Document downloaded from:

http://hdl.handle.net/10251/103602
This paper must be cited as:

Marco, O.; Rédenas, J.; Navarro-Jiménez, J.; Tur Valiente, M. (2017). Robust h-adaptive
meshing strategy considering exact arbitrary CAD geometries in a Cartesian grid framework.
Computers & Structures. 193:87-109. doi:10.1016/j.compstruc.2017.08.004

The final publication is available at

https://doi.org/10.1016/j.compstruc.2017.08.004

Copyright E|sevier

Additional Information

Robust h-adaptive meshing strategy considering exact
arbitrary CAD geometries in a Cartesian grid framework

Onofre Marco®, Juan José Rédenas?, José Manuel Navarro-Jiménez?,
Manuel Tur?

*Centro de Investigacion en Ingenieria Mecdnica (CIIM), Universitat Politécnica de
Valéncia, Valencia 46022, Spain

Abstract

Geometry plays a key role in contact and shape optimization problems in
which the accurate representation of the exact geometry and the use of adap-
tive analysis techniques are crucial to obtaining accurate computationally-
efficient Finite Element (FE) simulations. We propose a novel algorithm to
generate 3D h-adaptive meshes for an Immersed Boundary Method (IBM)
based on Cartesian grids and the so-called NEFEM (NURBS-Enhanced FE
Method) integration techniques. To increase the accuracy of the results at the
minimum computational cost we seek to keep the efficient Cartesian struc-
ture of the mesh during the whole analysis process while considering the
exact boundary representation of domains given by NURBS or T-Splines.

Within the framework of Cartesian grids, the two significant contributions
of this paper are: a) the methodology used for the mesh-geometry intersec-
tion, which represents a considerable challenge due to their independence;
and b) the robust procedure used to generate the integration subdomains
that exactly represent the CAD model. The numerical examples given show
the proper convergence of the method, its capacity to mesh complex 3D ge-
ometries and that Cartesian grid-based IBM can be considered a robust and
reliable tool in terms of accuracy and computational cost.

Keywords: Cartesian grids, h-refinement, NURBS, NEFEM

Email addresses: onmaral@upvnet.upv.es (Onofre Marco), jjrodena@mcm.upv.es
(Juan José Rédenas), jonaji@upvnet.upv.es (José Manuel Navarro-Jiménez),
manuel . tur@mcm.upv.es (Manuel Tur)

Preprint submitted to Computers & Structures August 3, 2017

1. Introduction

It has recently become clear that a major drawback to the rapid struc-
tural analysis of geometrically elaborated 3D domains using Finite Element
Analysis (FEA) is the time allotted to creating an appropriate finite element
mesh. Even after the development of sophisticated mesh generators, a sig-
nificant amount of skilled human resources is required to create good quality
finite element meshes for the geometrically complex models required for the
solution of common industrial problems.

The aim of adaptive mesh generation and automatic error control in FEA
is to eliminate the need for manual re-meshing and re-running design sim-
ulations to check the numerical accuracy. In ideal circumstances, the user
should only input the component model and a coarse finite element mesh.
The software should then autonomously and adaptively reduce the element
size where required, reducing the error in the solution fields to a predeter-
mined value.

Adaptive methods of finite element simulations were first proposed in the
late 70’s[1, 2]. The most common criterion in general engineering use is that
of prescribing a limit for a global magnitude, such as the error computed in
the energy norm, though it is possible to define magnitudes of interest to
evaluate the goodness of the evaluated meshes[3, 4, 5].

The procedures for the refinement of finite element meshes fall mostly
into two categories:

1. The h-refinement, in which the element type is maintained but the
elements are changed in size. In some locations of the mesh the element
sizes are made smaller, or larger (not very common), where needed
to provide maximum computational economy in reaching the desired
solution.

2. The p-refinement, in which the element size is kept constant and the
order of the polynomial, used in its definition is increased where nec-
essary, generally by using hierarchical shape functions|6, 7].

There exists a third category, the hp-refinement [8, 9], which consists of
simultaneously adapting the size of the elements and their approximation
degree.

In this contribution we will present an h-adaptive refinement strategy
based only on the size of the element keeping the polynomial order of the
interpolation constant.

Decades after the development of functional meshing techniques[10, 11,
12], mesh generation still has to evolve in order to minimize the design cycle
time because real industrial applications are, in general, geometrically com-
plex and traditionally require a skilled workforce to generate an analysis-
suitable finite element mesh.

One alternative to reduce the meshing burden, related to the proposals in
this paper, is to use mesh generators based on simple discretizations such as
octrees [13, 14, 15]. In octree-based mesh generators [12, 16, 17] an embedding
cube-shaped domain is created and meshed following a Cartesian hierarchy
through the mesh generation process for efficiency. After adapting the octree
mesh to the geometry and splitting the cut cells into tetrahedrons to capture
the boundary of the model, the octree is broken up into a valid body-fitted
mesh and then smoothing techniques are used achieve good quality finite
elements.

It is apparent that mesh generation could be greatly simplified by using
implicit meshing approaches in which (as in octree techniques) the geomet-
rically complex domain is embedded into a geometrically simpler domain
whose meshing is simple if not trivial. As opposed to octree techniques, in
the approach described here the non-conforming FE mesh is not modified to
fit the boundary. Instead, the matching between geometry and mesh is done
during the evaluation of element integrals, which are defined only by the
part of the elements cut by the boundary that lies within the domain. Many
methods are described in the literature in which the geometrically complex
domain is embedded into a geometrically simpler domain. Among many
other names used to describe these FE techniques in which the mesh does
not match the domain’s geometry, there is the Immersed Boundary Method
(IBM) [18], the Immersed Finite Element Method (IFEM) [19] or the Finite
Cell Method (FCM)|[20, 21, 22]. Immersed boundary methods, often referred
to as embedded methods, have been studied by a number of authors for
very different problems such as, for example, shape optimization [23, 24] or
bio-mechanics [25, 26, 27]. Most of these techniques rely on an integration
submesh in the elements cut by the boundary to perform the body-fitted
numerical integration appearing in the weak formulation.

Implementing the Finite Element Method in combination with the embedded-
domain concept offers a powerful alternative due to the potential benefits:
virtual automatic domain discretization, suitable for creating hierarchical
data structures for simple data transfer and re-use of calculations, ability to
easily create adapted domain discretizations, a natural platform for efficient

structural shape optimization processes, multigrid and multiscale analyses,
etc. However, there are also tradeoffs with this approach related to the fact
that the boundary of the domain does not necessarily coincide with the ele-
ment faces. For example, there are difficulties in accurately integrating the
weak form of the governing equations over the elements intersected by the
boundary. There are also difficulties in imposing essential boundary con-
ditions as the nodes do not necessarily lie on the Dirichlet boundary and
the direct enforcement of the essential boundary conditions is in general not
possible.

As an efficient solution for these drawbacks, we used a methodology based
on the use of Cartesian grids independent of the geometry. This methodol-
ogy, known as cgFEM[28, 29|, was implemented in a computer code for the
structural analysis of 3D components considering uniform meshes. The first
3D version of this methodology, known as FEAVox[30] was described in a
previous paper. The aspect that distinguishes FEAVox from other immersed
boundary approaches is that it is able to consider the exact CAD representa-
tion of the boundary of the domain, given by NURBS[31, 32] or T-Splines[33],
in the evaluation of volume integrals. To perform the numerical integration,
instead of simplifying the embedded geometry, for instance using triangu-
lar facets for its definition, FEAVox includes novel techniques to perform
the exact integration (up to the accuracy of the quadrature rule) over the
true computational domain. In particular, these integration techniques are
the techniques considered by the NURBS-Enhanced Finite Element Method
(NEFEM) [34, 35].

The accurate evaluation of integrals in elements cut by the boundary,
it is necessary to maintain the optimal convergence rate of the error of the
FE solution. This is, therefore, an active area of research. In fact, several
methodologies have recently emerged to perform high-order integration in
embedded methods, such as the so-called 'smart octrees’ tailored to Finite
Cell approaches[36] or techniques in which the geometry is defined implic-
itly by level sets[37]. We used the NURBS-Enhanced integration techniques
because their consistency considering the exact geometric description[38] is
of major importance when dealing with CAD models in applications such as
shape optimization or contact between bodies.

This contribution will show how the capabilities of the cgFEM methodol-
ogy have been improved by developing h-adaptive analysis techniques. These
techniques have been successfully implemented in FEAVox in order to han-
dle complicated CAD models without renouncing the traditional properties

4

of embedded methods as well as developing a robust enhanced procedure for
geometry-mesh intersection.

The paper is organized as follows: a brief review of the basic features
of the cgFEM methodology is given in Section 2. Section 3 explains how
the mesh-geometry intersection problem is solved. Section 4 describes an
extended scheme to efficiently integrate elements intersected by the bound-
ary. Section 5 gives details of the refinement strategies. Section 6 contains
numerical results showing the behavior of the proposed technique. Finally,
the conclusions are given in Section 7. The derivation of the h-adaptive
refinement criterion for 3D meshes is given in Appendix A.

2. Cartesian grids with exact representation of the geometry: FEAVox

The present work is the logical continuation of [30], which introduced the
new cgFEM methodology implemented in an FE code, called FEAVox, for
the analysis of structural 3D components. Its main novelty was its ability to
perform accurate numerical integration in non-conforming meshes indepen-
dent of the geometry. A brief review of cgFEM and its features is given here
as a background to the present paper.

The foundations of mesh generation in cgFEM consists of defining an
embedding domain 2 such that a bounded domain Qpyys fulfills Qpnys C €.
Let us assume that the embedding domain is a cube, although rectangular
cuboids could also be considered. This means 2 is much easier to mesh than
the domain of interest {lpnys. Figure 1 gives an example of the different do-
mains defined. Figure 1b only gives the elements of the embedding domain
interacting with Qpyys denoted by Qpprox and Figure lc shows a representa-
tion of the submesh used only for integration purposes.

The original version of FEAVox considered a sequence of uniformly refined
Cartesian meshes to mesh the €2, where the different levels of the Cartesian
meshes were connected by predefined hierarchical relationships. The term
Cartesian grid set, denoted by {Qﬁl}izlmm, is used to define the sequence
of m meshes utilized to discretize the embedding 3D domain 2. For each
level 4 of refinement, the embedding domain €2 is partitioned into n’; disjoint
cubes of uniform size, where nif’ = 8n’,. While in a uniform refinement
process this operation was carried out for every element in the mesh, in
our h-adaptive approach, the subdivision step will be guided either by local
geometrical parameters or a discretization error-based criterion, so we could
end up with elements of different sizes in the same mesh.

Figure 1: Immersed Boundary Method environment. (a) Torus geometry,
Qpnys. (b) Approximation mesh, Qupprer. (¢) Integration mesh, Qf, .

It is worth noting that the hierarchical relationships considered in the data
structure provide automatisms for mesh refinement, thus positively affecting
the efficiency of the FE implementation. Nodal coordinates, mesh topology,
hierarchical relationships, neighborhood patterns, and other geometric or
topological information can be obtained algorithmically. This information
is therefore not stored in the memory, making the proposed algorithm more
efficient, not only in terms of computational cost but also in terms of memory
requirements.

During the creation of the FE analysis mesh used to solve the boundary
value problem we can classify the elements of the Cartesian grid into three
groups: boundary, internal and external elements. Let I" be the boundary of
Qpnys and 2° the domain of every element conforming the embedding domain
Q.

We define 2; as the set of elements fully contained in the model domain,
2° C Qpnys (green elements in Figure 2). We also define Qg as the set
of elements such that Q¢ N T # (). Within these elements we will use a
submesh to take into account that only a portion of these elements needs to
be integrated, i.e. the portion of these elements that lies inside the physical
domain, namely Q5° = Qp N Qpnys (blue triangles in Figure 2).

The internal elements are standard FE elements and the affinity with
respect to the reference element is exploited in order to avoid the computa-
tional cost of creating their element matrices. For the elements cut by the

O External nodes

@® Internal nodes

B Integration subdomains
B Internal elements

Figure 2: Section of a 3D Cartesian grid showing the different types of ele-
ments and nodes.

boundary, due to the independence between the embedded geometry and the
mesh, as it is necessary to determine the relative position of the elements with
respect to the physical boundary, specific strategies are proposed to find the
intersections with the boundary and to perform the numerical integration.
Since the intersection process is a key step in our algorithm, Section 3 will
be devoted to giving a detailed explanation of its main aspects.

Regarding the integration of intersected elements in cgF’EM, we proposed
a strategy to perform the integration over Q5™° employing a tetrahedral-
ization of this region in each boundary element that incorporates the exact
boundary representation of Qppys. Numerical integration over the region Qphye
is then accomplished by integrating over each subdomain of the tetrahedral-
ization. The strategy proposed in the NURBS-Enhanced Finite Element
Method (NEFEM)[34, 35] is adopted to perform the integration over the
subdomains. As has been demonstrated in the previous work, this approach
can be successfully used in a Cartesian grid environment, giving it the abil-
ity to integrate the curved subdomains of domains parametrized by NURBS,
T-Spline or other parametric representations.

In cgFEM, Dirichlet boundary conditions are imposed using stabilized
Lagrange multipliers, or more precisely, the procedure chosen to impose the
constraints follows the technique proposed in [39]. This method is suitable
for h-refinement in the context of hierarchical Cartesian grids, where the
problem is stabilized by a functional added to the initial formulation.

3. Geometry-mesh intersection

As a logical consequence of the independence between the analysis mesh
and the geometrical model, the problem arises of discriminating the parts of
the mesh inside and outside the model. The simplest approach is to find the
intersections of the physical boundary with the edges of the Cartesian grid
elements. This is usually a simple problem when using a model described
by a tessellated boundary or a linear interpolation from implicit boundary
representations, as for example level-set functions. However, when dealing
with exact explicit representations, as in the present work, or high-order
implicit boundary representations[37], more sophisticated boundary-tracking
procedures are needed.

There are several methods available in the literature to evaluate the inter-
section between parametric surfaces and arbitrary rays. These are known as
ray-tracing strategies and are widely used by the computer graphics commu-
nity and the animation and videogames industries, whose need for better rep-
resentation technologies fostered the rapid proliferation of these techniques.

The ray-surface intersection is generally calculated in one of two ways,
according to the nature of the surface. If the surface is defined by a tessella-
tion, the ray-tracing is performed on the resulting set of triangular surfaces,
which is algebraically trivial. When using parametric surfaces, the curve-
surface intersection is solved directly, usually by a numerical method. There
are plenty of algorithms for ray-tracing parametric surfaces available in the
literature[40, 41, 42, 43, 44].

Here we propose a robust algorithm for finding the intersections of a
Cartesian grid and parametric surfaces. The algorithm includes the multi-
variate Newton method and incorporates criteria to minimize the disadvan-
tage of requiring an initial guess, which must generally be close to the root
itself. In this section, since we only need a basic version of the well known
Newton’s Method, we will focus on the details of how to make an accurate
initial guess for the intersections.

The process will be illustrated with an example. Figure 3a contains an
arbitrary parametric surface and its control points. Since we are using Carte-
sian grids, we need to intersect this surface with straight lines following di-
rections X, Y or Z only. In Figure 3b a set of axes defined along Z are
plotted that intersect the parametric surface.

In addition, we know that each one of the Cartesian axes will be defined
by two Cartesian planes, as shown in Figure 3c, where it can be seen that

(a) (b) (c)

Figure 3: Example of surface and Cartesian axes. (a) Parametric surface.
(b) Axes in direction Z. (c) Cartesian planes of an axis.

the intersection between a Y Z-plane, defined by the coordinate z, and a
X Z-plane, defined only by y, yields a Z-axis.

In order to make a good initial guess for every axis in the Cartesian grid we
have to choose points that would be close enough to the actual intersections.
To do this in an efficient way we will generate a triangulation of the surface
by evaluating a properly defined set of points, Figures 4b and 4a respectively.
The points and the subsequent triangulation are defined in the parametric
space and then projected onto the physical space in which the intersecting
planes are defined.

It is worth noting that if the triangulation is too coarse a Cartesian axis
could intersect the same triangle several times (illustrated in [30]). If the tri-
angle is defined in an area of the surface with curvature changes, considering
the same initial guess for different roots will prevent the convergence of the
Newton-Raphson algorithm to all the different roots. To avoid this situation,
we recommend that the distance between the set of points evaluated on the
surface be related to the distance between the Cartesian planes of the mesh,
and thus related to the element size.

In order to do this, we first evaluate the physical bounding box of each
surface. With this information, the bounding box of the embedding domain
and the maximum refinement level allowed by the user, we estimate how
many axes will be intersecting the surfaces. We set the number of points
that define the uniform grid, with the vertices of the auxiliary triangulation,
such as Np = 3 - maz {N%, N4, N4}, where N4 is the number of axis that

intersect the bounding box of the surface in each Cartesian direction. This
criterion has been successfully applied to different examples. In any case,
the user, to be able to capture any kind of curvature changes, could tune the
factor that multiplies N 4.

Figure 4: Procedure for the initial Newton-Raphson guess. (a) Arbitrary
discretization of the surface. (b) Triangulation generated. (c) Triangulation
and intersection planes. (d) 2D view of the level sets.

After obtaining the auxiliary triangulation we evaluate the level sets of the
intersection planes (Figure 4c) with respect to the points on the parametric

10

surface. In this way we will identify the position of the points with respect to
the two planes by evaluating the sign of the distances in the physical space.
This represents a trivial operation as it only requires comparing the global
coordinate of each point of the triangulation with the coordinates that define
the Cartesian planes. Figure 4d shows a view of the level sets calculated in
the parametric space. The signs of the distances to the planes XZ and Y 7
are in red and green, respectively. Our strategy consists of finding triangles
that are cut at the same time by the two planes defining the intersecting
axis.

Now, if every triangle T; of the triangulation is defined by the vertices
{Py, Py, P;} where the coordinates of P; are given by {P?, P/, P7} (Figure
ba), then we say that the triangle is cut by a plane when we can find vertices
on both sides of the plane at the same time, i.e., there is a change in the sign
of the vertices (Figure 5b). Otherwise, the triangle is not intersected when
the signs of all vertices are the same (Figure 5¢). As we have said, every axis
in the mesh is defined by two planes, so if a triangle is intersected by both
planes at the same time we will use it to make the initial guess of the axis
in question. Using these criteria, the area where we have to make the initial
guess for the axis for the case in Figure 4 can easily be identified (see Figure
5d).

It should be noted that the fact of not meeting the criteria does not
necessarily mean the intersection does not exist. Indeed, if we use a linear
triangulation to discretize an arbitrary parametric surface, it could happen
that a plane intersects the triangles that had not been detected by the previ-
ous criteria. An example of this can be seen in Figure 6a, where the sign of
the vertices indicate that the triangle is not intersected, but if we had con-
sidered the real definition of one edge of the triangle the intersection would
have existed.

To identify the intersection we introduce a new criterion based on the
distances of the vertices to the plane of intersection. Let C; be the maximum
length of the bounding volume defined by the vertices of the triangle T; such
that C; = max {CF,C},C?} where CF = max {P’} —min{P’} and C} and
C? are defined in the same way. Then, d;, dy and ds being the distances
from the vertices to a plane (Figure 6b), we say that if {|di|, |da|, |d3|} < C;,
the triangle is ambiguous because we cannot ensure the existence or non-
existence of the intersection. To eliminate this ambiguity we subdivide the
triangle and recalculate the criteria. This subdivision is recursively applied
until the ambiguity is eliminated. An extreme case will be the existence of

11

P2 - +
(a) (b) (c)
- + + +
3
25
- + + +
2
>15
- + + +
4
05
- + + +

Figure 5: Intersecting the Cartesian planes and the triangulation. (a) El-
ement of the triangulation. (b) Cutting plane. (c¢) Non-cutting plane. (d)
Target triangles for intersection.

tangent points as shown in Figure 7a. In this scenario, the subdivision will
continue and the procedure will stop when the triangle size is small enough to
assume the axis is tangent to the surface, Figure 7b. When a surface itself is
coplanar to Cartesian axes, see Figure 7c, the intersection of those axes have
to be circumvented to avoid the excessive subdivision due to the theoretical
presence of infinite intersections. In order to do this, it is possible to check if
a surface is defined along any Cartesian coordinate and if so, detecting any

12

Figure 6: Ambiguous intersection between triangles and planes. (a) Case of
intersection not detected. (b) Distances of points to plane.

axis contained in it is simple. The intersections evaluated on these surfaces
will come from the axes normal to the tangent plane, as pictured in Figure
7d.

Once we have identified all the candidate triangles to be intersected by
every axis in the mesh, we will choose their geometrical center in the para-
metric coordinates as the initial guess to evaluate the intersection. After
obtaining these initial points we will compute the intersections using the
Newton-Raphson method, as mentioned above. Regarding this iterative pro-
cess, when dealing with badly parametrized surfaces, the derivatives could
present rapid changes. The parametric space of a surface is defined, if nor-
malized, as a quadrilateral with dimensions [0, 1] x [0, 1]. Rapid changes in
the derivatives during the Newton-Raphson procedure could yield in iteration
parameters, {&;,7;}, outside the definition of the parametric space. To avoid
this situation we force the parameters to be 0 < {&,n;} < 1, allowing to
keep points that would be discarded in an intermediate stage of the process.

With the intersections evaluated, it is trivial to classify the nodes as
internal or external by simply marching along the edges of the Cartesian
grid and the classification of elements as internal, boundary or external,
is automatically achieved by counting the number of internal and external
nodes in each element.

It is important to understand that this intersection step is the keystone
to achieve overall robustness of the methodology. Both the generation of

13

(c) (d)

Figure 7: Treatment of tangent situations. (a) Axis tangent to a surface.
(b) Resulting subdivided triangulation. (c) Plane tangent to a surface. (d)
Intersection of normal axes only.

subdomains (see Section 4) and the geometrical refinement (see Section 5.1),
rely in the assumption of the quality of the information obtained during this
intersection step.

14

4. Integration patterns

The FEM requires the computation of integrals over the domain, (pyys,
and over its surface, I'. The numerical integration in the IBM requires special
attention as the mesh is usually independent of the geometry of the physical
domain.

As explained in [30], internal elements, 21, are standard finite elements in
which the integration is performed using a tensor product of one-dimensional
Gauss quadratures with the specified number of points in each direction.
Nevertheless, the contribution of the boundary elements, 2, requires spe-
cial attention as the integrals in these elements must be computed only
over the portion of the element that lies inside the physical domain, namely
Q% = Qg N QP (see Figure 1c). In fact, the independent generation of
the Cartesian grid with respect to the embedded geometry implies that the
region of each element intersected by the mesh lying inside the computation
domain, Q5™° can be extremely complex.

The approach proposed in [30] to perform the integration over QM con-
sists of employing a tetrahedralization of this region that incorporates the
exact boundary representation of {dpys. This strategy was inspired on the
Marching Cubes (MC) algorithm [45], which uses a set of templates for the
intersection between surfaces and the edges of cubes to define a surface tri-
angulation. Since a cube has 8 corners and each corner can have two states,
there are 28 = 256 possible types of intersection. By symmetry considera-
tions, this can be reduced to 15 basic cases (14 if we remove the case with
no intersections).

The idea is very simple; we start with the reference hexahedral element
in Figure 8, in which we have identified the 8 nodes and the 12 edges where
the intersections can appear. The algorithm will only allow one intersection
point with an edge, so the edge numbers in Figure 8 can also be considered as
possible intersection points. We extended the idea behind the MC algorithm
to create templates that define tetrahedralizations of the domain contained
in each boundary element. To represent these templates we will consider
that the CAD surface intersects the element edges at their midside point,
as shown in 8. Flat surface tetrahedrons will be considered to define the
templates.

Figure 9a shows an example of an integration pattern with an internal
node (red dot), 3 intersections (green squares) and 7 external nodes (blue
dots). With this set of nodes and intersections we can generate a tetrahe-

15

5

Figure 8: Numbering of nodes and edges in a reference element.

dralization, for example using the Delaunay tetrahedralization, to discretize
the element into subdomains (Figure 9b). We can deduce that all the ele-
ments that present the same configuration could share the same pattern of
tetrahedrons, so we only need to keep in the computers memory one set of
tetrahedrons for every configuration and use it multiple times.

In the previous study [30], it was assumed that the edges of the elements
are intersected, at most, once by the boundary of the physical domain. From
this premise, we need only 7 out of 14 templates of the original MC algorithm
(1,2,5,8,9, 11 and 14, see [45]). The seven patterns considered are depicted
in Figure 10. In the figures we can see the set of tetrahedra used for each
pattern and the corresponding nodal topologies. Colors identify internal
and external subdomains (or different materials in the case of multi-material
interfaces). The actual location of the intersections on the edges and curved-
face tetrahedrons exactly defining the CAD surface will be considered during
the integration process once the integration pattern has been determined.
Since we have found the intersections between the geometrical model and
the mesh, and thus the nodes that are internal or external to the body,
we can identify the intersection pattern for every boundary element in our
reference element.

16

(a) (b)

Figure 9: Integration pattern example. (a) Nodal and edge intersection
topology. (b) Tetrahedralization.

These patterns are valid when the elements are intersected by only one
surface, but in problems defined by arbitrary geometries there will be ele-
ments intersected by several surfaces at the same time. A common situation
is the existence of sharp features inside an element generated by the interfaces
of connecting surfaces, see Figure 11a. The proposed method is to evaluate
these elements individually, generating specific sets of tetrahedra, using for
instance a Delaunay procedure, as in Figure 11b.

Following [34], integration subdomains with several faces on different sur-
faces are split into tetrahedrons with only one face on a parametric boundary.
It is worth noting that subdivisions are only applied to design a numerical
quadrature. Two examples are presented to illustrate the proposed strategy.
The first example considers a tetrahedral element Q2 with two faces on dif-
ferent surfaces (P, — Py — Py on 'y and P, — Ps — P, on I') (see Figure 12).
In this example, we will use the only edge not lying on the boundary, edge
P, — Pj, to define its geometrical center Pg and generate two new subdomains
with only one face on the boundary.

The second example considers an element ()7 with three faces on different
surfaces, as represented in Figure 13. In this case, the subdomain is split into
three tetrahedrons using the geometric center Pr of the only face not lying
on any boundary (face P, — P, — P;). New subdomains are then defined as a

17

ol B

a) Configuration 1. b) Configuration 2.
c¢) Configuration 3. d) Configuration 4. e) Configuration 5.
f) Configuration 6. g) Configuration 7.

Figure 10: Intersection patterns inspired on the MC algorithm. Nodal topol-
ogy (left) and tetrahedralization (right).

Figure 11: Exception to the intersection patterns. (a) Element intersected
by several patches of a trapezoidal prism. (b) Detail of the resulting tetra-
hedralization.

18

Figure 12: Subdivision of tetrahedrons with two faces on different parametric
boundaries.

linear convex combination of Pr and original boundary faces of {27, having
at most one face on a parametric boundary.

Figure 13: Subdivision of tetrahedrons with three faces on different paramet-
ric boundaries.

The evaluation of these elements has a higher computational cost than
that of elements with standard patterns, however, the ratio of the amount
of elements with configurations not represented by the standard patterns to
the number of elements in the mesh is very low, in general. In addition,
the strategy presented allows both the consideration of sharp features and a

19

proper discretization, to integrate parametric boundaries through NURBS-
Enhanced rationale in an immersed boundary environment.

Remark 1. [t is worth mentioning, that for other piecewise boundary defini-
tions (surface triangulations for instance) FEAVox uses the linear version of
the subdomains generated to approximate the boundary, as depicted in Figure
14a. In these cases, a proper h-adaptive strategy of the boundary would be
necessary to improve geometrical accuracy. In addition, when it is important
to properly capture the piecewise boundary representation, then it is possi-
ble to apply the procedure proposed in this contribution,treat all the different
components of these surfaces as individual parametric surfaces, and gener-
ate a submesh, as shown in Figure 14b. Lastly, if the model is defined with
high-order piecewise polynomials we could always use the NEFEM integration
(Figure 14c). The last two options would yield excessive mesh refinements
and a higher computational cost due to the large number of unions between
surfaces, which implies the exclusive tetrahedralizations of more elements.

Figure 14: Treatment of a linear piecewise boundary within an element.
(a) Subdomains template. (b) Exclusive subdomain creation. (c¢) Exclusive
subdomain creation and NURBS-Enhanced integration.

In order to improve the robustness of the method we extend the previously
described concepts by assuming the existence of intersections on the nodes
of the element, or in other words, boundary nodes. These possibilities were
not considered in the first development and are very likely to exist when
dealing with complicated CAD geometries and h-adaptive mesh generation.
Although the exact intersection on the node is not, in general, very likely, we
can have many of these intersections due to the use of a geometrical tolerance,

20

so intersections of the surface with element edges within the geometrical
tolerance of the element nodes will be considered as intersections on the
nodes.

For example, if we take Configuration 1 in Figure 10a, we can quickly see
that we have as many options as intersections we can move to the nodes (see
Figure 15) the boundary nodes being the magenta dots.

(a) (b) (c)

Figure 15: Configuration 1. Different options when considering surface in-
tersections on boundary nodes. (a) One boundary node. (b) Two boundary
nodes. (c¢) Three boundary nodes.

In this contribution we propose a strategy to handle all these new pos-
sibilities using exactly the same number of stored patterns, i.e. the original
7 patterns. This is possible because of the relationship between boundary
nodes and intersections, and the latter with the integration patterns.

To explain the procedure we will use the Configuration 1 shown in Figure
9, which yields the cases seen in Figure 15. The numbering used is that of
the one defined in Figure 8.

Starting with the case shown in Figure 15a, the strategy follows the next
steps:

1. Position of nodes. We have to analyze the in/out topologies of the
element nodes. Assuming the red nodes are the internal ones, in Figure
15a we can observe that only node 1 is internal. With the position of
the nodes defined we can then identify the intersection pattern, in this
case Configuration 1 in Figure 10a.

2. Intersection topology. The intersection topology comes automatically
with the intersection pattern. In our example, Configuration 1 needs
intersection 1, 4 and 5 to be able to generate the tetrahedralization.

21

3. Boundary node connectivity. Each node is related to 3 intersections on
the edges shown in Table 1. In the example, the node on the boundary
is n°® 2, which is related to edges 1, 2 and 6.

Node | Related intersections on edges
1 1—4-5
2 1—-2-6
3 2—-3-7
4 3—-4-8
5 5—9—-12
6 6—9—10
7 7—10—-11
8 8—11—-12

Table 1: Relations between nodes and intersections.

4. Boundary node to intersection. Figure 15a shows that we only count
intersections 4 and 5, but Configuration 1 needs intersections 1, 4 and
5. Then, knowing that node 2 is related to intersections 1, 2 and 6,
in which 2 and 6 are not used in this pattern, we can assume that
intersection 1 is equivalent to node 2 when generating the pattern.

5. Tetrahedra generation. If we generate this reference tetrahedralization
with the coordinates of the boundary node 2 as intersection 1 included,
then the result will be similar to Figure 15a, but obviously if we use
the original set of tetrahedrons some of them will be collapsed (volume
zero) as the location of intersection 1 will coincide with node 2. These
zero-volume tetrahedrons will be removed because they will not add
anything to the integration step.

The cases represented in Figures 15b and 15c¢, in which each boundary
node will be related to a determined intersection, are further cases in which
the procedure could be used. This strategy will also work for all configura-
tions and not only for these simple cases.

Remark 2. [t is important to note that some patterns can yield the same
degenerated tetrahedralization. For example, in Figure 16a we have the orig-
inal intersection pattern of Configuration 2. If intersections 2 and 6 were on
node 2, the latter would become a boundary node, as in Figure 16b. The final
tetrahedralization will be equivalent to the one shown in Figure 15a, which

22

is topologically identical to the one obtained from Configuration 1 (Figure
15a), therefore leading to ambiguity. Although the tetrahedrons of both con-
figurations do not coincide, the result after the integration will be the same.
However, this case will not appear during the execution of the algorithm be-
cause if we compare Figures 16a and 160 we can observe how node 2 is
transformed from an internal (red dot) to a boundary node (magenta dot).
This violates the requirement of conserving the original in/out node topology,
so even though the result were correct, we do not allow it to avoid ambiguity
during the process.

(a) (b) (c)

Figure 16: Configuration 2. Degeneration equivalent to Configuration 1. (a)
Intersection pattern. (b) One boundary node. (c) Resulting tetrahedraliza-
tion.

To summarize; the strategy proposed will yield 3 different options, de-
pending on the case under study:

1. If the topology of the nodes and the intersected edges coincide with any
of the precomputed patterns and there are no boundary nodes, then
we directly use the standard pattern assigned.

2. If there is a match between the nodal in/out topology and the stored
patterns, and there is at least one boundary node present, we will
proceed as explained above to obtain the proper tetrahedralization from
an original pattern without adding computational cost.

3. When the intersection pattern of an element is not stored or there
are several surfaces intersecting the element, we will proceed with a
Delaunay tetrahedralization of the element.

23

5. Mesh refinement

As mentioned in Section 1, there are several strategies to tackle the mesh
refinement. In this contribution we propose a procedure based on the subdi-
vision of the integration region into successively smaller nested sub-regions,
thus modifying the density of elements to yield a more precise solution, keep-
ing the element polynomial order constant.

The three main components of the h-adaptive finite element analysis we
propose are:

1. Calculation of the parameters used to drive the subdivision process.
They could be geometrical parameters or we can use parameters ob-
tained from the finite element solution, for example, the estimated error
in energy norm or any other quantity of interest.

2. Mesh generation. Since we are using Cartesian grids independent of
the geometry we do not need to generate a new mesh from the be-
ginning, instead we stick to the first mesh and subdivide the elements
flagged by the parameters calculated. Note that we will consider mesh
conformity, i.e. the maximum refinement difference between two ele-
ments adjacent by face or edge is limited to one level, and Multipoint
constraints (MPCs)[46, 47] are used to enforce C° continuity between
adjacent elements of different levels.

3. Projection of variables from the old mesh to the new mesh. In this
case, our hierarchical data structure allows the automatic transference
of properties from old elements to new ones.

Then, the input to this A-refinement procedure is a uniform coarse mesh
and a prescribed limit to the refinement level. Both the initial level of the
mesh and the maximum level of refinement will be chosen by the user. We
propose a two-step adaptive meshing strategy:

1. Geometrical refinement to obtain the first mesh for the FE analysis.
The elements of the initial grid mesh will be refined following geomet-
rical considerations until a mesh properly adapted to the geometry is
obtained. This mesh will be the first mesh used for the FE analysis.

2. Solution based refinement. After the FE analysis of the first mesh, the
mesh refinement is guided by estimations of the error in the energy
norm or in magnitudes of interest evaluated from the FE solution.

24

5.1. Geometrical refinement

The refinement based on the features of the geometrical model is widely
used in FEA, since the user can easily identify where the mesh should be finer
to properly capture the boundaries of the models. For any kind of geomet-
rical representation, from tesselations to advanced parametric surfaces, it is
possible to define parameters to evaluate changes of curvature, small features
and any other characteristic that could influence the Finite Element solution
if the discretization is not properly defined on the boundaries of the models.
However, as in any other mesh generation task, choosing the proper element
size for different areas and obtaining a good quality mesh of a complicated
model would require a considerable amount of time.

Our idea is to take advantage of the information already obtained during
the boundary-mesh intersection step to evaluate the goodness of the mesh
even before the resolution and to ensure that the requirements imposed by
the integration procedure are fulfilled (such as the need to ensure that each
edge of a boundary element cannot contain more than one intersection with
the boundary). We have to clarify that during the intersection process the
geometry is intersected with several levels of refinement of the Cartesian grid.
For instance, if the user sets the initial and the maximum levels allowed to
levels 2 and 9, the geometry will be intersected in a preprocess stage with
a level 5 mesh, which includes the edges of coarser meshes. This is done
using the Newton-Raphson algorithm (see Section 3) and gives useful extra
information about the boundary. The remaining levels of refinement will be
intersected locally as they appear in the discretization.

We will illustrate the criteria implemented using 2D examples for clarity.

The first criterion is the simplest and the most frequently used. Figure
17 shows intersections with the elements of the current mesh as large green
squares, internal nodes of the actual element as red dots and external nodes
of the current element as blue dots. It also shows a virtual subdivision of the
element, up to the maximum level the user would allow, as well as the cor-
responding intersections of the boundary with the refined mesh, represented
by small green squares.

Figure 17a shows the unit normal vectors u calculated during the inter-
sections process. We know that in a 3D Cartesian system the components
of any unit normal vector (Z,y,2) are bounded in the interval [—1,1], so
the maximum span of variation within an element and for any of the Carte-
sian directions would be 2. Since we are interested in a relatively smooth
representation inside every element cut by the boundary, we can measure

25

® ® @
o

V\

%,

f WA

j a

@ @ * @
(a) (b)

Figure 17: Geometrical features within elements. Variation of unit vectors
with an (a) smooth boundary or a (b) sharp edge.

the variability of the unit normal vectors limiting the span, of this varia-
tion within an element, to a threshold value. From our experience, if the
variation of the components of the unit normal vectors exceeds the value
of 1, then the element cannot be considered valid and will be refined. Fig-
ure 17b gives another example, but in this case there is a sharp edge due
to the change of curve (surface in 3D). In this case we only need to mea-
sure the change of the unit normal vector of the union point to evaluate
the abruptness of the change of definition. When integrating the boundary
with NURBS-Enhanced techniques, this criterion is not very important due
to the ability of the proposed methodology to properly capture the volume,
but when dealing with other piecewise approximations this criterion is key to
obtaining good discretization of the mesh along the boundary, as mentioned
in Remark 1.

The next criterion completes the previous one and is related to the nature
of the problem. FEAVox was first implemented to solve linear elasticity
problems in which some internal corners could originate singularities and
produce large gradients when evaluating displacements or stresses. These
cases require an adequate discretization around the singularities to obtain
a better representation of the singular solution. In Figure 18a we see an
example of a corner, where F, is the intersecting point between the two curves
in the element, P; is the centroid of the intersections and P. = F,+ € being €

26

a differential of 4y + s (u; and 1y are unit normal vectors calculated in both
curves intersecting in Fy). Then the corner is re-entrant to the geometry,
thus a potential singularity, if |P; — P,| < |P; — Fp|. With this condition
we can assume that the corner is concave with respect to the material and
in this case a refinement around that point will be automatically generated,
see Figure 18b. In 3D this evaluation will occur at several points along the
intersections curve between surfaces.

® ! ® 0 '

@ Q@ o
(a) (b)

Figure 18: Identification of singularities. (a) Measure of distances. (b) Ex-
ample of refinement.

The ability to represent all the small features of a geometrical model is
very important for all mesh generators, especially if we aim to develop a
mesh generator in which the mesh is independent of the geometry. Figure
19a gives a clear example in which a small feature, a small ellipse in this case,
will not be considered during the integration due to the element size. Our
solution to this problem is to locally refine the elements of the mesh until the
intersections related to all the geometrical entities of the model are present
in the mesh, as shown in Figure 19b. To detect these small entities we have
to take into account that it is very easy to know if we are using intersections
of all the geometrical entities in the actual mesh and the ease of locating
points in the Cartesian elements using our hierarchical data structure.

The last refinement criterion comes naturally with the mesh generation
strategy implemented. As we explained in Section 4, only 7 out of the 14
configurations of the original Marching Cubes algorithm were taken into ac-

27

® o @ 9 © e o
(a) (b) (c)

Figure 19: Detection of small features. (a) Coarse element. (b) First step of
refinement. (c) Final step of refinement.

count because they refer to non-ambiguous configurations. In [30] we pre-
dicted the use of the ambiguous patterns to locate areas where refinement
was necessary. Obviously there will be cases where ambiguities will appear,
for instance with highly complicated geometries (see Figure 20a). In any
case, as good discretization will be necessary, we will refine these elements
to obtain simpler intersection patterns, as can be seen in Figure 20b. As
explained in Section 4, in a multi-body environment where we will need to
generate the integration subdomains exclusively for each body to ensure con-
sistency with the parametric spaces, the ambiguous patterns can be handled
as combinations of simple ones.

5.2. Error-based refinement

In FEM, the discretization error is defined as the difference between the
exact and the approximate solutions obtained from the finite element anal-
ysis, without taking into account the round-off and modeling errors. It is
commonly measured in terms of the energy norm, which represents the error
as a scalar quantity. In terms of stresses, the error in the energy norm, ||e||,
can be written as

lel| = \/ / (o4 — 0)TD (0, —)0 (1)

where D is the material stiffness matrix, o, is the FE stress field and o is
the exact stress field.

28

(a) (b)

Figure 20: Undefined pattern and elimination through refinement. (a) 2D
projection of the pattern. (b) Solution through refinement.

The error at each element can be evaluated by integrating (1) on each
individual element of the mesh. Let ||e”|| be the exact error in energy norm
of the element i. The following equation, where M is the total number of
elements in the mesh, relates the global and local errors

M
lell* = lle®||” (2)
=1

Several types of error estimators have been proposed in the literature de-
pending on the obtaining procedure: residual error estimators [1, 48, 49, 50|
use the residuals of the approximate solution to evaluate the error, the Con-
stitutive Relation Error (CRE) [51] consisting in the comparison of statically
admissible stress fields with kinematically admissible stress fields, the esti-
mators based on dual analysis [52, 53] and making use of two solutions of
the problems. Finishing the classification, we find the recovery based error
estimators. Proposed by Zienckevick and Zhu [54], these estimators use a
recovered solution, o*, instead of the exact solution o to measure the error
[55, 56].

Assuming that it is possible to write the previous convergence rates as a
function of the estimated errors, we could use the Zienkiewicz and Zhu (ZZ)

29

error estimator to reformulate (2), for the i*"-element, as

lef21l = \/ [(@1 =)D o o) 3)
Q)

where o* is a smoothed continuous stress field obtained using a 3D version
of the recovery technique presented in [57, 28].

The refinement algorithm makes use of the estimated element errors to
define a new mesh. The algorithm can be based on a type of optimality
criterion to obtain new meshes of the prescribed accuracy level. In this work
we propose a 3D generalization of the strategy presented in [54, 58] in which
the optimality criterion is that of equidistributing the error on the elements
of the new mesh. In [58] it was shown to be equivalent to the criterion
of minimization of the number of elements in the new mesh to reach the
prescribed error level with proper convergence rates. Let us assume that we
are in mesh n — 1 (current mesh) and we want to evaluate mesh n (new
mesh), then:

1/2(p+1 _d 2
h(i),n_lzh@_l[1]”P*){ lel]. }{ el } "
n = lelln_1 et

where the quantities are:

hs)_l is the size of the element 7 of the mesh n — 1,
A1 s the new element size of the mesh n obtained by the
subdivision of element 7 in the mesh n — 1,

M,,_1 is the number of elements in the mesh n — 1,

|le|| is the global error in energy norm of the mesh n.

|le]|n—1 is the global error in energy norm of the mesh n — 1,

le®]],,_1 is the error of the element i of the mesh n — 1,

p is the polynomial degree of the shape functions used,

d is the dimension of the problem (2 for 2D, 3 for 3D problems).

Replacing ||e”|| in (4) by the estimation given in (3) we obtain the prac-

tical formula to evaluate the new element sizes. After obtaining the element

size it is easy to find the refinement level necessary for the elements. Com-
plete details of the procedure to reach this expression are given in Appendix

A.

30

6. Numerical examples

This section gives a series of examples to demonstrate the applicability
and the performance of the proposed methodology for 3D problems when
the boundary of the domain is described by parametric surfaces. First, the
proposed strategy is applied for the numerical solution of a linear-elastic
problem, with an analytical solution and a simple geometry, to evaluate the
convergence of the method. Then an example of a mechanical component
will be described to show the applicability of the meshing procedure to more
complex geometries given by CAD models, including trimmed surfaces.

6.1. Convergence analysis

For this study we consider a thick-wall cylinder loaded with internal pres-
sure. The geometrical model for this problem is represented in Figure 21. A
linear-elastic analysis is performed on a domain given by a CAD model that
uses NURBS to represent the boundary. Only 1/4 of the section is modeled
together with the appropriate symmetry and plain strain boundary condi-
tions. The internal and external surfaces are of radius a and b with a = 5,
b = 20. Young’s modulus is £ = 1000, Poisson’s ratio is v = 0.3 and the
applied load P = 1.

Figure 21: Model of a cylinder under internal pressure. (a) Front view with
boundary conditions. (b) 3D model representation. (c) Example of analysis
mesh.

The exact solution in cylindrical coordinates for displacements and stresses

31

is given by:

P(1+v) v?
ur:m<r(l—2u)+7), w =0 (5)

P b P b
UT:kQ—l l_ﬁ s U¢:m 1+ﬁ ; Ul:V(UT+U¢)

(6)
where k = b/a, r = Va? + z2. Defining ¢ = arctan(z/z) we transform to
Cartesian coordinates:

Uy = Uy cos(o), u, =0, u, = u, sin(¢) (7)
0, = 0, co8(P)? + o4 8in ()2, o, = 0,sin(¢)? + oy cos(¢)?,
o,=v(0,+0,), Tur = (0, — 0p) sin(¢) cos(¢), Ter = Ty, = 0

The quality of the results will be assessed by evaluating the relative error
in the displacement field in energy norm, defined as

1/2

/Q (o, —o)D (o), —0)dQ

/ oD ladQ)
0

where o), and o are the FE (approximated) and the analytical stresses re-
spectively.

In the first analysis we will study the convergence for both tri-linear (L)
and tri-quadratic (Q20) elements in a set of uniformly refined meshes. For the
linear analysis, we will compare the NURBS-enhanced (NeApprox) geome-
try approximation with a linear approximation (LinApprox) of the geometry.
The linear approximation considers that the faces of the tetrahedrons, used
to integrate the boundary elements, are represented by flat facets. On the
other hand, for the analysis with tri-quadratic elements, we will compare
NURBS-enhanced and quadratic approximations (QuadApprox) of the ge-
ometry. In this case, the facets lying on the boundary will be approximated
with quadratic triangles.

Front views of the 3D meshes used in this simulation can be seen in
Figure 22. Table 2 summarizes the main features of the five computational

MNe = (8>

32

meshes. In particular, this table shows the number of elements that are
interior to the embedded domain (A) and the number of elements intersecting
the boundary of the embedded domain. Boundary elements can be separated
into elements integrated by templates (B) and elements for which an exclusive
tetrahedralization was necessary (C). In columns A to C we can find the
proportion of those elements with respect to the total number of elements in
the mesh. The last column shows the number of tetrahedra used to perform
the numerical integration (D).

] [| I

\ \ \

Figure 22: Front view of the first four meshes of the uniform refinement
process (L8 and Q20).

Mesh | Internal (A) | Boundary temp. (B) Boundary excl. (C) | Tetrahedra (D)
1 6 (10%) 2 (36.7%) 32 (53.3%) 569
2 162 (36.9%) 198 (45%) 80 (18.1%) 2225
3 | 2016 (61.7%) 1072 (32.9%) 176 (5.4%) 8369
1| 19440 (78.7%) 4896 (19.9%) 368 (1.4%) 33393
5 | 171368 (88.8%) 20904 (10.1%) 752 (1.1%) 133603

Table 2: Topology of the approximation meshes in terms of different types
of elements and subdomains.

Figure 23 shows the convergence of the relative error in energy norm
for both tri-linear and tri-quadratic elements with the different geometry
approximations. On the right plot in Figure 23 we show the convergence
rate of the exact error in energy norm of the FE solution as a function of the
number of degrees of freedom.

For problems with non-singular solution the theoretical predicted conver-
gence rate in energy norm is O(h?). Therefore, following the rationale of
[59], taking into account that the number of degrees of freedom (N) in 3D
is approximately inversely proportional to k3 the convergence rate can be
written as O(N~?/3). Hence, expressed in terms of the number of degrees of

33

0.8 —_—— B
10 b T .
<k ;1 E ——
= 806 [-
= £
5 ®
o o
£ =
M0k E é
g] 0415 o—nus i
o 0
sl sl ol () P Y S ETH! R R TTTY AT
10% 10* 10° 10° 10? 10* 10° 10°
Degrees of freedom Degrees of freedom
—eo— L8 LinApprox ~ —— L8-NeApprox —— L8 LinApprox =~ —— L8NeApprox
Q20-QuadApprox —— Q20-NeApprox Q20-QuadApprox — Q20-NeApprox

Figure 23: Cylinder convergence study. (Left) Relative error in energy norm.
(Right) Convergence rate.

freedom, the convergence rate of the error in energy norm is O(N~Y/3) for
tri-linear elements and O(N~2/3) for tri-quadratic elements.

The values of the convergence show almost optimal rates for both tri-
linear and tri-quadratic elements, and both isoparametric (linear/quadratic)
interpolation of the geometry and the NURBS-Enhanced approach.

Table 3 shows the computational cost of the different modules of the
FEA of the five meshes solved above with tri-linear elements (L8) and linear
approximation to the geometry. In particular, this table shows the compu-
tational cost of the geometry-mesh intersection, the integration of elements
(including the generation of mappings) and the solver step which gathers the
assembly and the resolution of the system of equations.

We can observe how the intersection stage reduces its weight while refin-
ing. In addition, the proportion of local mesh generation reduces because it
is related only to the interfaces between surfaces. Last, the computational
cost related to the resolution of the system of equations increases until it
becomes the most expensive part of the process.

It is interesting to note that both the isoparametric approach of the
boundary and the NURBS-Enhanced integration of the domain yield the
proper rates of convergence. Despite these similarities, in Figure 24 the ge-
ometrical errors obtained in the first four meshes CET‘I/I bve| compared. The

o

geometrical error has been calculated as ny (%) = “4— - 100, where V},

34

. Integration
Mesh | Intersection Internal Boundar%r Temp. | Boundary Excl. Solver
1 0.157 (22.1%) | 0.023 (3.2%) 0.076 (10.7%) 0.329 (46.3%) 0.125 (17.7%)
2 0.188 (13.1%) | 0.016 (1.1%) 0.411 (28.7%) 0.644 (45.0%) 0.172 (12.1%)
3 0.281 (6.4%) | 0.035 (0.8%) 1.909 (42.9%) 1.499 (33.7%) 0.718 (16.2%)
4 0.797 (3.4%) | 0.063 (0.3%) 9.147 (39.1%) 3.364 (14.3%) 10.056 (42.9%)
5 3.641 (0.8%) | 0.512 (0.2%) | 60.844 (14.8%) 9.228 (2.3%) 336.261 (81.9%)

Table 3: Computational cost breakdown. Meshes of tri-linear elements (L8)
and linear approximation of the geometry. Time measured in seconds.

is the volume integrated with the finite element mesh and V' is the exact
volume of the model shown in Figure 21. The global convergence of the
geometrical error for linear and quadratic approximations agrees with the
convergence rates expected. The oscillations observed during the analyses
can be related to the fact that the discretization of the external cylindrical
surface underestimates the volume and, in parallel, the discretization of the
internal cylindrical surface overestimates the volume. Since the mesh is fixed,
the refinement does not occur in the same uniform way in both surfaces thus
making more pronounced this effect in coarse meshes. NURBS-Enhanced vol-
ume integration shows a very low almost constant error during the process,
several orders of magnitude lower than approximating curved domains with
low degree approximations. These results show that the proposed approach
provides accurate integration of the domain, regardless of the refinement level
of the models.

Table 4 shows a comparison in terms of accuracy and computational cost
of different integration schemes for a given mesh. We use the mesh number
3 represented in Figure 22. We can observe that using the NEFEM approx-
imation allows to reduce dramatically the geometrical error when increasing
the number of Gauss points used to integrate the model. In exchange, the
computational cost is increased by a factor close to 4 and it does not vary
much independently of the number of Gauss points used for the NEFEM
approach. This can be explained because most cost related to NEFEM is de-
voted to ensure the proper collocation of points while their number is almost
irrelevant.

We also performed an h-adaptive refinement process guided by the local
error estimation in energy norm, as explained in Section 5.2. Figure 25 shows
the first four h-adapted meshes for tri-linear and tri-quadratic elements. In

35

—

2 3
Mesh number

—e— LinApprox —e— QuadApprox
NeApprox

Figure 24: Cylinder volume convergence study.

Approx. Type | Num. Gauss points | Error 5y (%) | Integration time (s)
Linear 35524 0.0052 3.440
NEFEM 69226 1.4968e-5 14.746
NEFEM 76187 5.5125e-7 14.871
NEFEM 81754 4.2966e-9 15.549
NEFEM 94282 1.2212e-11 16.025

Table 4: Computational cost and accuracy of different integration schemes.

Figure 26 we compare the results of uniform meshes and h-adapted meshes,
considering the NURBS-Enhanced approach. The figure shows the conver-
gence of the relative error in energy norm for both tri-linear and tri-quadratic
elements.

In the graphs it can be seen how the convergence for the h-adapted meshes
in the first stages of the refinement processes (in the pre-assymptotical range)
are above the optimal rate. This leads to reaching an specified error level
using fewer degrees of freedom and, hence, to a lower computational cost.

6.2. Geometrical refinement sample

With this problem our purpose is to show the performance of the h-
adaptive geometrical refinement process in more complex geometries. Nat-
urally, in this type of problem there is no available exact solution, so our
objective is to check whether the criteria proposed here provide a mesh suit-
ably adapted to the geometrical features of the model.

36

a) h-adaptive meshes for tri-linear elements (L8).

(
(b) h-adaptive meshes for tri-quadratic elements (Q20).

Figure 25: Front view of the first four meshes of the h-refinement process.

L 4 0—'
L 08+ .
101 E - = H
< F E g Y
o S E—
s 0 1 Boer 1
& g R,
0 | — H
10°E i “oaf : 1
N] >~ — 3
Cr vl ol Lol vl 1 0.2 Ll Lol il ol L
108 10* 10° 106 10° 10* 10° 106
Degrees of freedom Degrees of freedom
—e— [.8-Uniform —m— L8-Adapted —— L8-Uniform —— L8-Adapted
—4— Q20-Uniform —— Q20-Adapted —— Q20-Uniform — Q20-Adapted

Figure 26: Cylinder convergence study. h-adaptive case. (Left) Relative
error in energy norm. (Right) Convergence rate.

We used a complex model to test the proposed strategy. The model se-
lected represents a perforated screw, as shown in Figure 27, with a topology
as used in hydraulic applications. In this case, we restrained the displace-

37

ments of the surfaces in blue and applied a variable vertical force per unit
of area. The material was steel with Young’s modulus £ = 2,1 - 10°Pa and
Poisson’s ratio v = 0, 333.

(a) (b)

Figure 27: Model of a hydraulic screw. (a) CAD model and boundary con-
ditions. (b) Initial coarse mesh.

Figure 27b shows the coarse initial mesh used in the process. It can
be seen that this element size is unlikely to properly capture the features
of the screw threads. Figure 28a shows a refined mesh using the criteria
proposed here. The refinement properly captures the features of the model
and focuses on the re-entrant corners between surfaces. Figure 28b represents
the Von Mises stress field, where the stress concentration can be seen along
the singularities produced by the re-entrant corners of the model.

To make clear how boundary elements are treated, Figure 28c shows a
section of the refined mesh, distinguishing between internal elements (green)
and the integration subdomains of the cut elements conforming to the geom-
etry (blue). Figure 28d gives a detailed view of the section.

After the geometrical refinement, we move forward in the simulation with
a refinement based on the discretization error.

Table 5 summarizes the topological features of the meshes used for this

38

Wi

\
~

S

o

(c) (d)

Figure 28: Geometrical h-refinement. (a) Approximation mesh, (b) Von
Mises stress field, (c¢) section of the mesh and (b) detail of the integration
subdomains.

analysis. The first mesh is the geometrically refined mesh shown in Figure
28d and the second mesh corresponds to the one obtained from the error-
based refinement, see Figure 29b. It can be seen that, as in the previous
example, the percentage of boundary elements decreases from a high value
in the first mesh (obtained by geometrical refinement) to a considerably lower
value after the error-based h-adaptive refinement. Despite of complexity of
the model, with a high number of geometrical entities, the ratio of elements

39

requiring exclusive tetrahedralization with respect to the total number of
elements is only around 10% in the first mesh and further decreases to 2%
in the second mesh.

Mesh Internal Boundary temp. | Boundary excl. | Tetrahedra
1 9356 (48.4%) 8109 (41.9%) 1851 (9.7%) 73866
2 60223 (73.2%) | 21199 (25.7%) 720 (2.1%) 150633

Table 5: Topology of the approximation meshes in terms of different types
of elements and subdomains.

The global estimated error in energy norm for the first mesh is 20.86%.
Figure 29a shows the element-wise relative estimated error in energy norm.
For clarity we have plotted a section of the mesh to observe the distribution
of error also in the internal elements. The error map shows that the error
is larger along the singularities and the area where the Dirichlet conditions
where applied. These errors will drive the h-refinement process that will
result in the mesh shown in Figure 29b. We can observe higher density
of elements in this mesh compared to the first one analyzed. Figure 29¢
represent the Von Mises stress field. We can also observe that the highest
stress correspond to this mesh due to the better discretization. The estimated
error in energy norm obtained for this mesh is 13.76%. Due to the presence of
singularities in the problem the convergence rate is suboptimal, as expected.

7. Conclusions

This paper proposes a novel method of generating h-adapted meshes,
considering the exact 3D CAD boundary representation of the domain in an
immersed boundary framework in which a Cartesian grid is used to mesh the
embedding domain.

Details are included of the strategy used to compute the intersections
between the Cartesian grid and the exact geometry of the boundary of the
embedded domain. To perform the numerical integration in the region of the
cut elements internal to the physical domain, we propose the creation of a
submesh of tetrahedra in each of the elements cut by the boundary. For this,
we developed a system to obtain all possible configurations from only seven
basic patterns of tetrahedra. The algorithms used to refine the finite element
mesh are also described. First, in a preprocess step, the geometrical criteria
were chosen to obtain the proper refined mesh. Secondly, as a postprocess

40

d

S |

(b) (c)

Figure 29: Error-based h-refinement. (a) Element-wise error estimation, (b)
approximation mesh and (c¢) Von Mises stress field.

tool, an error based algorithm was adapted to obtain a new mesh considering
a prescribed error reduction and the error in the elements of the previous
mesh.

Two examples were given to demonstrate the potential and applicability
of the proposed methodology. The optimality of the approximation in terms
of error convergence rate, for both linear and quadratic elements, was corrob-

41

orated by the problem of a cylinder under internal pressure. The geometrical
error of different boundary approximations was also compared, showing the
accuracy and consistency of NURBS-Enhanced techniques and a model of a
hydraulic screw showed its ability to obtain refined meshes from geometrical
parameters.

Acknowledgements

The authors wish to thank the Spanish textitMinisterio de Economia y
Competitividad for the financial support received through Project DP12013-
46317-R and the FPI program (BES-2011-044080), also the Generalitat Va-
lenciana for the assistance received through Project PROMETEO/2016/007.

Appendix A. h-refinement criteria based on error estimation

This appendix contains further details on the process of finding the h-
refinement criterion based on error estimation. This algorithm originally
designed for 2D problems [58] has been adapted to 3D. The equations re-
sulting from the asymptotic rates of convergence of the FEM must first be
explained. During hA-refinement, for a uniformly refined succession of meshes,
the exact error, ||e||, is bounded as follows:

le]] < CLAm e & CyN=amined) (A1)

where N is the number of degrees of freedom; h is the characteristic element
size; p is the polynomial degree of the interpolation functions being used; C}
and Cy are positive independent constants; and A represents the intensity
of the singularities. The exponent of N is known as the asymptotic rate of
convergence and for a sequence of h-adapted meshes the bound of the exact
error takes the form[60]:

lef| < CyN—ie (A.2)

yielding the theoretical optimal convergence rate of the h-version of the FEM.

At the global level the ratio of the error in the new mesh to be created (n)
to the error in the current mesh (n — 1) is, considering (A.1), almost equal
to the ratio of the size of the elements to the power of ¢. In our study we
consider ¢ = p but, theoretically, assuming ¢ as a constant in the presence of

42

stress singularities is not appropriate. However, we allow that these results
are approximately valid, and use them in an adaptive refinement. That is,

lelln { fon]p (A3)

lelln1 Lhna

In the following we assume that the convergence shown in (A.3) is also
valid at the element level. We have assumed that the uniform refinement of

element ¢ of the current mesh, whose size is hff)_ 1, produces MP" ! elements

of size h{"! and that the following expression holds:

He(i),n—IHn hg),nfl p
le@flnr — | 29,

(A4)

where ||e®||,_; represents the error in the element i of the previous mesh,
and |le®"~1||,, represents the error in each of the new elements included in
the element i of the previous mesh. Therefore, if e, represents the error
in the new elements, the following relation is correct:

M”(li),nfl
le® = > e (A.5)
i=1
We use (A.4) to predict size of elements of mesh n created in each of the
elements of mesh n — 1 required to obtain the preset error in energy norm at
each of the new elements.

),

(i),n—1 1/p

He(i)Hn—l

To use this expression, we need the error of all the elements of the new
mesh contained in the space defined by element i in mesh n — 1, ||e®"=1|,,.

Besides the equations resulting from the asymptotic rates of convergence,
we also need to estimate the number of elements in the new mesh during
adaptive mesh refinement.

At the element level, if we consider a uniform refinement, the number of

elements ngi)’"fl of size hS)’"* in the new mesh n that are contained in the

43

element i of size hfjll of mesh n — 1 can be estimated as

. d
(3),n—1 h’(lz)

MOl [T (A7)
h,gz/)ﬂl_l

Hence, the total number of elements in the new mesh, M,,, will be

Mpy 1 Mo [0 1 d
M= MO Y [h(’?’"‘l] (A.8)
i=1 i=1 n
where M,,_; is the number of elements in mesh n — 1.

As assumed in (A.1), at the global level and considering a uniform refine-
ment, the number of elements in the meshes is inversely proportional to the
sizes of the elements to the power of d. That is

M,_1h% | ~ M,h? (A.9)
Taking into account (A.3), we can estimate the number of elements in
the new mesh as a function of the number of elements in the previous mesh:

Heunl] d“”
el

As previously mentioned, the strategy follows the idea of a nearly optimal
mesh in which the estimated error must be equidistributed on each element.
Instead of using the previous mesh, the error distribution is made on the
new mesh using Equation (A.10). This procedure seeks the definition of the
element sizes of the new mesh in such a way that we have the same absolute
error in each of its elements.

Using ||e?||,, as the exact error in each of the new elements, the global
absolute error of the new mesh can be written as

My
lellz = le|I} = Ma[le®]? (A.11)
=1

where M,, is the number of elements in the new mesh. Since on the new
mesh, |||, is the same for each new element, we obtain |e||? by the
following expression:

’ 1 712
100 = 5| el (A12)

44

Moreover, since we have Equation (A.10) to estimate the number of el-
ements in the new mesh, we estimate the error in each element of the new
mesh as:

() 1 1/2 ||e"£ld/2p)+1

19t = | 37— | (A13
Maa el

However, we need ||e?"~!||2. Taking into account that we must have

the same absolute error in each element of the new mesh, we can express
le® =112 in the following manner:

M’,(li),nfl
e = S el = M (A1)

=1

where M " is the number of new elements contained in the subdomain
defined by element ¢ of the mesh n — 1.

Next, taking into account that we can estimate M"Y with Equation
(A.7), we obtain the estimated error ||e®"1|, as

) n—11|2 hy) 1 L 2
le®@ =% ~ # le®1f2 (A.15)
Therefore, using Equation (A.13) we obtain ||e®"~!||,, by the following
expression:

let =], ~

i d/2 1/2 (d/2p)+1
h 1 n
] [] el (A.16)

hg)’n_l Mn—l d/2p

n—1

lel]

Finally using Equation (A.6) we obtain the new element size for each of
the elements of the previous mesh as

1/2(p+1 e Trd
i 1 /2(p+1) e[|, | 2?+ed ||e||n red (A.17)
n N NV lelln—1 [e®]]5-1

where all quantities are well defined.

45

References

1]

[10]

I. Babuska, C. Rheinboldt, A-posteriori error estimates for the finite
element method, International Journal for Numerical Methods in Engi-
neering 12 (1978) 1597-1615.

I. Babuska, C. Rheinboldt, Adaptive approaches and reliability esti-
mates in finite element analysis, Computer Methods in Applied Me-
chanics and Engineering 17-18 (3) (1979) 519-540.

M. Paraschivoiu, J. Peraire, A. T. Patera, A posteriori finite element
bounds for linear-functional outputs of elliptic partial differential equa-
tions, Computer Methods in Applied Mechanics and Engineering 150 (1-
4) (1997) 289-312.

P. Ladeveze, P. Rougeot, P. Blanchard, J. P. Moreau, Local error esti-
mators for finite element linear analysis, Computer Methods in Applied
Mechanics and Engineering 176 (1-4) (1999) 231-246.

M. Ainsworth, J. T. Oden, A posteriori Error Estimation in Finite Ele-
ment Analysis, John Wiley & Sons, 2000.

I. Babuska, B. Szabd, I. N. Katz, The p-version of the finite element
method, SIAM Journal on Numerical Analysis 8 (3) (1981) 515-545.

M. R. Dorr, The aproximation theory for the p-version of the finite
element method, SIAM Journal on Numerical Analysis 21 (6) (1984)
1180-1207.

B. Guo, I. Babuska, The h-p version of the finite element method, Com-
putational Mechanics 1 (1) (1986) 21-41.

J. E. Tarancoén, F. J. Fuenmayor, L. Baeza, An a posteriori error estima-
tor for the p- and hp-versions of the finite element method, International
Journal for Numerical Methods in Engineering 62 (1) (2005) 1-18.

C. O. Frederick, Y. C. Wong, F. W. Edge, Two-dimensional automatic
mesh generation for structural analysis, International Journal for Nu-
merical Methods in Engineering 2 (1) (1970) 133-144.

46

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

W. C. Thacker, A brief review of techniques for generating irregular
computational grids, International Journal for Numerical Methods in
Engineering 15 (9) (1980) 1335-1341.

M. A. Yerry, M. S. Shephard, Automatic three-dimensional mesh gen-
eration by the modified-octree technique, International Journal for Nu-
merical Methods in Engineering 20 (11) (1984) 1965-1990.

D. Meagher, Octree Encoding: A New Technique for the Representation,
Manipulation and Display of Arbitrary 3-D Objects by Computer, Tech.
Rep. IPL-TR-80-11 I, Rensselaer Polytechnic Institute (1980).

C. L. Jackins, S. L. Tanimoto, Oct-tree and their use in representing
three-dimensional objects, Computer Graphics and Image Processing
14 (3) (1980) 249-270.

L. J. Doctor, J. G. Torborg, Display techniques for octree-encoded ob-
jects, IEEE Comput. Graph. Appl. 1 (3) (1981) 29-38.

M. S. Shephard, W. J. Schroeder, A combined Octree/Delaunay method
for fully automatic 3D mesh generation, International Journal for Nu-
merical Methods in Engineering 29 (1) (1990) 37-55.

M. S. Shephard, M. K. Georges, Automatic three-dimensional mesh gen-
eration by the finite octree technique, International Journal for Numer-
ical Methods in Engineering 32 (4) (1991) 709-749.

C. S. Peskin, Numerical Analysis of Blood Flow in the Heart, Journal
of Computational Physics 25 (1977) 220-252.

L. Zhang, A. Gerstenberger, X. Wang, W. K. Liu, Immersed Finite
Element Method, Computer Methods in Applied Mechanics and Engi-
neering 293 (21) (2004) 2051-2067.

J. Parvizian, A. Diister, E. Rank, Finite Cell Method: h- and p- Exten-
sion for Embedded Domain Methods in Solid Mechanics, Computational
Mechanics 41 (1) (2007) 121-133.

A. Dister, J. Parvizian, Z. Yang, E. Rank, The finite cell method for
three-dimensional problems of solid mechanics, Computer Methods in
Applied Mechanics and Engineering 197 (45-48) (2008) 3768-3782.

47

22]

23]

[24]

[25]

[31]

D. Schillinger, M. Ruess, The finite cell method: A review in the con-
text of higher-order structural analysis of cad and image-based geomet-
ric models, Archives of Computational Methods in Engineering 22 (3)
(2015) 391-455.

J. Haslinger, D. Jedelsky, Genetic algorithms and fictitious domain
based approaches in shape optimization, Struc. Optim. 12 (1996) 257—
264.

K. Kunisch, G. Peichl, Numerical gradients for shape optimization based
on embedding domain techniques, Comput. Optim. 18 (1996) 95-114.

W. K. Liu, Y. Liu, D. Darell, L. Zhang, X. S. Wang, Y. Fukui,
N. Patankar, Y. Zhang, C. Bajaj, J. Lee, J. Hong, X. Chen, H. Hsu,
Immersed Finite Element Method and its Applications to Biological

Systems, Computer Methods in Applied Mechanics and Engineering
195 (13) (2006) 1722-1749.

W. K. Liu, S. Tang, Mathematical Foundations of the Immersed Finite
Element Method, Computational Mechanics 39 (3) (2007) 211-222.

A. J. Gil, A. Arranz-Carrenio, J. Bonet, O. Hassan, The Immersed
Structural Potential Method for Haemodynamic Applications, Journal
of Computational Physics 229 (22) (2010) 8613-8641.

E. Nadal, J. J. Rédenas, J. Albelda, M. Tur, J. E. Tarancén, F. J. Fuen-
mayor, Efficient Finite Element Methodology based on Cartesian Grids:
Application to Structural Shape Optimization, Abstract and Applied
Analysis 2013.

E. Nadal, Cartesian Grid FEM (cgFEM): High Performance h-adaptive
FE Analysis with Efficient Error Control. Application to Structural
Shape Optimization, PhD Thesis.

O. Marco, R. Sevilla, Y. Zhang, J. J. Rodenas, M. Tur, Exact 3D bound-
ary representation in finite element analysis based on Cartesian grids in-
dependent of the geometry, International Journal for Numerical Methods
in Engineering 103 (2015) 445-468.

L. Piegl, W. Tiller, The NURBS Book, Springer-Verlag, 1995.

48

32]

[33]

[34]

[35]

[36]

[37]

[41]

[42]

D. F. Rogers, An Introduction to NURBS: with Historical Perspective,
Elsevier, 2001.

T. W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-
NURCCs, ACM Transactions on Graphics (TOG) 22 (3) (2003) 477—
484.

R. Sevilla, S. Fernandez-Méndez, A. Huerta, NURBS-enhanced Finite
Element Method (NEFEM): A Seamless Bridge Between CAD and
FEM, Archives of Computational Methods in Engineering 18 (4) (2011)
441-484.

R. Sevilla, S. Fernandez-Méndez, A. Huerta, 3D-NURBS-enhanced Fi-
nite Element Method (NEFEM), International Journal for Numerical
Methods in Engineering 88 (2) (2011) 103-125.

L. Kudela, N. Zander, S. Kollmannsberger, E. Rank, Smart octrees: Ac-
curately integrating discontinuous functions in 3d, Computer Methods
in Applied Mechanics and Engineering 306 (1) (2016) 406-426.

T.-P. Fries, S. Omerovi¢, Higher-order accurate integration of implicit
geometries, International Journal for Numerical Methods in Engineering
106 (5) (2016) 323-371.

R. Sevilla, S. Fernandez-Méndez, A. Huerta, Comparison of High-order
Curved Finite Elements, International Journal for Numerical Methods
in Engineering 87 (8) (2011) 719-734.

M. Tur, J. Albelda, O. Marco, J. J. Rdédenas, Stabilized Method to
Impose Dirichlet Boundary Conditions using a Smooth Stress Field,
Computer Methods in Applied Mechanics and Engineering 296 (2015)
352-375.

J. T. Kajiya, Ray Tracing Parametric Patches, SIGGRAPH Comput.
Graph. 16 (3) (1982) 245-254.

D. L. Toth, On Ray Tracing Parametric Surfaces, SIGGRAPH Comput.
Graph. 19 (3) (1985) 171-179.

M. Sweeney, R. Bartels, Ray tracing free-form b-spline surfaces, IEEE
Computer Graphics and Applications 6 (2) (1986) 41-49.

49

[43]

[44]

[45]

[50]

T. Nishita, T. W. Sederberg, M. Kakimoto, Ray Tracing Trimmed Ra-
tional Surface Patches, SIGGRAPH Comput. Graph. 24 (4) (1990) 337—
345.

W. Barth, W. Stiirzlinger, Efficient ray tracing for Bezier and B-spline
surfaces, Computers & Graphics 17 (4) (1993) 423-430.

W. E. Lorensen, H. E. Cline, Marching Cubes: A High Resolution 3D
Surface Construction Algorithm, ACM SIGGRAPH Computer Graphics
21 (4) (1987) 163-1609.

J. F. Abel, M. S. Shephard, An algorithm for multipoint constraints in
finite element analysis, International Journal for Numerical Methods in
Engineering 14 (3) (1979) 464-467.

C. Farhat, C. Lacour, D. Rixen, Incorporation of linear multipoint con-
straints in substructure based iterative solvers. Part 1: a numerically
scalable algorithm, International Journal for Numerical Methods in En-
gineering 43 (6) (1998) 997-1016.

M. Ainsworth, J. T. Oden, A posteriori Error Estimation in Finite Ele-
ment Analysis, Vol. 142, John Wiley & Sons, Chichester, 2000.

P. Diez, N. Parés, A. Huerta, Recovering lower bounds of the error
by postprocessing implicit residual a posteriori error estimates, Inter-
national Journal for Numerical Methods in Engineering 56 (10) (2003)
1465-1488.

T. Gerasimov, M. Riiter, E. Stein, An explicit residual-type error es-
timator for Q 1 -quadrilateral extended finite element method in two-
dimensional linear elastic fracture mechanics, International Journal for
Numerical Methods in Engineering 90 (April) (2012) 1118-1155.

P. Ladeveze, D. Leguillon, Error estimate procedure in the finite element
method and applications, SIAM Journal on Numerical Analysis 20 (3)
(1983) 485-509.

O. J. B. Almeida Pereirea, J. P. Moitinho de Almeida, E. A. W. Maun-
der, Adaptive methods for hybrid equilibrium finite element models,

Computational Methods in Applied Mechanics and Engineering 176
(1999) 19-39.

50

[53]

[54]

[55]

[56]

O. J. B. Almeida Pereira, J. P. Moitinho de Almeida, A posteriori er-
ror estimation for equilibrium finite elements in elastostatic problems,
Computer Assisted Mechanics and Engineering Sciences 8 (2-3) (2001)
439-453.

O. C. Zienkiewicz, J. Z. Zhu, A Simple Error Estimator and Adaptive
Procedure for Practical Engineering Analysis, International Journal for
Numerical Methods in Engineering 24 (2) (1987) 337-357.

0. C. Zienkiewicz, J. Z. Zhu, The superconvergent patch recovery and a
posteriori error estimates. Part 1: The recovery technique, International
Journal for Numerical Methods in Engineering 33 (7) (1992) 1331-1364.

O. C. Zienkiewicz, J. Z. Zhu, The superconvergent patch recovery and
a posteriori error estimates. Part 2: Error estimates and adaptivity, In-
ternational Journal for Numerical Methods in Engineering 33 (7) (1992)
1365-1382.

J. J. Rodenas, M. Tur, F. J. Fuenmayor, A. Vercher, Improvement of
the superconvergent patch recovery technique by the use of constraint
equations: the SPR-C technique, International Journal for Numerical
Methods in Engineering 70 (6) (2007) 705-727.

F. J. Fuenmayor, J. L. Oliver, Criteria to achieve nearly optimal meshes
in the h-adaptive finite element mehod, International Journal for Nu-
merical Methods in Engineering 39 (23) (1996) 4039-4061.

O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu (Eds.), The Finite Element
Method: Its Basis and Fundamentals, Butterworth-Heinemann, Oxford,
2013.

I. Babuska, B. Szabd, On the rates of convergence of the finite element
method, International Journal for Numerical Methods in Engineering
18 (3) (1982) 323-341.

51

