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The generalized inverses of tensors and an

application to linear models
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Abstract

In this paper, we recall and extend some tensor operations. Then, the generalized
inverse of tensors is established by using tensor equations. Moreover, we investigate the
least-squares solutions of tensor equations. An algorithm to compute the Moore-Penrose
inverse of an arbitrary tensor is constructed. Finally, we apply the obtained results to
higher order Gauss-Markov theorem.
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1 Introduction

It is a well know definition that the Moore-Penrose inverse (see e.g. [1]) of a matrix A ∈ C
m×n

is a matrix X ∈ C
n×m which satisfies

(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA.

The Moore-Penrose inverse of A is unique and it is denoted by A†.
The Moore-Penrose inverse plays an important role in theoretic research and numerical

computations in many areas, including singular matrix problems, ill-posed problems, opti-
mization problems, and statistics problems [1, 2, 3, 4, 5, 6, 7, 8].

Operations with tensors, or multiway arrays, have become increasingly prevalent in recent
years. A tensor can be regarded as a multidimensional array of data [9], which takes the form

A = (ai1...im) ∈ R
n1×n2×···×np . (1.1)
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The order of a tensor is the number of dimensions. For the tensor A given in (1.1), its order
is p. The dimensions of a tensor also are known as ways or modes.

It was discovered that some important theoretical and practical problems of higher order
tensors are NP-hard [10]. So, it is natural to transform tensors to other simpler objects.
Traditionally, the well-known representations of tensors are the CANDECOMP/PARAFAC
(CP) [11, 12] and Tucker models [13]. CANDECOMP/PARAFAC (CP) decomposes a ten-
sor as a sum of rank-one tensors, and the Tucker decomposition is a higher-order form of
principal component analysis. Each model can be considered an extension of the singular
value decomposition (SVD) for matrices. Kolda et al. [14] introduced the fibers and slices
of tensors, which permits a better understanding of third-order tensors. Kilmer et al. [15]
explore an alternate representation based on matrix slices and the functions unfold(·) and
fold(·) on the third-order tensor, which permits to define several concepts (tensor transpose,
inverse, and identity, especially the multiplication of tensors). The multiplication of tensors
is a framework for tensor operations, which also leads to the notion of orthogonal tensors,
norm of a tensor and factorizations of tensors. Later, Kilmer et al. [16] extended these results
in [15] to p order tensors and concluded with two applications. The first application is image
deblurring, and the second one is video facial recognition.

Now, a question is natural. Can we extend the Moore-Penrose inverse of matrices to
tensors? By using the definitions given in [15, 16, 17] we will see that the answer to the
aforementioned question is “yes”.

In fact, this work is inspired by the papers [16] and [18]. In [18], the authors proposed an
image restoration method, which generalizes image restoration algorithms that are based on
the Moore-Penrose solution of certain matrix equations. The approach presented in [18] is
based on the usage of least-squares solutions of these matrix equations, wherein an arbitrary
matrix of appropriate dimensions is included besides the Moore-Penrose inverse. It is nature to
define the Moore-Penrose inverse of higher order tensors by using the t-product constructed
in the work [16] and establish the least-squares solutions of tensors in order to tackle the
difficult 3-D image deblurring problem.

This work is organized as follows. In Section 2, we provide some preliminaries. We
introduce the t-product of two tensors firstly. Then, we show the definitions of the identity
tensor, the orthogonal tensor, the symmetric tensor, the f -diagonal tensor and the inverse,
the transpose, the Frobenius norm of a tensor. Examples are also given to illustrate these
definitions.

In Section 3, we define the Moore-Penrose inverse of the tensors. Then, we prove that the
Moore-Penrose inverse of an arbitrary tensor A exists and is unique by using the technique
of fast Fourier transform. Then, we present some properties of the Moore-Penrose inverse of
tensors and establish some representations of {1}-inverses, {1, 3}-inverses and {1, 4}-inverses
of tensors.

In Section 4, we study the tensor equations. We give the least-squares solutions of an
inconsistent tensor equation, the minimum-norm solution of a consistent tensor equation and
the minimum-norm least-squares solution of an arbitrary tensor equation. Furthermore, the
relations of the least-squares solutions with {1, 3}-inverses of A, the minimum-norm solutions
with {1, 4}-inverses of A and the minimum-norm least-squares solution of the Moore-Penrose
inverse of A are established.

In Section 5, we construct an algorithm to compute the Moore-Penrose inverse of an
arbitrary tensor. Supplementary example is given to test the algorithm.

In Section 6, we derive an application to linear models. We define the random tensor, the
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expectation and covariance tensor of a random tensor, and then establish the linear model for
tensors. In addition, we show how the Moore-Penrose inverse of tensors works for the higher
order Gauss-Markov theorem.

2 Preliminaries

Throughout this paper tensors are denoted by Euler script letters (e.g., A, B, C,...), while
capital letters represent matrices, boldface lowercase letters represent vectors, and lowercase
letters refer to scalars.

Let c ∈ Rn. Recall that if c =
[
c1 c2 ... cn

]T
, then

circ(c) =




c1 cn · · · c2
c2 c1 · · · c3
...

...
...

cn cn−1 · · · c1




is a circulant matrix. Similarly, if C1, ..., Cn are n1 × n2 real matrices, then

circ(C1, ..., Cn) =




C1 Cn · · · C2

C2 C1 · · · C3
...

...
...

Cn Cn−1 · · · C1


 .

Let A = (ai1...im) ∈ R
n1×n2×···×np , p > 1. For i = 1, ..., np, denote by Ai ∈ R

n1×n2×···×np−1 ,
the tensor whose order is (p− 1) and is created by holding the pth index of A fixed at i. For
example, let A be a 2×2×2×3 tensor. Fixing the 4th index of A. One can get three 2×2×2
tensors, which are A1, A2, A3 and with elements

A1 : a1111 a1211 a2111 a2211 a1121 a1221 a2121 a2221,

A2 : a1112 a1212 a2112 a2212 a1122 a1222 a2122 a2222,

A3 : a1113 a1213 a2113 a2213 a1123 a1223 a2123 a2223,

respectively.
Define unfold(·) to take an n1 ×n2 × · · · ×np tensor and return an n1np×n2 × · · · ×np−1

block tensor in the following way:

unfold(A) =




A1

A2
...

Anp




and fold(·) is the inverse operation, which takes an n1np × n2 × · · · × np−1 block tensor and
returns an n1 × n2 × · · · × np tensor. Then,

fold(unfold(A)) = A.

3



Now, one can create a tensor in a block circulant pattern, where each block is a tensor
whose order is (p − 1):

circ(unfold(A)) =




A1 Anp Anp−1 · · · A2

A2 A1 Anp · · · A3
...

...
...

...
Anp Anp−1 Anp−2 · · · A1


 , (2.1)

which is an n1np × n2np × · · · × np−2np × np−1 tensor.
The formula (2.1) allows us to define the t-product of two tensors.

Definition 2.1 [16] Let A ∈ R
n1×n2×···×np and B ∈ R

n2×l×n3×···×np. Then the t-product
A ∗B is the n1 × l × n3 × · · · × np order-p tensor (p ≥ 3) defined recursively as

A ∗B = fold(circ(unfold(A)) ∗ unfold(B)). (2.2)

Notice that the right-hand side in (2.2) involves a t-product of order-(p−1) tensors. Each
successive t-product operation therefore involves tensors of one order less. The recursive
multiplication structure eventually reduces to standard matrix multiplication of blocks of
block circulant matrices.
Example 2.1. Let A ∈ R

3×3×2×2 and B ∈ R
3×3×2×2. Then,

A ∗B = fold

([
A1 A2

A2 A1

]
∗

[
B1

B2

])

= fold

([
A1 ∗B1 +A2 ∗B2

A2 ∗B1 +A1 ∗B2

])

= fold







fold

([
A11 A12

A12 A11

]
∗

[
B11

B12

])
+ fold

([
A21 A22

A22 A21

]
∗

[
B21

B22

])

fold

([
A21 A22

A22 A21

]
∗

[
B11

B12

])
+ fold

([
A11 A12

A12 A11

]
∗

[
B21

B22

])







= fold







fold

([
A11 ∗B11 +A12 ∗B12

A12 ∗B11 +A11 ∗B12

])
+ fold

([
A21 ∗B21 +A22 ∗B22

A22 ∗B21 +A21 ∗B22

])

fold

([
A21 ∗B11 +A22 ∗B12

A22 ∗B11 +A21 ∗B12

])
+ fold

([
A11 ∗B21 +A12 ∗B22

A12 ∗B21 +A11 ∗B22

])






.

Obviously, the t-product of A and B eventually reduces to some 3× 3 matrix multiplications
as one can see in the last equality. �

How to compute this new product? Martin et. al., [16] also gave the answer based on the
well known fact that block circulant matrices can be block diagonalized by using the Fourier
transform. See [16, Algorithm T-MULT] for details.

It is easy to check the following basic properties of the t-product.

Lemma 2.1 If A,B,C are tensors of adequate size, then the following statements are true:

(a) (The left distributivity): A ∗ (B+ C) = A ∗B+A ∗ C;

(b) (The right distributivity): (A+B) ∗ C = A ∗ C+B ∗ C;
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(c) (The associativity): (A ∗B) ∗ C = A ∗ (B ∗ C).

Definition 2.2 [16] The n×n×n3×· · ·×np order-p (p ≥ 3) identity tensor I is the tensor
such that I1 is the n×n×n3 × · · · ×np−1 order-(p− 1) identity tensor and Ij , j = 2, 3, ..., np
is the n× n× n3 × · · · × np−1 order-(p − 1) zero tensor.

Example 2.2. The 4× 4× 3× 2 identity tensor I has the following form:

I = fold

([
I1

O2

])
= fold







fold





I11

O12

O13






O22

O23






,

where I11 is the 4 × 4 identity matrix and Oij is a tensor all of whose components are zero.
�

The following result is easy to check.

Lemma 2.2 [16] Let I be an n× n× n3 × · · · × np order-p (p ≥ 3) identity tensor. Then,

I ∗A = A ∗ I = A.

Definition 2.3 [16] Let A ∈ R
n×n×n3×···×np. If there exists an order-p (p ≥ 3) tensor

B ∈ R
n×n×n3×···×np such that

A ∗B = I and B ∗A = I,

then A is said to be invertible. Moreover, B is the inverse of A, which is denoted by A−1.

In fact, the inverse of an invertible tensor is unique.

Lemma 2.3 If A ∈ R
n×n×n3×···×np (p ≥ 3) is invertible, then its inverse tensor is unique.

Similar as the transpose of real matrices, the transpose of tensors can be defined.

Definition 2.4 [16] If A ∈ R
n1×n2×···×np, then the transpose of A, which is denoted by AT ,

is the n2×n1×n3×· · ·×np tensor obtained by tensor transposing each Ai, for i = 1, 2, . . . , np
and then reversing the order of the Ai from 2 through np, i.e.,

AT = fold







AT
1

AT
np

AT
np−1

...
AT

2






. (2.3)
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Example 2.3. Let A be a 4× 4× 3× 3 tensor. Then

AT = fold






AT
1

AT
3

AT
2




 = fold







fold






AT
11

AT
13

AT
12






fold






AT
31

AT
33

AT
32






fold






AT
21

AT
23

AT
22












. (2.4)

So, the transposition of the order-4 tensor A eventually reduces to some 4 × 4 matrix trans-
positions as above. �

Lemma 2.4 [16] Suppose that A, B are two tensors such that A∗B and BT ∗AT are defined.
Then

(A ∗B)T = BT ∗AT . (2.5)

The following definitions are useful in establishing the main results.

Definition 2.5 Let A ∈ R
n×n×n3×···×np. We say that A is symmetric if AT = A.

Definition 2.6 Let A ∈ R
n×n×n3×···×np be a symmetric tensor. If there exists a tensor

X ∈ R
n×1×n3×···×np such that all the elements of the tensor ZTAZ are nonnegative, then A is

called positive semi-definite.

Definition 2.7 [16] An n× n× n3 × · · · × np order-p tensor Q is orthogonal if

QT ∗ Q = Q ∗ QT = I.

Definition 2.8 [16] Let A = (ai1...ip) ∈ R
n1×n2×···×np. Then, the Frobenius norm of A is

‖A‖2F = AT ∗A =

n1∑

i1=1

n2∑

i2=1

· · ·

np∑

ip=1

a2i1...ip . (2.6)

Definition 2.9 Let A = (ai1...ip) ∈ Rn1×n2×···×np . Then, A is called an f-diagonal tensor
if ai1i2...ip = 0 when i1 6= i2. Furthermore, {ai1i2...ip|i1 = i2} are call the t-diagonal entries of
A.
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Example 2.4. Let A ∈ R
3×4×2×2 with the following form:

A = fold

([
A1

A2

])
= fold







fold

([
A11

A12

])

fold

([
A21

A22

])







= fold







fold







a1111 0 0 0
0 a2211 0 0
0 0 a3311 0

a1112 0 0 0
0 a2212 0 0
0 0 a3312 0







fold







a1121 0 0 0
0 a2221 0 0
0 0 a3321 0

a1122 0 0 0
0 a2222 0 0
0 0 a3322 0













.

Then, A is a f -diagonal tensor. �
By the tensor operations constructed and the definition of the linear space, it is easy to

get the following result.

Lemma 2.5 The tensor space R
n1×n2×···×np is a linear space under the addition of tensors

“ + ” and the t-product of tensors “ ∗ ” .

3 The Generalized Inverse of Tensors

The t-product of two tensors presented in Definition 2.1 allows us to obtain the Moore-Penrose
inverse of an arbitrary tensor A.

Definition 3.1 Let A ∈ R
n1×n2×···×np. If there exists a tensor X ∈ R

n2×n1×n3×···×np such
that

(1) A∗X∗A = A (2) X∗A∗X = X (3) (A∗X)T = A∗X (4) (X∗A)T = X∗A, (3.1)

then X is called the Moore-Penrose inverse of the tensor A and is denoted by A†.

For any A ∈ R
n1×n2×···×np , denote A{i, j, . . . , k} the set of all X ∈ R

n2×n1×n3×···×np which
satisfy equations (i), (j), . . . , (k) of (3.1). In this case, X is a {i, j, . . . , k}-inverse.

If A is invertible, it is clear that X = A−1 trivially satisfies the four equations.
It is worth noting that the order k{1} inverse of tensors defined by Sun et al. [19, Definition

2.1] and the Moore-Penrose inverse of tensors defined by Sun et al. [20, Definition 2.2] differ
from the topic we focused. This is due to the different products of tensors adopted. Sun et al.
[19, Definition 2.1] and Sun et al. [20, Definition 2.2] follow the products of tensors defined
by Shao [21] and Einstein [22], respectively while we employ the t-product of tensors defined
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by Martin et al. [16]. Different definitions on the generalized inverses of tensors may have
different applications.

In the following, we will show the existence and uniqueness of the Moore-Penrose inverse
of a tensor A.

In the next proof we will use the Kronecker product, symbolized as ⊗. Its use in the
t-product can be viewed in [15, 16].

Theorem 3.1 The Moore-Penrose inverse of an arbitrary tensor A ∈ R
n1×n2×···×np exists

and is unique.

Proof: We prove the existence of the Moore-Penrose inverse of an arbitrary tensor by
construction. For A ∈ R

n1×n2×···×np , let Ã be the (n1n3n4 · · ·np × n2n3 · · ·np) matrix at the
base level of recursion in [16, Figure 3.2]. Let Fni

be the ni × ni discrete Fourier transform
(DFT) matrix and define F = Fnp ⊗ Fnp−1

⊗ · · · ⊗ Fn3
and ρ = n3 · · ·np. Then there exist

matrices D1, . . . ,Dρ whose size is n1 × n2, possibly with complex entries, such that

(F ⊗ In1
)Ã(F ∗ ⊗ In2

) = blockdiag(D1, . . . ,Dρ) =



D1

. . .

Dρ


 .

Let Di = UiΣiV
T
i be the SVD of each Di, i = 1, ..., ρ and for each Σi = (σijk), we define the

matrices Ri = (rijk), for i = 1, ..., ρ, as follows

rijk =

{
1

σi
jk

, if σijk 6= 0,

0, if σijk = 0.

Observe that Ri = Σ†
i for i = 1, . . . , ρ. Let Xi = ViRiU

T
i for i = 1, . . . , ρ. Now, we have



X1

. . .

Xρ


 =



V1

. . .

Vρ






R1

. . .

Rρ






UT
1

. . .

UT
ρ


 . (3.2)

Apply (F ∗ ⊗ In1
) to the left and (F ⊗ In2

) to the right of each of the block diagonal matrices
in (3.2). One has X̃ = Ṽ R̃ŨT , where X̃, Ũ , R̃ and Ṽ are matrices with same pattern as Ã.
Employ the defined function fold(·) to each matrix in the equality X̃ = Ṽ R̃ŨT in order to
have X = V∗R∗UT , where U, V are orthogonal n1×n1×n3×· · ·×np, n2×n2×n3×· · ·×np
tensors, respectively, and R is an n2 × n1 × n3 × · · · × np f -diagonal tensor. One can check
that X satisfies (3.1).

On the other hand, let X1 and X2 be solutions of (3.1). One has

X1 = X1 ∗A ∗X1 = X1 ∗ (A ∗ X2 ∗A) ∗ X1 = X1 ∗ (A ∗X2)
T ∗ (A ∗X1)

T

= X1 ∗ (A ∗ X1 ∗A ∗ X2)
T = X1 ∗ (A ∗ X2)

T

= X1 ∗A ∗X2

= X1 ∗ (A ∗ X2 ∗A) ∗X2 = (X1 ∗A)T ∗ (X2 ∗A)T ∗ X2

= (X2 ∗A ∗ X1 ∗A)T ∗ X2 = (X2 ∗A)T ∗X2

= X2 ∗A ∗X2 = X2.

Therefore, the Moore-Penrose inverse of A is unique. �
The following lemma is proved in [16, Theorem 4.1] and called T-SVD of a tensor.
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Lemma 3.1 [16, Theorem 4.1] Let A ∈ R
n1×n2×···×np. Then A can be decomposed as

A = U ∗ S ∗ VT (3.3)

where U, V are orthogonal n1×n1×n3×· · ·×np, n2×n2×n3×· · ·×np tensors, respectively,
and S is an n1 × n2 × · · · × np f -diagonal tensor.

In fact, the tensor R obtained in the proof of Theorem 3.1 is the Moore-Penrose inverse
of the tensor S. So, the following is straightforward.

Corollary 3.1 Let A be a tensor and factorized as A = U∗S∗VT , where U, V are orthogonal
tensors and S = (si1...ip) is f -diagonal tensor. Then,

A† = V ∗ S† ∗ UT .

In the following, we will state some properties of the Moore-Penrose inverse of tensors and
some representations of {1}-inverses, {1, 3}-inverses and {1, 4}-inverses of tensors. Since the
proofs are similar as matrices, we omit them here. The reader can refer to [1].

Theorem 3.2 Let A ∈ R
n1×n2×···×np. Then, the following statements are true:

(a) (A†)† = A.

(b) (AT )† = (A†)T .

(c) (A ∗AT )† = (AT )† ∗A†, (AT ∗A ∗AT )† = (AT )† ∗A† ∗ (AT )†.

(d) A† = AT ∗ (A ∗AT )† = (AT ∗A)† ∗AT .

(e) X ∈ AT {1} if and only if XT ∈ A{1}.

Theorem 3.3 Let A ∈ R
n1×l×n3×···×np, B ∈ R

m×k×n3×···×np and D ∈ R
n1×k×n3×···×np. Then

the tensor equation
A ∗ X ∗B = D

is consistent if and only if exist A(1) ∈ A{1}, B(1) ∈ B{1} such that

A ∗A(1) ∗D ∗B(1) ∗B = D

in which case the general solution is

X = A(1) ∗D ∗B(1) + Y−A(1) ∗A ∗ Y ∗B ∗B(1) (3.4)

for arbitrary Y ∈ R
l×m×n3×···×np.

Theorem 3.4 Let A ∈ R
n1×n2×···×np. The set A{1, 3} consists of all solutions for X of

A ∗ X = A ∗A(1,3), (3.5)

where A(1,3) is an arbitrary element of A{1, 3}.
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Theorem 3.5 Let A ∈ R
n1×n2×···×np. The set A{1, 4} consists of all solutions for X of

X ∗A = A(1,4) ∗A, (3.6)

where A(1,4) is an arbitrary element of A{1, 4}.

Corollary 3.2 Let A ∈ R
n1×n2×···×np, A(1) ∈ A{1}, A(1,3) ∈ A{1, 3} and A(1,4) ∈ A{1, 4}.

Then, the following statements are true:

(a) A{1} = {A(1) + Z−A(1) ∗A ∗ Z ∗A ∗A(1) : Z ∈ R
n2×n1×n3×...×np}.

(b) A{1, 3} = {A(1,3) + (I−A(1,3) ∗A) ∗ Z : Z ∈ R
n2×n1×n3×···×np}.

(c) A ∗A(1,3) = A ∗A†.

(d) A{1, 4} = {A(1,4) + Z ∗ (I−A ∗A(1,4)) : Z ∈ R
n2×n1×n3×···×np}.

(e) A(1,4) ∗A = A† ∗A.

(f) A† = A(1,4) ∗A ∗A(1,3).

4 The Least-squares Solutions of Tensor Equations

By Theorem 3.3, the tensor equation A ∗ X − B = 0 has a solution if and only if exists
A(1) ∈ A{1} such that A ∗A(1) ∗B = B. However, if

R = A ∗X−B 6= 0, (4.1)

it may be desired to find a tensor X that minimizes the norm of R. Such tensor X is said to
be a least-squares solutions of A ∗X = B.

Definition 4.1 Let A ∈ R
n1×n2×···×np and B ∈ R

n1×1×n3×···×np. We say that X0 ∈ R
n2×1×n3×···×np

is a least-squares solution of the tensor equation A ∗ X = B if

‖A ∗X0 −B‖F = min{‖A ∗ X−B‖F : X ∈ R
n2×1×n3×···×np}.

The following theorem shows that ‖A ∗X−B‖F is minimized by choosing X = A(1,3) ∗B,
where A(1,3) ∈ A{1, 3}. Thus a relation between the {1, 3}-inverses of tensors and the least-
squares solutions of A ∗X = B is established.

Theorem 4.1 Let A ∈ R
n1×n2×···×np , X0 ∈ R

n2×1×n3×···×np, B ∈ R
n1×1×n3×···×np. Let A(1,3)

be an arbitrary element of A{1, 3}. Then X0 is a least-squares solution of A ∗ X = B if and
only if

A ∗ X0 = A ∗A(1,3) ∗B.

Proof: Let B1 = A ∗ A(1,3) ∗ B and B2 = B − B1. Let X be an arbitrary tensor of
R
n2×1×n3×···×np . It is easy to check

AT ∗B1 = AT ∗A ∗A(1,3) ∗B = AT ∗ (A ∗A(1,3))T ∗B = (A ∗A(1,3) ∗A)T ∗B = AT ∗B.
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Therefore, AT ∗B2 = 0, which yields (B1 −A ∗ X)T ∗B2 = 0 = BT
2 ∗ (B1 −A ∗ X). Now,

(B−A ∗X)T ∗ (B−A ∗X) = (B2 +B1 −A ∗ X)T ∗ (B2 +B1 −A ∗ X)

= BT
2 ∗B2 + (B1 −A ∗X)T ∗ (B1 −A ∗ X) + (B1 −A ∗X)T ∗B2 +BT

2 ∗ (B1 −A ∗ X)

= BT
2 ∗B2 + (B1 −A ∗X)T ∗ (B1 −A ∗ X),

that is,

‖B−A ∗X‖2F = ‖B2‖
2
F + ‖B1 −A ∗X‖2F , ∀ X ∈ R

n2×1×n3×···×np . (4.2)

Assume that A ∗ X0 = A ∗ A(1,3) ∗ B, or equivalently, A ∗ X0 = B1. Using (4.2) we get
‖A ∗X0 −B‖2 = ‖B2‖

2 ≤ ‖A ∗X−B‖2 for arbitrary X ∈ R
n2×1×n3×···×np , which means that

X0 is a least-squares solution of A ∗ X = B.
Assume that X0 is a least-squares solution of A ∗ X = B. Theorem 3.3 implies that the

tensor equation A ∗ X = A ∗ A(1,3) ∗ B is consistent, and so, exists Y ∈ Rn2×1×n3×···×np such
that A ∗ Y = B1. Since X0 is a least-squares solution of A ∗ X = B, we get

‖A ∗ X0 −B‖ ≤ ‖A ∗ Y−B‖.

Applying (4.2) we get ‖B2‖
2 + ‖B1 −A ∗ X0‖

2 ≤ ‖B2‖
2, and therefore, B1 = A ∗X0. �

Remark 4.1 (a) Notice that the system

A ∗X = A ∗A(1,3) ∗B (4.3)

is always consistent.
In fact, using Theorem 3.3, one has A∗X = B is consistent if and only if A∗A(1) ∗B = B,

where A(1) ∈ A{1}. Applying this to (4.3), it is trivial to see (4.3) is consistent because
A ∗A(1) ∗A ∗A(1,3) ∗B = A ∗A(1,3) ∗B.

(b) Again using Theorem 3.3, we can get the general least-squares solutions of A ∗X = B

is
X = A(1,3) ∗B+ (I−A(1,3) ∗A) ∗ Y (4.4)

where A(1,3) ∈ A{1, 3}, Y ∈ R
n2×1×n3×···×np is arbitrary. �

Next, we will show some equivalent conditions for a tensor X0 being a least-squares solution
of A ∗ X = B. We need the following elementary fact: if X is a tensor such that X ∗ Y = O

for any tensor Y such that X ∗Y is defined, then X = O, where O means a tensor all of whose
elements are zero.

Theorem 4.2 Let A ∈ R
n1×n2×···×np, G ∈ R

n2×n1×n3×···×np. Then, for all B ∈ R
n1×1×n3×···×np ,

X0 = G ∗B is a least-squares solution of A ∗ X = B if and only if G ∈ A{1, 3}.

Proof: (⇐) The proof follows by choosing Y = 0 in the general solution given in (4.4).
(⇒) If G ∗ B is a least-squares solution of A ∗ X = B, then, by Theorem 3.4, A ∗ X0 =

A∗A(1,3) ∗B, which implies that A∗G∗B = A∗A(1,3) ∗B, for all B. Hence, A∗G = A∗A(1,3).
By Theorem 3.4, G ∈ A{1, 3}. �

Theorem 4.3 Let A ∈ R
n1×n2×···×np, X0 ∈ R

n2×1×n3×···×np, B ∈ R
n1×1×n3×···×np. Then X0

is a least-squares solution of A ∗X = B if and only if

AT ∗A ∗X0 = AT ∗B. (4.5)
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Proof: By Theorem 4.1 and Corollary 3.2 (c), we only need to prove that

A ∗ X0 = A ∗A† ∗B ⇔ AT ∗A ∗ X0 = AT ∗B.

If A ∗ X0 = A ∗A† ∗B, premultiplication by AT on both sides gives

AT ∗A ∗ X0 = AT ∗A ∗A† ∗B = AT ∗ (A ∗A†)T ∗B = AT ∗ (AT )† ∗AT ∗B = AT ∗B.

If AT ∗A ∗ X0 = AT ∗B, premultiplication by (A†)T on both sides leads to

(A†)T ∗AT ∗A ∗X0 = (A†)T ∗AT ∗B,

which is A ∗X0 = A ∗A† ∗B. �
Suppose that the tensor equation A ∗ X = B is consistent. Then, by Theorem 3.3, the

general solution are
X = A(1) ∗B+ (I−A(1) ∗A) ∗ Y, (4.6)

where A(1) ∈ A{1}, Y ∈ R
n2×1×n3×···×np is arbitrary.

Among these solutions, it is interesting to find one whose norm is minimum. So, it is
natural to give the following definition.

Definition 4.2 Let A ∈ R
n1×n2×···×np and B ∈ R

n1×1×n3×···×np. We say that X0 ∈ R
n2×1×n3×···×np

is a minimum-norm solution of the consistent tensor equation A∗X = B if X0 is a solution
of A ∗ X = B and

‖X0‖F ≤ ‖W‖F ,

where W is an arbitrary solution of A ∗X = B.

Notice that the minimum-norm solution of a consistent tensor equation is always unique.
In the following, we will relate the minimum-norm solution with the {1, 4}-inverses of a tensor
A.

Theorem 4.4 Let A ∈ R
n1×n2×···×np, G ∈ A{1}, H = {A ∗ Z|Z ∈ R

n2×1×n3×···×np}. Then,
for all B ∈ H, X0 = G ∗B is the minimum-norm solution of the consistent system A ∗X = B

if and only if G ∈ A{1, 4}.

Proof: (⇐) : According to (4.6), X0 = G∗B is a solution of A∗X = B and hence, the general
solution of A ∗X = B can be written as X = X0 + (I− G ∗A) ∗ Y, where Y ∈ R

n2×1×n3×···×np

is arbitrary.
Since B ∈ H, then B = A ∗ Z for some Z, now (G ∗B)T = (G ∗A ∗ Z)T = ZT ∗ (G ∗A)T =

ZT ∗ G ∗ A, which implies that (G ∗ B)T ∗ (I − G ∗ A) = 0. Therefore, if X is any solution of
the tensor equation A ∗X = B, then

‖X‖2F = ‖X0 + (I− G ∗A) ∗ Y‖2F = ‖X0‖
2
F + ‖(I− G ∗A) ∗ Y‖2F ≥ ‖X0‖

2
F , (4.7)

which means X0 is the minimum-norm solution of A ∗ X = B.
(⇒) : Suppose that for all B ∈ H, X0 = G ∗ B is the minimum-norm solution of the

consistent system A ∗ X = B. Let Ai ∈ R
n1×1×n3×···×np , i = 1, 2, . . . , n2 the order-p tensor

with ai11i3...ip = ai1ii3...ip , where i1 = 1, 2, . . . , n1, i3 = 1, 2, . . . , n3, · · · , ip = 1, 2, . . . , np.

Choose B = Ai, for some i = 1, 2, . . . , n2. Then, G ∗ Ai is the minimum-norm solution
of A ∗ X = Ai. Notice that A(1,4) ∗ Ai is also the minimum-norm solution of A ∗ X = Ai.
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This means G ∗ Ai = A(1,4) ∗ Ai for the uniqueness of the minimum-norm solution. Hence,
G ∗Ai = A(1,4) ∗Ai is true for all i = 1, 2, . . . , n2, which implies G ∗A = A(1,4) ∗A. Then, we
have G ∈ A{1, 4} by Theorem 3.5. �

In general, the solution of the least square equations is not unique. It is necessary to for
us to find a minimum-norm solution among the least-squares solutions when settling some
practical problems.

Theorem 4.5 Let A ∈ R
n1×n2×···×np, G ∈ R

n2×n1×n3×···×np. Then, for all B ∈ R
n1×1×n3×···×np ,

X0 = G ∗B is the minimum-norm least-squares solution of A ∗ X = B if and only if G = A†.

Proof: (⇐) : By Theorem 4.1, the least-squares solutions of A ∗ X = B coincide with the
solutions of

A ∗ X = A ∗A(1,3) ∗B. (4.8)

Hence, the minimum-norm least-squares solution of A ∗ X = B is the minimum-norm
solution of (4.8). By Theorem 4.4,

X0 = A(1,4) ∗A ∗A(1,3)B = A† ∗B, (4.9)

which means G = A†.
(⇒) : If G = A†, then X0 = A† ∗B. Hence, it follows X0 is the minimum-norm least-square

solution of A ∗X = B by Theorem 4.2 and Theorem 4.4. �

5 An Algorithm for Computing the Moore-Penrose Inverse of

a Tensor

According to the proof of Theorem 3.1, we propose the following algorithm to compute the
Moore-Penrose inverse of an arbitrary tensor. Before that, we declare that fft(·) and ifft(·) are
Matlab and Octave functions, which implement the fast Fourier transform and the inverse fast
Fourier transform of a matrix, respectively. Also note that pinv(·) is a Matlab (and Octave)
built-in function which computes the Moore-Penrose inverse of an arbitrary complex matrix.
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Algorithm 5.1: Compute the Moore-Penrose inverse of a tensor A

Input: n1 × n2 × · · · × np tensor A
Output: n2 × n1 × n3 × · · · × np tensor X

1. for i = 3, . . . , p

D = fft(A, [ ], i);

end

2. N = n3n4 · · ·np

for i = 1, . . . , N

G(:, :, i) = pinv(D(:, :, i)); where pinv(D(:, :, i)) is the Moore-Penrose inverse of
D(:, :, i),

end

3. for i = p, . . . , 3

X = ifft(G, [ ], i);

end

The strategy of this algorithm is using fft(·) to some objects and then calculate the Moore-
Penrose inverse of each result matrix from fft(A). Finally, employing ifft(·) to D(:, :, i)† as
in the Algorithm to get the Moore-Penrose inverse of A. Next, we will test the construct
Algorithm by using the following example.
Example 5.5. Let A be a 5× 4× 2× 2 tensor with the following form:

A =




1 2 5 4 1 2 3 4 5 0 0 0 2 2 2 8
4 3 3 1 0 2 2 1 0 2 0 0 2 2 2 8
5 8 2 6 6 4 2 9 0 0 1 0 6 3 2 9
6 2 2 4 0 0 2 5 0 0 0 3 9 1 0 1
8 2 2 4 5 3 3 3 0 0 0 0 1 1 1 10



.

︸ ︷︷ ︸
aij11

︸ ︷︷ ︸
aij21

︸ ︷︷ ︸
aij12

︸ ︷︷ ︸
aij22

Implement Algorithm 5.1 on A, we have

A†(:, :, 1, 1) =




−0.0511 0.0776 −0.0422 0.0670 0.0065
−0.0186 0.0963 0.0655 −0.0266 −0.0782
0.2238 0.0221 −0.0439 0.0680 −0.1490
−0.0265 −0.0478 0.0250 −0.0196 0.0432


 ,

A†(:, :, 2, 1) =




−0.0582 0.0179 0.0112 0.0504 0.0039
0.0404 −0.0858 0.0013 0.0285 0.0081
−0.1851 0.0830 −0.0299 0.0662 0.1304
0.0346 −0.0218 0.0334 −0.0859 0.0319


 ,

A†(:, :, 1, 2) =




0.0128 0.0490 −0.0317 −0.0030 −0.0270
−0.0984 0.1554 −0.0528 0.0458 −0.0380
0.0543 0.0357 0.0243 −0.0788 −0.1262
0.0447 −0.0837 0.0022 −0.0459 0.0113


 ,
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A†(:, :, 2, 2) =




−0.0021 −0.0186 0.0024 0.0492 −0.0045
−0.0188 −0.0265 0.0294 −0.0399 0.0488
−0.0288 0.0249 −0.0764 0.0123 0.1128
0.0545 −0.0688 0.0306 0.0070 −0.0163


 .

6 Applications to Higher Order Gauss-Markov Theorem

In statistics, linear regression is an approach for modelling the relationship between a scalar
dependent variable and one ore more independent variables by fitting a linear equation to
observed data. Commonly, the relationships are modelled by using linear predictor functions
whose unknown model parameters are estimated from the data. Such models are called linear

models.
Recall the Gauss-Markov theorem, named after Carl Friedrich Gauss and Andrey

Markov. This theorem states that in a linear model if the errors have expectation zero, are
uncorrelated, and have equal variances, then the estimators of the parameters in the model
produced by least squares estimation are better than any other unbiased linear estimator.
The reader can consult, e.g., [23, Chapter 5].

In this part, we will construct a linear model for tensors and then establish the higher order
Gauss-Markov theorem by using the Moore-Penrose inverse of tensors and the least-squares
solutions of tensor equations.

Firstly, the following definitions are necessary.

Definition 6.1 A random tensor is a tensor-valued random variable, that is, a tensor all
of whose elements are random variables.

Definition 6.2 The mean or expectation of a random tensor X = (Xi1i2...in) ∈ R
n1×n2×···×np

is defined as E[X] = (E[Xi1i2...in ]) ∈ R
n1×n2×···×np.

Definition 6.3 The covariance tensor of a random tensor Y = (Yi1i2...in) ∈ R
n1×1×n3×···×np

is defined as Cov(Y) = E[(Y − E(Y)) ∗ (Y− E(Y))T ] ∈ R
n1×n1×n3×···×np.

The random tensor, the expectation of a random tensor, and the covariance tensor are
generalizations of the notions of the random vector, the expectation of a random matrix,
and the covariance matrix. The covariance matrix plays a significant role in statistics and
probability theory. The expectation and the covariance tensor of a random tensor is very
useful in some practical problems. For example, a model has two (or more) independent
random vector. We can view the two independent random vectors c1 and c2 as a n × 1 × 2
random tensor C, that is

C =



c111 c112
...

...
cn11 cn12


 .

︸︷︷︸
ci11

︸︷︷︸
ci12

Then, it is not difficult to apply Definition 6.2 and Definition 6.3 to C and research some
significant problems.
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Next, we will establish a linear model for tensors. We call the model of tensors the linear
model due to the fact that the tensor space is a linear space under the addition of tensors
“ + ” and the t-product of tensors “ ∗ ”. See Lemma 2.5.

The linear model for tensors postulates

Y = X ∗ P+ E, (6.1)

where Y ∈ R
n1×1×n3×···×np is observed or measured in some experimental set-up, X ∈

R
n1×n2×···×np is given, the parameters P ∈ R

n2×1×n3×···×np are unknown, and E ∈ R
n1×1×n3×···×np

a random tensor representing the errors of observing Y and with

E[E] = O, Cov(E) = V2.

The tensor V, assumed known, is positive semi-definite. We denote this model by (Y,X∗P,V2).
Now, we turn to the problem of estimating a linear function of the parameters P from

the observed Y. A linear function of P has the form D ∗ P for a given tensor D. A linear

estimator of D ∗ P is A ∗ Y, for some A ∈ R
n2×n1×n3×···×np . The linear estimator A ∗ Y is a

linear unbiased estimator if

E[A ∗ Y] = D ∗ P, for all D,

and it is the best linear unbiased estimator if its variance is minimal among all linear
unbiased estimators.

The function D ∗P is called estimable if it has an linear unbiased estimator, i.e., if there
is a tensor A ∈ R

n2×n1×n3×···×np such that E[A ∗ Y] = D ∗ P holds.
Now, we state the higher order Gauss-Markov theorem. Before that a new multilinear

rank of a tensor A ∈ R
n1×n2×···×np is needed.

Let A ∈ R
n1×n2×···×np . Create an Ã matrix by using the method in [16, Figure 3.2] and

apply the discrete Fourier transform to Ã. One has

(F ⊗ In1
)Ã(F ∗ ⊗ In2

) =



A1

. . .

Aρ


 ,

where ρ = n3 · · ·np. Then the ρ-tuple
(
rank(A1), rank(A2), . . . , rank(Aρ)

)
is called the

multilinear rank of A. The reader must not be confused with the n-tuple of mode-n ranks
defined in [24], which is the number of linearly independent mode-n vectors. For two tensors
A,B ∈ R

n1×···×np , we write A ≤ B when ai1,...,ip ≤ bi1,...,ip for all i1, . . . , ip. The definition of
A ≥ B is similar.

Theorem 6.1 Let (Y,X ∗ P,V2) be a linear model. Suppose that the multilinear rank of X
satisfies

(
rank(X1), rank(X2), . . . , rank(Xρ)

)
>

(
max{n1, n2},max{n1, n2}, . . . ,max{n1, n2}

)
.

Then:
(a) The linear functional D ∗ P has a unique best linear unbiased estimator D ∗ P̃, where

P̃ = X† ∗ (I− (V− V ∗ X† ∗ X)† ∗ V)T ∗ Y.
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(b) P̃ ∈ K, where K = {XT ∗Z|Z ∈ R
n2×1×n3×···×np}, and if P∗ is any other linear unbiased

estimators that belongs to K, then

Cov(P) ≤ Cov(P∗).

Proof: Employing the base level of recursion in [16, Figure 3.2] for the tensors Y, X, P,
V and D, respectively, to obtain fives matrices Ỹ , X̃, P̃ , Ṽ , and D̃. Using the same method
as in the proof of Theorem 3.1, we can construct the block diagonal matrices of Ỹ , X̃ , P̃ , Ṽ ,
and D̃. Specifically, one has

(F ⊗ In1
)Ψ(F ∗ ⊗ In2

) = blockdiag(ψ1, . . . , ψρ),

where F = Fnp ⊗Fnp−1
⊗ · · · ⊗Fn3

, ρ = n3 · · ·np, Ψ = Ỹ , X̃ , P̃ , Ṽ , D̃ and ψ = Y,X,P, V,D.
Imposing [1, Section 8.2, Theorem 2] on each matrix linear model (Yi,XiPi, Vi

2), i =
1, . . . , ρ, one has



P̃1

. . .

P̃ρ


 =



X

†
1(I1 − (V1 − V1X

†
1X1)

†V1)
TY1

. . .

X
†
ρ(Iρ − (Vρ − VρX

†
ρXρ)

†Vρ)
TYρ


 .

Apply (F ∗ ⊗ In1
) to the left and (F ⊗ In2

) to the right of the block diagonal matrices in
the equality above and then the defined function fold(·) to the obtained equality in the
aforementioned step, one has

P̃ = X† ∗ (I− (V− V ∗ X† ∗ X)† ∗ V)T ∗ Y.

The proof of the item (b) follows similarly. �

Remark 6.1 If V2 is nonsingular, then P̃ is reduced to

P̃ = (XT ∗ V−2 ∗X)† ∗ XT ∗ V−2 ∗ Y.

For the model (Y,X ∗ P, σ2I), where σ is a positive real number, the best linear unbiased
estimator reduces to

P̃ = X† ∗ Y,

which can be called the least-squares estimator. �

The generalized inverse of tensors can be very useful in other fields, such as the Bott-
Duffin inverse of tensors to higher order electrical networks or hypergraphs theory, the group
inverse of tensors to higher order Markov chain and the least-square solutions of the tensor
equation in 3-D image deblurring, etc. We will continue these researches in the future.
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