 Extended Scope . 58

7.1.2 Answers . 58

7.1.3 Definitions . 58

7.1.4 Spaces . 59

7.2 Future Work . 59

7.3 Conclusions . 63

List of Figures 65

vi

CONTENTS

List of Tables 67

Glossary 71

References 73

vii

CONTENTS

viii

Chapter 1

Introduction

Personal computing has made remarkable advances and became omnipresent during the

last decades but like Turing Award winner and personal computing pioneer Alan Kay

states repeatedly ”the computer revolution has not happened yet” [2]. Computers have

not yet had an impact comparable to the printing press for example, which not only

changed completely how argumentation was done but also what was argued about.

This change took approximately 150 years to happen so it is not a surprise that 30

years after their introduction, personal computers are still used as a faster and cheaper

imitation of paper, recordings, films and television.

In order for a computer revolution to happen, computer literacy needs to reach a

critical mass, which is not only the ability to read and write but also to understand and

argue about ideas that are worth writing about. What words are to printing, dynamic

models are to computing, thus computer literacy is the ability to analyse and build

models, understand the ideas they represent and use them to argue about these ideas.

This requires tools to build and share dynamic models like letters and books are

used for printing. But in computer science still no common set of letters exists and the

tools are only available to a small group of specialized users called programmers. Two

of the most powerful tools are abstraction and distribution.

1.1 Abstraction

The single most important principle of computer science is abstraction [3, 4, 5]. It began

with the division of software and hardware in the von Neumann architecture and was

continued with the appearance of programming languages and operating systems. With

the increasing computational power, every generation of programming languages used

a higher level of abstraction of the machine it is running on.

1

1. INTRODUCTION

Not only the abstraction of the programming models has evolved but also the ability

to create new abstractions with the language [6]. This development led from the first

machine language over assembly languages to high level languages. At the cost of per-

formance, each generation increased the expressiveness of the programming language

and thus decreased the time necessary for development and maintenance. As a re-

sult, modern object-oriented languages do not require any knowledge of the underlying

hardware and can be used efficiently to model dynamic software systems.

Besides the ability to build more complex systems in less time, abstraction also

brings the advantages of re-usability and interoperability [7]. By hiding differences and

emphasizing similarities, abstract models can be re-used for different but similar prob-

lems and communicate with each other more easily by ignoring unimportant details.

All of these advantages however, are restricted to the production of software. Be-

cause internals of a computer program are invisible to the end user, he can not benefit

from the concepts used to build it. The world of the end user, which consists of files and

programs has little connection with the world of objects, which resides inside programs.

This affects software developers more than users since most programs work around this

deficiency and hide it from the user. But few programs or software platforms let their

users profit from the full power of abstraction. As a consequence, in personal com-

puting there are many almost-the-same things which have to be treated differently

because there exists no abstraction for them. An example are common problems with

different file formats and encodings for documents, pictures and videos which require

different viewers. Also web pages and local programs are nowadays quite similar but

work differently for historical reasons.

It is also due to historical reasons that many modern programming languages lack

of consistency [8]. Some of the most widespread languages for example use a hybrid

approach for backwards compatibility [9] and to allow access to lower abstraction levels

[10]. While different levels of abstraction are important to optimize efficiency, the lack

of consistency increases the complexity of the programming models and compromises

their expressiveness. These approaches also violate the core system building principle

of separating meaning and optimization [11]. But even the most purely object-oriented

languages involve parts which are not objects or substantially different, such as pack-

ages, modules, methods or closures. Other components are not even part of the object

model and can not be abstracted at all or only with difficulties such as location, file

systems and databases.

1.2 Distribution

When the World Wide Web was designed for sharing scientific documents, its creators

did not anticipate the way it was going to be used twenty years later. The strength

2

1.2 Distribution

and weakness of HTTP and HTML is simplicity and the resulting proliferation. Due

to its limitations, a vast ecosystem of complement technologies has emerged to provide

rich internet applications without compromising accessibility. Nowadays, even a simple

dynamic web page involves at least four different technologies plus the knowledge of

differences amongst interpreters.

Despite these hurdles, the popularity of internet applications has increased signif-

icantly over the last decade. This development has led to a browser-centric usage in

personal computing today which resembles the use of terminal computers in the ’80s.

Internet applications run mostly on powerful servers with a very slim client which

provides little more than a graphical interface for user interaction. For the software

producers this brings many advantages in the areas of deployment, maintenance, scal-

ing and not at last control over user data. The user does not only have to accept the

lost of control over his data but also has do deal with conflicting software models which

results in bookmarks and ”back” buttons being mostly useless in internet applications.

A software platform which is aimed at the needs of modern personal computing

would provide the the possibility to connect to any other system and share any kind of

data in a safe and transparent way. To be able to do so, data must not be static but

consist of dynamically responding entities that carry all information with them that is

needed for presentation and manipulation. Also, these entities can be communicated

with and their abilities explored dynamically. Using a common minimal interface for

presentation and interaction, all parts of such a system could be used interchangeably

when used to assemble new systems.

The biggest increase of productivity in software development does not come from

more powerful tools or programming languages but from software reuse [12]. The

majority of programming tasks consists of connecting existing software modules rather

than creating new ones. But still, the wheel is re-invented many times since there is no

wide-spread completely distributed system of dynamically explorable modules. Such a

system would give every user access to a global collection of already existing solutions

and also the ability to share his own ideas with the world.

It would also leverage the power of connection to create a personal internet whose

users are able to connect their own devices as peers to form a virtual computer whose

data is distributed over the peers and only dynamically cached on the devices. This

way any personal information and programs can be accessed in the same manner as

any other resource made available by other users without compromising privacy but

also without having to distinguish between local and remote services. There does not

even exist a distinction between data and programs since all parts of the system are

dynamic.

3

1. INTRODUCTION

1.3 Aims

In order to build a completely coherent personal computing system that separates mean-

ing from optimization, it has to be based on a programming model that incorporates the

concepts of abstraction and distribution. It has to enable the user to dynamically model

software systems inside a virtual space in a manner close to natural processes. This

programming model has to be implemented into a runtime environment that supports

the complete personal computer platform.

The result is a model of virtual objects which exist independent of any hardware.

Computers only serve as portals that connect the virtual with the real world. Objects

are living things that can be interacted with by sending them messages. To keep the

communication as simple as possible, it is unidirectional, the receiver always reacts in

the same way and the message is another object. Systems that are too complex to be

modelled by a single object are composed by objects in has-a relationships. And to

allow abstraction, objects also have is-a relationships with other objects.

The model is an abstraction of other object-oriented programming models, based

on asynchronous message passing, prototypes and inheritance. It is an abstraction

because it uses only one entity to encapsulate behaviour and state which plays the

roles of classes, objects, methods and closures. Furthermore, it imposes a minimum

of structure and protocol to increase interoperability and extensibility. It also can be

arbitrarily nested and uses specialization and inheritance. The model is completely

distributed which means it treats all objects equally, regardless of their location. As

a consequence, it is also completely concurrent since all computation can possibly be

carried out on different systems.

1.4 Characteristics

These requirements are fulfilled by the programming model presented in this thesis

which has the following characteristics. To the best of our knowledge, no other software

platform or programming language possesses all of these characteristics.

Completely concurrent. Objects are independent of processor units and react in-

stantly to a message. The only operation is therefore asynchronous message

passing. The model includes a form of data flow for synchronization.

Completely late bound. Messages can only be sent to an object using its address.

An address is always name-based thus all communication is late bound.

4

1.5 Outline

Completely distributed. Objects are also independent of physical memory so they

are not bound to any device but are distributed in a network connecting an

arbitrary number of devices. Name resolution is performed by the objects, leading

to a distributed directory.

Completely persistent. Since objects do not depend on any hardware, they are not

destroyed if a program is closed or a device shut down. Once created, an object

continues existing until deleted explicitly.

Completely dynamic. All objects of the model can have behaviour, i.e. are dynamic

and living entities. New objects are created and existing ones modified by sending

messages to other objects. Hence there is no intrinsic distinction between compile

and run time.

Minimal structure. Objects do not have any internal structure but can form compo-

sitional hierarchies. Thus objects serve as modules by containing other objects in

a part-whole relationship. There are no classes, but objects serve as prototypes

for new objects. Objects also do not have methods but always react with the

same behaviour.

Minimal association. Except composition, the only association between objects is

specialization. An object that specializes another object inherits all of its prop-

erties.

1.5 Outline

This thesis presents the implementation of the described programming model as the

prototype of a software platform. Methods and techniques used during its development

are described in the following chapter.

The architecture of the resulting platform is illustrated in Figure 1.1 with the outline

of the chapters describing its parts indicated by arrows. Chapter 3 contains a detailed

description of the programming model supported by a biological metaphor, an iterative

example and the implementation of the platform’s kernel. The kernel’s environment is

presented in Chapter 4 consisting of mechanisms to connect the kernel to the local and

remote systems and library support for reflection and generic components. Chapter 5

describes graphical development tools on application level.

The remaining chapters contain a discussion of results of the project and an outlook

on future challenges along with conclusions.

5

1. INTRODUCTION

Figure 1.1: Architecture of the software platform and outline of this document.

6

Chapter 2

Methods

This chapter describes the methods and techniques used during the development of the

presented software platform. Due to the explorative nature of the project, methods

supporting an iterative style of development were chosen. The following sections de-

scribe different approaches to software engineering and two applied methods in more

detail.

2.1 Software Development

According to the IEEE, software development is part of software engineering which is

defined as (1) The application of a systematic, disciplined, quantifiable approach to

the development, operation, and maintenance of software; that is, the application of

engineering to software. (2) The study of approaches as in (1). [13]

There are generally two classes of methodologies, independent of their field of ap-

plication. The top-down method starts with the abstract and proceeds to the concrete

while the bottom-up follows the opposite direction. [14]. In software development, the

two classes correspond to the general fields of structured methods and agile approaches,

respectively. While structured methods focus on predictability, agile development puts

more emphasis on adaptation.

The NATO Software Engineering Conference in 1968 [15] marks the beginning of

systematic approaches to software development in order to address issues caused by

the complexity of computer programs [16]. Early manifestations of this approach are

the waterfall model and structured programming. As illustrated in Figure 2.1, the

former models the development process as a linear sequence of several phases, with

the output of each phase being the input of the next. While its strict linearity was

7

2. METHODS

Figure 2.1: A waterfall process model with six phases: Requirements, Analysis,
Design, Coding, Testing and Operation.

already described by its introducer as being risky and inviting failure [17], the model

has reached widespread acceptance and popularity.

The waterfall process model is an extreme on the continuum between top-down

and bottom-up methods and is only applicable for solutions to very well understood

problems which can be completely planned and designed in advance. Since in practice

this type of project is very rare, modified waterfall models have been introduced which

allow iteration by providing feedback channels between certain or all phases.

Agile software development is placed on the other end of the continuum and rec-

ommends many iteration of the complete process in very short cycles in the magnitude

of weeks. It uses process models such as the spiral model which adds the dimension of

completeness. Figure 2.2 illustrates the transition from a iterative waterfall model to

the spiral model. According to this model, the development runs through all phases

with only a small subset of the product’s requirements and increases the set with each

iteration.

Although used in practice as early as the 1950s, public awareness of agile develop-

ment methods was very low until the 1990s when most standardized method emerged

such as Scrum, Feature Driven Development (FDD) and Extreme Programming (XP)

[18]. These methods gained very quickly popularity especially in the development of

internet applications. The term agile development was introduced in 2001 by the Man-

ifesto for Agile Software Development [19].

In practice, software projects use a methodology located between these two ex-

tremes, considering project and team size, budget, time limits and other influences.

More stable and well understood projects use fewer and longer iteration cycles while

more risky and dynamic projects are best suited with shorter cycles and releasing often.

8

2.2 Prototyping

Figure 2.2: Transistion from linear waterfall model to iterative spiral model using
feedback channels.

2.2 Prototyping

Due to its explorative nature, an agile software development method was used in this

project called rapid prototyping. A prototype is a executable program which does

not implement all features required for the final product but only those that serve a

specific purpose. The method follows the spiral model illustrated in Figure 2.2 where

each iteration produces a prototype which is used for experiments to revise existing

requirements and determine new ones.

The advantage of prototyping is a tight feedback loop. Errors in analysis and de-

sign are identified early while the cost of changes is still low. Prototypes are also

a useful mean to facilitate communication with a client or amongst developers since

concrete implementations can be discussed instead of abstract descriptions. Disadvan-

tages of prototyping are increased costs during early stages of a project and the risk

of distraction from proper analysis which may lead to a decreased robustness. These

characteristics also hold true for other iterative development methods. The unique

character of prototyping is that it prototypes do not necessarily form the base of future

iteration but are often thrown away.

During this project, prototyping was used to verify and improve the programming

model. The model was implemented with low cost into a prototype which was then used

to verify the model using experiments. Several level of experiments were used reaching

from simple message passing in different cell system constellations to complete example

applications. Each prototype lead to an improved version of the programming model

or the binding algorithm which was implemented into a new prototype. In total, eight

iterations were traversed during the project.

9

2. METHODS

2.3 Test-Driven Development

A technique tightly coupled with agile software development is Test-Driven Devel-

opment (TDD). As shown in Figure 2.3, the testing and development phases of the

waterfall model are swapped, putting testing first. The model is best suited for the de-

velopment of small, independent functional units which can be validated by automated

tests called unit tests. This proceeding has several advantages: [20]

Better tests. Programmers tend to avoid critical constellations – mostly unconsciously

– if they exactly know what the tested code is doing. Tests written beforehand

are less prejudiced.

Better design. When writing a test first, the developer has to think about a module’s

interface before its implementation. Writing small, clearly structured and loosely

coupled modules is enforced since convoluted systems are not testable. If a module

cannot be tested, it is refactored.

Confidence. Being able to test each part of a system at any time, project members

become more confident about its reliability. Refactoring becomes less dangerous

and is performed more often [21].

Higher test coverage. Writing tests is a tedious task and mostly not done because

of time pressure. Doing it first requires less discipline and results in more tests.

Figure 2.3: Process model of test-driven development.

The applicability of TDD is limited by the range of automated testing. Concurrent

processes, graphical user interfaces and system integration can not or only with diffi-

culty be tested automatically [22]. In some cases the method can still be applied by

designing tests which require manual validation before implementation.

In this project, TDD was applied with great success to implement all of the described

parts of the software platform. The characteristics of automated testing as executable

requirements specification proved especially useful with each new prototype. While the

10

2.3 Test-Driven Development

design of the system changed significantly between two iterations, the test suite almost

did not changed and thus ensured that the new prototype provides all features of the

last one including all bug fixes. In average, each prototype used approximately 70 unit

tests.

Test-Driven Development is to a development cycle like the development cycle to

the project. It provides a tight feedback loop and enables the developer to solve a

problem in small steps. Like development cycles, the size of the steps can be adapted

to the problem. Big steps can be taken on well known ground and small steps on new

ground or when a big steps fails.

11

2. METHODS

12

Chapter 3

Programming Model

This chapter describes the programming model in a top-down fashion. The first section

describes the concepts and design of the model, followed by the demonstration of these

with the help of an example. The last section describes the implementation of the

model. It covers only the parts which directly derive from the model, further parts of

the kernel are described in Chapter 4.

3.1 Concepts

The programming model is presented in this section by introducing its concepts indi-

vidually using the metaphor of a biological cell as suggested in [23].

3.1.1 Cells

The model consists of a single kind of behavioural building block called cell. Like

biological cells, these virtual cells live independent of each other and are able to react

concurrently. Cells can be nested arbitrarily. Nested cells are called children and the

containing cell parent. This results in a hierarchical structure with a global root cell

named ”◦”. Figure 3.1 illustrates nested cells.

3.1.2 Names and Paths

Each cell has a name which is unique amongst its siblings. A parent cell can address

one of its children using its name. Children can address their parent cell using ”parent”

and the root cell with ”◦”. A cell can always address itself using ”self”. Cell names can

13

3. PROGRAMMING MODEL

Figure 3.1: A single kind of hierarchically structured behavioural building block.

be combined to form a cell path which leads from an origin to a destination cell. Cell

paths are analogue to paths in file systems where ”.”, ”..” and ”/” correspond with

”self”, ”parent” and ”◦” respectively. These references are called aliases.

Figure 3.2 illustrate an example of nested cells with names and aliases. In this

example, the path Roots.parent.Trunk.Branch (using dots to separate cells) leads from

Tree to Branch.

Figure 3.2: Nested cells with names and aliases.

3.1.3 Messages

The only way of communication between two cells is by sending messages. A message is

a cell which is sent from a sender to a receiver cell as illustrated in Figure 3.3. Message

passing is always asynchronous which means that the sender does not wait for the

message to be received and processed.

14

3.1 Concepts

Figure 3.3: A message is being sent from a sender to a receiver cell.

3.1.4 Reaction

A cell reacts on the event of receiving a message. All cells contain a description of how

to react called reaction which is executed each time the cell receives a message. As

shown in Figure 3.4, a reaction consists of mailings, each containing the paths of the

receiver and message cell, both relative to the sender. During execution, each mailing of

the reaction is processed simultaneously, i.e. each message is sent to its corresponding

receiver cell.

Figure 3.4: A cell with its reaction consisting of mailings.

3.1.5 Specialisation

As with biological cells, the only way to create a new cell is by specializing an existing

cell. The created sub-cell inherits all properties of the stem cell which includes children

and reaction. As depicted in Figure 3.5, the sub-cell can add further children or replace

an inherited child or reaction, but it can not remove an inherited child. The relationship

is strictly unidirectional and dynamic. This means that no change of the sub-cell can

affect the stem cell but changes to the stem cell affect all sub-cells instantly. Also, the

stem cell of an existing cell can be changed.

15

3. PROGRAMMING MODEL

Figure 3.5: John specializes Person, inherits Hands, replaces Eyes and extends it
with Glasses.

3.1.6 Execution

The reaction is not executed by the receiver cell directly but by a new child which spe-

cializes the receiver. This execution cell extends the receiver by the alias message which

is connected with the message cell as shown in Figure 3.6. Aliases can be compared

with hard links in file systems thus X.message.parent does not resolve to X but to the

parent of M. The execution cell can also be extended by further children and therefore

provide a storage space for local results which only matter to the execution.

Figure 3.6: A receiver creates a new execution that executes the reaction and
which extends the receiver with an alias to the message cell.

3.1.7 Delivery

A message might not be delivered because of three possible reasons: an error, a non-

existent receiver or a deactivated receiver. In either case, the message is re-sent until

delivered successfully or explicitly cancelled. This enables messages to be sent to cells

16

3.2 Example

before they exist, e.g. results before they are calculated, which can be used for data

flow synchronization as illustrated in Figure 3.7. A deactivated cell can not receive any

message and deactivates all children except those that give access to its internal prop-

erties such as stem, reaction and children. This way cells with incomplete definitions

can be made inaccessible.

Figure 3.7: Data flow synchronization of the the calculation 3 · 4 + 2 · 3. The
summation is executed earlier but waits for both multiplications.

3.2 Example

The presented concepts of the programming model are illustrated in this section using

an example application. The example is divided into two versions. A simple version

illustrates the most basic concepts and an extended version illustrates the remaining

concepts.

Cells are defined in tables containing the hierarchy, name, stem cell path and reac-

tion of the cell. Paths are written using dots to separate parents and children where

parent references are abbreviated with ρ. The mailings of reactions are written as

”receiver ← message” where receiver and message are paths relative to the defined

cell. Instead of using mailings, reactions may be described informally or left undefined

and therefore inherited by the stem cell.

3.2.1 Simple Version

The example application is a simple publish-subscribe system. Several cells can sub-

scribe to a channel and, as a result, receive all messages that have been published on

that channel.

Definition

Table 3.1 contains the definitions of the involved cells. Top-level cells are children of

the root cell.

17

3. PROGRAMMING MODEL

Table 3.1: Cell definitions of simple publish-subscribe example application.

Cell Stem Reaction

Channel Cell subscribers.each← forwardMessage
| forwardMessage Cell message← ρ.ρ.message
| subscribers List

Cell Cell Does nothing
List Cell
| each Cell Sends each element to its message
| add Cell Creates new element with message as stem

The first three rows define cells specific to the publish-subscribe application. The

following definitions are generic cells which are part of a standard library and included

for completeness. The specific cells are Channel with its two children forwardMessage

and subscribers. The cell Cell is the default stem cell and the root of all specialisation

hierarchies. Figure 3.8 illustrates the defined cells and their relationships.

Figure 3.8: Composition (a) and inheritance (b) hierarchies of defined cells for a
simple publish-subscribe system.

A cell can be published on the Channel by being sent to it as a message. Every time

the Channel receives a message, its reaction is executed, i.e. its child forwardMessage

is sent to the child named each of Channel’s child subscribers. Note that subscribers

inherits each from List. The reaction of each is implemented on the kernel level and

sends each of the list’s elements to the cell that was received by each, in this case

forwardMessage.

As a result, forwardMessage receives each of subscribers elements. The instruction

18

3.2 Example

of forwardMessage’s reaction is then executed with each subscriber as its message and

sends the published cell (the message received by Channel) to each subscriber (message

sent to forwardMessage by subscribers.each).

Execution

The two parent references (abbreviated with ρ) in the reaction of forwardMessage are

necessary because the reaction does not execute in the context of the receiver cell

but in the context of its execution cell as described in Section 3.1.6. If cells play the

role of methods, executions play the role of their activation records. Unlike activation

records, executions do not cease to exist when the reaction completes since executions

are accessible from within other executions and due to the asynchronism of message

passing they do not become unreachable.

The execution cell is a specialisation of the receiver cell, therefore inherits all of its

children and can send them messages as done in the reaction of Channel. Thus the first

parent of forwardMessage’s reaction references the forwardMessage cell and the second

parent references the execution of Channel’s reaction.

Figure 3.9 illustrates executions and message aliases with a subset of the cells in-

volved in the example application. Executions are depicted as name-less cells which

are children and sub-cells of the receiver cell and have a message alias as child. In the

example, each sends a message to its message child (see Table 3.1) but because of the

alias, the message is received by forwardMessage (labelled ”fm” in the figure). Because

the reaction of forwardMessage runs within its execution, the channel’s message is the

message child of its execution which is two parents up from forwardMessage’s execution.

Usage

To actually use the system, subscriber cells have to be added to the channel and cells be

published. Table 3.2 contains the definitions of subscribers and the driver cells Initialize

and Run, whose reactions add subscribers to a channel and publish a literal string on

it.

3.2.2 Extended Version

In this section new features are added to the publish-subscribe system of the previous

section to illustrate further concepts of the software platform. In the extended version

of the application, a subscriber cell can influence whether it receives a published cell

or not. This is done by adding subscriptions to a channel which contain logic to decide

for each published cell whether its subscriber is interested in it or not. When a new

cell is published, the channel sends it first to each subscription and only forwards it to

the subscriber if the subscription replies positively.

19

3. PROGRAMMING MODEL

Figure 3.9: Mailings and resulting execution cells of the simple publish-subscribe
system. (a) A publisher sends a message to Channel which creates an execution with
a message alias as child. (b) Eventually forwardMessage (fm) receives a subscriber
as message and creates an execution as well. (c) The execution is a child of
forwardMessage so the published cell is its parent’s parent’s message.

Table 3.2: Definition of subscribers and driver cells to run the publish-subscribe
example.

Cell Stem Reaction

subscriber1 Cell Does something with its message
subscriber2 Cell Does something with its message

Initialize Cell ◦.Channel.subscribers.add← ◦.subscriber1
◦.Channel.subscribers.add← ◦.subscriber2

Run Cell ◦.Channel← ◦.Literal.String.”HelloWorld”

Responses

Because message passing is asynchronous, a sender that expects a response has to send

a cell along with the message that the receiver can respond to. This is done by creating

a container cell which specializes the actual message. By convention, the cell that the

response is expected to be sent to is a child of the container named respond.

Figure 3.10 compares mailings (a) without and (b) with response. In the first case,

A sends M to B which cannot send any message as response since it has no information

about A. It could send a response to M but if the same cell is sent more than once a

correlation between messages and responses would be impossible. For this reason, A

sends a unique container cell C (letter I in Figure 3.10 (b)) which specializes M and

contains a cell R, to which B sends its response message (letter II).

20

3.2 Example

Figure 3.10: Cells involved in mailing (a) without and (b) with response.

Definition

The involved cells are defined in Table 3.3, which also contains the definitions of further

library cells needed by the example. These definitions are complementary to previous

definitions.

Table 3.3: Cell definitions of extended publish-subscribe example application.

Cell Stem Reaction

Channel Cell subscribers.each← forwardMessage
| subscriptions.each← askSubscription
| subscriptions List
| askSubscription Cell cell.create.wants← ρ.ρ.message
| message← wants
| wants.response.ifTrue← forwardMessage
| forwardMessage Cell ρ.ρ.message.subscriber ← ρ.ρ.ρ.message

Subscription Cell message.respond← ◦.T rue
Cell Cell
| respond Cell ρ.ρ.cell.create.response← message
True Cell
| ifTrue Cell message← ◦
False Cell
| ifTrue Cell does nothing

The first definition extends the reaction of Channel by a second instruction which

iterates through the subscriptions list (second definition) by sending the channel’s child

askSubscription to its child each.

The third definition contains the reaction of askSubscription to which all the sub-

scriptions of the channel are sent individually as messages by each. The first instruction

creates a new cell named wants with the published cell (message of the channel) as its

stem. The new child is sent to the received subscription in the second instruction.

The new cell is created using cell.create which is implemented on the kernel level

and has an infinite number of children that create cells with their own name and the

21

3. PROGRAMMING MODEL

received message as stem. Note that wants is created as a child of the execution cell

and not of askSubscription. In this case, the execution serves as a local name-space

just like activation records. This way executions created by further subscriptions sent

to askSubscription are able to create their own wants children without conflicting with

other executions.

The child wants plays the role of the before mentioned container cell which is nec-

essary because it contains respond (inherited by Cell) which will receive the response.

The reaction of respond creates a cell named response in the receiver’s parent with the

received cell as its stem.

This behaviour is used by a feature of the programming model called data flow

synchronization which is described in Section 3.1.7. The third instruction of askSub-

scription’s reaction sends a message to a child of wants.response. This cell does not exist

before wants.respond has received a message. The instruction can still be executed be-

cause in the case of a non-existent receiver, a mailing is repeated until its message is

delivered. This enables instructions to be processed before all of their required infor-

mation is available.

The same instruction is also an example of library-based control structures. The

reaction of forwardMessage is only executed if the response is a sub-cell of True since

only True defines a reaction for its ifTrue child.

The last definition for the system is a prototype of Subscription which provides a

default reaction by responding with ◦.True.

Usage

As in the previous section, driver cells are needed in order to run the application.

The cells defined in Table 3.4 create two channels by specializing Channel and two

subscriptions for subscriber1 of the previous example. The first subscription inherits

the default reaction from its stem cell Subscription and the second subscription executes

its stem cell’s reaction explicitly by forwarding its message to its child stem which works

like super in conventional object-oriented languages. And as before, cells are defined

to initialize and run the example.

3.3 Implementation

This section describes the implementation of the object model, how mailings are pro-

cessed, cell paths bound to executions and other functional parts that derive directly

from the programming model. Parts of the implementation regarding the environ-

ment of the software platform such as storage, distribution, reflection and libraries are

described in the next chapter.

22

3.3 Implementation

Table 3.4: Definition of channels, subscribers and driver cells to run the extended
publish-subscribe example.

Cell Stem Reaction

channel1 Channel
channel2 Channel
subscription1 Subscription
| subscriber subscriber1
subscription2 Subscription ρ.stem← message
| subscriber subscriber1

Initialize Cell ◦.channel1.subscriptions.add← ◦.subscription1
◦.channel2.subscriptions.add← ◦.subscription2

Run Cell ◦.channel1← ◦.Literal.String.”HelloWorld”
◦.channel2← ◦.Literal.String.”HelloWorld”

3.3.1 Object Model

The class diagram in Figure 3.11 shows the classes and their associations used to im-

plement the object model described in Section 3.1. Each class is described roughly in

the following list and their functionality in the following sections.

Cell Implements compositional cell hierarchies with each instance referencing its par-

ent and children objects. The tree may be incomplete since children are loaded

on-demand but an upwards branch is always completely loaded.

Deliverer Interface for classes that are able to deliver a message such as Cell and

Peer. The latter is described in Section 4.2.

Reaction Implements the reaction of the programming model which executes a list of

mailings.

NativeReaction An abstract type for reactions that may execute any kind of code.

Being able to perform computations without sending messages, subclasses of this

class break the otherwise endless recursion of message passing.

Mailing Stores paths of receiver and message cells.

Path Represents a cell path as a list of strings, each string being a cell name.

Messenger Every mailing is delivered by its own messenger instance which spawns a

new thread an re-tries sending its message until the delivery returns a positive

result.

Delivery Holds parameters which are stacked for nesting deliveries (see Section 3.3.6).

23

3. PROGRAMMING MODEL

Figure 3.11: Class diagram of object model.

DeliveryId Unique identifier to avoid circular deliveries.

Result Return value of deliveries to determine success and return logged information.

Execution Class of execution cell objects which is created for every received message.

Contains local cells and resolves references to its message alias.

3.3.2 Message Passing

The reaction of a cell is executed each time the cell receives a message. This is done

by invoking the method execute() which is declared by NativeReaction and imple-

mented by Reaction. Listing 3.1 shows the pseudo-code description of the implemen-

tation.

24

3.3 Implementation

The method processes a list of mailings. First, the role of the execution is inserted

at the beginning of the receiver and message paths. The role is the path of a cell as

resolved during binding. It may differ from a cell’s actual path due to inheritance as

illustrated in Section 3.3.6. Thus by inserting the role at the beginning of the relative

path, it is made absolute. A message is sent using a new instance of Messenger.

Listing 3.1: Execute method of Reaction

1 void execute (r e c e i v e r , r o l e , message , id) { {
2 foreach (mai l ing in mai l ing s) {
3 mai l ing . r e c e i v e r . i n s e r t (0 , r o l e) ;
4 mai l ing . message . i n s e r t (0 , r o l e) ;
5

6 new Messenger (r e c e i v e r , mai l ing , ro l e , id) . s t a r t () ;
7 }
8 }

The class Messenger spawns a new thread when instantiated in which the message

will be re-sent until it is delivered successfully. This is done by the method run() of

Messenger which is described in Listing 3.2. In this method, a new delivery stack is

created with a single delivery containing the role of the execution and the receiver path.

A unique delivery identifier is created which is used to detect and avoid endless delivery

loops. The resolution of the receiver cell is started by invoking the deliver() method

of the sender cell.

Listing 3.2: Run method of Messenger

1 void run () {
2 do {
3 i f (! pausedAll) {
4 var de l i v e ryS ta c k := new Del iveryStack () ;
5 de l i v e ryS ta c k . add (new Del ive ry (ro l e , mai l ing . r e c e i v e r)) ;
6

7 var uid := new ExecutionId (eid , sender . count) ;
8 sender . count := sender . count + 1 ;
9

10 r e s u l t := sender . d e l i v e r (de l i ve ryStack , mai l ing . message , uid) ;
11 }
12 } while (! r e s u l t . wasDel ivered ()) ;
13 }

3.3.3 Binding

All references, even those to stem cells and enclosing cells, are late bound. The object

model provides the structure for binding the path of a receiver cell to a reaction. This is

done recursively by the method deliver(), defined in the Cell class. Each invocation

25

3. PROGRAMMING MODEL

of the method resolves a child of the current cell which may be inherited or located on

remote sites. Listing 3.3 contains a pseudo-code description of the deliver() method.

The binding of a receiver path to a reaction begins with the sender cell which is the

original receiver. The instance of Messenger processing the mailing passes the created

deliveryStack, the path of the message cell and a unique execution identifier (id) to

the delivery() method of the sender cell object.

The method starts with popping deliveries that have reached their receiver off the

stack as explained in more detail in Section 3.3.6. The execution identifier is used

in line 7 to avoid endless delivery loops caused by circular structures of stem cells or

distributed cells. If a certain receiver was resolved by the same cell in the same delivery

before, the resolution step fails by returning an empty Result.

Lines 10 and 11 check whether the current cell is the receiver and also contains a re-

action. If so, the cell’s reaction is executed by the auxiliary method executeReaction()

which is described in Section 3.3.4.

If the current cell is not the receiver, the next cell in the receiver path has to be

found. This is done locally in line 16 using getNextDeliverer(). The method first

checks if the next reference is an alias and resolves it as described in Section 3.3.5. If

it is not an alias, the child is searched for in the list of the cell’s own children and

returned.

If no next deliverer was found this way, the cell cannot resolve it locally and the

delivery is forwarded to distributed parts of the cell by the method tryPeers(). The

method and other details of distribution are described in Section 4.2. If the receiver

was found on a remote system, the delivery returns the positive result in line 23.

Otherwise, line 27 checks whether a next deliverer was found previously. If not, and

a stem cell path is defined, the child or reaction is inherited by forwarding the delivery

to the stem cell. This is done by pushing a new delivery to the stack as described in

Section 3.3.6.

In line 33 the delivery is continued with the next deliverer that was found suit-

able during the algorithm and a possibly modified delivery stack. If the receiver was

successfully inherited and is a child of the current cell, it is adopted in line 38 which

is described in Section 3.3.7. If no next deliverer was found, nor can the receiver be

inherited because no stem cell path is defined, the delivery fails in line 44.

3.3.4 Execution

As described in Section 3.1.6, the receiver cell does not execute the reaction itself but

creates a child cell to do so. This is done by the method executeReaction() which is

26

3.3 Implementation

Listing 3.3: Binding algorithm

1 Result d e l i v e r (de l i ve ryStack , message , id) {
2 de l i v e ryS ta c k . popCompletedDel iver ies () ;
3

4 var d e l i v e r y := de l i v e ry S ta c k . f i r s t ;
5 var nextCe l l := ni l ;
6

7 i f (searchedBe fore (id , d e l i v e r y . r e c e i v e r))
8 return new Result () ;
9

10 i f (d e l i v e r y . r e c e i v e r . isEmpty ()) {
11 i f (r e a c t i o n 6= ni l) {
12 executeReacion (message , id , d e l i v e r y) ;
13 return new Result () . de l iveredTo (d e l i v e r y . r o l e) ;
14 }
15 } else {
16 nextCe l l := getNextDe l ive r e r (de l i v e ryS t a ck) ;
17 }
18

19 i f (nextCe l l = ni l) {
20 addToSearchedBefore (id , d e l i v e r y . r e c e i v e r) ;
21 var peerResu l t := tryPeer s (de l i ve ryStack , message , id) ;
22 i f (peerResu l t . wasDel ivered ())
23 return peerResu l t ;
24 }
25

26 var i n h e r i t e d := fa l se ;
27 i f (nextCe l l = ni l and stem 6= ni l) {
28 i n h e r i t e d := true ;
29 nextCe l l := this ;
30 de l i v e ryS ta c k . push (new Del ive ry (d e l i v e r y . ro l e , stem)) ;
31 }
32

33 i f (nextCe l l 6= ni l) {
34 var nextResult := nextCe l l . d e l i v e r (de l i ve ryStack , message , id) ;
35 i f (nextResult . wasDel ivered ()) {
36 i f (i n h e r i t e d
37 and nextResult . de l iveredTo . conta in s (getPath ())) {
38 adopt (inher i t edPath (nextResult) , message , id) ;
39 }
40 return nextResult ;
41 }
42 }
43

44 return new Result () ;
45 }

27

3. PROGRAMMING MODEL

Listing 3.4: Execution of reaction

1 void executeReact ion (message , id , d e l i v e r y) (
2 var executionName := ”#” + id ;
3 i f (d e l i v e r y . r o l e = getPath ()) {
4 addChild (new Execution (this , executionName , message)) ;
5 }
6 d e l i v e r y . r o l e . add (executionName) ;
7

8 r e a c t i o n . execute (this , d e l i v e r y . ro l e , message , id) ;
9 }

invoked in line 12 of Listing 3.3. The pseudo-code description of the method is shown

in Listing 3.4 .

The execution cell is created as a child of the receiver with a unique name composed

of the delivery identifier. If the current cell was inherited (role does not equal path), the

execution is not added and has to be adopted by the inheriting cell which is described in

Section 3.3.7. The stem cell path of the execution cell is set to parent by its constructor.

In the last line, the cell’s reaction is executed under the context of the execution cell.

The message alias of the execution cell is resolved by Execution by overriding the

getNextDeliverer() method as shown in Listing 3.5. The method checks if the next

cell to be resolved has the name ”message” and if so, removes it from the receiver path

and inserts the message cell path instead.

Listing 3.5: Resolution of message alias

1 Ce l l ge tNextDe l ive r e r (d e l i v e r yS ta ck) {
2 var d e l i v e r y = de l i v e ryS tac k . f i r s t ;
3 var name := d e l i v e r y . r e c e i v e r . f i r s t ;
4

5 i f (name = ”message”) {
6 d e l i v e r y . r e c e i v e r . removeFirst () ;
7 d e l i v e r y . r e c e i v e r . i n s e r t (0 , message) ;
8 return this ;
9 } else {

10 return super . g e tNextDe l ive r e r (d e l i v e ry S ta c k) ;
11 }
12 }

3.3.5 Aliases

In line 16 of the deliver() method in Listing 3.3, the next deliverer is searched for

within the current cell by invoking getNextDeliverer(). The receiver is found if

28

3.3 Implementation

it is either an alias or a child of the cell. Aliases differ from children in their ef-

fect on the role of the next deliverer as shown by the pseudo-code description of the

getNextDeliverer() method in Listing 3.6.

First, the method checks the name of the next cell in the receiver path against the

three aliases (◦ (root), parent and self) and modifies receiver and role paths if a match is

found. If the name equals stem, the delivery is forwarded to the stem cell but the role is

not changed which leads to a behaviour similar to super in conventional object-oriented

languages. As a last step, the next deliverer is searched within the children of the cell.

Listing 3.6: Alias and child resolution

1 Ce l l ge tNextDe l ive r e r (de l i v e r yS ta ck) {
2 var d e l i v e r y := de l i v e ry S ta c k . f i r s t ;
3 var name := d e l i v e r y . r e c e i v e r . f i r s t ;
4

5 i f (name = ”◦”) {
6 d e l i v e r y . r e c e i v e r . removeFirst () ;
7 d e l i v e r y . r o l e := createPath (”◦”) ;
8 return getRoot () ;
9

10 } else i f (name = ” parent ”) {
11 d e l i v e r y . r e c e i v e r . removeFirst () ;
12 d e l i v e r y . r e c e i v e r . i n s e r t (d e l i v e r y . r o l e . subPath (−1)) ;
13 return this ;
14

15 } else i f (name = ” s e l f ”) {
16 d e l i v e r y . r e c e i v e r . removeFirst () ;
17 return this ;
18

19 } else i f (name = ”stem”) {
20 d e l i v e r y . r e c e i v e r . removeFirst () ;
21 de l i v e ryS ta c k . push (c r e a t e D e l i v e r y (d e l i v e r y . ro l e , stem)) ;
22 return this ;
23

24 } else {
25 var c h i l d := getChi ld (name) ;
26

27 i f (c h i l d 6= ni l) {
28 d e l i v e r y . r o l e . add (d e l i v e r y . r e c e i v e r . removeFirst ()) ;
29 return c h i l d ;
30 }
31 }
32

33 return ni l ;
34 }

29

3. PROGRAMMING MODEL

3.3.6 Inheritance

Cells are inherited by redirecting the delivery to the cell’s stem cell, if defined. Since

the stem cell path has to be resolved using a delivery as well, deliveries are stacked to

store the role and receiver paths of previous deliveries. When the new delivery reached

its receiver (the stem cell), the previous delivery is restored by popping the arrived

delivery off the stack (see line 2 in Listing 3.3) which results in the stem cell using the

role of the inheriting cell.

An example of stacked deliveries is shown in Figure 3.12 using two levels of inher-

itance. In the example, a message is sent by the root to the inherited cell A.X. The

delivery reaches A which does not contain X but defines ◦.B.D as its stem cell. To

resolve the stem cell, a new delivery is created in Step 3 and pushed on the stack. The

stem cell D is itself inherited from C and therefore requires a third delivery in Step 6.

C is reached in Step 8 and the nested delivery popped off in Step 9, which restores the

role ◦.B of the inheriting cell. This is repeated for the initial delivery in Step 11, which

restores the role of the original receiver so the final role resolves to ◦.A.X.

Figure 3.12: Example of nested deliveries during resolution of an inherited cell.

3.3.7 Adoption

The binding algorithm implements a copy-on-write strategy and creates new children

when a message is sent to an inherited cell in order to store the execution cell. This

procedure is called adoption. Line 3 of Listing 3.4 makes sure that the execution cell

is not added to the children of an inherited cell and line 38 of Listing 3.3 invokes the

method adopt() if a receiver was inherited and is offspring of the current cell.

30

3.3 Implementation

Listing 3.7 describes the adopt() method in pseudo-code. Its argument inherited-

Path contains the part of the receiver path that was inherited by the current cell. The

method iterates trough the path and creates all cells in it as a child of the preceding

cell. The stem of each cell is the formerly inherited cell, thus the child with the same

name of the parent’s stem cell.

Listing 3.7: Method to adopt executions of inherited cells

1 void adopt (inher i tedPath , message , id) {
2 var c e l l := this ;
3

4 foreach (name in i nher i t edPath) {
5 var c h i l d := new Ce l l (c e l l , name) ;
6

7 var stem := c e l l . getPath () ;
8 stem . add (”stem” , name) ;
9 c h i l d . setStem (stem) ;

10

11 c e l l = c e l l . addChild (c h i l d) ;
12 }
13

14 c e l l . addChild (new Execution (c e l l , e id , message)) ;
15 }

Figure 3.13 illustrates the adoption of a cell. Because the adopted cell specializes the

formerly inherited cell, the local copy only needs to contain the modified information.

If for example the reaction of cell B.E.F was changed, it still inherits the children from

C.E.F.

Figure 3.13: Recursive adoption of a second degree inherited cell.

31

3. PROGRAMMING MODEL

32

Chapter 4

Environment

The previous chapter described the programming model which forms the kernel of

the presented software platform. In order to develop applications, further components

are needed such as a parser for descriptions of behaviour, connection with local and

remote systems and library support for modification of cells and common programming

tasks. Unlike the programming model, the components described in this chapter are

considered interchangeable.

4.1 Storage

Cells are stored persistently using the file system by mapping a folder tree directly onto

the cell hierarchy. A new cell tree is created by creating a new folder which contains

the definition of the root cell. Cell definitions consist of a file ”<cellName>.cell”

which specifies the properties of a cell, and a folder ”<cellName>” which contains

the definitions of its child cells. Figure 4.1 shows an exemplary folder tree and its

corresponding cell tree.

4.1.1 Syntax

The syntax presented in this section can be used to describe reactions of cells. The

production rules of the syntax are given in Extended Backus-Naur Form where brackets

represent options, bracelets repetition and parentheses groups.

As described in Section 3.1.4, a reaction consists of a list of mailings, each containing

the paths of the receiver and message cells. In their textual description, mailings

are separated by new line characters (LF and/or CR) and the paths by white-space

33

4. ENVIRONMENT

Figure 4.1: Mapping files and folders onto a cell tree.

Reaction = [Mailing {NL Mailing}]
Mailing = Receiver Message

Receiver = Path
Message = Path

Path = Name {’.’ Name}

Figure 4.2: Production rules for syntax of reaction and paths.

characters. Each path is a list of cell names (including aliases) separated by dots. This

leads to the production rules of Figure 4.2.

Cell names can consist of any combination of printable and non-printable characters.

Names containing a reserved character such as dots, spaces and new-line have to be

quoted. Inside quoted names, backslashes must be used to escape quotation marks and

backslashes. Thus, names containing backslashes or quotation marks also have to be

quoted. The production rules for cell names are given in Figure 4.3.

Name = Unquoted | Quoted
Unquoted = {ANY−Reserved}+

Quoted = [Unquoted] QuotedPart [Unquoted]
QuotedPart = ’”’ {(ANY− Escaped) | (’\’ Escaped)}+ ’”’

Reserved = | ’.’ | Escaped
Escaped = ’”’ | ’\’

= {’ ’ | TAB}+
NL = {LF | CR}+

Figure 4.3: Production rules for syntax of cell names.

34

4.1 Storage

4.1.2 File Format

A cell definition file has the same name as the cell plus the extension ”.cell”. It uses the

Extensible Mark-up Language (XML) to define the cell’s stem path and its reaction.

The involved XML elements are the root element cell with its optional sub-elements

stem and reaction which contain the path of the stem cell and the reaction, respec-

tively. The stem path and the reaction are described using the syntax of the previous

section.

The cell and reaction elements have an optional boolean attribute native (which

defaults to false) which indicates, if set to true, that the cell or its reaction is defined

on kernel level and not in the definition file. Listing 4.1 shows an exemplary complete

cell definition file.

Listing 4.1: Cell definition file

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <c e l l na t ive=” f a l s e ”>
3 <stem>◦ . Path . Of . StemCell</stem>
4 <r e a c t i o n nat ive=” f a l s e ”>
5 F i r s t . Rece iver F i r s t . Message
6

◦ . Another . One And . I t s . MessageCel l
7 </ r e a c t i o n>
8 </ c e l l>

4.1.3 Implementation

Classes involved in loading, parsing and storing of cell definitions in files are shown in the

class diagram of Figure 4.4. A cell hierarchy uses a single instance of CellLoader which

is connected with the folder that contains the hierarchy, passed as its constructor’s

argument. The getChild() method is used to load the root cell.

All further cells are loaded on demand during path resolution. The first time a cell

has to resolve a child, it loads its children using the getChildren() method. An XML

parser not contained in the diagram parses and assembles cell definition files. Paths

and reactions are parsed by PathFormat and ReactionFormat respectively.

If a cell or its reaction is marked native in the cell definition file, the CellLoader

searches in loaded libraries for a class whose name matches the cell path. The mapping

of cell paths to class names has therefore to be unambiguous.

35

4. ENVIRONMENT

Figure 4.4: Class diagram of classes involved in cell loading and parsing.

4.2 Distribution

A requirement of the software platform is completely transparent distribution. Cells

exist in a global virtual space where each cell can be reached using its path regardless

on which host of a network it actually exists. Thus cells can also migrate arbitrarily

within a network.

This chapter describes the architecture of distributed cell systems, how these are

configured, stored and the implementation of the distributed binding algorithm.

4.2.1 Architecture

Cells of different hosts are connected using an unidirectional peer-to-peer architecture.

Each cell can be connected to a number of peer cells, which are cells in the same position

of a cell hierarchy on different hosts. Figure 4.5 shows an exemplary connection between

cells on three different hosts.

A cell consists therefore of the union of itself and all its peers, directly or indirectly

connected. Cell properties such as stem cell paths, reactions, children and peers may

be distributed, moved and replicated arbitrarily throughout the distributed system. In

the example in Figure 4.5, the complete list of children of A is B, C, E and F which are

all reachable from all hosts. Due to redundancy of peer connections in the example,

cell A.C.D of host 2 is reachable in four ways from host 1.

4.2.2 File Format

Cell definition files can be extended by peer elements to configure connections between

cells. Each peer connection is defined by a network and a host element which contain

a network identifier and the address of the host within this network. Listing 4.2 shows

the definition file of a cell with one peer connected over a TCP/IP socket.

36

4.2 Distribution

Figure 4.5: Architecture of distributed cells using unidirectional connections be-
tween peers.

Listing 4.2: Cell definition file with peer definition

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <c e l l>
3 <peer>
4 <network>Socket</network>
5 <host> l o c a l h o s t : 4 2</ host>
6 </ peer>
7 </ c e l l>

4.2.3 Implementation

Peer connections are implemented using a client-server architecture. Figure 4.6 shows

a class diagram of the classes used in the current version. The root of a cell hierarchy is

associated with one instance the abstract class Server for each network it is connected

with. Clients are implemented by subclasses of the abstract class Peer. Subclasses of

Server and Peer correspond to different networks and are therefore parallel as demon-

strated by the SocketServer and SocketPeer classes which connect over a TCP/IP

socket.

The factory method create() of Peer creates new peers based on the network iden-

tifier contained in the Address argument. The host address is parsed by the subclass,

for example ”localhost:42” is parsed by the constructor of SocketPeer into the host

name ”localhost” and port 42.

If a child cell was not found locally within its parent, the method tryPeers() is

invoked in line 21 in Listing 3.3 which forwards the delivery to the peers of the current

cell and all parents.

The deliver() method of SocketPeer transmits the path of the current cell, the

delivery stack, the message path and the delivery identifier to the host specified by the

37

4. ENVIRONMENT

Figure 4.6: Class diagram of classes involved in distribution.

peer instance. The server spawns a new thread, resolves the path of the current cell

and invokes it deliver() method with the transmitted arguments. If the connection

times out or the peer cell on can not be resolved by the server, the cell is regarded as

not existing.

4.3 Kernel Cells

Every cell has a child named cell which contains a set of cells called kernel cells that

reflect all of the cell’s properties. These cells can be used to dynamically change the

cell’s name, its reaction, add or remove children or peers and so on. Kernel cells cannot

be deactivated thus the properties of a cell can always be read and modified, even if

it is deactivated. Figure 4.7 shows composition and specialization of all implemented

kernel cells in an entity-relationship diagram.

Note that the child cell is not inherited but implemented as an implicit child. There-

fore it has to be handled as a special case by the binding algorithm regarding resolution

and adoption which is not included in the listings of Section 3.3. It’s resolution is rec-

ognized by getNextDeliverer() which loads the corresponding Cell object using the

getKernel() method of Cell. This is necessary since kernel cells need local access to

their target cell and reactions of inherited cells may execute on a different host than

the inheriting cell.

38

4.4 Library

Figure 4.7: Entity-relationship diagram of cells that can be used for dynamic
modification of cell properties. Arrows indicate ”is-a” relationships; lines with
multiplicities indicate ”has-a” relationships.

4.4 Library

The kernel of the software platform only provides mechanisms for distributed and con-

current message passing. All further components such as data types and control struc-

tures are part of a cell library. The following sections contain descriptions of all library

cells implemented in the current version of the software platform. It is a minimal imple-

mentation consisting only of cells necessary for the applications described in Chapter 5

and and Section 6.3. The path of the stem cell is given after a colon unless it is ◦.Cell.
All cell paths are relative to the root cell.

4.4.1 General

Cell Default stem and and root of specialization hierarchies.

Cell.respond Creates a new cell response as child of its parent with the receiver cell

as its stem.

Cell.equals Considers the message cell equal to its parent cell if it contains the same

child cells and all of the children consider themselves equal as well. The cell can

be overridden to implement a domain-specific definition of equality.

Zells Container of the generic cell library.

4.4.2 Data Types

Zells.Boolean Abstract basic boolean value.

39

4. ENVIRONMENT

Zells.Boolean.or Abstract cell for the boolean OR operation.

Zells.Boolean.and Abstract cell for the boolean AND operation.

Zells.True : Zells.Boolean Represents the boolean true value.

Zells.True.or Responds True.

Zells.True.and Responds with the received message.

Zells.False : Zells.Boolean Represents the boolean false value.

Zells.False.or Responds with the received message.

Zells.False.and Responds False.

Zells.Number Abstract type for numbers.

Zells.Number.equals Considers the message cell equal to its parent if it specializes

a number with the same value.

Zells.Number.add Replies the sum of its parent and the message cell (must specialize

a literal number).

Zells.Number.subtract Subtracts the message cell (must specialize a literal number)

from its parent.

Zells.String : Zells.List Basic abstract stem cell for strings. A string is a list of

characters.

Zells.Character Basic abstract stem cell for characters.

Zells.Literal.Number Parent of all literal numbers, negative and positive. Floating

point numbers are children of literal numbers. Examples are Zells.Literal.Number.42,

Zells.Literal.Number.-5 and Zells.Literal.Number.5.23.

Zells.Literal.String Parent of all literal strings which are lists of literal characters.

Examples are Zells.Literal.String.”Hello World” and Zells.Literal.String.Test. Note

that alias cells result in literal strings as well, e.g. Zells.Literal.String.parent cor-

responds to the string ”parent” rather than the cell Zells.Literal.String.

Zells.Literal.Character Parent of literal characters such as Zells.Literal.Character.A

and Zells.Literal.Character.?.

Zells.List Basic abstract type for all numbered lists. Elements are children of the list

with the index number as their names.

Zells.List.add Adds and element to the end of the list which specializes the message

cell and replies the new element.

40

4.4 Library

Zells.List.remove Removes element at position of message cell which specializes a

literal number and replies the removed element. The indices of all following

elements are decremented.

Zells.List.clear Removes all elements of the list.

4.4.3 Control Structures

Zells.Boolean.ifTrue Has an empty reaction.

Zells.Boolean.ifFalse Has an empty reaction

Zells.True.ifTrue Executes the reaction of its message by sending it a message.

Zells.False.ifFalse Executes the reaction of its message by sending it a message.

Zells.List.each Sends all of its parent’s children to the message cell.

4.4.4 Reflection

Cell.cell Container of all reflection cells.

Cell.cell.create Provides a short-cut to for creating new cells. By sending a message

to one of its children, it creates a new cell with the name of the child and the

message as stem cell.

Cell.cell.Name : Zells.String Specializes literal string that corresponds to name of

cell. Only if the its stem is changed directly, the cell’s name is changed.

Cell.cell.Stem : Zells.Reflection.Path Specializes a Path that reflects the stem cell

path. Its stem cell can not be changed, thus it has to be modified directly to

change stem cell.

Cell.cell.Reaction : Zells.List Reflects reaction of cell as list of Sends. Has to be

directly modified as well.

Cell.cell.Children : Zells.List Reflects the cell’s own children (no inherited nor dis-

tributed children) as a list of their names.

Cell.cell.Active : Zells.Boolean Reflects the activation status of the cell. Stem has

to be modified directly to change state.

Cell.cell.Peers Contains list of connected peers, each with its address as name. Ele-

ments of this list are cells which only access their local parts and do not forward

deliveries to other peers.

41

4. ENVIRONMENT

Zells.Reflection.Path : Zells.List Represents a cell path as list of strings.

Zells.Reflection.Mailing Abstract cell to represent mailings which structure receiver

and message paths.

Zells.Reflection.Send.Message : Zells.Reflection.Path Specializes the path of the

message cell.

Zells.Reflection.Send.Receiver : Zells.Reflection.Path Specializes receiver cell

path.

42

Chapter 5

Development Tools

The prototype implementation of the described software platform is available at

http://zells.org. It is built with Java SE 6 and includes graphical development tools

for editing, monitoring and analysing distributed cell systems. The following sections

describe the usage of the provided tools and their implementation.

5.1 Description

The development tools consist of several components to analyse cell systems on differ-

ent levels. The message sender enables the user to send messages to cells transparent

to inheritance and location, the cell browser edits and shows only actually existing cells

and their distribution, the message inspector visualizes messages and consecutive mes-

sages, and the delivery analyser traces the path of individual deliveries. The following

subsections describe these components individually.

5.1.1 Message Sender

The main window as shown in Figure 5.1 consists of a menu and a form to send

messages. The menu lets the user load cell systems from folders containing definition

files (see Section 4.1, start and stop servers needed for distribution and show the cell

browser.

The form can be used to send messages with the root cell as sender. To send a

message, the paths of the receiver and message are entered in the corresponding text

fields and the button ”send” is clicked. All paths are resolved relative to the root.

43

5. DEVELOPMENT TOOLS

Figure 5.1: Main window and form to send initial messages.

5.1.2 Cell Browser

The interface also provides a graphical representation of a distributed cell system, a

cell browser, which enables the user to browse and modify existing cells, create new

cells and select cells for message sending.

Cells can be edited using a context-menu or by dragging it inside another host to

copy it, move it or create new peer connections. Figure 5.2 shows an exemplary browser

with two hosts. Cells can be extended and collapse to show and hide their children,

indicated by plus and minus signs on the bottom left corner of each cell. Only actually

existing and no inherited cell are shown. Little triangles and circles on the right side

indicate defined stem cell paths and reactions respectively.

The darker filling of cell ◦.B.B in the figure indicates that it is an inactive cell.

Inactive cells behave like non-existent but allow to set and change their properties such

as name, reaction, stem and children. This way, a cell can be completely defined before

it is visible to other cells.

Figure 5.2: Browser for distributed cell systems.

Cells are connected directly to corresponding peers on other hosts. These connec-

tions are unidirectional, possibly redundant and make all children of the peer and its

peers addressable for the cell and all of its children. Peer connections are represented

by lines between cells on different hosts with a black circle indicating the direction of

44

5.1 Description

the connection. Hosts are identified using the network identifier and the address of the

host within this network.

5.1.3 Message Inspector

Every time the message sender (Figure 5.1) is used to send a new message, a message

inspector opens to show all resulting sends as a tree of mailings. Along with the sender,

the receiver and the message, the inspector indicates the current status of each mailing

which can be ”Sending” if the receiver cell is being resolved, ”Waiting” if the receiver

cell was not found and the message is re-sent, ”Paused”, ”Cancelled” or ”Delivered to

...” as shown in the exemplary message inspector in Figure 5.3.

Sends can be paused, resumed and cancelled individually or paused and resumed

globally. This allows the user to freeze the system in order to analyse deliveries as

described in the following section.

Figure 5.3: Message inspector showing a tree of mailings.

5.1.4 Delivery Analyser

By double-clicking on a mailing in the inspector, a delivery analyser opens and visualizes

the delivery’s log. The log contains entries for the steps of the name resolution with

information about the path of the delivering cell and the delivery parameters for each

step as illustrated in Figure 5.4. By clicking on a log entry, the current and all previous

delivering cells are highlighted in the cell browser above the log. This way it is easy to

follow the path of the name resolution and identify reasons for unsuccessful deliveries.

45

5. DEVELOPMENT TOOLS

Figure 5.4: Delivery analyser visualizing a delivery log.

5.2 Implementation

As the kernel, the graphical development tools are implemented using Java SE 6. But

since only message passing is used to access the cells, the tools could be implemented

using any technology including the presented software platform itself. This section

describes how the cell browser uses sending messages to kernel cells (see Section 4.3)

to read and modify properties of distributed cells.

The cell browser needs to be able to access and modify remote cells. This could be

done (and was done initially) using remote method calls on the kernel level to directly

access Cell objects. Besides the cost of making all property setters and getters available

to remote invocation, this approach also has the disadvantage that it only works with

directly reachable cells. But as described in Section 4.2, cells can be connected indirectly

through different networks. In such a case, the connecting cells play the role of inter-

network relays and no direct access to the remote methods is possible.

For these two reasons and also because of the increased portability, the browser uses

only the message passing mechanism to access all cells, local and remote. Note that

the kernel cell cell.Children only contains the list of the cell’s own, i.e. neither inherited

nor distributed children, so the browser only shows actually existing cell.

Another kernel cell cell.Peers provides the possibility to disable network trans-

parency. If a message is sent to a cell A on host ”n:1” is accessed using A.cell.Peers.n:1,

46

5.2 Implementation

it is guaranteed to be delivered to the peer on host ”n:1” and to no other cell. Also,

messages sent to children of A using this path are only delivered to children on the

given host.

The cell browser loads and accesses child cells incrementally during browsing. The

properties of each cell are read when the cell is loaded including peer connections which

leads to an incremental discovery of new hosts. Figure 5.5 illustrates this process in

three exemplary steps.

Step (a) shows a new browser instance with the local host containing the cell A.

In step (b) A is expanded and its child B loaded which has one peer connection with

host ”1” on network ”n”. The path to access the peer is therefore A.B.cell.Peers.n:1.

Its parent cell A is assumed but cannot be accessed since no connection exists.

In step (c) Cell A.B on host ”n:1” is expended, loading its child C which has a peer

connection with host ”A” on network ”m”. The new peer is accessed using the

path A.B.cell.Peers.n:1.C.m:A. As before, its parent cells can be assumed but not

accessed. Note that the local host has no access to network ”m” so the only way

to reach cell C on host ”m:A” is over cell B on host ”n:1”.

Figure 5.5: Discovery of peers on new hosts and their implicit parents in cell
browser. (a) A new cell browser showing one cell in local cell hierarchy. (b) Cell
A is expanded, its child B has a connection with its peer on host ”n:1”. (c) A new
peer is discovered on host ”m:A”.

47

5. DEVELOPMENT TOOLS

48

Chapter 6

Discussion

The following sections discuss the results of this project by comparing it with related

works and describing reasons of important design decisions. The last section describes

experiences with tests and experiments during the development.

6.1 Related Work

The presented programming model combines many features of related models and lan-

guages. Being object-oriented, it is related to Smalltalk [1, 23], C++ [24] and Java

[25]. Compared to the hybrid models of C++ and Java, the presented model follows

the object-oriented paradigm more consistently. None of these platform are inherently

distributed and concurrent although they include frameworks that provide these fea-

tures.

Newspeak [26, 27] extends the semantics of Smalltalk with the ability to nest classes

in order to build modules. Its semantics are therefore similar to the presented program-

ming model with the difference that there is no global address space in Newspeak and

like Smalltalk it is not distributed.

A prominent programming model which is closely related to the presented one is

the actor model [28, 29]. In fact, the presented software platform can be seen as an

implementation of the actor model with cells playing the role of actors. Like actors,

cells are distributed, thus inherently concurrent and use asynchronous messages for

communication. Unlike actors, cells do not use a become primitive to change their

behaviour since it conflicts with the use of inheritance [30].

The currently most successful implementation of the actor model is the Erlang

programming language [31, 32]. The main differences with Erlang is that the proposed

49

6. DISCUSSION

model does not buffer messages in mailboxes and uses a higher level of abstraction with

a single kind of entity compared to Erlang’s variety of control and data structures. Since

the proposed model does not specify a high level programming language, a functional

language similar to Erlang could be used, although an imperative language fits more

naturally to an object-oriented model.

Another implementation of the actor model is the experimental programming lan-

guage Act 1 [33]. It shares the radical view of ”everything is an actor” with the proposed

model thus data types, procedures as well as messages are actors. Besides a different

approach to distribution and name resolution, the main difference is that Act 1 uses

pattern matching to bind messages to message handlers.

The programming language Oz (as used in [34]) uses a distributed and concurrent

model as well and also data flow variables. But unlike the proposed model, Oz is not

inherently object-oriented and thus does not include the concepts of specialization and

inheritance, although they can be added.

Self [35] is known for its consistent use of prototype objects instead of classes but

new objects are created as copies of prototypes and not as specializations. Also, Self

is not distributed. Its model of activation records is very similar since activations are

modelled as specializations of the receiving entity but the fact is hidden from the user

by the special receiver ”self” which behaves differently depending on if a message is

sent to it directly or to a contained entity.

6.2 Design Process

The rapid prototyping approach described in Section 2.2 led to different designs of

components of the programming model during the evolution of the prototypes. This

section describes this process in three cases that were object of the majority of revisions.

6.2.1 Genesis

One design principle of the presented programming model is maximizing extensibility

by minimizing structure. Therefore, creating new cells should be possible by only

relying on the message passing mechanism.

Creating cells by sending messages conflicts in a certain way with the analogy of

biological cells used in Section 3.1, where a new cell would be created in an empty space

by specializing an existing cell. The new cell would then be adopted by a parent cell.

In practice, it has to be done the other way around since a cell without a parent can

not be addressed. Thus it is the parent’s responsibility to create a new child.

50

6.2 Design Process

The initial approach was to send a cell containing the definition of the new cell to the

parent cell. This way a cell could be created with a single message. The problem was

that the definition cell itself had to be created as well which would lead to an infinite

regression of creating definition cell. The regression was broken by literal definition

cells which similar to literal strings (see Section 4.4) can be addressed as the child of

a native cell. The name of this child is then used by the literal definition as name for

the new cell.

Although the approach was working, it required a lot of library support and du-

plicated all cell definitions. It was therefore discarded in favour of an approach using

reflection cells. The cell Children represents the children of a cell as a list of strings.

Cells can be created and deleted by simply modifying this list. The advantage is that

the same structure can be used for reading and modification without redundancy.

Another problem with cell genesis is timing. Since all mailings of a reaction are sent

concurrently, messages sent to a new cell might be sent before the cell was created. The

first approach to use continuations for synchronization was no feasible because contin-

uations are cells which have to be created first as well. The problem was eventually

solved by introducing data flow synchronization and an activation state which allows a

cell to be created and defined before it is activated as described in Section 3.1.7.

6.2.2 Responses

Due to the asynchronism of message passing, messages which expect a response have

to contain a resumption cell that the receiver can send the response to. As described

in Section 3.2.2, the current solution is to create a specialisation of the actual message

cell which contains the resumption cell as child. The disadvantage of this approach is

the overhead caused by creating a new container cell.

The overhead could be avoided by integrating resumption in the meta structure of

mailings. A mailing would then consist of the paths of the receiver, the message and a

third path of the resumption cell.

The reasons against making resumption cells part of mailings are rather philosoph-

ical. It conflicts with the design principles of minimizing structure and separating

meaning from optimization. Not only responses could be integrated into the meta

structure but also exceptions and similar constructs, bloating the kernel more than

absolutely necessary.

6.2.3 Binding & Context

Most exploration was done regarding the binding of the receiver cell path to a reaction

and its execution. Revised designs and implementations of these central components

were therefore the reasons for most new prototypes.

51

6. DISCUSSION

This was caused by the difficulties related to managing the context of each execution

in a concurrent, possibly recursive tree of mailings. As Figure 6.1 demonstrates, a single

mailing may lead to the reaction of a cell being executed several times simultaneously.

Therefore, the binding algorithm has to keep track of the execution context under which

a cell sent a message to the alias message or cells which exists only locally within a

context. The resolution of these cells depends on the current execution context.

Figure 6.1: Contexts in a tree of mailings resulting in reaction of cell C being
executed simultaneously in two different contexts.

In a first approach, all information of the current and all preceding mailings was

passed to each resolution step which lead to a total of seven parameters, most of

them stacked lists to provide nested deliveries (see Section 3.3.6). The overhead was

considered necessary to be able to resolve context-dependent children on any host and

also to avoid resolution loops caused by circular peer connections.

In a later version, the parameter overhead was reduced by introducing an execution

identifier which was unique for every context. It consisted of the identifiers of previous

executions in order to provide references to local children of these which where stored

in a child of the receiver cell with the identifier as its name. This context child was

not addressable directly but only by using the special cell name ”context” which was

resolved dynamically to the corresponding cell depending on the execution context

information. Besides of the still considerable overhead, this approach was discarded

since it was inconsistent with the programming model.

As described in Section 3.2, the current version reduced the overhead further by

storing all execution context information in a specialisation of the receiver cell. Since

the reaction is executed by this context dependent cell, no dynamic resolution of a

special ”context” cell is necessary and the implementation completely consistent with

the programming model. Its main disadvantage is the need for the user to be aware of

the execution cell in order to address children of parent cells correctly.

52

6.3 Experience

The introduction of this execution cell also caused a change of the adoption mecha-

nism which is described in Section 3.3.7. In earlier versions, a copy-on-change strategy

was implemented. Inherited cells were only adopted when explicitly modified by kernel

cells. Since this process started at the bottom of the cell tree, it had to be repeated re-

cursively until a not-inherited cell was reached. In the current version, a copy-on-receive

strategy is used which leads to more adoptions but each with less overhead.

6.3 Experience

Besides the unit testing described in Section 2.3, two test applications were implemented

to verify the correctness of the software platform. The two applications are the publish-

subscribe system which is already presented in Section 3.2 and a recursive algorithm to

calculate numbers of the Fibonacci sequence which is described in this section. Both

applications were implemented as automated tests and manually using the development

tools which facilitated debugging considerably.

Algorithm

The Fibonacci sequence is defined recursively as Fibn = Fibn−1 + Fibn−2 with the

two initial values Fib0 = 0 and Fib1 = 1. The definition can be implemented as the

recursive algorithm in Listing 6.1.

Listing 6.1: Recursive algorithm to calculate a number of the Fibonacci sequence

1 int Fibonacc i (index) {
2 i f (index = 0 or index = 1) {
3 return index ;
4 } else {
5 return Fibonacc i (index − 1) + Fibonacc i (index − 2) ;
6 }
7 }

Implementation

This algorithm was chosen as test application because of its extensive use of recursion

which involves local data and therefore tests the execution context described in Section

3.2 thoroughly. In practice, its implementation led to the discovery of several errors

which could be identified and fixed with the help of the graphical tools. All of the errors

were related to concurrency issues which increases with the index of the calculated

number.

53

6. DISCUSSION

Figure 6.2 shows the cells defined for the implementation of the algorithm on the

presented software platform. The reactions of the cells are presented in the following

listings. See Section 4.4 for descriptions of the used library cells.

Figure 6.2: Hierarchy of cells involved in the Fibonacci example application.

To calculate the Fibonacci number with the index n, the number is sent to Fi-

bonacci as a message. The reaction of Fibonacci shown in Listing 6.2 creates in lines

1 to 3 a container cell isOne which is tested for equality with the received index by

being sent to message.equals. By sending it to ifTrue of the response, the reaction of

Fibonacci.respondOne described in Listing 6.3 is executed if the message equals the num-

ber one. This is repeated in lines 5 to 7 with the number zero and the corresponding

cell Fibonacci.respondZero whose reaction is shown in Listing 6.4.

Listing 6.2: Reaction of Fibonacci cell

1 cell.create.isOne ← ◦.Zells.Literal.Number.1
2 message.equals ← isOne
3 isOne.response.ifTrue ← respondOne
4

5 cell.create.isZero ← ◦.Zells.Literal.Number.0
6 message.equals ← isZero
7 isZero.response.ifTrue ← respondZero
8

9 isOne.response.or ← isZero.response
10 isZero.response.response.ifFalse ← respondSum

Listing 6.3: Reaction of Fibonacci.respondOne cell

1 parent.parent.message.respond ← ◦.Zells.Literal.Number.1

Line 9 of the reaction of Fibonacci tests if either the the responses of isOne or the

response of isZero is true. If not, the reaction of Fibonacci.respondSum which is given

in Listing 6.5 is executed in line 10.

The reaction of Fibonacci.respondSum is the implementation of line 5 of the algo-

rithm in Listing 6.1. In lines 1 to 3 the index number is subtracted by one and the

result sent to Fibonacci. This is repeated with the number two in lines 5 to 7. The

54

6.3 Experience

Listing 6.4: Reaction of Fibonacci.respondZero cell

1 parent.parent.message.respond ← ◦.Zells.Literal.Number.0

Listing 6.5: Reaction of Fibonacci.respondSum cell

1 cell.create.minusOne ← ◦.Zells.Literal.Number.1
2 parent.parent.message.subtract ← minusOne
3 parent.parent.parent ← minusOne.response
4

5 cell.create.minusTwo ← ◦.Zells.Literal.Number.2
6 parent.parent.message.subtract ← minusTwo
7 parent.parent.parent ← minusTwo.response
8

9 minusOne.response.response.add ← minusTwo.response.response
10

11 parent.parent.message.respond ← minusTwo.response.response.response

responses of lines 3 and 7 are added in line 9 whose result is sent to the respond child

of the original message line 11.

Measurements

After implementation, the Fibonacci test application was used to measure execution

time and delivery steps. The graph in Figure 6.3 shows the measured values for the

calculation of Fibonacci numbers with different indices. Each value if the average of

ten consecutive runs.

The graph shows that the number of invocations of the deliver() method is the

main reason for the increased execution time since the values directly correspond with

each other. Thus the performance can be improved by optimizing the binding algorithm

for example by caching resolved cells. An approach to improve performance by decreas-

ing delivery steps needed for the resolution of parent references led to an performance

increase of only five percent.

55

6. DISCUSSION

Figure 6.3: Measured execution time and invocation of deliver() for calculations
of Fibonacci numbers with different indices.

56

Chapter 7

Outlook & Conclusions

7.1 High Level Language

The examples in Sections 3.2 and 6.3 show how the platform can be programmed

by only using basic messages. To create applications more efficiently, a higher level

programming language is needed. This section presents the draft of a language which

uses as little syntactical constructs as possible to reach the expressiveness of modern

programming languages. The constructs are described informally using examples.

Listing 7.1 gives an example of the syntax by implementing the recursive algorithm

to calculate a number of the Fibonacci sequence as described in Section 6.3 using the

high level language. The content of the listing corresponds to the definition of a reaction

to create and define all cells of the application. This reaction would only need to be

executed once since all created cells are always persistent.

Listing 7.1: Implementation the Fibonacci algorithm using a high level language

1 Fibonacc i : ◦ . Ce l l {
2 index : message .
3 [[index . equa l s 0] . or [index . equa l s 1]] (
4 i fTrue [{ index . respond index }] .
5 i f F a l s e [{
6 index . respond [[F ibonacc i [index . subt rac t 1]] . add
7 [F ibonacc i [index . subt rac t 2]]]
8 }]
9)

10 }

57

7. OUTLOOK & CONCLUSIONS

7.1.1 Extended Scope

As described in Section 3.3.3, the lexical scope of a cell does not include enclosing

cells. For convenience, the parser of the presented language allows omitting preceding

parent references which are added when the code is compiled into mailings. Its usage is

therefore restricted to children of enclosing cells which already exist or are defined in

the same compilation unit when compiling. As in Listing 7.1, message aliases can be

specialized to resolve ambiguous references when omitting parent.

7.1.2 Answers

As described before, a mailing consists of the receiver and message cells. If a response

is expected, a cell to which the response can be sent has to be provided as part of the

message, due to the asynchronism of mailings (see Section 3.2.2). By convention, this

cell is a child of the message with the name respond. Its default reaction creates a

child response of the message cell with the received cell as its stem. As can be seen in

the example in Section 3.2, this behaviour can be used for data flow synchronization

by sending a message to response which will be repeated until response exists, i.e. a

response was received.

The language draft provides a construct called answer which creates a container

cell and accesses its response child implicitly. An answer is a mailing surrounded by

brackets and can be used as a reference to the response of the container cell. Listing

7.2 shows an example of its usage and the corresponding list of equivalent mailings.

Listing 7.2: Implicit answers and equivalent mailings

1 message . respond [[True . or False] . and [Fa l se . or True]]
2

3 cell.create.container1← ◦.False
4 True.or ← container1
5

6 cell.create.container2← ◦.T rue
7 False.or ← container2
8

9 cell.create.container3← container2.response
10 container1.response.and← container3
11

12 message.respond← container3.response

7.1.3 Definitions

To create and define a new cell with stem path and reaction requires a large number

of regular mailings. Although the easiest case, creating a cell without reaction and a

58

7.2 Future Work

static stem cell, can be expressed with a single mailing as in the example in Section

3.2.2. For more complex cases, the language provides a construct which allows compact

cell creation and definition. Table 7.1 contains example usages of the cell definitions

syntax and an explanation of their meanings.

Table 7.1: Examples usage of cell definitions.

Definition Explanation

A.NewCell : Its.StemCell {

First.Receiver ItsMessage

SecondReceiver AnotherMessage

}

Creates a cell NewCell as child of A and
sets Its.StemCell as its stem cell (rela-
tive to NewCell). Defines NewCell’s re-
action with two mailings.

[List {Its Reaction}].add SomeCell Creates an anonymous cell whose stem
cell is List and adds SomeCell as an
element. No further elements can be
added since anonymous cells can only
be referenced using their definition.

True.or [◦.False] Sends a new anonymous sub-cell of
False to True.or.

{do something} Cell Creates an anonymous cell with only a
reaction and sends Cell to it to execute
the reaction.

True.ifTrue [{do conditionally}] Creates an anonymous cell with only
a reaction and sends it to True.ifTrue.
As a result, ifTrue sends a message to
the anonymous cell and its reaction is
executed.

7.1.4 Spaces

Many messages are often sent to the same cell or children of a common parent. To

avoid repetition of a cell path in such a case, parentheses can be used to create a

space in which all paths are relative to the preceding cell, which is especially useful

in combination with anonymous cells. Table 7.2 contains examples of how to use this

construct and their explanations.

7.2 Future Work

The current version of the presented software platform only covers the most basic fea-

tures to prove the implementability of its programming model. This section describes

59

7. OUTLOOK & CONCLUSIONS

Table 7.2: Examples usage of spaces.

Usage Explanation

aList.add [Person (

name : ◦.Literal.String.John
age : ◦.Literal.Number.26

)]

Creates an anonymous sub-cell of Per-
son with two children name and age and
adds a new element to aList with the
anonymous cell as its stem cell.

[Point (x:x1. y:y1)].moveTo

[(x:x2. y:y2)]

Sends an anonymous cell with two chil-
dren to the moveTo child of a sub-cell
of Point. This example illustrates how
spaces can be used to simulate argu-
ments in a method call.

some of the next steps and current approaches which lead to a usable personal com-

puting platform.

Security For a distributed system, access control is a crucial feature. To prevent

unwanted messages from being received, but also to provide encapsulation, fine-

grained access control on object level is required. How this can be achieved

efficiently will be the subject of future investigation. A possible approach is to

use certificate-based access control [36] using white-/black-lists or roles [37]. The

platform’s architecture would lend itself naturally to serve as a distributed public

key infrastructure.

The most critical security factor however is the end user [38]. In order to have

a safe system, its users need to understand and be aware of security and privacy

concerns. This requires educational work independent of any system but also

clarity and transparency of the software platform.

Parallelism In order to prevent timing errors, the system needs to be extended by the

ability to restrict the concurrent execution of reactions. Cells restricted in this

way are not able to receive messages while their reaction is executing and therefore

use a mailbox to store these messages. The restriction also has implications on

the possible distribution of such cells which have to be analysed.

Performance Due to its complete distribution which results in having to resolve the

receiver of every single mailing recursively, the performance of the prototype im-

plementation is not as good as with existing commercial programming languages.

Since it was not a requirement of the prototype, few experiments were conducted

to quantify the performance and no measures were taken to improve it. Caching

on multiple levels is considered as the most effective approach to improve per-

formance. Results of name resolutions could be stored and re-used, as well as

60

7.2 Future Work

memory location for cells in the same address-space. Since cells are principally

mobile, communication partners can be migrated to other hosts to reduce net-

work traffic and resulting latency. Mechanisms to ensure consistency have to be

provided and their overhead considered to calculate the net performance increase.

Memory Management The presented programming model introduces new challenges

regarding memory management which includes identifying and deleting disposable

cells. Conventional garbage collection is not applicable since a cell never becomes

unreachable due to the fact that all references are completely late-bound. There-

fore, a more general approach is required that is not only used for application

cells but also to user cells.

In a distributed system, memory management also includes the migration and

distribution of entities. This requires the development of strategies which consider

processor load, memory usage and network capacities. Ideally, these mechanisms

work completely automatically but the ability for assisted manual optimization

should be offered as well.

Library In order to develop portable systems efficiently, the software platform has

to provide a standard cell library which provides reflection, hardware access and

generic implementations for frequently needed functionality (as provided by [39]).

The library can be distributed as well and does not have to reside in the local

host, except for the parts of it that are implemented on the kernel level. It is

also possible to replace any cell seamlessly with a native implementation for op-

timization. A key principle of the library’s design has to keep meaning separated

from optimization as suggested by [11].

Hardware access includes interaction with users and external devices. Graphical

output uses real-world units instead of pixels and uses exclusively vector graphics

(as done in [40]) to be independent of screen size and resolution. The library also

contains cells for literal values, such as strings and numbers, cells for numerical

and boolean algebra as well as collections and control structures. Any user can

extend the standard library by creating a sub-cell of it.

Language The platform does not include a native language. Its native instructions are

mailings consisting of receiver and message cells. To develop systems efficiently,

a more expressive language is required. In Section 7.1 the syntax of a language

draft was described informally which extends the basic instructions very little and

thus can easily be translated into mailings.

The platform architecture should facilitate and encourage the use of different,

possibly domain-specific, front-end languages. Because of a common underlying

programming model, a system written in any language would be able to commu-

nicate seamlessly with any system on any host written in any other language. To

increase end-user literacy, a graphical scripting-like way of programming should

also be included.

61

7. OUTLOOK & CONCLUSIONS

Typing The programming model does not have a type system. Because of its value

to system analysis and resulting coding assistance, a type system can be added

as hints when needed (similar to [41]). These hints could be formulated as cell

definitions expressing expected stem cells or children of messages and responses.

These definitions would not have any effect on the system but could be used

by an automatic analyzer to detect errors and provide coding assistance such as

auto-completion.

Formalization To study the implications of distribution and concurrency more thor-

oughly, the semantics of the programming model will be formalized. Using model

checking [42], the model can then be tested for exclusion of undesired situations

such as dead-locks and inconsistency to prove its correctness [43]. Another ad-

vantage of a formalization is to translate it automatically into native code for

different machines and thus produce completely compatible executables for mul-

tiple platforms.

Versions A desirable feature of the software platform and important for usability

is fine-grained version control. All changes to any cell should be saved and be

reversible. The system should allow the user to tag, discard and reverse to certain

versions and also to create branches. Since this capability would not only apply

to data but also to its representation, users could browse through any program

like websites, always being able to return to previous views or keep a certain

view open and branch into new views simultaneously, like opening new tabs in

browsers [44].

It is not clear how to determine the scope of versions. The user should be able to

control whether to reverse changes made only to a certain cell, to the cell and its

children, or all changes to every cell. The last option would require performing

all actions in a sandbox which can be committed or discarded by the user (similar

to [45]). This would allow the user to conduct experiments with any system in a

safe environment with complete control over side-effects.

Extensibility The goal of the platform is to be completely open and extensible which

entails every part of the platform being exposed to the user by reflection. This

is already the case for all parts except for the semantics of message sending.

Since it is the only operation of the programming model, being able to modify

its semantics would allow the user to adapt the semantics of the entire model

if needed [46]. Design decisions like single inheritance or lexical scope could

be changed for any part of a cell system while running, leading to a completely

extensible software platform which is regarded as a crucial feature for its survival.

62

7.3 Conclusions

7.3 Conclusions

The thesis intends to help making the real computer revolution happen by laying the

groundwork of a new software platform that encourages collaborative model building.

First, the programming model was developed and implemented during several iterations

using modern software development methods. Following this, the kernel implementa-

tion was connected with the local and remote systems. Finally, an object library and

graphical development tools were implemented to support the development of example

application which were used to test the system.

The result is a working prototype implementation of the software platform including

two sample applications and an extensive set of unit tests. Although its low performance

and immaturity prevent the platform from being practical it is a usable base for further

investigation, experiments and improvements.

In conclusion, the thesis shows that it is possible to implement a completely ab-

stracted and simplistic programming model in a concurrent and distributed software

platform. A distributed name directory for path resolution could be implemented

within the models structure. The model was constructed using a single kind of entity

that represents an abstracted computing unit without the use of any low level concepts

such as variable or assignments. It also has been demonstrated that message passing

combined with hierarchical object identifiers is a suitable primitive operation that could

form part of a common inter-platform language.

63

7. OUTLOOK & CONCLUSIONS

64

List of Figures

1.1 Architecture of software platform . 6

2.1 Waterfall model with six phases . 8

2.2 Transition from waterfall to spiral model 9

2.3 Process model of test-driven development 10

3.1 Nested cells . 14

3.2 Nested cells with names and aliases . 14

3.3 Message passing . 15

3.4 Reaction of a cell . 15

3.5 Example of specialisation . 16

3.6 Creation of execution when receiving a message 16

3.7 Data flow synchronization . 17

3.8 Defined cells for simple example application 18

3.9 Execution cells in the example application 20

3.10 Mailing without and with response . 21

3.11 Class diagram of object model . 24

3.12 Example of nested deliveries . 30

3.13 Recursive adoption of an inherited cell 31

4.1 Mapping files and folders onto a cell tree 34

4.2 Syntax of reaction and paths . 34

4.3 Syntax of cell names . 34

4.4 Diagram of cell loader classes . 36

4.5 Architecture of cell distribution . 37

65

LIST OF FIGURES

4.6 Diagram of classes involved in distribution 38

4.7 Entity-relationship diagram of reflection cells 39

5.1 Message sender screen shot . 44

5.2 Cell browser screen shot . 44

5.3 Message inspector screen shot . 45

5.4 Delivery analyser screen shot . 46

5.5 Discovery of hosts in cell browser . 47

6.1 Contexts in tree of mailings . 52

6.2 Cells of Fibonacci applications . 54

6.3 Benchmark of Fibonacci test application 56

66

List of Tables

3.1 Cell definitions of simple example application 18

3.2 Usage of simple example application . 20

3.3 Cell definition of extended example . 21

3.4 Usage of extended example application 23

7.1 Examples usage of cell definitions. 59

7.2 Examples usage of spaces. 60

67

LIST OF TABLES

68

Listings

3.1 Execute method of Reaction . 25

3.2 Run method of Messenger . 25

3.3 Binding algorithm . 27

3.4 Execution of reaction . 28

3.5 Resolution of message alias . 28

3.6 Alias and child resolution . 29

3.7 Method to adopt executions of inherited cells 31

4.1 Cell definition file . 35

4.2 Cell definition file with peer definition 37

6.1 Recursive algorithm to calculate a number of the Fibonacci sequence . . 53

6.2 Reaction of Fibonacci cell . 54

6.3 Reaction of Fibonacci.respondOne cell . 54

6.4 Reaction of Fibonacci.respondZero cell 55

6.5 Reaction of Fibonacci.respondSum cell 55

7.1 Implementation the Fibonacci algorithm using a high level language . . 57

7.2 Implicit answers and equivalent mailings 58

69

LISTINGS

70

Glossary

FDD Feature Driven Development, page 8

HTML Hyptertext Mark-up Language, page 3

HTTP Hypertext Transport Protocol, page 3

IEEE Institute of Electrical and Electronics Engineers, page 7

IP Internet Protocol, page 37

NATO North Atlantic Treaty Organization, page 7

TCP Transmission Control Protocol, page 37

TDD Test Driven Development, page 9

XML Extensible Mark-up Language, page 34

XP Extreme Programming, page 8

71

GLOSSARY

72

References

[1] Adele Goldberg and David Robson. Smalltalk-80: the language and its im-

plementation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1983. iii, 49

[2] Alan C. Kay. The computer revolution hasn’t happened yet (keynote

session). In Proceedings of the eighth ACM international conference on Multime-

dia, MULTIMEDIA ’00, pages 1–, New York, NY, USA, 2000. ACM. 1

[3] Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker,

A. Joe Turner, and Paul R. Young. Computing as a Discipline. Com-

puter, 22:63–70, February 1989. Chairman-Denning, Peter J. 1

[4] Timothy Colburn and Gary Shute. Abstraction in Computer Science.

Minds Mach., 17:169–184, July 2007. 1

[5] Harold Abelson, Gerald J. Sussman, and Julie Sussman. Structure and

Interpretation of Computer Programs. MIT Press, Cambridge, MA, USA, 2nd

edition, 1996. 1

[6] Roger Clarke. A contingency approach to the application software

generations. SIGMIS Database, 22:23–34, June 1991. 2

[7] Bertrand Meyer. The Power of Abstraction, Reuse, and Simplicity:

An Object-Oriented Library for Event-Driven Design. In Olaf Owe,

Stein Krogdahl, and Tom Lyche, editors, From Object-Orientation to Formal

Methods, 2635 of Lecture Notes in Computer Science, pages 236–271. Springer

Berlin / Heidelberg, 2004. 2

[8] H. A. Ramadhan N.S. Kutti, Z.A. Al-Khanjari and J. Fiaidhi. A Note

towards Reshaping Java’s Features. Journal of Computer Sciences, 1:450–

453, 2005. 2

[9] Harold Thimbleby. A critique of Java. Softw. Pract. Exper., 29:457–478,

April 1999. 2

[10] Ian Joyner. C++?? - A Critique of C++, 1992. 2

73

http://doi.acm.org/10.1145/354384.354390
http://doi.acm.org/10.1145/354384.354390
http://dx.doi.org/10.1109/2.19833
http://portal.acm.org/citation.cfm?id=1285757.1285760
http://doi.acm.org/10.1145/126743.126749
http://doi.acm.org/10.1145/126743.126749
http://dx.doi.org/10.1007/978-3-540-39993-3_13
http://dx.doi.org/10.1007/978-3-540-39993-3_13
http://www.scipub.org/scipub/ab_issue.php?pg_no=450-453&j_id=jcs&art_no=67&issue_no=4
http://www.scipub.org/scipub/ab_issue.php?pg_no=450-453&j_id=jcs&art_no=67&issue_no=4
http://portal.acm.org/citation.cfm?id=311838.311842
http://www.literateprogramming.com/c++critique.pdf

REFERENCES

[11] K. Rose D. Ingalls D. Amelang T. Kaehler Y. Ohshima H. Samimi C.

Thacker S. Wallace A. Warth A. Kay, I. Piumarta and T. Yamamiya.

STEPS Toward The Reinvention of Programming, 2008 Progress Re-

port Submitted to the National Science Foundation, 2008. 2, 61

[12] Frederick P. Brooks, Jr. No Silver Bullet: Essence and Accidents of

Software Engineering. Computer, 20:10–19, April 1987. 3

[13] IEEE Standard Glossary of Software Engineering Terminology. Technical

report, 1990. 7

[14] Helmut Balzert. Lehrbuch der Softwaretechnik, Teil 2: Softwaremanagement,

Software-Qualitaetssicherung, Unternehmensmodellierung. Spektrum Akademis-

cher Verlag, Heidelberg, Berlin, 1998. 7

[15] P. Naur and B. Randell. Software Engineering, Report of a confer-

ence sponsored by the NATO Science Committee. NATO, 1968. Held

at Garmisch, Germany. 7th-11th October, 1968. 7

[16] Edsger W. Dijkstra. The humble programmer. Commun. ACM, 15:859–

866, October 1972. 7

[17] W. W. Royce. Managing the development of large software systems:

concepts and techniques. In Proceedings of the 9th international conference on

Software Engineering, ICSE ’87, pages 328–338, Los Alamitos, CA, USA, 1987.

IEEE Computer Society Press. 8

[18] C. Larman and V.R. Basili. Iterative and Incremental Development: A

Brief History. IEEE Computer, 36(6):47–56, 2003. 8

[19] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,

Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith,

Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Mar-

tin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas.

Manifesto for Agile Software Development. 2001. 8

[20] Beck. Test Driven Development: By Example. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 2002. 10

[21] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, Boston, MA, USA, 1999. 10

[22] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace

Change (2nd Edition). Addison-Wesley Professional, 2004. 10

[23] Alan C. Kay. History of programming languages—II. chapter The early

history of Smalltalk, pages 511–598. ACM, New York, NY, USA, 1996. 13, 49

74

http://www.vpri.org/pdf/tr2008004_steps08.pdf
http://www.vpri.org/pdf/tr2008004_steps08.pdf
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://doi.acm.org/10.1145/355604.361591
http://portal.acm.org/citation.cfm?id=41765.41801
http://portal.acm.org/citation.cfm?id=41765.41801
http://www.agilemanifesto.org/
http://doi.acm.org/10.1145/234286.1057828

REFERENCES

[24] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 3rd edition, 2000. 49

[25] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Speci-

fication. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st

edition, 1996. 49

[26] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai,

William Maddox, and Eliot Miranda. Modules as Objects in Newspeak.

In Theo D’Hondt, editor, ECOOP 2010 - Object-Oriented Programming, 6183

of Lecture Notes in Computer Science, pages 405–428. Springer Berlin / Heidel-

berg, 2010. 49

[27] Gilad Bracha. The Newspeak programming language specification, ver-

sion 0.05. http://bracha.org/newspeak-spec.pdf, 2009. 49

[28] Gul Agha. Actors: a model of concurrent computation in distributed systems.

MIT Press, Cambridge, MA, USA, 1986. 49

[29] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular

ACTOR formalism for artificial intelligence. In Proceedings of the 3rd inter-

national joint conference on Artificial intelligence, pages 235–245, San Francisco,

CA, USA, 1973. Morgan Kaufmann Publishers Inc. 49

[30] D. G. Kafura and K. H. Lee. Inheritance in actor based concurrent

object-oriented languages. Comput. J., 32:297–304, July 1989. 49

[31] Joe Armstrong, Robert Virding, Claes Wikström, and Mike

Williams. Concurrent Programming in ERLANG. Prentice Hall,

http://citeseer.ist.psu.edu/393979.html, 1996. 49

[32] Joe Armstrong. A History of Erlang. In HOPL III: Proceedings of the third

ACM SIGPLAN conference on History of programming languages, pages 6–1–6–26,

New York, NY, USA, 2007. ACM. 49

[33] H. Lieberman. Thinking About Lots of Things at Once Without Getting

Confused – Parallelism in Act 1. MIT AI memo 626, May 1981. 50

[34] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Com-

puter Programming. MIT Press, Cambridge, MA, USA, 2004. 50

[35] David Ungar and Randall B. Smith. Self: The power of simplicity. In

Conference proceedings on Object-oriented programming systems, languages and

applications, OOPSLA ’87, pages 227–242, New York, NY, USA, 1987. ACM. 50

75

http://dx.doi.org/10.1007/978-3-642-14107-2_20
http://bracha.org/newspeak-spec.pdf
http://portal.acm.org/citation.cfm?id=1624775.1624804
http://portal.acm.org/citation.cfm?id=1624775.1624804
http://portal.acm.org/citation.cfm?id=73708.73710
http://portal.acm.org/citation.cfm?id=73708.73710
http://portal.acm.org/citation.cfm?id=1238844.1238850
http://doi.acm.org/10.1145/38765.38828

REFERENCES

[36] Mary Thompson, William Johnston, Srilekha Mudumbai, Gary Hoo,

Keith Jackson, and Abdelilah Essiari. Certificate-based access control

for widely distributed resources. In Proceedings of the 8th conference on

USENIX Security Symposium - Volume 8, pages 17–17, Berkeley, CA, USA, 1999.

USENIX Association. 60

[37] Amir Herzberg, Yosi Mass, Joris Michaeli, Yiftach Ravid, and Dalit

Naor. Access Control Meets Public Key Infrastructure, Or: Assigning

Roles to Strangers. In Proceedings of the 2000 IEEE Symposium on Security

and Privacy, pages 2–, Washington, DC, USA, 2000. IEEE Computer Society. 60

[38] Mikko T. Siponen. A conceptual foundation for organizational infor-

mation security awareness. Inf. Manag. Comput. Security, 8(1):31–41, 2000.

60

[39] GNU Smalltalk Library Reference. http://www.gnu.org. 61

[40] K. Rose D. Ingalls D. Amelang T. Kaehler Y. Ohshima C. Thacker S.

Wallace A. Warth A. Kay, I. Piumarta and T. Yamamiya. Steps Toward

The Reinvention of Programming, 2007. 61

[41] G. Bracha. Pluggable Type Systems. In Workshop on Revival of Dynamic

Languages, OOPSLA ’04, 2004. 62

[42] Edmund Clarke. Model checking. In S. Ramesh and G Sivakumar, editors,

Foundations of Software Technology and Theoretical Computer Science, 1346 of

Lecture Notes in Computer Science, pages 54–56. Springer Berlin / Heidelberg,

1997. 10.1007/BFb0058022. 62

[43] G. J. Holzmann. The model checker SPIN. Software Engineering, IEEE

Transactions on, 23(5):279–295, 1997. 62

[44] et al. Alan Kay. STEPS Toward Expressive Programming Systems,

2010 Progress Report Submitted to the National Science Foundation,

2010. 62

[45] Alessandro Warth and Alan Kay. Worlds: Controlling the Scope of

Side Effects, 2010. 62

[46] Ian Piumarta and Alessandro Warth. Open, Extensible Object Models.

In Robert Hirschfeld and Kim Rose, editors, Self-Sustaining Systems, 5146

of Lecture Notes in Computer Science, pages 1–30. Springer Berlin / Heidelberg,

2008. 62

76

http://portal.acm.org/citation.cfm?id=1251421.1251438
http://portal.acm.org/citation.cfm?id=1251421.1251438
http://portal.acm.org/citation.cfm?id=882494.884417
http://portal.acm.org/citation.cfm?id=882494.884417
http://www.gnu.org/software/smalltalk/manual-base/gst-base.html
http://www.gnu.org
http://www.vpri.org/pdf/tr2007008_steps.pdf
http://www.vpri.org/pdf/tr2007008_steps.pdf
http://dx.doi.org/10.1007/BFb0058022
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=588521
http://www.vpri.org/pdf/tr2010004_steps10.pdf
http://www.vpri.org/pdf/tr2010004_steps10.pdf
http://www.vpri.org/pdf/tr2010001_worlds.pdf
http://www.vpri.org/pdf/tr2010001_worlds.pdf
http://dx.doi.org/10.1007/978-3-540-89275-5_1

Declaration

I herewith declare that I have produced this paper without the prohibited

assistance of third parties and without making use of aids other than those

specified; notions taken over directly or indirectly from other sources have

been identified as such. This paper has not previously been presented in

identical or similar form to any other German or foreign examination board.

The thesis work was conducted from August 2010 to February 2011 under

the supervision of Javier Jaén at Universitat Politécnica de Valencia.

Valencia,

	1 Introduction
	1.1 Abstraction
	1.2 Distribution
	1.3 Aims
	1.4 Characteristics
	1.5 Outline

	2 Methods
	2.1 Software Development
	2.2 Prototyping
	2.3 Test-Driven Development

	3 Programming Model
	3.1 Concepts
	3.1.1 Cells
	3.1.2 Names and Paths
	3.1.3 Messages
	3.1.4 Reaction
	3.1.5 Specialisation
	3.1.6 Execution
	3.1.7 Delivery

	3.2 Example
	3.2.1 Simple Version
	3.2.2 Extended Version

	3.3 Implementation
	3.3.1 Object Model
	3.3.2 Message Passing
	3.3.3 Binding
	3.3.4 Execution
	3.3.5 Aliases
	3.3.6 Inheritance
	3.3.7 Adoption

	4 Environment
	4.1 Storage
	4.1.1 Syntax
	4.1.2 File Format
	4.1.3 Implementation

	4.2 Distribution
	4.2.1 Architecture
	4.2.2 File Format
	4.2.3 Implementation

	4.3 Kernel Cells
	4.4 Library
	4.4.1 General
	4.4.2 Data Types
	4.4.3 Control Structures
	4.4.4 Reflection

	5 Development Tools
	5.1 Description
	5.1.1 Message Sender
	5.1.2 Cell Browser
	5.1.3 Message Inspector
	5.1.4 Delivery Analyser

	5.2 Implementation

	6 Discussion
	6.1 Related Work
	6.2 Design Process
	6.2.1 Genesis
	6.2.2 Responses
	6.2.3 Binding & Context

	6.3 Experience

	7 Outlook & Conclusions
	7.1 High Level Language
	7.1.1 Extended Scope
	7.1.2 Answers
	7.1.3 Definitions
	7.1.4 Spaces

	7.2 Future Work
	7.3 Conclusions

	List of Figures
	List of Tables
	Glossary
	References

