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Abstract. Let v(r) = exp(−a/(1 − r)b) with a > 0 and 0 < b ≤ 2 be an exponential weight

on the unit disc. We study the solid hull of its associated weighted Banach space H∞

v (D) of all the

analytic functions f on the unit disc such that v|f | is bounded.

1. Introduction

Recently, the authors characterized in [7] the solid hulls of weighted H∞-type
Banach spaces of entire functions for a large class of weight functions v. An analytic
function f(z) =

∑∞

n=0 anz
n on the disc is identified with the sequence of its Taylor

coefficients (an)
∞
n=0. Let A be a vector space of complex sequences containing the

space of all the sequences with finitely many non-zero coordinates. The space A is
solid if a = (an) ∈ A and |bn| ≤ |an| for each n implies b = (bn) ∈ A. The solid hull

of A is
S(A) := {(cn) : ∃(an) ∈ A such that |cn| ≤ |an| ∀n ∈ N}.

It coincides with the smallest solid space containing A. See [1].
The aim of this paper is to generalize the results of [7] for the corresponding

spaces on the open unit disc D. Accordingly, we study Banach spaces H∞
v (D) of

analytic functions f : D → C such that ‖f‖v := supz∈D v(z)|f(z)| < ∞. We show
in Theorem 2.2 that the solid hull for v(z) = exp(−1/(1 − |z|)), z ∈ D, consists of
complex sequences (bm)

∞
m=0 such that

sup
n∈N

(n+1)4
∑

m=n4+1

|bm|
2 exp(−2n2)

(

1−
1

n2

)2m

< ∞.

We also formulate a general Theorem 2.1, which contains the characterization of the
solid hulls for a large class of weights. This class of weights includes those satisfying
condition (B) of [13]. Theorem 2.2 is used to determine the space of multipliers from
H∞

v (D) into ℓp, 1 ≤ p ≤ ∞, in Proposition 5.2.
Surprisingly enough, we will encounter a technical difficulty, which makes the

calculation of the solid hulls for weights v(z) = exp(−a/(1 − |z|)b) on the disc more
complicated than those for the somewhat analogous weights v(z) = exp(−a|z|b) in
the plane. The latter were successfully treated in [7] for all b > 0 and a > 0, but it
seems to the authors that in the case of the disc the calculation of certain numerical
sequences requires approximate solutions of some numerical equations, which can
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only be done relatively simply for small enough b: for the above mentioned weights,
we only complete the calculation in the case 0 < b ≤ 2.

Bennet, Stegenga and Timoney in their paper [2] determined the solid hull and
the solid core of the weighted spaces H∞

v (D) in the case the weight v is doubling.
Exponential weights v(r) = exp(−a/(1 − r)b) with a, b > 0 are not doubling. Not
much seems to be known about multipliers and solid hulls of weighted spaces of
analytic functions on the unit disc in the case of exponential weights. Hadamard
multipliers of certain weighted space H1

a(α), α > 0, were completely described by
Dostanić in [9] (see also Chapter 13 in [12]). Other aspects of weighted spaces of
analytic functions on the unit disc with exponential weights, like integration operators
or Bergman projections, have been investigated recently by Constantin, Dostanić,
Pau, Pavlović, Peláez and Rättyä, among others; see [8], [10], [14], [15] and [17].
The solid hull and multipliers on spaces of analytic functions on the disc has been
investigated by many authors. In addition to [2], we mention for example [1], [11],
the books [12] and [16] and the many references therein.

Spaces of type H∞
v (C) and H∞

v (D) appear in the study of growth conditions of
analytic functions and have been investigated in various articles since the work of
Shields and Williams, see e.g. [3], [4], [13], [18] and the references therein.

A weight v is a continuous function v : [0, 1[→]0,∞[, which is non-increasing on
[0, 1[ and satisfies limr→1 v(r) = 0. We extend v to D by v(z) := v(|z|). For such
a weight, the weighted Banach space of analytic functions is denoted by H∞

v (D)
and its norm by ‖ · ‖v. For an analytic function f ∈ H(D), we denote M(f, r) :=
max{|f(z)| | |z| = r}. Using the notation O and o of Landau, f ∈ H∞

v (D) if and
only if M(f, r) = O(1/v(r)), r → 1.

2. The results

As mentioned in the introduction, the solid hull of the weighted Banach space
H∞

v (D) of holomorphic functions on the unit disc D when the weight v is doubling,
i.e.

sup
0<s≤1

v(1− s)

v(1− 2−1s)
< ∞,

was determined in [2]. The doubling condition is equivalent to the condition (∗)
of [13], see Example 2.4 of the citation. This condition appears also e.g. in [6,
Theorem 3.2]. Examples of weights on the disc which are not doubling are given by
v(r) := exp(−a/(1 − r)b), a > 0, b > 0. In this section we investigate the solid hull
of H∞

v (D) for a large class of non doubling weights.
Given a continuous, radial weight v and m > 0, we denote by rm the global

maximum point in [0, 1[ of the function r 7→ rmv(r). For 0 < m < M we define

(2.1) A(m,M) :=

(

rm
rM

)m
v(rm)

v(rM)
and B(m,M) :=

(

rM
rm

)M
v(rM)

v(rm)
.

A word by word repetition of the proof of [7, Theorem 2.5] yields the next general
result; notice that the argument uses the results of [13], which are also established
for holomorphic functions on the unit disc.

Theorem 2.1. Let v be a radial weight on D. Let 0 < m1 < m2 < ... be a

sequence with limn→∞mn = ∞, such that for some constants 2 < k ≤ K we have

(2.2) k ≤ A(n) := A(mn, mn+1) ≤ K, k ≤ B(n) := B(mn, mn+1) ≤ K
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for each n ∈ N. Then, the solid hull of H∞
v (D) is

(2.3) S(H∞
v (D)) :=







(bm)
∞
m=0 : sup

n
v(rmn)

(

mn+1
∑

m=mn+1

|bm|
2r2mmn

)1/2

< ∞







.

Proceeding as in [7, Remark 2.7] one can show that every weight on the disc
satisfying condition (B) of Lusky [13] satisfies the assumptions of Theorem 2.1; the
definition of condition (B) is included at the end of this section.

The main result of this paper is the calculation of the solid hull for some of the
most usual non-doubling weights on the unit disc, namely the weights

(2.4) v(r) = exp(−a/(1− r)b),

where a > 0, 0 < b ≤ 2 are constants.
We write

(2.5) α = 2 +
2

b
, β =

1

1 + b
, G = (ab)β

and fix a positive number S such that

(2.6) S ≥ ba−1/bα−1−1/b, if 0 < b < 2, and S = 2a−1/2, if b = 2.

In particular (2.6) allows us to set S = 1 in the special case a = b = 1.

Theorem 2.2. If 0 < b ≤ 1, then the solid hull S(H∞
v (D)) of H∞

v (D) consists

of sequences (bm)
∞
m=0 satisfying

(2.7) sup
n∈N

exp
(

− 2aSbβG−βn2
)

S(n+1)2+2/b
∑

m=Sn2+2/b+1

|bm|
2

(

1−
G

Sβn2/b

)2m

< ∞.

In the case 1 < b ≤ 2, the condition for the solid hull is

sup
n∈N

exp
(

− 2aG−βSbβn2 − 2β(ab)2βS(b−1)βn2−2/b
)

·

S(n+1)2+2/b
∑

m=Sn2+2/b+1

|bm|
2

(

1−
G

Sβn2/b
+

βG2

S2βn4/b

)2m

< ∞.
(2.8)

In particular, for v(r) = exp(−1/(1− r)) the solid hull is

(2.9)







(bm)
∞
m=0 : sup

n
exp(−2n2)

(n+1)4
∑

m=n4+1

|bm|
2
(

1−
1

n2

)2m

< ∞







,

(since S = 1, see above), and for v(r) = exp(−1/(1− r)2) it is (!)

(2.10)







(bm)
∞
m=0 : sup

n∈N
exp

(

−214/9n2 −
4

3
n

) 2(n+1)3
∑

m=(2n)3+1

|bm|
2

(

1−
1

n
+

1

3n2

)2m

< ∞







.

The proof requires the choice of the numbers mn such that the condition (2.2) is
satisfied. This turns out to be quite technical and will be done in the next section.
The main complication is that, contrary to the case of weights exp(−arp) of the paper
[7], the maximum points rm cannot be solved explicitly (see (3.5)), and one has to
treat only approximations of them (see Lemma 3.2) in the calculations.
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The proof of Theorem 2.2 will be completed in Section 4, where we also make
some comments on the case b > 2. Consequences of Theorem 2.2 for multipliers from
H∞

v (D) into ℓp, 1 ≤ p ≤ ∞ are given in Section 5.
At the end of this section we recall the condition (B) of Lusky [13], although we

do not explicitly use it later: a weight v having the general properties mentioned
before (2.1) satisfies (B), if

∀ b > 1 ∃ b2 > 1 ∃ c = c(b1, b2) > 0 ∀m,n > 0:
(

rm
rn

)m
v(rm)

v(rn)
≤ b1 and m,n, |m− n| ≥ c implies

(

rn
rm

)n
v(rn)

v(rm)
≥ b2.

(2.11)

3. Calculation of some numerical sequences

For this section, let v be as in (2.4). The next lemma will be crucial for the proof
of Theorem 2.2, and its proof will occupy the whole section.

Lemma 3.1. For the weight v, the quantities A(n) and B(n) satisfy (2.2), if mn

is chosen to be

(3.1) mn = Sn2+ 2

b =: Snα,

where S = (16a)−1 for b = 1, S = ba−1/bα−1−1/b for b < 2, and S = 2a−1/2 for b = 2.

We will need several times the Taylor expansions

(1 + x)c = 1 + cx+
1

2
c(c− 1)x2 +O(x3),(3.2)

log(1 + x) = x−
1

2
x2 +

1

3
x3 +O(x4),(3.3)

valid for |x| < 1 and c ∈ R. We start with the following estimate. Recall that α, β
and G are defined in (2.5).

Lemma 3.2. Given m ≥ max{1, ab}, the global maximum point rm of the func-

tion r 7→ rmv(r) satisfies the estimate

(3.4) 1−
G

mβ
+

βG2

m2β
−

C

m3β
≤ rm ≤ 1−

G

mβ
+

βG2

m2β
+

C

m3β
.

Proof. A simple calculation shows that rm satisfies the equation

(3.5) m(1− rm)
b+1 − abrm = 0.

It is obvious that for some fixed 0 < ǫ ≤ 1/2, the equation (3.5) has a solution
rm ∈ [ǫ, 1[, for all m ≥ 1. Writing δ = 1− rm ∈]0, 1], (3.5) is equivalent with

m
1

b+1 δ = (ab)
1

b+1 (1− δ)
1

b+1 = (ab)
1

b+1

(

1−
1

b+ 1
δ −

b

2(b+ 1)2
δ2 −+ . . .

)

,

or, by (2.5),

(3.6) δ =
G

mβ

(

1− βδ + δ2F (a, b, δ)
)

where the expression F (a, b, δ) is for fixed a, b, uniformly bounded in δ ∈]0, 1 − ǫ].
(The choice of ǫ is needed here as F would not be uniformly bounded for δ ∈]0, 1].)
We already noticed that (3.6) has a solution δ ∈ [0, 1 − ǫ]. Setting the estimate
δ ≤ 1 to the right hand side of (3.6) yields the bound δ ≤ Cm−β . Since m ≥ ab
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by assumption, we have Gm−β ≤ 1 and thus the solution x ((3.9), below) of the
equation

(3.7) x =
G

mβ
(1− βx)

satisfies 0 < x < 1; putting the bound x ≤ 1 to the right hand side of (3.7) yields
x ≤ Gm−β. Then, subtracting (3.7) from (3.6) and using the triangle inequality,

(3.8) |δ − x| ≤
Gβ

mβ
|δ − x|+

Gδ2

mβ
|F |.

But we have |x− δ| ≤ x+ δ ≤ Cm−β, and putting this to the right hand side of (3.8)
implies |δ−x| ≤ Cm−2β . Substituting this once more in (3.8) yields |δ−x| ≤ Cm−3β .
This implies (3.4), since the solution of (3.7) is

�(3.9) x =
Gm−β

1 + βGm−β
= Gm−β − βG2m−2β +O(m−3β).

From now on we assume that mn is defined for all n ∈ N as in (3.1). By (3.4)
we can write for all n such that mn ≥ max{1, ab},

(3.10) 1− rmn = Gm−β
n − βG2m−2β

n +R(mn)

where |R(mn)| ≤ Cm−3β
n .

Lemma 3.3. Let 0 < b ≤ 2. We have for all large enough n ∈ N

(3.11) log

(

v(rmn+1
)

v(rmn)

)

=











−
2G

b
Sbβn−

G

b
Sbβ +O(n−1 + n1−2/b), if b < 2,

−GS2/3n−
G

2
S2/3 −

1

3
G2S1/3 +O(n−1), if b = 2.

Notice that in the case b = 2 we have bβ = 2/3 and more importantly, the
constant term (of order n0) is not the same as what would be gotten from the formula
in the case b < 2.

Proof. Using (3.10) and (3.2), and assuming that n is so large that Gm−β
n < 1,

we get

v(rmn) = exp
(

−a
(

Gm−β
n − βG2m−2β

n +R(mn)
)−b
)

= exp
(

−aG−bmbβ
n

(

1− βGm−β
n +G−1mβ

nR(mn)
)−b
)

= exp
(

−aG−bmbβ
n − abβG1−bm(b−1)β

n + R̃n

)

(3.12)

where |R̃n| ≤ Cm
β(b−2)
n . We thus get, taking into account that mn = Snα and using

(3.2) again,

log

(

v(rmn+1
)

v(rmn)

)

= −aG−b
(

mbβ
n+1−mbβ

n

)

− abβG1−b
(

m
(b−1)β
n+1 −m(b−1)β

n

)

+ R̃n+1 − R̃n

= −aG−bSbβ
(

(n + 1)bαβ − nbαβ
)

− abβG1−bS(b−1)β
(

(n+ 1)(b−1)αβ − n(b−1)αβ
)

+ R̃n+1 − R̃n

= −aG−bSbβbαβnbαβ−1 − aG−bSbβ 1

2
bαβ(bαβ−1)nbαβ−2+O(nbαβ−3)

− abβG1−bS(b−1)β(b− 1)αβn(b−1)αβ−1 +O(n(b−1)αβ−2).
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This is simplified to the claimed form by observing that

abG−b = (ab)1−
b

1+b = (ab)β = G(3.13)

αβ = 2(1 + b)b−1(b+ 1)−1 = 2/b , bαβ = 2(3.14)

and moreover

(b− 1)αβ − 1 = bαβ − 1− αβ = 1− 2b−1

{

< 0, b < 2,

= 0, b = 2.
�

Lemma 3.4. If 0 < b < 2, we have for all large enough n ∈ N,

mn+1 log

(

rmn+1

rmn

)

=
2G

b
Sbβn+

G

b

(

3 +
2

b

)

Sbβ +O(n−1 + n1−2/b).(3.15)

If b = 2, then

(3.16) mn+1 log

(

rmn+1

rmn

)

= GS2/3n+ 2GS2/3 +
1

3
G2S1/3 +O(n−1).

Proof. We have again by (3.10), (3.3), for large enough n,

mn+1 log

(

rmn+1

rmn

)

= mn+1

(

log
(

1−Gm−β
n+1 + βG2m−2β

n+1 +R(mn+1)
)

− log
(

1−Gm−β
n + βG2m−2β

n +R(mn)
)

)

= mn+1

(

−G(m−β
n+1 −m−β

n ) +

(

β −
1

2

)

G2(m−2β
n+1 −m−2β

n ) +O(m−3β
n )

)

.

Here, keeping in mind that mn = Snα, the term

(3.17) mn+1

(

β −
1

2

)

G2
(

m−2β
n+1 −m−2β

n

)

is of degree α− 2βα− 1 = 1− 2/b with respect to n, and this number is negative, if
and only if b < 2. So, in the case b < 2 we obtain using 1− β = bβ and (3.2)

−mn+1G(m−β
n+1 −m−β

n )

= −S(n+ 1)αGS−β

(

−αβn−αβ−1 +
1

2
αβ(αβ + 1)n−αβ−2 +O(n−αβ−3)

)

= −GSbβ
(

nα + αnα−1 +O(nα−2)
)

·

(

−αβn−αβ−1 +
1

2
αβ(αβ + 1)n−αβ−2 +O(n−αβ−3)

)

.

(3.18)

As for the exponents, notice that

(3.19) α− αβ − 1 = 2 + 2b−1 − 2b−1 − 1 = 1.

The coefficient of n, respectively, n0, thus equals

(3.20) GSbβαβ, resp. GSbβ

(

−
1

2
αβ(αβ + 1) + α2β

)

.

This yields the claim of the lemma for b < 2 by using (3.14).
In the case b = 2 the term (3.17) equals

S(n+ 1)α
(

β −
1

2

)

G2S−2β
(

−2αβn−2αβ−1 +O(n−2αβ−2)
)

=
1

3
S1/3G2 +O(n−1).
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Adding this to the previous case yields (3.16). �

Lemma 3.5. If 0 < b ≤ 2, we have for all large enough n ∈ N,

(3.21) mn log

(

rmn+1

rmn

)

=

{

2G
b
Sbβn−GSbβ 1

b

(

2
b
+ 1
)

+O(n1−2/b), b < 2,

GS2/3n−GS2/3 + 1
3
S1/3G2 +O(n−1), b = 2.

Proof. One makes the obvious change mn+1 → mn, or, (n + 1)α → nα in the
proof of Lemma 3.4 and collects the coefficients of the remaining terms in the same
way as in the argument (3.18) (one obtains (3.20) except for the term α2β). The
case b = 2 is proven in the same way: in addition to the omission of the α2β-term
there are no other changes. �

Proof of Lemma 3.1. Let first b < 2. We consider the quantity

logB(n) = mn+1 log

(

rmn+1

rmn

)

+ log

(

v(rmn+1
)

v(rmn)

)

and first observe that the coefficients of the term with n are the opposite numbers in
(3.11) and (3.15). The sum of the coefficients of the term n0 in (3.11) and (3.15) is

GSbβ

(

−
1

b
+

3

b
+

2

b2

)

so that we get

(3.22) logB(n) = GSbβ

(

2

b
+

2

b2

)

+O(n−1 + n1−2/b) = GSbβα

b
+O(n−1 + n1−2/b).

The required property (2.2) follows for B(n) by choosing S large enough so that the
constant term on the right of (3.22) is at least 1. We choose S such that

GSbβ ≥
b

α
=⇒ S ≥ ba−1/bα−1−1/b.

The same calculation, using Lemma 3.5 instead of Lemma 3.4, yields (notice the
order of the numerator and denominator in A(n))

logA(n) = GSbβ

(

1

b
+

1

b

(

2

b
+ 1

))

+O(n−1 + n1−2/b)

= GSbβα

b
+O(n−1 + n1−2/b),

(3.23)

and we get the desired conclusion for A(n) by the same choice of S as above.
Finally, if b = 2, we have instead of (3.23)

(3.24) logA(n) =
3

2
GS2/3 +O(n−1),

where G = (2a)1/3. Choosing

(3.25) S = 2a−1/2

the leading term in (3.24) is at least one, hence, (2.2) follows for A(n), if n is large
enough.

We have instead of (3.22) the estimate (cf. (3.11) and (3.16))

logB(n) =
3

2
GS2/3 +O(n−1),

and we thus again see by (3.25) that logB(n) ≥ 1 +O(n−1). �
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4. Proof of Theorem 2.2.

We choose mn according to (3.1) for all n ∈ N. Theorem 2.2 follows in principle
from Theorem 2.1 and Lemma 3.1, but we need to be careful to use accurate enough
approximations of rmn . If b ≤ 1, we observe that in (3.12), the exponent of n(b−1)αβ =

n2−2/b in m
(b−1)β
n is at most 0 and |R̃n| is clearly bounded by a constant, so we get

for all n ∈ N using (3.12) and (3.14),

(4.1) c1 exp(−aG−bSbβn2) ≤ v(rmn) ≤ c2 exp(−aG−bSbβn2),

where

c1 = exp
(

inf
n

(

−abβG1−bS(b−1)βn2−2/b − |R̃n|
))

,

c2 = exp

(

sup
n

(

−abβG1−bS(b−1)βn2−2/b + |R̃n|
)

)

.

Let now n ∈ N be given and let m ∈ N be such that mn < m ≤ mn+1, and
consider rmmn

. We note by Lemma 3.2 and (3.14) that

log
(

rmmn

)

= m log
(

1−GS−βn−2/b +O(n−4/b)
)

.

Since m ≤ mn+1 ≤ Cnα = Cn2+2/b and 2 + 2/b− 4/b ≤ 0, we find using the Taylor
expansion (3.3) that

m log
(

1−GS−βn−2/b + O(n−4/b)
)

= m log
(

1−GS−βn−2/b
)

+O(1)

which implies

(4.2) C1

(

1−GS−βn−2/b
)m

≤ rmmn
≤ C2

(

1−GS−βn−2/b
)m

for some constants 0 < C1 < C2. Combining (2.3), (4.1), and (4.2) yields (2.7) of
Theorem 2.2.

However, if 1 < b ≤ 2, in (3.12), the exponent of m
(b−1)β
n = S(b−1)βn(b−1)αβ =

S(b−1)βn2−2/b is positive, although |R̃n| is bounded. Instead of (4.1) we use

c1 exp(−aG−bSbβn2 − β(ab)2βS(b−1)βn2−2/b) ≤ v(rmn)

≤ c2 exp(−aG−bSbβn2 − β(ab)2βS(b−1)βn2−2/b),

since abG1−b = (ab)2β . Lemma 3.2 yields for rmmn

log
(

rmmn

)

= m log
(

1−GS−βn−2/b + βG2S−2βn−4/b +O(n−6/b)
)

= m
(

−GS−βn−2/b +
(

β −
1

2

)

G2S−2βn−4/b +O(n−6/b)
)

=⇒ log
(

rmmn

)

= m log
(

1−GS−βn−2/b + βG2S−2βn−4/b
)

+O(1),

since here mn−6/b ≤ mn+1n
−6/b ≤ Cn2+2/b−6/b ≤ C ′. Hence, we have

C1

(

1−GS−βn−2/b + βG2S−2βn−4/b
)m

≤ rmmn

≤ C2

(

1−GS−βn−2/b + βG2S−2βn−4/b
)m

,

and thus (2.8) follows. �

Remark 4.1. It seems that the calculation of the numbers mn for the weights

v(r) = exp(−a/(1− r)b)

with our method becomes increasingly difficult for large b. Technical problems are
caused by the fact that using an asymptotic expansion like (3.4) to evaluate v(rm),
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more terms are required, depending on how large b is. Also, it seems that one would
need a more complicated ansatz

mn = Sαn
α + Sα−1n

α−1 + . . . .

The technical difficulties become obvious.

5. The space of multipliers (H∞

v
(D), ℓp)

Let A and B be vector spaces of complex sequences containing the space of all
the sequences with finitely many non-zero coordinates. The set of multipliers from
A into B is

(A,B) := {c = (cn) : (cnan) ∈ B ∀(an) ∈ A}.

Given a strictly increasing, unbounded sequence J = (mn)
∞
n=0 ⊂ N and 1 ≤

p, q ≤ ∞ we denote as in [5, Definition 2],

ℓJ(p, q) :=







(am)
∞
m=0 :

(

mn+1
∑

m=mn+1

|am|
p

)1/p

∈ ℓq







,

with the obvious changes when p or q is ∞. The space ℓJ(p, q) is a Banach space
when endowed with the canonically defined norm. Observe that ℓJ(p, p) = ℓp. We
recall the following result from [5, Theorem 1.1] (see also [7, Lemma 5.1]).

Lemma 5.1. For 1 ≤ p ≤ ∞ we have
(

ℓJ(2,∞), ℓp
)

= ℓJ(r, s)

where (a) r = 2p/(2 − p), s = p, if 1 ≤ p < 2, (b) r = ∞, s = p, if 2 ≤ p < ∞, and

(c) r = s = ∞, if p = ∞.

Proposition 5.2. Let v(r) = exp(−1/(1− r)), r ∈ [0, 1[ and 1 ≤ p ≤ ∞. Then,

the space of multipliers
(

H∞
v (D), ℓp

)

is the set of sequences (λm)
∞
m=0 such that







∞
∑

n=1





(n+1)4
∑

m=n4+1

(

|λm|e
n2

(

1−
1

n2

)−m
)

2p
2−p





2−p
2







1

p

< ∞,

if 1 ≤ p < 2,
(

∞
∑

n=1

(

max
n4<m≤(n+1)4

|λm|e
n2

(

1−
1

n2

)−m
)p) 1

p

< ∞,

if 2 ≤ p < ∞, and

sup
n∈N

(

max
n4<m≤(n+1)4

|λm|e
n2

(

1−
1

n2

)−m
)

< ∞,

if p = ∞,

Proof. Since ℓp is a solid space, we have (cf. [1])
(

H∞
v (D), ℓp

)

=
(

S(H∞
v (D)), ℓp

)

.

Now, by Theorem 2.2 it is easy to see that (λm)
∞
m=0 ∈

(

S(H∞
v (D)), ℓp

)

, if and only if




((

en
2

(

1−
1

n2

)−m
)

|λm|

)(n+1)4

m=n4+1





∞

n=0

∈
(

ℓJ(2,∞), ℓp
)

.
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The conclusion now follows from Lemma 5.1. �

It is clear that Proposition 5.2 can be extended to more weights, but we prefer
to present here only this more precise formulation as an example.
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