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Abstract: To study the optical changes on hydrogel-silicone intraocular lenses (IOLs) 
resulting from loading them with dexamethasone. We used prototype hydrogel(pHEMA)-
silicone IOLs and loaded the matrices with an anti-inflammatory drug (dexamethasone). The 
optical properties we analyzed experimentally were a) modulation transfer function (MTF); b) 
spectral transmission; c) diopter power. These determinations were performed on drug-loaded 
IOLs, IOLs that had released the drug, and IOLs that had not been drug-loaded. Loading a 
hydrogel-silicone IOL with dexamethasone results in impairment of its optical qualities, in 
particular its MTF and spectral transmission, but not dioptric power. However, once the drug 
has been released, it almost recovers its initial optical properties. 
OCIS codes: (170.0170) Medical optics and biotechnology; (330.4460) Ophthalmic optics and devices; (170.4470) 
Ophthalmology. 
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1. Introduction 

Cataract surgery is one of the most common operations carried out on the elderly population 
in developed countries. At present, due to less invasive techniques that reduce surgical risks 
[1,2], the criteria for surgery indications have been extended, which has made this type of 
surgery even more usual. 

In general, cataract surgery is considered safe and effective, but as in other operations, 
there are certain effects associated with surgery that include, among others: pain, 
inflammation, infection, and possible intraocular hemorrhage [3]. Daily administration of 
anti-inflammatory and anti-infectious agents is often used to prevent or decrease these effects 
for at least three to four weeks after surgery [4]. Nonetheless, the bioavailability of these 
drugs, which are usually administered topically, is limited due to the rapid and extensive loss 
of their properties from the pre-corneal area caused by tear drainage and tear renewal. 
Moreover, the cornea is a highly effective barrier and it considerably hinders the penetration 
of the drug administered in this way. Consequently, after instillation of an ophthalmic drop, 
less than 5% of the drug penetrates the cornea and reaches the intraocular tissue since most of 
it is absorbed systematically through the conjunctiva and nasolacrimal duct, which in turn can 
give rise to serious secondary effects. In addition, most people who suffer from cataracts, 
especially elderly people or those who also suffer from arthritis, find it very difficult to 
administer eye drops correctly, which makes the effectiveness of the treatment even lower. As 
a result of all of these factors, many patients do not follow the established therapeutic 
treatment properly or they discontinue the treatment which considerably increases the risk of 
ocular complications. 

One way of solving this problem is based on developing a new generation of intraocular 
lenses (IOL) loaded with ophthalmic drugs that release the postoperative treatment into the 
eye [5–10] in a sustained and controlled way. This could eliminate the need for topical 
treatment and the risks associated with inadequate treatment compliance; it also increases the 
effectiveness of the medication as there is a constant and controlled intraocular release of the 
drugs. 

However, a point that has not been taken into account is that the drug-loaded IOL, whether 
eluting in the mass or on the surface, could modify the optical properties of the lens. The 
introduction of any type of aberration brought about by modifying its surface could change its 
capacity to form sharp images. Its spectral transmission could also be modified, causing a 
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change in the quantity of total light that reaches the retina and in its spectral composition. 
Drug-loading a lens can be beneficial, but it should not be detrimental to the main function of 
a lens, which is to form clear images on the retina. 

With a view to analyzing whether drug-loaded IOLs undergo changes in their optical 
properties, we determined experimentally the optical quality of anti-inflammatory 
(dexamethasone) loaded lenses by means of measuring the modulation transfer function 
(MTF) in vitro. This measurement has become the internationally accepted standard method 
for evaluating the performance of IOL image quality [11–13]. 

Subsequently, after the drug had been released, we again determined its MTF and 
compared the results. Finally, in order to evaluate the quality level in both cases, i.e., the 
drug-loaded IOLs and those that had released the drug, we compared their MTFs with the 
corresponding original IOLs, i.e., the non-treated IOLs. All these measurements were 
performed on 3 mm pupils to simulate diurnal vision. 

Furthermore, we determined the spectral transmission in each of the cases (the drug-
loaded IOL, the drug-released IOL, and the non-treated IOL) in order to establish whether 
there were any variations in intensity or spectral composition of the radiation that reaches the 
retina. Finally, we also analyzed if the power of the IOL underwent any change when it was 
drug-loaded. 

2. Methods 

2.1 Drug-loaded IOLs 

Non-commercial spherical monofocal intraocular lenses of 21 diopters and 0.24 mm thickness 
were used for this study. These prototype IOLs were supplied by AJL Ophthalmic S.A. 
(Vitoria, Spain). The IOLs were made of a hydrogel based on poly(2-
hydroxyethylmethacrylate) (pHEMA) and incorporated dexamethasone (DXM), an anti-
inflammatory agent, in the matrix. For preparation of the drug-loaded polymer matrix, an 
appropriate DXM dose was dissolved in a 2-hydroxyethyl methacrylate (HEMA, optical 
grade) solution under sonication and mild heat (0.005%, corresponding to drug solubility). 
Subsequently, ethyleneglycol dimethacrylate was incorporated in this solution as the cross-
linking agent (100 mM), and the mixture was degassed before the addition of 2,20-azobis(2-
methylpropionitrile) (AIBN) as the polymerization initiator. Subsequently, the mixture was 
injected into a rectangular mold, and thermo-polymerization took place at 60 °C for 1 h, 
resulting in a solid polymer plate with DXM homogeneously dispersed within the matrix [14]. 
The lenses were machined from this polymer base. The migration of the drug to the medium 
that surrounds it is produced by diffusion through the polymer matrix. The process depends 
on the initial DXM concentration within the IOL, and should extend till complete discharge of 
the drug. 

DXM release in PBS by diffusion through the polymer matrix was monitored by UPLC-
UV until complete discharge. For this purpose, a DXM-doped IOL (~20 mg) was introduced 
in a sterilized dialysis bag (32x20 mm, 12.4 kDa) with 2 mL of PBS. This bag was placed in a 
60 mL polypropylene container with 50 mL of PBS and heated in a water bath at 37 °C while 
shaking. Dialysis medium was completely replaced by fresh PBS at corresponding times for 
70 days. The experiment was carried out in triplicate. Afterwards, 10 mL of every dialysis 
sample were freeze-dried, reconstituted with ethanol and analyzed by reverse-phase high 
performance liquid chromatography (RP-HPLC) analysis in an Agilent 1220 Infinity LC 
coupled to a UV detector (λ = 240 nm) with an analytical column (Mediterranean Sea C18, 
3μm, 100 x 21 mm). The products were eluted utilizing a constant solvent mixture 
(CH3CN/H2O-TFA pH 4.5 50:50 v/v) at 0.8 mL/min. Triplicate analyses were run for every 
sample. 
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2.2 Modulation transfer function measurements 

The MTF measurements have been described by Artigas et al. [11]. Basically, the MTF was 
calculated from the cross line-spread function recorded with the OPAL Vector System (Image 
Science Ltd. Oxford, UK) by using fast Fourier transform techniques. The artificial eye model 
used simulated in vivo conditions of the anterior chamber, including an artificial cornea and a 
wet cell containing physiological solution where the IOL was positioned, following the setup 
required by EN/ISO 11979-2 [15]. The light source was confined to 546 nm [15]. The 
detector type used the Reticon K series silicone linear photo diode array 12.8 mm long with 
512 pixels. The best focus position was determined by measuring the variation of the MTF 
with focus at a spatial frequency of 20 c/mm. The MTF values were formed with an average 
of 16 array scans. The MTF measurements conformed to the requirements of the International 
Organization for Standardization [16,17]. Three prototype lenses were used to carry out the 
measurements in this study. Figure 1 shows three cross-line spread functions (LSF) that 
correspond to a dexamethasone-loaded IOL, the same drug-released IOL, and finally the other 
original IOL, i.e., non-treated and which is used as a control. 

 

Fig. 1. Cross Line Spread Function (LSF) of a dexamethasone-loaded IOL (left), LSF of a 
dexamethasone-loaded IOL that had subsequently released this drug (center), compared with 
the LSF of a similar, but non-treated IOL (right). 

2.3 Spectral transmission measurements 

The transmission curves were obtained by using a Perkin-Elmer Lambda 35 UV/VIS 
spectrometer. This apparatus can measure the spectrum from 200 nm onward, which means 
that spectral transmissions in UVA, UVB, and part of ultraviolet C (UVC) are accurately 
determined (precision is up to 1 nm). The integrating sphere is used, which means that all 
radiation that passes through the IOL, both direct and scattered, is collected by the detector. 
The air was taken as a reference to measure transmittance [18]. 

2.4 Dioptric power lens measurements 

To measure the IOL dioptric power, we used a focimeter with a negative lens and saline 
solution (0.9% NaCl) [19]. The focimeter is placed in a vertical position with a negative lens 
(−10D) with its concave surface facing upward and the saline solution inside the lens to make 
a “wet cell” where the IOL is placed. With this configuration (with no IOL test) if we focus 
the target on the focimeter, the power reading is −4.50 D instead of zero. The measurements 
will start centering the target with the divergent lens plus saline solution, then the IOL is 
introduced and the target is re-centered again by moving the IOL. The real IOL power is the 
result of subtracting 4.50 D from the focimeter reading. 

3. Results 

The ISO standards specify that MTF measurements should be performed on 3 mm pupils, 
which is the average of a human pupil in diurnal vision. 

Figure 2 shows the MTFs of the IOLs loaded with dexamethasone together with the MTFs 
of the same IOLs but which had released the drug, with reference to a perfect optical system, 
i.e., exclusively limited by diffraction. Each of these curves is the mean of three IOLs of the 
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same power and with an equal drug load. Moreover, Fig. 2 shows the MTFs of the drug-
released IOLs, compared with the MTF corresponding to a similar, non-treated IOL for a 3 
mm pupil. This comparison is for ascertaining whether the drug release makes the IOL reach 
the optical quality of the original IOL, i.e., non-treated. 

 

Fig. 2. MTF of a dexamethasone-loaded IOL, and MTF of a dexamethasone-loaded IOL that 
had subsequently released this drug, for a 3 mm pupil compared with the MTF of a similar, but 
non-treated IOL. Mean of three lenses. 

The ISO standards specify that the MTF minimum value for an IOL to have good optical 
quality is 0.43 for the spatial frequency of 100 c/mm and a 3 mm pupil. However, Felipe et al. 
[22] and Alarcon et al. [23] emphasize how non-predictive this ISO standard is since it only 
takes one spatial frequency (100 c/mm) as a parameter. This is why we also determined the 
Average Modulation (AM) [11,20,21] which is the mean value of the MTF calculated from 0 
to 100 c/mm, and the Strehl Ratio which is a parameter used classically for quantifying 
aberration effects 

Figure 3 shows the mean spectral transmissions of the original non-treated, the drug-
loaded, and the drug-released IOLs. 
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Fig. 3. Spectral transmission of drug-loaded, dexamethasone-released, and non-treated IOLs. 
Mean of three lenses. 

4. Discussion 

This study, as its title indicates, focuses exclusively on the optical properties of the lens, since 
our aim was to test whether loading an IOL with a type of drug (DXM) could impair the main 
function of a lens, which is to form images. 

The MTFs corresponding to the dexamethasone-loaded IOLs and 3 mm pupils (Fig. 2) are 
quite distant from those of a perfect optical system, i.e., only limited by diffraction, hence 
their quality is poor. 

If we now analyze these same IOLs but after they have released their dexamethasone load, 
we obtain the MTFs also shown in Fig. 2. In principle, the curves can be seen to draw nearer 
to the system limited by diffraction, i.e., their optical quality improves. This may mean that 
the dexamethasone impregnation does indeed affect the optical quality of the IOL. 

If we compare the MTFs corresponding to the drug-released IOLs with similar IOLs of the 
same power and thickness but which have not been drug-loaded (Fig. 2), we can see that the 
MTF of the drug-released IOLs is practically the same as that of a non-treated IOL. 

In order to evaluate these variations numerically, Table 1 shows the MTF values for the 
spatial frequency of 100 c/mm (ISO standard [15]) and also calculates the Strehl Ratio (SR) 
and the Average Modulation (AM) for 3 mm pupils and for the drug-loaded IOL, the drug-
released IOL, and the non-treated IOL. The dioptric powers measured for the different IOLs 
we analyzed are also included in Table 1. 
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Table 1. MTF value for drug-loaded, drug-released, and non-treated IOLs for a spatial 
frequency of 100 c/mm (MTF_100). Strehl Ratio (SR) value. Average Modulation (AM) 
value. Standard Deviation (SD). All the values for 3 mm pupils. IOL power in diopters 

(IOL Power). 

 Drug-loaded Drug-released Non-treated 
 3 mm (SD) 3 mm (SD) 3 mm (SD) 

MTF_100 0.259(0.027) 0.353(0.011) 0.382(0.050) 

SR 0.693(0.043) 0.820(0.014) 0.864(0.087) 

AM 0.508(0.023) 0.562(0.023) 0.581(0.052) 

    

IOL Power 20.68(0.14) 20.75(0.00) 20.68(0.14) 

In order to know if these variations in the MTF of the IOL can affect a patient's vision, 
Felipe et al. [22] demonstrated that for multifocal IOLs the eye’s tolerance to MTF decay is 
approximately 15% of the AM value and it would need to reach a 25% difference in the MTF 
for it to affect the visual acuity of the patient significantly. Although our case deals with 
monofocal IOLs, these data can be taken as a reference to ascertain the influence that 
variations in the MTF can bear on the real vision of the patient. For a 3 mm pupil and a spatial 
frequency of 100 c/mm the ISO standard [15] gives, as mentioned above, a minimum value of 
0.43 for the MTF of a monofocal IOL. The MTF mean value of the IOLs used in our study in 
these conditions is, however, 0.382, i.e., only 11% lower than the minimum value required, 
thus its optical quality remains good [21]. Moreover, as we stated above, measuring only one 
spatial frequency is not very significant [23,23] and in any case, our objective was to compare 
the optical quality of similar IOLs, some loaded with dexamethasone, others that had released 
the drug, and finally others that were non-treated which were used as controls. 

Then, when the IOL was loaded with dexamethasone its mean MTF was 0.259, i.e., 31% 
lower than the non-treated IOL, therefore the visual acuity of the patient may be 
compromised. When this IOL releases all the drug, its MTF value for 100 c/mm increases up 
to 0.353, i.e., only 8% less than for a non-treated IOL, which means that its optical quality 
reaches a similar level to that of the original IOL. The SR and AM values follow a similar 
pattern, as the Strehl Ratio gives a 20% lower MTF value for the loaded IOL than for the non-
treated IOL, but this MTF value increases when the drug is released up to a 5% lower value 
than the original IOL. With regard to the Average Modulation, these MTF values are 13% 
lower for the doped IOL than for the original and this value increases when the drug is 
released up to only 3% less than the original IOL. 

It seems logical to think that scattering causes the decrease in the MTF, which increases 
when the drug is released. On the other hand, since the dexamethasone incorporated in the 
polymer matrix is of a molecular nature and it is two or three orders lower than the 
wavelength used for measuring the MTF, λ = 546 nm (ISO standard), the scattering that is 
brought about cannot be excessive. This agrees with the experimental fact that the decrease in 
the MTF when the IOL is loaded, it is not very great. However, this hypothesis should be 
confirmed in future studies. 

The spectral transmission is hardly affected by the action of the drug load (Fig. 3). This 
Figure shows that the IOL incorporates a perfect cut-off filter [18], which totally filters out 
ultraviolet radiation, only a slight uniform decrease (approximately 3%) in the transmission in 
the visible spectrum when the IOL is drug-loaded can be observed. When the IOL releases the 
drug this small decrease is practically recovered. The difference between an unloaded IOL 
and a non-treated IOL is approximately 1%, which enters in the measurement error of the 
spectrophotometer. 
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In our study and as can be observed in Table 1, the dioptric powers of the IOLs are not 
affected by drug-loading as the measurements in drug-loaded, drug-released, and non-treated 
IOLs are always within the tolerated margin of error ( ± 0.4 D) [15] for IOLs. 

To sum up, when the matrix of a hydrophobic silicone-hydrogel IOL is loaded with 
dexamethasone its optical quality is affected because its MTF values for a 3 mm pupil 
(photopic vision) drop significantly. However, this optical quality is practically recovered 
when it releases the drug and almost reaches the values of that of a non-treated IOL. This 
would mean that the patient could have a lower visual acuity that would be restored in days as 
soon as the drug was released. The spectral transmission is hardly affected by dexamethasone 
loading, just a slight, uniform decrease in the visible spectrum is observed, which is recovered 
when the drug is released. Likewise, the power of the IOL is not affected by the drug-loading 
and its value always remains within the tolerable margin of error. 
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