

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

https://doi.org/10.1016/j.jpdc.2017.01.009

http://hdl.handle.net/10251/103725

Elsevier

López Rodríguez, PJ.; Baydal Cardona, ME. (2017). On a course on computer cluster
configuration and administration. Journal of Parallel and Distributed Computing. 105:127-
137. doi:10.1016/j.jpdc.2017.01.009

On a Course on Computer Cluster Configuration and

Administration

Pedro Lópeza,∗, Elvira Baydala

aDISCA Department
Universitat Politècnica de València

Camino de Vera, 14
46022 Valencia (SPAIN)

Abstract

Computer clusters are today a cost-effective way of providing either high-

performance and/or high-availability. The flexibility of their configuration

aims to fit the needs of multiple environments, from small servers to SME and

large Internet servers. For these reasons, their usage has expanded not only

in academia but also in many companies. However, each environment needs a

different “cluster flavour”. High-performance and high-throughput comput-

ing are required in universities and research centres while high-performance

service and high-availability are usually reserved to use in companies. De-

spite this fact, most university cluster computing courses continue to cover

only high-performance computing, usually ignoring other possibilities. In

this paper, a master-level course which attempts to fill this gap is discussed.

It explores the different types of cluster computing as well as their func-

tional basis, from a very practical point of view. As part of the teaching

∗Corresponding author
Email addresses: plopez@disca.upv.es (Pedro López), elvira@disca.upv.es

(Elvira Baydal)

Preprint submitted to JPDC SI on Teaching Parallel, Distr. and High-Performance ComputingJanuary 4, 2017

methodology, each student builds from scratch a computer cluster based on

a virtualization tool. The entire process is designed to be scalable. The goal

is to be able to apply it to an actual computer cluster with a larger number

of nodes, such as those the students may subsequently encounter in their

professional life.

Keywords: computer engineering education, computer cluster

configuration and administration, lab project

1. Introduction

Computer clusters are nowadays the most cost-effective alternative to

build high-performance computer systems. A cluster is a type of parallel or

distributed processing system which consists of a collection of interconnected

stand-alone computers working together as a single, integrated computing

resource [4]. Although the idea of using clusters to improve system reliability

dates back to the 60s [23], its usage to improve system performance is more

recent. The Beowulf project [3] built a $40,000 cluster with 16 personal

computers that was able to reach 1 GFLOPs. Since then, computer clusters

have become a low cost alternative to build high-performance systems.

The fact of being composed by several computers can be exploited in two

ways. The traditional approach is to obtain an overall high-performance by

combining the performance of each individual computer. In addition, the fact

of having component redundancy aims to improve system availability. The

excellent price-performance ratio of clusters has led to a widespread usage.

Their configuration flexibility aims to fit the needs of multiple environments,

from small servers to Small and Medium Enterprises (SME) and large Inter-

2

net servers. Popular Internet services are provided by large scale clusters,

usually located in different places to provide resilience against natural disas-

ters. On the other hand, the largest supercomputers are based on computer

clusters. Since 2007, more than 80% of the TOP500 list of supercomputers

[27] are clusters.

Taking into account their importance, computer engineering curricula

may include some subjects about clusters [12]. The topics to cover will

be related to system architecture, networking, operating systems, parallel

programming and applications. Although the core of these topics will have

already been taught previously, a cluster subject should apply them to a par-

ticular system: the computer cluster. Instructors have a golden opportunity

to integrate and apply the knowledge acquired in previous core subjects.

In particular, in this paper, we describe a course on computer cluster

configuration and administration. As cluster computing is an advanced

topic [13], the proposed course is targeted to graduate students, although

its contents could be applied as well to an advanced undergraduate course

in Computer Engineering. Selected topics of the course include cluster con-

figuration, system installation, running sequential and parallel applications,

storage, load-balancing and high availability. In addition, a computer cluster

course requires hands-on sessions in a realistic environment to readily apply

the concepts taught in the classroom. In particular, we propose building a

computer cluster from scratch, installing the operating system, configuring

the services and installing the required software packages. Taking into ac-

count the typical usage “flavours” of clusters [11], two approaches are simul-

taneously considered. The first one is a high-performance/high-throughput

3

computing cluster where several users will run their sequential or parallel

applications. The second one is a high-availability/load-balanced Internet

server. This second usage of clusters is often ignored in cluster related sub-

jects, albeit most cluster installations fit in this second category. Another

possible flavour to consider in the next future is a cluster specifically designed

for storing and analyzing huge amounts of unstructured data (i.e. a big data

cluster).

The straightforward approach to implement the course consists in using

a real hardware infrastructure to provide this environment. With this ap-

proach, the students have the opportunity to see, touch and interact with

actual hardware components of a computer cluster: processing nodes, storage

nodes, network switches, PDUs, KVM switches, cluster cabinet, etc. More-

over, they can directly experience the issues related to power consumption

and space management.

However, the problem of using real hardware in lab sessions is that each

student should use his/her own cluster, composed by several nodes. Sharing

a physical cluster is not an option because along the project development

the students must have root privileged access to the system to allow them to

modify system configuration. Therefore, their work may interfere with each

other. Indeed, their activity will result in system reboots or even system

crashes with catastrophic consequences to the work of other students. As a

part of their learning process, these crashes will appear occasionally along the

project. However, the alternative of purchasing a cluster for every student

has a prohibitive cost for the University and will result in a very inefficient

resource utilization. Indeed, this hardware may remain largely idle during

4

holidays and weekends and between major assignment due-dates [14].

Fortunately, the availability of free virtualization software and low-cost

but high-performance personal and laptop computers makes possible for the

students to run a cluster of virtual machines on the available lab desktop

computers or even using their own laptops. While the students need admin-

istrative privileges to install and manage their virtual machines, they need

no privileges on the host machine. In addition, they can update or install

cluster software and infrastructure without compromising the work done by

other students. However, notice that the use of virtual machines to build a

cluster is only for academic purposes and by no means we want to suggest

that an actual cluster will be built using virtual machines.

To reduce system requirements, the size of the cluster should be small. As

a minimum configuration, the cluster that each student builds is composed

of two director nodes (to provide high availability), three server nodes plus

a storage node. Despite the reduced number of server nodes, the course is

designed as if a large computer cluster were deployed. For instance, installing

the system individually on each server node is easy for three servers, but is

unfeasible for a large cluster. Thus, a scalable way of installing the system

and configuring cluster nodes is proposed. More details can be found in

Section 3.

The main contribution of this paper is the proposal of a computer cluster

subject that i) considers not only the traditional high-performance/high-

throughput computing usage of clusters but also other usage flavours, like

their usage as high-availability/load-balanced Internet server; ii) deploys a

computer cluster based on virtual machines from scratch, installing and con-

5

figuring all the required packages. As a consequence, the course contributes

to bridging the gap between industry and academia by teaching those con-

tents that are used in today servers from a practical point of view. This

approach has been recommended by ACM and IEEE Computer Society in

their coming curricula in Computer Engineering [12].

The rest of the paper is organized as follows. Section 2 describes the

syllabus. Section 3 presents the hands-on part of the course detailing the

steps followed by each student to build his/her cluster. Section 4 discusses

the teaching methodology and evaluation criteria. Section 5 discusses some

related work and, finally, some conclusions are drawn.

2. Description of the Subject

2.1. Context

One of the key points to consider when instructors have to choose which

topics to include in a post-graduated course is the previous background of the

students. The proposed course belongs to a Master program in Computer

and Network Engineering [18], lectured by the Computer Engineering De-

partment at the Universitat Politècnica de València. It is targeted to bach-

elors in Computer Science, Computer Engineering or Telecommunications

Engineering. Usual topics covered in these bachelors include programming,

computer organization and architecture, computer networks and operating

systems. Moreover, instructors have to consider the topics included in other

subjects of the same Master. In particular, in our Master, interconnection

topologies used in high performance networks are already covered. Topics

like security in distributed systems or GPU programming are also developed

6

in other courses of that master. On the other hand, there is also another

Master focused on parallel computing and cloud computing [19] at the same

university, that offers our course as an optional subject.

2.2. Syllabus

Taking into account the above considerations and the main objective of

the course of trying to provide experience about how to design, configure and

manage a computer cluster (with the two aforementioned usage flavours), we

choose a syllabus that will allow a course with a strong practical component

without neglecting the theoretical basis.

2.2.1. Introduction

Clusters represent a good option to get cost-effective systems. They are

the dominant system architecture in HPC with 85% of the TOP500 list [28]

but they are also present in many companies offering web or database ser-

vices. This unit reviews the factors that have enabled this success: improve-

ments in personal computer performance and operating systems. In addition,

the limitations in the performance of uniprocessor systems and the need for

high performance in applications are also discussed. The main goal of the

unit is to establish what a cluster is, what kind of applications it can run

and which are the main factors that have driven its popularity. Moreover,

in order to clarify their study, clusters are classified into four groups: high

throughput computing, high performance computing, high availability and

high performance service [11]. The main characteristics of each group are

presented.

7

2.2.2. Cluster Configuration

This unit is devoted to the selection of the cluster components, analysing

the different factors to consider in that selection. It presents an overview and

some of the elements will be developed in detail in later units:

• Main components of the cluster nodes: processor (computing power,

relevant benchmarks, power consumption, ...), memory and I/O.

• Interconnection network: Concepts about High Speed Interconnects

(HSI). Latency, bandwidth and overhead of the network interfaces. HSI

topologies are only mentioned as they are covered in another subject.

• Storage system: Evolution of network storage: Direct Attached Storage

(DAS), Network Attached Storage (NAS) and Storage Area Networks

(SAN).

• Auxiliary components: racks, KVM switches, PDUs, wiring and UPSs.

• Other aspects to consider: electrical power needs, room, noise, cooling

and global cluster cost.

2.2.3. System Infrastructure

This unit summarizes basic computer network concepts applied to clus-

ters. Main useful services in a cluster are reviewed, including DHCP, NTP,

DNS, NIS, and SSH. General recommendations about where (on which nodes)

execute that services and which services need redundancy are given. On the

other hand, how to transport the information (data, management and control

networks) as well as IP address assignment and NAT are discussed. Finally,

how to improve network performance through the use of jumbo frames, as

8

well as channel bonding to increase link bandwidth or redundancy are also

introduced.

2.2.4. System Installation

In this unit, Linux is presented as the operating system of choice due to

performance and cost constraints. The distrowatch site [7] is used to show

the available Linux distributions and the top ten most used. A set of criteria

is shown as a guide to show the most appropriate distribution. Then, the

Linux boot process is revisited, including disk partitioning and boot loader.

Both GRUB2 and PXE are discussed, emphasizing their configuration files.

Several alternatives for system installation are discussed as well. As stated

above, the students must always keep in mind that they must install a large

system, composed of a potentially large number of nodes. Therefore, manual

or repeated installation processes are not acceptable. The approach that we

propose is to prepare a PXE server and then boot the server nodes from the

network. Once the server nodes are up, they can be remotely managed to

prepare their hard disk and install the system on it. We will perform this

kind of installation in the hands-on project. See Section 3 for details.

2.2.5. Storage Systems

Servers often use systems with multiple disks, connected locally or through

the network. This set of units studies all the aspects related to storage in

clusters. We can distinguish mainly two parts in that study.

First, high performance storage technologies are introduced, beginning

with different alternatives to manage disk arrays. Logical Volume Manager

(LVM) is used as an example of flexible disk array but without redundancy.

9

Then, we introduce RAIDs (Redundant Arrays of Inexpensive/Independent

Disks) and DRBD (Distributed Replicated Block Devices) [8] to improve

fault tolerance. Next, we review how to connect computers and storage.

Broadly speaking, you have two different possibilities: direct attached storage

through protocols like SCSI or SAS, or alternatively you can use network

storage. In that case, protocols such as Fibre Channel, iSCSI, or Fibre

Channel over Ethernet (FCoE) are widely used to access the remote disks

through the network. The main features of each one are discussed, as well

as their suitability depending on the type of cluster considered. Notice that

InfiniBand is covered in another subject of the same Master.

The course also covers the file systems used in clusters. Two primary

types of storage architecture are available: Network Attached Storage (NAS)

and Storage Area Networks (SAN). Although many protocols for network-

based systems exist, NFS [20] is the most widely used in the Linux environ-

ment. For this reason, we choose it as the NAS example to study. In addition,

the limitations and problems of such protocols are analysed and compared

with the advantages of SAN storage systems that enable better performance

and data consistency for concurrent access. Cluster file systems, also known

as shared-disk file systems, can provide not only advantages on scalability but

also about system metadata, lock manager or fencing. Different examples of

cluster file systems are compared: OCFS2 [21], PVFS2 [24] and GlusterFS

[10].

2.2.6. Compute Cluster (I): Running Sequential Applications

One of the main goals of a cluster is running applications. This unit intro-

duces job management systems, analysing two different approaches: MOSIX

10

[16] and HTCondor [6]. Both of them allow users to run sequential and par-

allel applications, doing dynamic load balancing between the cluster nodes.

With MOSIX, users have the illusion that applications run locally on the

home-node where they were launched. Actually, MOSIX checks the cluster

resources and migrates processes to the least loaded nodes. As load changes

in the cluster or if a node is disconnected from the cluster, workload is dy-

namically adjusted, migrating processes to other nodes. Moreover, as MOSIX

works transparently to the applications, users do not need to modify them.

It allows users to use local commands on the home-node as if the processes

were running locally. Probably, its main disadvantage relies on I/O, which is

done via the home-node of the process, reducing performance for processes

with significantly amount of I/O and/or file system access.

Alternatively, users may want to execute some applications in a non-

interactive mode (jobs). Batch queuing systems help users to manage their

jobs, allocating resources to jobs, providing a framework for submitting, exe-

cuting and monitoring jobs and arbitrating contention for resources. Popular

batch execution system for clusters are HTCondor or the SLURM workload

manager [25]. The main features of job schedulers for clusters are explained.

In particular, HTCondor defines different running universes for sequential

and parallel applications, with distinct requirements and limitations, e.g.

the “standard universe” requires to link applications with HTCondor I/O

library but as a counterpart it allows checkpoints and remote I/O without

needing a shared file system; on the contrary, the “vanilla universe” works

transparently to the applications but it does not include that facilities. In

addition, a summary of the HTCondor commands to submit and control

11

user jobs and the DAGMan mechanism to describe job dependencies are also

introduced.

2.2.7. Compute Cluster (II): Running Parallel Programs

Although it is not the aim of this course to teach parallel computing, the

students still need some knowledge about parallel applications. In this way,

they will understand better what are the cluster resources that the execution

of this kind of applications require. As an alternative point of view, we want

the student to know the capabilities a cluster provide for running parallel

applications. We devote two units to give a basic introduction to parallel

programming.

The first unit deals with the message passing programming paradigm us-

ing MPI (Message Passing Interface) [17]. The structure of a MPI program

is explained, the basic communication primitives (MPI Send, MPI Recv,

MPI Bcast and MPI Reduce) are introduced and simple programs based on

the concept of manager–worker are shown. A lab session completes the unit.

A simple parallel program to compute the dot vector is provided and the stu-

dents have to insert some send/receive primitives and develop a new version

that exchanges blocks of data instead of scalars and makes use of collective

communications.

The second unit is devoted to shared-memory parallel programming.

In particular, the OpenMP programming model is presented [22]. Basic

OpenMP directives to parallelize loops and sections are introduced. The

shared and private scopes of variables and how to deal with critical sections

are shown to the students. A lab session that computes the π constant by nu-

merical integration is used as a working example to parallelize. To complete

12

the part devoted to parallel programming, a hybrid MPI–OpenMP version of

the dot product is developed. This example illustrates the fact that current

clusters are composed of several nodes and every node is composed of several

processors and/or cores. A way of exploiting this structure is using message

passing among nodes and shared variables between the cores inside a node.

2.2.8. Internet Server Cluster (I): Load Balancing

As stated above, clusters are often used to build high-availability/load-

balanced Internet clusters. This unit is devoted to deal with load balancing.

The Load Balancer (LB) or director is the set of hardware and software

tools that allows a system administrator to implement usage policies and

allocation of resources in the cluster. It distributes client requests among

cluster members transparently to the clients. Therefore, it is one of the key

elements in the cluster operation.

Depending on the packet information considered, load balancing can work

at different layers of the OSI Architecture, offering different criteria for load

distribution. Load balancing at level 4 uses only information of the IP pro-

tocol (layer 3) and transport protocols (layer 4), TCP and UDP, while work-

ing at application layer (layer 7) allows analysing the content of application

messages, thus enabling more complex decisions. For example, for HTTP

protocol, decisions based in URLs or based in cookies can be made. The

main scheduling algorithms for both layers are explained. In spite of all the

packets of a TCP connection will be sent to the same internal node, prob-

lems can arise. For example, with HTTP sessions spread between different

TCP connections. This drawback can be solved using source IP affinity or

persistence based on application layer information like HTTP cookies.

13

While when operating at layer 7 load balancer behaves as a reverse proxy,

working at level 4 allows more possibilities for packet routing. Although

NAT is the most frequently used one, Direct Routing and Tunneling are also

introduced.

At the end of the unit, several examples of open source Linux LBs such

as LVS and HAProxy are compared.

2.2.9. Internet Server Cluster (II): High Availability

The load balancer needs to know which nodes are available in order to

submit them the jobs. Some load balancers as HAProxy make this func-

tion for themselves but others as LVS rely on external tools, like ldirectord.

In particular, Cluster Resource Managers (CRMs) can be used. CRM is

additional software that checks the node state and the node resource con-

figuration, stops the node services when there is a problem and informs the

load balancer of the available nodes. To meet those goals, the node state

is usually verified through heartbeats or connections to the offered services.

Moreover, the LB is a single point of failure that should be replicated and

monitored to get a high availability system. Tools like keepalived or corosync

can do this job.

In addition, concepts about how to solve problems with nodes as split-

brain situations, fencing or Stonith are also introduced in this unit. Finally,

pacemaker structure and configuration are shown as a CRM example.

3. Lab Project

This section presents the hands-on part of the course. As stated above,

an academic cluster project based on the use of virtual machines will be de-

14

ployed. At the beginning of the course, the specifications of the computer

cluster to be built are given to the students. Care must be taken to reduce

the size of the cluster as well as the specifications of each node to be represen-

tative of actual requirements but also keeping complexity under reasonable

limits. The virtual nodes of the cluster will be run either on the desktop

computers of the lab or on the students’ own laptops. At the time of writing,

machines with a 4-core processor, 4 or 8 GB of RAM and more than 500

GB of disk storage are common. We propose a cluster composed of 6 nodes:

two director nodes, three server nodes and one storage node. The two direc-

tor nodes provide high availability. The server nodes do the computational

tasks or provide the required service. The number of server nodes could be

increased if resources are available on the host machine. Anyway, the course

encourages a cluster deployment keeping in mind that the number of server

nodes could be potentially very high. Finally, the storage node provides a

common storage for user and system data.

Concerning the specifications of each node, it depends on the require-

ments of the operating system and applications. As the cluster is only used

for academic purposes, we only consider the minimal requirements of the

operating system. At the time of writing, for Ubuntu 14.04 Server LTS (see

below) a minimum 192 MB of RAM and 1.4 GB of storage are required. We

have successfully worked with uniprocessor configurations with 512 MB of

RAM at the director nodes and 256 MB of RAM at the server and storage

nodes. An 8 GB virtual disk is used in all nodes but the storage one, where

10 GB are provided.

The lab project consists of the following steps (see Figure 1). First, the

15

1. Configuration 2. Installation 1st part. 3. Installation 2nd part.

4. Storage 5. Compute cluster 6. Internet server

Figure 1: Lab project steps

virtual machines that will become the nodes of the cluster will be created

and configured. Next, the operating system will be installed on the cluster.

As stated above, we will install two different systems to allow the cluster

to run in two different flavours. Once the cluster is configured and working,

several storage alternatives are also configured and tested. As the first flavour

corresponds to a compute cluster, we install the required packages to manage

sequential jobs and run parallel programs in the cluster. Finally, we install

and configure the corresponding software tools to provide load-balancing and

high-availability that allow the cluster to work as an Internet server.

3.1. Cluster Configuration

As the very first step for building a cluster, its nodes must be carefully

selected and configured. Therefore, in the lab project this step is resembled

by creating and configuring the virtual machines. Any virtualization platform

can be used. We have successfully used VirtualBox [29] since the first edition

16

Figure 2: Block diagram of the cluster

of the course. VirtualBox is freely available as Open Source Software under

the terms of the GNU General Public License (GPL) version 2 and is available

for Windows, Mac OS X and Linux hosts, thereby allowing the project to be

developed on any desktop or laptop computer.

Using the visual interface of VirtualBox, the six nodes that compose the

cluster are created (see Figure 2):

Master, StandBy: Director nodes. 512 MB of RAM. Boot order: DVD→HD,

8 GB of SATA storage. Two network interfaces (adapter 1 connected

to NAT Network; adapter 2 connected to internal network).

Server1, Server2, . . . : Server nodes. 256 MB of RAM. Boot order: Network→HD,

8 GB of SATA storage. One network interface (adapter 1 connected to

internal network).

NAS: Storage node. 256 MB of RAM. Boot order: DVD→HD, 10 GB of

SATA storage. One network interface (adapter 1 connected to internal

network).

NAT Network: “nat-network-1”. DHCP enabled.

17

Figure 3: Installing the system on the cluster

Internal network: “intnet”.

3.2. System Installation (I)

Once the virtual nodes are configured, the student is ready to install the

system. Notice that taking advantage of using a virtualization platform, we

could use the trick of installing one node and cloning it using the available

tools. However, as this could not be feasible in a real cluster, we avoid it.

As operating system, we have successfully used Ubuntu Linux in several

course editions. In particular, we choose the Long Term Support (LTS)

server editions (14.04 LTS in the last course edition), which should be a

proper choice in a real cluster.

The steps followed to install the cluster are shown in Figure 3 and sum-

marized below. First, we will completely install the NAS node. Next, to

install the system in the server nodes we will perform an installation of one

server node (the “canonical node”). Afterwards, a copy of the “canonical

node” system will be stored at the NAS node. Then, a PXE server will be

set up at the Master node, to boot the server nodes mounting their root

18

filesystem on the NAS node. As the network is running, all the server nodes

are accessible through ssh and the Master node will issue the proper com-

mands to complete the installation. Once the installation of the server nodes

is done, the PXE server is stopped and the machines are rebooted from their

own hard disk, and the cluster is installed.

Let us analyze the process step by step. First, NAS node is individually

installed by booting from an ISO image inserted into the virtual DVD drive.

To fully take control of the installation process, the students are encouraged

to manually define disk drive partitions (two partitions plus swap). After

rebooting, the root user is activated, the network is statically configured and

some additional packages are installed and configured (ssh and nfs server).

At every step of the process, the students are given the command to issue

and/or the files to configure, with a brief explanation of its purpose.

Next, the Master node is installed to generate the “canonical node”

that will be used to clone the server nodes. Again, to fully take control of

the installation, the boot loader (grub2) is manually configured. The SSH

keys are generated and configured to allow public key validation and the

/etc/hosts file is created. The system is now ready to be copied to the NAS

node. Care must be taken to edit the network configuration in the just copied

system to avoid bringing the network interface up automatically, as it will

have already been brought up by PXE booting. In addition, the /etc/fstab

file must be edited to mount in the server nodes the root filesystem on the

NAS node through NFS.

Now, it is time to finish the Master node installation to become the

cluster director node. The system variables and the iptables firewall are

19

configured to provide NAT to the internal network. A lightweight window

system might also be installed to easy system interaction. Finally, the PXE

support files are installed (syslinux, dnsmasq) and properly configured to

mount the root filesystem on the NAS node. The dnsmasq utility will be

also in charge of DHCP and DNS services. Finally, the PXE server is started.

Then, the server nodes will be started and booted up from PXE, mounting

their root file system on the NAS node. The students can check the boot

process from the screen messages and on the dnsmasq log file at the Master

node. As soon as all the server nodes are started, we can proceed to install

the system in all of them. We use two valuable and easy scripts referred

to as psh and pscp (”parallel shell” and ”parallel secure copy”, see Figure

4) to launch a given command to all the server nodes and broadcast a file

to all nodes, respectively. Although there are some packages (for instance,

pdsh) that provide this functionality, the students can check by themselves

how easy can be to install and admin a cluster by using simple tools. As

an example, Figure 5 shows the command sequence issued from the Master

node to partition and format the disks of the server nodes. Then, all the

server nodes copy the root filesystem (mounted on the NAS) to their own

disk. Once the copy is done, filesystems, network configuration, boot loader

and hostname are set up. All these stuff is performed from the Master node,

by using the psh script or some simple variations. Notice that the installation

process is the same regardless of the number of server nodes. At this time,

the PXE server is stopped on the Master node and the server nodes are

ready to reboot. The system is installed.

When the cluster is booted from the 1st partition, it should work as an

20

HPC/HTC oriented cluster. Therefore, some support is required to ease user

management. To do so and for the sake of simplicity, NIS service is installed

in the system. In an actual cluster, NIS service will be provided by some

administrative nodes. In our cluster, it is provided by the NAS node. In

previous course editions it was installed on the director nodes, which can

seem more logical. However, as the director nodes could be booted in two

working modes and NIS is only required in the HPC/HTC mode, it can

create some situations where some node hung for long waiting for the NIS

server. Thus, in our project, the NIS server package is installed on the NAS

node, and the NIS client package on the first partition of the director and

the server nodes of the cluster. The configuration files are updated and some

tests adding and deleting users are performed.

Alternatively, LDAP service could be used for user management. How-

ever, administration of LDAP server from command line is quite difficult.

For this reason, it is advisable to install a GUI (Graphical Unit Interface)

administration tool like phpldapadmin.

3.3. System installation (II)

At this step, another system is installed in the 2nd partition of the node

hard disk (all nodes but the NAS one). The fact of having two different

installed systems can be justified from different points of view. A first rea-

son is fault tolerance. If there is a system corruption due to faults or even

user errors, another partition comes to the rescue. However, there are more

interesting reasons. For example, both a minimal and a production system

could be installed. The minimal system helps to install and upgrade the

production one. On the other hand, different systems or applications could

21

#!/bin/bash

#SERVER_NR --> nr of servers

#SERVER_NAME --> server prefix

echo $0 $*

i=1

while [$i -le $SERVER_NR]

do

echo "================="

echo $SERVER_NAME$i

echo "-----------------"

ssh $SERVER_NAME$i $@

let i=i+1

done

#!/bin/bash

echo $0 $*

i=1

while [$i -le $SERVER_NR]

do

scp $1 $SERVER_NAME$i:$2

let i=i+1

done

Figure 4: psh and pscp scripts

be installed in each partition. This latter approach is what we follow in the

course. As already stated, the computer cluster could be used in two working

modes. The first one corresponds to a compute cluster, where users submit

and execute their jobs. The second one is an Internet server and will be

installed in the 2nd partition. A web server package is required at the server

nodes and load-balancing and high-availability packages will be installed at

the director nodes.

The system will be installed in the 2nd partition following an easy ap-

proach. Once the cluster is started and operational from the first partition,

22

...

HD Partitioning

Master

echo "Partitioning, formatting servers ..."

echo "Take a copy of master partition table"

sfdisk -d /dev/sda > $NFS/root/sda.out

Servers

echo "Partition from a file"

psh "sfdisk -f /dev/sda < sda.out"

echo "Format partition 1"

psh "mkfs -t ext4 /dev/sda1"

echo "Preparing swap"

psh "mkswap /dev/sda3"

psh "swapon /dev/sda3"

...

Figure 5: Example of psh script usage to clone partition table and prepare storage at

servers

the second partition is formatted and the system is copied on it. The filesys-

tem and grub boot loader configuration files must be updated. It is important

to notice that all the commands will be issued on the Master node. We try

to instill in the students that the cluster management should be centralized

to minimize the administration effort.

23

3.4. Storage Systems

Once the operating system is installed in both cluster partitions, it is time

to play with storage alternatives. A first enhancement to the NFS storage

configuration consists of using link bonding. A second network interface is

added to the NAS node and the system configuration is accordingly updated.

The network bandwidth of the NFS node is doubled.

On the other hand, by adding some (virtual) disks to the NAS node,

the flexibility of Logical Volume Manager can be explored. In addition, to

provide fault-tolerance, the students build a software RAID on the storage

node of the cluster. For instance a RAID-5 can be configured. After setting

up the configuration files, some tests can be run to force an error and launch

the recovery process. Other alternatives are also feasible. For instance,

a DRBD can be also easily configured and tested. The students can also

play with iSCSI protocol by configuring a target device at the NAS node

that is mounted on some nodes of the cluster that work as initiators. The

iSCSI target device can be simultaneously mounted on several nodes if a

cluster filesystem is used. Therefore, as a next step, the OCFS2 filesystem is

configured on the initiators and some proof tests are run.

To finish this part, a small SAN with GlusterFS is developed. Several

disks are added to the server nodes of the cluster and several GlusterFS con-

figurations are tested. In particular, both replicated and distributed Glus-

terFS volumes are configured and mounted from the Master node. Then,

some files are copied onto the filesystem, checking whether there are repli-

cated in all bricks or distributed among them, respectively. The replicated

volume also allows us to perform some fault-tolerance tests.

24

3.5. Compute Cluster

Next, some packages are installed in the 1st partition to allow the cluster

to work as an HPC/HTC platform. We think about three possible scenarios.

The first scenario corresponds to a batch oriented system where the users

submit their jobs, possibly composed of multiple executions of a given ap-

plication (for instance a simulator). In the second scenario, the users log

in to the system and interactively run their programs. The third scenario

corresponds to a parallel machine, where the users want to run their parallel

applications.

The system is configured to support the three scenarios. The first one is

achieved with the HTCondor package. We chose this package since we have

used it for managing simulations in our research group for several years and

it is useful for the master students that also do research in our group. The

Master node is set up as central manager as well as being able of submitting

and executing jobs. The server nodes can submit and execute jobs. As in

other parts of the project, all the steps are performed thinking about a large

cluster composed of not only three nodes but a relatively high number of

nodes. Once installed, a simple job consisting of a simulator with different

input data sets is submitted to Condor, examining its behavior.

To support the second scenario, the MOSIX package is installed in all the

nodes of the cluster. To demonstrate how it works, some test programs are

run from one node and it is observed how the load is balanced between all

nodes.

Finally, to run parallel programs, both an MPI programming environment

(for instance the OpenMPI package) and the OpenMP development library

25

are installed in all the nodes of the cluster. Some simple parallel programs

are written and run to check that everything is working properly.

3.6. Internet Server Cluster

In this part of the project, a high-availability load-balanced web server

is configured in the 2nd partition. As a first step, the apache Web server

is installed in all the server nodes, including the PHP module. A simple

php page is written to return the current date, time and the IP address of

the server. Then, the load-balancing tool is installed on the Master node.

Several options are available. In the project, we have successfully configured

for several editions a level-4 load balancer based on the IPVS kernel mod-

ule. The HAProxy package could be another widely used alternative. After

preparing the configuration file, the load-balancer is ready to run. By re-

peatedly issuing requests to the URL that contains the aforementioned php

page, the students verify how the load is balanced between the server nodes

by checking the IP address of the machine answering the request.

Once the load-balancing part is done, it is time to prepare the StandBy

machine. In an actual scenario, a complete installation would be performed

from scratch. In the project, taking into account the scarce time available,

the StandBy node is obtained by cloning the current image of the Master

node. This is the only time where virtual machine cloning is allowed. After

the cloning procedure, the IP address and the hostname are updated and the

machine is rebooted. At this moment, the two director nodes are running. It

is time to install the high-availability required packages. We have successfully

used for this purpose the corosync, pacemaker and ldirectord packages. Al-

ternatively, the keepalived package could be also used. The corosync package

26

provides the infrastructure to check the health of the director nodes. The

pacemaker package is a CRM manager that allows defining resources that

will be shared between both director nodes, starting/stopping and migrat-

ing that resources. In the project, two virtual IP addresses (external and

internal) are defined. These VIPs will float from one director to another in

the event of a node failure. Finally, the ldirectord resource checks the server

health, thereby avoiding sending requests to the faulty server nodes.

Once the high-availability load-balanced web server is configured, it is

time to check its behaviour. In particular, the students issue several http

requests to the server and verify that: (i) when all the components are up,

requests are balanced among all the server nodes; (ii) when a server fails,

requests are balanced among the remaining servers; and (iii) when a load-

balancer node fails, the other one assumes the service. In the configured

cluster, it is very easy to simulate a faulty node by disconnecting on-the-fly

the (virtual) network interface link.

If there is still time available, some tests can be also performed by using

simple benchmark tools like apache benchmark.

4. Teaching Methodology

This section presents the teaching methodology and the assessment cri-

teria of the course.

The subject has 40 assigned hours in the syllabus, spread over 16 sessions

of 2.5 hours each. The course is taught in an intensive way, at 2 lectures

per week, lasting for about two months. The sessions are organized so that

approximately 40-50% of the available time is devoted to the lectures and the

27

rest to complete small laboratory exercises related to the contents explained

that day and to work in the hands-on project. In addition, we reserve four

complete sessions throughout the course to install and configure the computer

cluster using virtual machines. A total of 15 classroom hours is devoted to

deploy the computer cluster by the students. Although most of the students

have enough with the reserved time slot, some of them must advance some

work at home and/or attend meetings with the teachers to solve some issues.

In order to help the students to debug problems when his/her cluster does

not behave as expected, we give them a FAQ (Frequently Asked Questions)

document that includes information about the most frequent problems and

how to solve them. Typical issues are why internet access fails on the nodes

(usually because the network, the NAT or the DNS are not properly con-

figured); in addition, the server nodes may have problems to boot from the

PXE server while they are being installed due to bugs in their configuration

files. Other mistakes are related to NFS service, usually due to typos in

the configuration files. Finally, typical problems with high availability tools,

such as pacemaker or load balancers as IPVS, are also described in the FAQ

document.

The course assessment includes the following aspects. First, the students

are encouraged to attend and participate in all the lectures (10%). A success-

ful completion of all the laboratory exercises (15%) is also assessed. In order

to cover the part of the course concerning cluster architecture and configu-

ration, the students have to select the components of a hypothetical cluster

given some specifications. After selecting the components, they also have to

estimate the peak computing power in MFLOPS, their cost and the energy

28

consumption. Three configurations are considered: high-performance, low-

cost and energy-efficient. A final report is written and presented (10%). The

most important part of the course assessment corresponds to the hands-on

project regarding the deployment of a virtual-machine-based computer clus-

ter. The project has a weight of 35%. A written exam with a 30% weight

completes the assessment. The topics of the exam comprise all the contents

taught throughout the course but with special emphasis on the configured

cluster. Figure 4 shows some question examples we have asked to the stu-

dents. It must be noticed that the exam is done in the lab so that every

student may have his/her own cluster up and running. Therefore, they can

access the configuration files and/or issue commands to their cluster if they

want to do so.

Concerning the achieved results, in general, the students like very much

the subject. They are interested in the contents and very motivated in the

hands-on project. Each time a project step is committed, they are proud

of their work. In particular, there are three milestones in the computer

cluster development. The first one corresponds to the basic installation of

the system, once the cluster is able to boot on his own and the students are

able to log in to the master node and issue commands to the server nodes.

The second one corresponds to the installation of the load management tools

(i.e., HTCondor and MOSIX). At that time, the cluster can be used to submit

user jobs. The final and most important milestone is achieved when the high-

availability load-balanced web server is set up. The students are very excited

when they check that the http requests are being balanced or when they

simulate faults on the server or director nodes and the web server continues

29

• What file would you modify to configure network interfaces in

Ubuntu? Write its contents to automatically assign an IP address

to the eth0 interface.

• Which commands must issue a normal user to configure ssh access

from the master node to the servers without password (public key

validation)?

• Which services provide the dnsmasq utility? Which ones of them

are required at installation time and which ones once the system

is installed? Which nodes of the cluster must run dnsmasq?

• Explain what is the purpose of the /etc/ethers file. Which

service is this file related to?

• After attaching a new physical disk to a node, which command

can you issue to know the assigned device name (for instance,

/dev/sdc)?

Figure 6: Sample questions of the written exam

30

working properly. Overall, student opinion is that they have learned practical

and useful issues of today servers. The results obtained in the yearly survey

of the University confirm student satisfaction. A five-point Likert scale was

used in the questionnaire, with the typical format (Strongly Agree, Agree,

Undecided, Disagree, Strongly Disagree). In the last available results, our

course obtained 80% of strong agree, 20% of agree in the questions related

to teaching methodology, used resources and learning activities.

From a quantitative point of view, the assessment results are overall very

good. Usually, all the students pass the subject with very good grades.

Typically, only 10% of the students obtains a Fair grade. This latter group

corresponds to the students that had not devoted enough time to the hands-

on project and either they did not finished it or they did not fully understand

all the steps involved in the installation, so they were not able to fully respond

the written exam questions.

5. Related Work

Some previous papers have described experiences teaching advanced un-

dergraduate or graduate cluster computing courses. For instance, [1] presents

a selection of possible topics for cluster computing courses, based on the ex-

perience of the authors teaching this subject in different universities in USA

and Australia. The proposed material is pretty wide and covers many dif-

ferent aspects of cluster computing. The goal was to make a proposal that

allowed the instructors to select the contents best suited to their course ob-

jectives. In the actual courses shown as examples in the paper, we find that

frequently an important part of the course is focused on parallel program-

31

ming. Moreover, depending on the universities, more or less contents on

system architecture for parallel and distributed systems are also developed.

Only in one case, part of the course is also devoted to build a cluster, shared

between the students to evaluate performance of different network technolo-

gies, network topologies and file systems. Most of these courses have still

been available in the 2015-16 catalogue.

Other works are focused on building clusters to use them in different

courses. In [2], [5] and [15], they implement real hardware clusters while [26]

and [30] choose virtualization. In [2] several options to implement clusters

based on cluster building kits are compared. However, the paper highlights

that usage and cluster management at an advanced level are more flexible

and allow for better possibilities when manual configuration is employed. A

single cluster, consisting of one master and 10 slave nodes, is built. The

cluster is shared between all the students. [5] proposes the construction and

management of reduced high performance clusters as part of a course aimed

at engineering and science students. The goal is to train them since they may

need to manage and/or build these systems for their research labs. Each

student group develops in the laboratory sessions a 2-node Linux cluster.

Most of the services are configured only in one of the nodes and loaded by

the other through DRBL package [9]. Other services, such as SSH and NTP

are manually installed using the YasT tool, thus making the process not

scalable for a big number of nodes.

The work in [15] presents the development of a cluster computing project

for business undergraduate students. A small scale Linux cluster was im-

plemented taking advantage of used equipment donated by universities and

32

major corporations. The course focuses on the benefits of the project for

the business students as well as faculty members. The students did not only

implement the cluster but also managed it, providing them with a practical

understanding of the studied technologies. Regarding academic staff, the

cluster was a valuable classroom resource for teaching several courses related

with cluster computing. Some general suggestions about how to teach a

cluster computing course are also given.

Finally, [26] and [30] draw on virtualization to develop “training” clusters.

[26] proposes a very simple Linux cluster made of only two nodes that could

be used for developing and debugging parallel software (e.g. using MPI). It

is not intended to be a complete cluster solution at all since it only offers

very basic services. Moreover, as the second node is added cloning the first

one, the solution does not scale to hardware clusters (not virtual ones). The

paper is mainly focused on describing the configuration of the VirtualBox

machine. [30] describes the development of a virtual cluster through the VC-

Net tool. VCNet is a virtual technology cluster solution based on Windows

2008 HPC Server. It provides a reliable environment where users can test

and debug applications before installing them on the hardware university

cluster. Performance of VCNet under different conditions is also evaluated.

All the clusters developed in these courses are based on Linux operating

system apart from [30]. Overall, they use quite basic configurations that do

not represent real life installations. Regarding to the cluster usage, they are

intended for the high performance computing flavour [11] usually ignoring

the high performance service one. However, this latter usage represents a

very high percentage of cluster installations [11]. Internet servers that han-

33

dle a high demand on a given service (web, mail, file transfer, database,

videos, etc.) are everywhere and are usually based on clusters. Finally, al-

most no course addresses high availability or advanced cluster storage. On

the contrary, the course proposed in this paper considers both high perfor-

mance/high throughput computing and high availability/high performance

service flavours of computer cluster usage. In addition, the course is taught

using a hands-on approach, taking advantage of virtualization to allow each

student to build his/her own cluster. Despite the reduced size of the cluster

deployed, the teaching methodology guides the students to think as if they

were building a large cluster.

6. Conclusions

In this paper we described a master-level course on computer clusters.

The course has been developed around four keystones. Firstly, a hands-

on but in deep design, trying to bring the course contents closer to the

professional practice as it is widely recommended (for instance by the IEEE

Computer Society and the Association for Computing Machinery in their

last Computing Engineering Curricula). Secondly, it deals with the main

concepts of all types of computer cluster usage, including the ones that are not

usually covered in most cluster-related courses in other universities but widely

used in companies, i.e., High-Availability/High-Performance Service clusters.

Thirdly, the course relies on virtualization (and Linux operating system)

to allow every student to develop his/her own cluster without interfering

with the work of other students. Fourthly, despite the small size of the

implemented cluster, every step of the process is designed to be scalable, by

34

thinking about a large cluster.

Both authors have taught the course for several years. The student as-

sessment results are overall very good. Indeed, the student satisfaction at the

end of the course is very high, as shown by the results of surveys conducted

by the university.

Finally, all the contents of the course have been exposed in detail so that

it can provide guidance to other teachers interested in using this approach.

Acknowledgements

This work was supported in part by the Spanish Ministerio de Economı́a

y Competitividad (MINECO) and by FEDER funds under Grant TIN2015-

66972-C5-1-R.

[1] A. Apon R Buyya, H Jin, J Mache. Cluster computing in the classroom:

topics, guidelines, and experiences. In: IEEE/ACM Int. Symposium on

Cluster Computing and the Grid, pp. 476-483, (2001).

[2] S. Aydin and O.F. Bay. Building a high performance computing cluster

to use in computing course applications. Procedia - Social and Behavioral

Sciences, 1(1): pp. 2396-2401, (2009).

[3] D.J. Becker, J. Salmon, T. Sterling and D.F. Savarese, How to Build a

Beowulf: A Guide to the Implementation and Application of PC Clus-

ters, (MIT Press, 1999).

[4] R. Buyya, High Performance Cluster Computing: Architectures and Sys-

tems, Vol. 1, (Prentice Hall, 1999).

35

[5] M-H. Chen and T-L. Li. Construction of a High-Performance Computing

Cluster: A curriculum for Engineering and Science Students. Computer

Applications in Engineering Education 19(4), pp. 678-684. (2011).

[6] HTCondor: High Throughput Computing,

https://research.cs.wisc.edu/htcondor/ (Accessed 10-06-2016).

[7] Top Ten Linux Distributions, http://distrowatch.com/dwres.php?resource=major

(Accessed 10-05-2016).

[8] DRBD - User’s guide 9.0, http://www.drbd.org/en/doc/users-guide-90

(Accessed 12-06-2016).

[9] National Center for High-Performance Computing: DRBL: Diskless Re-

mote Boot in Linux. http://drbl.sourceforge.net/ (Accessed 18-05-2016)

[10] Storage for your cloud: GlusterFS, https://www.gluster.org/ (Accessed

12-06-2016)

[11] D.C. Hyde, M. Baker, editor. Cluster Computing White Paper pp. 110-

119, (2000). Available from http://arxiv.org/pdf/cs/0004014.pdf.

[12] Computer Engineering Curricula 2016 (draft). Association

for Computing Machinery (ACM)/IEEE Computer Society.

(2015) https://www.computer.org/cms/Computer.org/professional-

education/curricula/ComputerEngineeringCurricula2016.pdf

[13] S. K. Prasad, A. Chtchelkanova, F. Dehne, M. Gouda, A. Gupta, J. Jaja,

K. Kant, A. La Salle, R. LeBlanc, A. Lumsdaine, D. Padua, M. Parashar,

36

V. Prasanna, Y. Robert, A. Rosenberg, S. Sahni, B. Shirazi, A. Suss-

man, C. Weems, J. Wu (2012) NSF/IEEE-TCPP Curriculum Initiative

on Parallel and Distributed Computing - Core Topics for Undergradu-

ates, Version I. http://www.cs.gsu.edu/ tcpp/curriculum/index.php, 55

pages.

[14] E. Johnson, P. Garrity, T. Yates, R. A. Brown. Performance of a Virtual

Cluster in a General-Purpose Teaching Laboratory. In: IEEE Int. Conf.

on Cluster Computing, poster 35 (2011).

[15] Integrating IS Curriculum Knowledge through a Cluster-Computing

Project - A successful Experiment. Journal of Information Technology

Education, 3, pp. 263-278, (2004).

[16] MOSIX Cluster Management System, http://www.mosix.cs.huji.ac.il/

(Accessed 18-05-2016)

[17] Message Passing Interface Forum, https://www.mpi-forum.org/ (Ac-

cessed 25-05-2016)

[18] Master’s Degree in Computer and Network Engineering,

https://www.upv.es/titulaciones/MUIC/index-en.html (Accessed

15-05-2016).

[19] Master’s Degree in Parallel and Distributed Computing,

https://www.upv.es/titulaciones/MUCPD/indexi.html (Accessed

15-05-2016).

[20] T. Haynes, D. Noveck, Network File System (NFS) Version 4 Protocol,

https://tools.ietf.org/html/rfc7530, March 2015. (Accessed 12-05-2016)

37

[21] Project: OCFS2, https://oss.oracle.com/projects/ocfs2/ (Accessed 12-

05-2016)

[22] The OpenMP API specification for parallel programming,

http://http://openmp.org/ (Accessed 18-05-2016)

[23] G.J. Pfister, In Search of Clusters, (Prentice Hall, 1998).

[24] Welcome to the PVFS Project, http://www.pvfs.org/ (Accessed 12-05-

2016)

[25] Slurm workload manager, http://slurm.schedmd.com/ (Accessed 18-05-

2016)

[26] G.K. Thiruvathukal et al. Virtualization for Computational Scientists,

Computing in Science & Engineering, 12(4), pp. 52-61, (2010).

[27] TOP500 Supercomputer Lists, http://www.top500.org/lists (Accessed

12-06-2016)

[28] TOP500 Overview, http://www.mellanox.com/page/top 500 (Accessed

6-05-2016)

[29] Oracle VM VirtualBox, https://www.virtualbox.org/ (Accessed 12-06-

2016)

[30] R.L. Warrender, J. Tindle and D. Nelson, Development of a Virtual

Cluster, In: Int. Conf. on High Performance Computing and Simulation

(HPCS), pp. 545-551, (2013).

38

