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SUMMARY 

A new stress recovery procedure that provides accurate estimations of the 

discretization error for linear elastic fracture mechanic problems analyzed with the 

extended finite element method (XFEM) is presented. The procedure is an adaptation of 

the superconvergent patch recovery technique for the XFEM framework. It is based on 

3 fundamental aspects: a) the use of a singular + smooth stress field decomposition 

technique involving the use of different recovery methods for each field: standard SPR 

for the smooth field, and reconstruction of the recovered singular field using the stress 
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intensity factor K for the singular field; b) direct calculation of smoothed stresses at 

integration points using conjoint polynomial enhancement; and c) assembly of patches 

with elements intersected by the crack using different stress interpolation polynomials at 

each side of the crack. The method was validated by testing it on both, problems with an 

exact solution in mode I, mode II, and mixed mode, and on a problem without analytical 

solution. The results obtained showed the accuracy of the proposed error estimator. 

 

KEY WORDS: Extended finite element method, error estimation, superconvergent 

patch recovery, singular stress field, linear elastic fracture mechanics.  

 

1. INTRODUCTION 

In recent years, the extended finite element method (XFEM) has emerged as a highly 

efficient numerical method for modelling inclusions and cracks [1,2]. The main 

advantage it offers over the standard FEM when solving linear elastic fracture 

mechanics (LEFM) problems is that it makes the finite element mesh independent of the 

crack geometry, which means that the mesh does not need to be modified during the 

crack propagation simulation process. The XFEM uses the partition of unity method [3] 

to model cracks, adding new degrees of freedom to introduce the discontinuity of the 

displacement field across the faces of the crack and to represent the asymptotic 

displacement field around the crack tip. Thanks to the advances made in the XFEM in 

recent years, the method is now considered to be a robust and highly accurate means of 

analyzing LEFM problems in 2D although inaccuracies still exist in 3D because of the 

oscillatory SIF fields along the crack fronts as is shown in [4-6]. Nonetheless, like the 
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FEM, the XFEM also yields results that are affected by the so-called discretization 

error. 

The importance of error estimation in numerical analysis is widely acknowledged. 

There are different sources of error when modelling physical problems as mathematical 

models. Mathematical models, in addition, are usually solved by numerical methods, 

which are another source of error. Szabó and Babuška [7] suggested that the successful 

correlation between the experimental results of a physical problem and the numerical 

analysis of a mathematical model must be based on knowledge of the error committed. 

When correlating experimental and numerical results, the latter must be close to the true 

solution of the mathematical model so as to guarantee that any discrepancy with respect 

to experimental results can be ascribed to the setting of the mathematical model. 

Uncontrolled numerical errors may increase (or reduce) the errors caused by imprecise 

formulation of the mathematical model. In this respect, Strouboulis et al.[8] stated that 

because of the increasing importance and use of partition of unity (PUM) based 

generalized finite element methods, it was particularly important to develop procedures 

that were capable of providing accurate error estimates for these methods, mainly 

because they tend to use coarse discretizations. 

The error assessment tools used in finite element analysis are well known and are 

usually classified [9,10] into two families: residual-type error estimators and 

recovery-based error estimators. The former, based on the ideas of Zienkiewicz and Zhu 

[11] and, in particular, on the superconvergent patch recovery (SPR) technique [12,13], 

are often preferred by practitioners because they are robust and simple to use [14,15]. 

Reference [16] contains an extensive review of the different proposals that have been 

published for improving the SPR technique. 
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The literature on error estimation methods for mesh based partition of unity methods, 

however, is very limited. Strouboulis et al. [17], for example, proposed an error 

estimator based on displacement field recovery for the generalized finite element 

method (GFEM) that yielded good results with h-adapted meshes. A later proposal 

included two a posteriori residual-type error estimators for GFEM.[8]. Very recently, 

Bordas et al. [18] and Bordas and Duflot [19] have presented a recovery-based error 

estimator for XFEM. This method proposes to enrich intrinsically the Moving Least 

Square recovery of Tabbara and Belytschko [20] to include information about the 

near-tip fields, and uses the diffraction method to introduce the discontinuity in the 

recovered fields. This method provided accurate results with effectivity indexes of the 

error estimator close to unity (optimal value) for 2D and 3D fracture mechanics 

problems. Duflot and Bordas [21] propose a global recovery technique where the 

recovered solution is sought in a space spanned by the near-tip strain fields obtained 

from differentiating the Westergaard asymptotic expansion. These authors indicate that 

this solves the problem of multiple tips, but requires a global minimization problem to 

be solved. 

The aim of this paper is to present a new a posteriori recovery-based error estimator, 

specially adapted to the XFEM framework, that enables accurate evaluations of the 

discretization error for results obtained when the XFEM is used to solve LEFM 

problems. The technique proposed is based on the use of the Zienkiewicz and Zhu’s 

error estimator [11] and a stress field recovery method which has been called SPRXFEM 

as it is an adaptation of the SPR technique to XFEM. This adaptation is based on 3 

fundamental aspects: 
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 ▪ Singular field processing: decomposition of stresses into a singular field and a 

smooth field and use of a different recovery method for each of these fields, 

following a similar approach to that described in [22]. 

 ▪ Evaluation of recovered stresses: a conjoint polynomial enhancement [23] is used 

for the direct evaluation of recovered stresses at integration points. 

 ▪ Assembly of patches containing elements intersected by the crack: use of different 

stress interpolation polynomials on each side of the crack. 

The authors consider possible extension to 3D of the proposed technique is suitable 

and future work will be carried out on this matter. 

The rest of the paper is structured as follows: Section 2 briefly describes the XFEM; 

Section 3 presents the Zienkiewicz and Zhu’s error estimator in energy norm and the 

SPR stress field recovery technique that was used as a starting point for the 

development of the SPRXFEM technique proposed in this paper and described in Section 

4. Finally, Section 5 presents the numerical results obtained using the proposed method 

and Section 6 summarizes the most relevant conclusions. 

2. THE EXTENDED FINITE ELEMENT METHOD 

In LEFM, problems are characterized by the singularity that occurs at the crack tip. 

The following expressions show the first term of the asymptotic expansion of the 

solution in displacements and stresses for combined load modes I and II in 2D: 
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where r and φ are the crack tip polar coordinates, KI and KII are the stress intensity 

factors (SIFs) for modes I and II, respectively, µ is the shear modulus, and κ is the 

Kolosov constant, defined in terms of the parameters of material E (Young’s modulus) 

and ν (Poisson’s ratio), according to the expressions: 
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Laborious modelling procedures are required to solve problems of this nature using 

the conventional FEM as the mesh needs to explicitly reproduce the geometry of the 

crack. Furthermore, in order to adequately obtain the singular solution, the finite 

element mesh must be adapted by increasing, as appropriate, the density of the degrees 

of freedom around the crack tip; this logically also increases the computational cost of 

the analysis. Another solution is to add special elements to this area. With the XFEM, 

the displacement discontinuity caused by the existence of the crack is introduced by 

adding degrees of freedom to the nodes of the elements intersected by the crack. This 

avoids the need to adjust the topology of the mesh to the geometry of the crack [24,25]. 

Furthermore, to adequately represent the asymptotic field around the crack tip, the 

numerical model introduces a basis that spans the near-tip asymptotic field. The 

following expression is generally used to interpolate the displacements for a point of 

coordinates x accounting for the presence of a crack tip in a 2D XFEM model: 
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In this equation Ni represents the shape functions associated with node i, ai, bj, and cm 

represent the nodal degrees of freedom corresponding to the displacements (coefficients 

bj are associated with the discontinuity functions H(x), and coefficients cm with the 

functions of the asymptotic field of the crack tip). In the above equation, I is the set of 

all the nodes in the mesh, M is the subset whose support contains the crack tip, and J is 

the subset whose support is intersected by the crack and not included in M (see Figure 

1). The level set method (LSM) has been used to define the geometry of the crack in the 

finite element mesh according to the procedure described in [25]. In (3), the Heaviside 

function H(x), with unitary modulus and a change of sign on the crack face, describes 

the displacement discontinuity if the finite element is intersected by the crack. The 

)(xlF  functions form a basis that can be used to represent the first term of the 

asymptotic expansion of the displacement field at the crack tip described by (1). For the 

2D case, the following functions are used [24]: 
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Figure 1. Classification of nodes in XFEM and definition of integration subdomains. 
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The methods described below have been employed in the XFEM implementation 

used to obtain the numerical results presented in Section 5. 

2.1. Numerical integration. 

A standard quadrature rule is not suitable for discontinuous functions, which is why 

the elements intersected by the crack are split into integration subdomains with their 

boundaries aligned with the crack, as in [1], in such a way that there is no discontinuity 

in any of the subdomains. The singularity in the crack tip elements required the use of a 

more accurate integration method than conventional Gaussian quadrature. In the 

triangular subdomains that made up these elements, the almost polar integration method 

proposed by Laborde et al. [26] has been used. This method consists of using the 

integration points of a standard quadrature of a quadrilateral transformed into a triangle 

(by collapsing two contiguous vertices at the singular tip). Good results were obtained 

using a quadrature rule of this type with 5 × 5 Gauss points in linear elements. 

2.2. Enrichment area. 

In the XFEM implementation so far described, the convergence rate of the error in 

energy norm is lower than the optimal convergence rate in FEM which is obtained using 

adaptive analysis techniques. A fixed enrichment area independent of the size h of the 

elements has been used to improve the convergence rate in XFEM as proposed in 

[26,27]. These references showed that, using this technique, h-uniform refinements in 

XFEM can yield the optimal convergence rate of FEM with h-adaptive refinements. 

One drawback to the use of the fixed enrichment area is that the condition number of the 

stiffness matrices increases with the number of nodes enriched with singular functions. 

The enrichment area was defined by a circular area B(x0, re) with radius re with its 
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centre at the crack tip x0, see Figure 2. The subset of enriched nodes M in (3) was thus 

defined as the set of nodes contained in B(x0, re). 

re

Fj-enrichment

H-enrichmentx1

x2

 

Figure 2. Enrichment using a fixed area of radius re. 

2.3. Evaluation of stress intensity factors 

SIFs are characterizing parameters in LEFM analysis. Several numerical solution 

post-processing methods, following local or global (energy) approaches, are commonly 

used to extract SIFs [28] or to calculate the energy release rate G. Local methods 

calculate SIFs using the solution obtained in the vicinity of the crack tip. In general 

terms, these methods require highly refined finite element meshes, which are often 

combined with singular elements. Energy methods are considered to be the most 

accurate and efficient methods [28,29]. Within these methods, those based on the 

equivalent domain integral of path independent integrals (EDI methods) are considered 

particularly interesting for FEM and XFEM because of their easy implementation in 

these frameworks. 

The interaction integral [30,31] has been used in this paper to extract the SIFs. This 

technique provides KI and KII in mixed-mode problems using auxiliary fields. The 

interaction integral Ψ is evaluated using the following expression: 
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In (5), the fields denoted with superscript (1) are the ones corresponding to the 

numerical approximation to the solution of the problem under analysis, while those 

marked with superscript (2) are auxiliary fields representing the asymptotic fields for 

modes I or II; ui is the displacement field in direction xi (local coordinate system at the 

crack tip with x1 parallel to the crack faces, see Figure 2); W(1,2) stands for the strain 

energy in terms of the inner products ( ) ( )21
ijij εσ = ( ) ( )12

ijij εσ ; δ1j is the Kronecker delta and q 

is an arbitrary, continuous function that should be 0 at the outer boundary of the 

extraction domain and 1 at the crack tip. In this paper, the q function is a Plateau 

function with q = 1 for the nodes within a circle of radius rq measured from the crack 

tip, and q = 0 for the remaining nodes. This function will also have a null value at the 

boundary of the problem analyzed, even if part of the boundary lies within the circle of 

radius rq. Using the interaction integral, the SIFs values are obtained using the following 

equations: 

 ( ) ( ) 2/;2/ ,1',1' IImodeaux
II

Imodeaux
I EKEK Ψ=Ψ=  (6) 

where E’ = E in the case of plane stress and E’ = E/(1-ν2) in the case of plane strain, E 

being the Young’s modulus and ν the Poisson’s ratio.  

3. ENERGY NORM ERROR ESTIMATION. THE SPR TECHNIQUE 

Both FEM and XFEM analyses always have an associated discretization error that 

can be quantified by the energy norm error for the solution huue −= . In order to 

obtain an estimate ese  of this error in elasticity problems analyzed using the FEM, 

Zienkiewicz and Zhu [11] proposed the use of the ZZ estimator: 
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 ( ) ( )∫Ω
− Ω−−= dhTh

es σσDσσe *1*2  (7) 

where the domain Ω can refer to the complete domain or a local subdomain (element), 

hσ  represents the stress field provided by the FEM, *σ  is the so-called recovered or 

smoothed stress field, which is a better approximation of the exact solution than hσ , and 

D is the elasticity matrix that defines the stresses as σ = Dε.  

To compute the recovered stress field *σ  in the domain of each element, the 

following expression is generally used: 

 ** σNσ =  (8) 

where N are the shape functions used in the interpolation of displacements and *σ  

contains the recovered stresses calculated at the nodes of the element. The ZZ error 

estimator is considered to be asymptotically exact if the recovered solution used in the 

error estimation is superconvergent [13]. 

3.1. Superconvergent Patch Recovery Technique 

Zienkiewicz and Zhu further developed the SPR technique [12,13]. SPR is a 

superconvergent stress recovery method with a low computational cost that is widely 

used to calculate the nodal values of *σ . According to its developers, the components of 

*σ  are obtained using a polynomial expansion, *σ p , of a complete order equal to that of 

the shape functions N, defined over a set of contiguous elements called patch, which is 

made up of all the elements that share the same vertex node i, Figure 3. 
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i

 

Figure 3.Element patch for node i. 

For each of the stress components, *σ p  is obtained using the following expression: 

 pa=σ*
p  (9) 

where p contains the terms of the polynomial expansion and a is the vector containing 

the unknown polynomial coefficients. For example, for one of the components of the 

stress vector with linear elements in the 2D case, one would have },,1{ yx=p  and 

Taaa },,{ 321=a , where x and y are local coordinates in the cartesian reference system in 

which *σ p  is expressed. 

The finite element stresses calculated at the numerical integration points are used to 

calculate a using a least-squares fitting. Once these parameters have been calculated for 

each stress component, the values of *σ  are obtained by replacing the node coordinates 

in the polynomial expressions *
pσ . 

Comparative studies [15,32] have shown the technique to be robust and to yield good 

results in the FEM framework. Nonetheless, it has several shortcomings if used directly 

in XFEM to solve LEFM problems:  

 ▪ Because it uses polynomials to represent recovered stresses *σ , the SPR technique 

is not suitable for describing the stress field in the vicinity of the crack tip. Related 

to the stress recovery techniques Boroomand and Zienkiewicz [33] indicated that 
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to overcome the difficulty associated to the representation of singularities in 

strains and stresses, a combination of singular functions in the radial direction and 

periodic functions in rotational direction could be used to evaluate smoothed 

values of stresses in polar coordinates. If polynomials where used to represent 

recovered stresses *σ , such a solution would be smooth and would probably be of 

inferior quality to the singular representation of the stress field provided by the 

XFEM around the crack tip. This was shown by Bordas and Duflot [18,19], who 

compared extended moving least squares (XMLS) recovery to standard SPR and 

showed that the latter led to effectivity indices that failed to converge to unity and 

presented very inadequate recovered solution. 

 ▪ If there were nodes on the crack (Figure 1 shows an example where one of the 

Heaviside enriched nodes is exactly located on the crack), these would need to 

represent two different states of stress, one for each side of the discontinuity. This 

would require modifying the SPR technique, which normally provides just one 

stress state for each node. 

 ▪ Just one set of stress interpolation polynomials *σ p  is used for the whole patch. 

This method is not suitable when a patch is intersected by a crack as when this 

occurs it is necessary to use different functions to describe the stress fields at each 

side of the crack. 

4. THE  SPRXFEM TECHNIQUE 

A stress recovery technique called SPRXFEM has been developed in order to solve the 

problems described above associated with the use of the SPR technique in XFEM. The 

proposed technique is an adaptation of the SPR technique that can be used to solve 
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LEFM problems with XFEM. The main differences between SPRXFEM and SPR are 

listed below:  

 ▪ Direct calculation of recovered stresses at integration points: use of conjoint 

polynomial enhancement as described in [23]. 

 ▪ Singular field processing: splitting of stresses into singular and smooth fields. 

 ▪ Assembly of patches with elements intersected by the crack: use of different stress 

interpolation polynomials at each side of the crack. 

These modifications are described in more detail below. 

4.1. Direct calculation of recovered stresses at integration points 

The numerical evaluation of the integral that provides the estimated error in energy 

norm ese , equation (7), requires *σ  to be calculated at the integration points of each 

element. In standard SPR, these values are obtained by interpolation from nodal values 

*σ  using (8). In other words, once the expression of the interpolation polynomials in the 

patch *
pσ  is obtained, the only values retained are those corresponding to the nodal 

polynomials. Blacker and Belytschko [23] proposed an improvement to the SPR 

technique based on the use of a conjoint polynomial enhancement, whereby the stresses 

at the integration points are directly calculated by suitably weighting the stress 

interpolation polynomials calculated from different patches. This reference proposes the 

use of the following expression to obtain *σ : 

 ∑
=

=
n

i
ipiN

1

** )()(')( xσxxσ  (10) 

where x are the coordinates of the point at which the stresses must be evaluated, n is the 

number of vertex nodes of the element containing this point (only vertex nodes are used 

to create patches), N'i are the shape functions of the linear version of the element (only 
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vertex nodes are considered), and *
ipσ  is the vector of stress interpolation polynomials 

(one for each stress component) in the patch corresponding to the vertex node i. 

The *
ipσ  stresses obtained in the smoothing process are used over the entire patch 

domain. This contrasts with standard SPR, in which only the nodal values of the stresses 

calculated from each patch are retained. Note the difference between (10) and the 

following equation which shows the expression used to interpolate stresses using 

standard SPR (8) in a format similar to that used in (10): 

 ∑
=

=
n

i
iipiN

1

** )()()( xσxxσ  (11) 

where xi is the spatial coordinate of each element node. 

The use of the conjoint polynomial enhancement does not require the calculation of 

stresses at the nodes of the elements, which avoids the problems associated with having 

to determine two different stress states when the node is located on the crack. 

Remember that both the elements intersected by the crack and the elements that contain 

the singularity are split into integration subdomains that do not contain the crack (see 

Figure 1). The Gauss quadrature (integration points always inside the integration 

domain) has two obvious advantages. First, it ensures that the integration points are 

never on the crack, making it unnecessary to determine two different stress states for the 

same point, and second, the integration points never coincide with the crack tip, making 

it unnecessary to calculate stresses at the singular point. 

4.2. Singular field processing 

The polynomial representation of the stress field provided by the SPR technique is 

suitable for describing a smooth stress field but, as already mentioned, not for 

describing a singular solution. To solve this problem, we propose splitting the exact 
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stress field σ  for a singular problem into two stress fields: a smooth field smoσ  and a 

singular field singσ : 

 singsmo σσσ +=  (12) 

Considering the above expression, the recovered stress field *σ  required to compute 

the error estimate given in (7) can be expressed as the contribution of two recovered 

stress fields, smooth *
smoσ  and singular *

singσ : 

 ***
singsmo σσσ +=  (13) 

The stress field represented by the first term of the asymptotic expansion in the 

vicinity of the singular point given in (2) will be used to reconstruct the singular field 

*
singσ . Equation (2) provides an accurate representation of the singular stress field using 

the SIF values, KI and KII, evaluated by means of the use of the interaction integral, see 

(5) and (6).  

The hσ  stresses directly obtained using the XFEM for this type of problems are a 

finite element approximation of the field σ . An FE-type stress representation of the 

smooth field h
smoσ  can be obtained using the following equation: 

 sing
hh

smo σσσ −=  (14) 

Therefore, if it is assumed that *
singσ  is a good approximation of singσ , h

smoσ  can be 

calculated using the following expression: 

 *
sing

hh
smo σσσ −≈  (15) 

Once the h
smoσ  field has been obtained, an SPR-type technique can be applied to obtain 

the recovered stress field *
smoσ . 
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This decomposition recovery technique is particularly effective in the vicinity of the 

singularity, although it does not need to be used in all the domain of the problem. Far 

from the singularity, the stress field can be adequately recovered using an SPR-type 

technique. In the proposed procedure, if the distance between the patch assembly node 

and the singularity is smaller than a radius ρ,  the singular + smooth stress 

decomposition method described above is used to compute *σ . If the distance is greater, 

then an SPR-type method is used. Figure 4 illustrates how the patch stress interpolation 

functions *
ipσ  are obtained in the different domain areas of the problem. 

 

Figure 4. Calculation of *
ipσ  in different types of patches. 
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Note that in patches outside the decomposition area, *
ipσ  are stress interpolation 

polynomials, whereas in patches within the decomposition area, *
ipσ  represent stress 

interpolation functions that contain a polynomial part *
ismoσ  and a singular part *

singσ . 

It should be emphasized that the radius ρ, which defines the decomposition area 

(Figure 4) is, in principle, independent of the radius re of the enrichment area at the 

crack tip (Figure 2). 

The stress field decomposition technique proposed in this paper was also adapted to 

solve singularity problems in a standard FEM framework using the procedure described 

in [34] as the recovery technique for the smooth stress field. Preliminary findings [22] 

suggest that for these type of problems, this method yields considerably improved error 

estimator results, both locally and globally, with respect to those obtained using 

standard SPR. 

4.3. Assembly of patches 

In XFEM, the treatment of patches in which the patch elements do not contain the 

crack is similar to that in FEM. When the patch contains elements that are intersected by 

the crack, however, the technique must be adapted. 

In patches intersected by the crack, the stresses *σ  cannot be represented by a single 

set of functions *
ipσ  at both sides of the crack because of the discontinuity of the solution 

introduced by the crack. In this type of patches (see Figure 5) we propose the use of 

different functions at each side of the crack to represent the different stress components, 

as is shown in the following expression: 

 
{ }{ }
{ }{ } 0)(:,...',','...,,,1''

0)(:...,,,...,,,1

321
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321
*

>∀==σ

<∀==σ

xxpa
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Given that the resulting sub-patches can contain a single integration subdomain, see, 

for example, the upper part of patch B in Figure 5 (and, thus, a reduced number of 

integration points), it must be ensured that each subdomain contains XFEM-computed 

stresses at least at the same number of points as the number of terms in the polynomials 

used to represent the recovered stresses. Thus, if a sufficient number of Gauss points are 

used in the integration subdomains, the least-squares fitting used to compute the 

unknown vectors a and a’ will always be solvable. For example, if complete 1st order 

polynomials were used for the stress recovery, as these polynomials have 3 unknown 

coefficients, at least 3 integration points should be used in each integration subdomain. 

Labbe and Garon [35] used this procedure in a FEM framework to overcome the 

difficulties associated with using SPR in patches containing few elements.  

σ ’= pa’∗
p

σ = pa∗
p B

C

D

A

 

Figure 5. Patches intersected by the crack.  

Two sub-patches are assembled, one on each side of the crack. 

5. NUMERICAL RESULTS 

The numerical analyses performed to test the behavior of the proposed technique are 

presented in this section. The classic Westergaard problem [36] has been used in the 

analyses as it is one of the few LEFM problems in mixed mode that has an exact 
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analytical solution. The behavior of the technique has also been tested over a problem 

without analytical solution. 

5.1. Test problem: the Westergaard problem 

The Westergaard problem consists of an infinite plate loaded with biaxial tractions 

σx ∞ = σy ∞ = σ∞ and τ∞ in the infinite, with a crack of a finite length 2a, as is shown in 

Figure 6. Combining the externally applied tractions one can generate stress states in 

pure modes I or II, or in mixed mode. 

2b a

y

x

Ω0

b

σ∞

τ∞

τ∞

σ∞

σ∞ σ∞

 

Figure 6. Westergaard problem. Infinite plate with a crack of length 2a subjected to  

uniform tractions σ∞ (biaxial) and τ∞. Finite portion of the domain, Ω0, modelled with FE. 

A finite portion of the domain (a = 1 and b = 4 in Figure 6) was included in the 

numerical model and the distribution of the stresses corresponding to the analytical 

Westergaard solution for modes I and II, given by the expressions below, were applied 

to its boundary. 
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In the above equations, the stress fields are expressed as a function of the coordinates 

x and y, whose origin is in the centre of the crack, where t, m, n and φ are defined as:  
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 (19) 

The exact SIF values for this problem are defined as: 

 aKaK exIIexI πτ=πσ= ∞∞ ,,  (20) 

Three problems, corresponding to the pure mode I, pure mode II, and mixed mode 

cases of the Westergaard problem, were considered. The geometric models and 

boundary conditions for the mode I and mode II problems are shown in Figure 7 and 

Figure 8. 
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Figure 7. Mode I. Model for crack in infinite plate subjected to biaxial traction in the infinite. 

( σ∞ = 100, τ∞ = 0). KI,ex=177.2453850905516. 
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Figure 8. Mode II. Model for crack in infinite plate subjected to tangential stresses in the infinite. 

(σ∞ = 0, τ∞ = 100). KII,ex=177.2453850905516. 

In the mixed mode problem, shown in Figure 9, the displacement of the crack tip is 

restricted and an antisymmetry constraint is applied to the centre of the crack (see 

Figure 6), so that: 

 BABA vvuu −=−= ,  (21) 
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In the general case, this kind of constraints can be imposed, for example, using multi-

point constraints involving the corresponding degrees of freedom . 

  

b

a

a = 1
b = 4

�
y

�
y

�
x

�
x

27.39

28.96

27.39

31.90

30.88

28.20

30.81

30.81

0.00

�
yx

�
yx

�
xy

�
xy

92.45
88.14

92.45 89.11

89.11
92.45

92.45

0.00

A

B

88.14

 

Figure 9. Mixed Mode. Model for crack in infinite plate subjected to biaxial traction in the infinite. 

(σ∞ = 30, τ∞ = 90). KI,ex= 53.1736155271655, KII,ex= 159.520846581496. 

The problems were modelled using bilinear elements with a smooth + singular 

decomposition area of a radius ρ = 0.5 equal to the radius re of the fixed enrichment 

area. The radius of the Plateau function for the extraction of the SIF was rq = 0.9. 

Young’s modulus was E = 107, and Poisson’s ratio ν = 0.333.  

Following the procedure described in [34] special constraints were applied to the 

stress interpolation polynomials associated with boundary nodes in order to improve the 

accuracy of the recovered stress field at the outer boundary. The constraints considered 

were used to ensure that, in these nodes, the stress interpolation polynomials satisfy the 

equilibrium with the imposed stresses.  
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5.2. Effectivity index 

The accuracy of the error estimator is evaluated both locally and globally. This 

calculation is based on the effectivity of the energy norm error estimator, which is 

quantified using the effectivity index θ: 

 
e

ees=θ  (22) 

The local effectivity parameter, D, is used to compute results at a local level. The 

definition of this parameter is based on the definition of the robustness index used by 

Babuška et al. [15]. For each element e, D represents the deviation from 1 (ideal value) 

of the estimator effectivity index in this element, θe, according to the following 

expression:  

 
e

e
ese

e
e

ee

D

D

e

e
=θ

<θ
θ

−=

≥θ−θ=
with

1if11

1if1
 (23) 

Note that θe takes values in the range (0,1) when the error is underestimated and in 

the range (1, +∞) when it is overestimated. The definition of local effectivity given in 

(23) is considered appropriate given that it yields values within the interval (−∞, 0) 

when the error is underestimated and within (0, +∞) when it is overestimated, which 

allows for better comparison. Given the proposed definition, the error estimator can be 

considered to be of good quality if it provides D values close to zero. 

The global effectivity index θ was used to evaluate global results. The mean value, 

m(|D|), and the standard deviation, σ(D), of the local effectivity were also used to 

evaluate the global quality of the error estimator. In an ideal scenario, where the error 

estimator predicts the exact error for each element in the mesh, these two values would 
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be zero. It can therefore be concluded that good stress field recovery methods would be 

those that simultaneously produce results close to zero for these two parameters. 

In the global error estimator studies, the evolution of results in sequences of 

uniformly refined structured (Figure 10) and unstructured (Figure 11) meshes was 

analyzed. In the first case, the mesh sequence was defined in such a way that the crack 

tip always coincided with a node, this allowing to easily constraint the displacements at 

the crack tip as represented in Figures 7 to 9. These constraints were not applied to the 

unstructured mesh sequence because of the absence of a node at the crack tip. In this 

case a node was created on the boundary at coordinates x = 4 and y = 0. This allowed 

the exact analytical displacements to be imposed at that particular location. 

Mesh 1 
288 elem.

Mesh 2
512 elem.

Mesh 3
800 elem.

Mesh 4
3200 elem.

Mesh 5
12800 elem.  

Figure 10. Sequence of structured meshes. 

M esh 1
273 elem.

M esh 2
818 elem.

M esh 3
3272 elem.

M esh 4
13088 elem.  

Figure 11. Sequence of unstructured meshes. 
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Figure 12 shows the local effectivity index D for mode I, mode II, and mixed mode. 

These results were obtained using the third structured mesh. Figure 13 shows the results 

obtained in the vicinity of the singularity for an unstructured mesh of the mode I 

problem with element sizes similar to those used in Figure 12. Note that, in this case, 

the crack tip is not located over a node.  

It can be seen from both figures that the error estimator is quite accurate in all the 

cases, with D values close to zero and always within the range [−0.4, 0.4]. 

a. Mode I c. Mixed Mode .  

Figure 12. Local Effectivity Index D using the SPRXFEM technique.  

Mode I, mode II, and mixed mode (σ∞ = 30, τ∞ = 90). 

 

Figure 13. Local effectivity index D for Mode I in an unstructured mesh. 
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Figure 14 shows the evolution of θ, m(|D|) and σ(D) with respect to the number of 

degrees of freedom corresponding to analyses of the meshes in Figure 10. Figure 15 

shows the evolution of the same parameters for the unstructured meshes shown in 

Figure 11. It can be seen that, in both cases, the global effectivity θ values obtained are 

very close to 1. The evolution of these parameters shows that less accurate results are 

obtained in the case of unstructured meshes, which could be due to the fact that the 

position of the crack tip in the element varies from mesh to mesh in unstructured 

meshes. This behavior has been also pointed out in reference [19], where additional 

scatter is present in unstructured meshes as well. Nevertheless , it should be stressed 

that the effectivity values are always within a very narrow band in all cases, which 

indicates that the error estimator is very accurate. The evolution of m(|D|) and σ(D) in 

these graphs show that the error estimator has performed adequately in all cases, 

decreasing towards zero for increasing levels of refinement. 

0.950

0.975

1.000

1.025

1.050

10
0

10
00

10
00
0

10
00
00dof

m (|D |)

0.001

0.01

0.1

1

10
0

10
00

10
00
0

10
00
00

dof

σ(D )

0.01

0.1

1

10
0

10
00

10
00
0

1 0
00
00

dof

M ode I
M ode II
M ixedM ode

M ode I
M ode II
M ixedM ode

M ode I
M ode II
M ixedM ode

θ

 

Figure 14. Evolution of global indicators θ, m(|D|) and σ(D) for structured meshes. 
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Figure 15. Evolution of global indicators θ, m(|D|) and σ(D) for unstructured meshes for modes I and II. 

5.3. Error convergence: asymptotically exact error estimator in energy norm 

It is fundamental to check that the estimated error in energy norm converges to zero 

as the mesh size goes to zero, but also that the approximate error converges to the exact 

error as the mesh size tends to zero. Bordas and Duflot [18,19,21] propose the 

evaluation of the convergence of the estimated error as another approach to measure the 

quality of the estimator. The use of this approach to measure the quality of the error 

estimator is essential in problems where an exact solution is not available, as in these 

cases the effectivity of the error estimator cannot be evaluated. The optimal 

convergence rate of the error in energy norm as a function of the number of degrees of 

freedom is 0.5 in 2D problems when analyzed with linear elements and a fixed 

enrichment area. 

Figure 16 shows the convergence of the estimated error in energy norm to zero; the 

convergence rates for the estimated error in energy norm for the different load modes 

are also indicated. In structured meshes the convergence rate achieved is approximately 

0.48. In unstructured meshes convergence rates of 0.46 in Mode I and 0.50 in Mode II 

were obtained. These values are quite close to the optimal convergence rate of 0.5, thus 

proving the quality of the proposed technique. 
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Figure 16. Energy norm error for structured and unstructured meshes. 

When developing an error estimator one should aim to get effectivity indexes that 

tend to zero as the number of degrees of freedom increases, i.e. one should try to 

develop an asymptotically exact error estimator. Zienkiewicz and Zhu [13] proved that 

if the convergence rate of the error in energy norm for the recovered solution, 

** uue −= , is higher than that for the FE solution, huue −= , then the error 

estimator will be asymptotically exact. The convergences in energy norm for *e  and 

e  are shown in Figure 17. Two graphs are displayed in this picture. The first graph 

shows the error convergence curves when the whole analyzed domain is considered. 

The second graph shows the results obtained when the error integration area is limited 

to the singular + smooth splitting area so that the behavior of the error estimator in the 

vicinity of the crack tip can be analyzed in detail. It can be seen that in both cases the 

convergence rate for *e  is higher than the rate for e . Less-uniform results when 

evaluating *e  and e  only in the splitting area can be due to the fact that the 

integration area is slightly different in each of the meshes as it is only a discrete 

approximation to the circular enrichment area defined by re  
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Figure 17. Mode I problem with structured meshes. Comparison of convergence rates for e  and *e . 

5.4. Influence of SIF accuracy 

The technique described in this paper proposes the use of an interaction integral such 

as that indicated in (5) as it provides accurate SIF values. A series of numerical analyses 

were performed in order to examine how the accuracy for reasonable values of the SIFs 

used in the recovery of *σ  influenced the accuracy of the error estimator. The results 

showed that global effectivity θ is not very sensitive to the accuracy of these 

parameters. The accuracy of the SIFs, however, has a considerable influence on the 

accuracy of the estimator at the local level. Consider mesh 5 in Figure 10 subjected to 

load mode I as an example. In this load mode, the exact value of the SIF is 

KI ex = 177.245385090556. To analyze the extent to which the accuracy of the SIF 

affected local effectivity D, this parameter was determined for KI = 177.215 (value 

obtained on evaluating the SIF using the method proposed in this paper) and for values 

KI = 170, KI = 160 and KI = 150, which would represent possible KI values obtained 

using other less accurate SIF extraction methods. Figure 18 shows the local effectivity 

D in the vicinity of the singularity for the different KI values considered. It can be 

clearly seen that the greatest degree of accuracy is achieved with the KI value obtained 

using the SIF extraction method proposed in this paper. These results clearly show the 



 31

need to use SIF evaluation methods that provide the greatest degree of accuracy 

possible. 

 

 

Figure 18. Mode I problem. Local effectivity index D in the vicinity of the singularity in a mesh  

of 12800 elements for different degrees of accuracy of KI. (KI exact= 177.245385090556). 

5.5. Effect of the singular+smooth decomposition technique. 

The aim of this section is to analyze the effect of the use of the singular+smooth 

splitting technique over the accuracy of the error estimator. Figure 19 and Figure 20 are 

used to compare the results obtained using the technique proposed in this paper 

(SPRXFEM curves) with those obtained when SIF = 0 is used to recover the singular field 

in order to avoid the singular+smooth splitting (SPR curves). These figures show that 

effectivity results corresponding to the SPR curve do not converge to unity, and that the 

convergence rate of the error in energy norm is only 0.26, whereas 0.48 is obtained 

when the singular+smooth splitting is used. The slope of the mean value of |D| is 

smaller than that of the proposed technique, while the value of σ(D) does not converge 
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to zero in the SPR curve. Hence, it can be concluded that without the singular+smooth 

splitting the recovered stress field is not sufficiently accurate and will not provide an 

asymptotically exact error estimator. The splitting technique is therefore necessary in 

the proposed method to obtain effectivity indexes that approach unity for increasing 

number of dof. 
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Figure 19. Mode I problem with structured meshes. Global indicators θ, m(|D|) and σ(D) with 

singular+smooth splitting (SPRXFEM) and without it (SPR). 
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Figure 20. Mode I problem with structured meshes. Energy norm error with  

singular +smooth splitting (SPRXFEM) and without it (SPR). 

5.6. Influence of the decomposition area size 

The influence of the radius ρ, which defines the decomposition area, using a fixed 

enrichment radius re = 0.5 is studied in this section. The results obtained with several 

radii ρ inside and outside the enrichment area are plotted in Figure 21 and Figure 22. 
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Figure 21. Mode I problem with structured meshes. Evolution of global indicators θ, m(|D|) and σ(D)  

for different radii ρ with a fixed enrichment radius re = 0.5. 
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Figure 22. Mode I problem with structured meshes. Evolution of the energy norm of the error for different 

radii ρ with a fixed enrichment radius re = 0.5. Comparison with the optimal convergence rate.  

The graphs show that accurate results are obtained when ρ ≥ re. It can be observed 

that the accuracy of the error estimator slightly increases with increasing values of ρ. In 

any case we suggest the value ρ = re as it provides accurate results and, at the same 

time, restricts the use of the splitting technique to an area close to the crack tip. This 

local use of the splitting technique allows for the utilization of the proposed technique 

in problems with several crack tips. These figures clearly show that the results obtained 

for ρ < re are not as accurate as those obtained when ρ ≥ re, especially for the coarsest 

meshes. As shown in Figure 23, the reason for this is that the standard SPR technique, 

based on polynomial functions, fails to adequately recover the stress field in the area 
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from ρ to re, where the XFEM solution is being represented by an standard FE 

interpolation enriched with the near-tip asymptotic field. 

 

Figure 23. Local effectivity index D in the vicinity of the singularity in a mesh of 12800 elements  

for the Mode I problem, with ρ = re and ρ < re . 

5.7. Accuracy of recovered stress field *σ  

The von Mises stresses vmσ  were used to evaluate the accuracy of the field *σ . To do 

this, the relative von Mises stress errors computed using the stresses from the finite 

element analysis, h
vmη , were compared to those corresponding to the recovered stresses 

*σ , *
vmη : 

 100100
*

* ⋅−=η⋅−=η
vm

vmvm
vm

vm

h
vmvmh

vm σ
σσ

σ
σσ  (24) 

The values of h
vmη  and *

vmη  for the mode I problem were evaluated for the structured 

mesh number 4 (see Figure 10) on the paths shown in Figure 24. Due to the symmetry 

of the problem, only the upper part of these paths were considered, i.e. angles in (0,π); 

the values of h
vmη  and *

vmη  have been evaluated on the Gauss points closest to 36 points 

uniformly distributed along these curves. Note that these paths are conveniently located 

into the smooth + singular decomposition area (R = 0.1), in the transition area (R = 0.5), 

and in the outer area (R = 0.6 and R = 0.9). 
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Figure 24. Stress fields for different radii around the crack tip. 

The results displayed in Figure 25 show that the recovered stress field *σ  is 

considerably more accurate than the XFEM stress field hσ , even in the immediate 

vicinity of the crack tip. Therefore, in addition to providing a means of calculating 

accurate estimations of the energy norm discretization error, the stress field recovery 

method proposed in this paper can also be used to improve the accuracy of the stress 

fields obtained using the XFEM in LEFM problems. 
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Figure 25. Relative error in von Mises stresses ηvm in mode I  

for paths located at different radii of the crack tip. 

It can be seen in both Figure 12 and Figure 18 that the error estimation for the crack 

faces is worse than that for the rest of the domain. The graphs in Figure 25 also show 

less accurate results for the area near the crack faces (angles close to π). This suggests 

the use of a method similar to that described in [34] in order to force the polynomials 

*
pσ  to fulfill the boundary conditions that need to be satisfied by the exact solution on 

the crack faces. 

5.8. Test Problem 2: Finite plate under uniaxial tension with inclined crack 

To illustrate how the method performs in cases where the exact solution is not known, 

a plate with an inclined crack under uniaxial traction was analyzed, see Figure 26-a. 

Structured meshes which ensure that the crack tip was located on the center of an 

element were used. In the analysis the applied load was σ = 60, and the enrichment and 

decomposition radii were re = ρ = 0.5. The energy norm of the estimated error for this 
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problem, Figure 26-b, has shown a convergence rate of 0.489, which is similar to the 

one of the Westergaard problem, and near to the optimal rate of 0.5, thus proving the 

accuracy of the technique also in this kind of problems. 
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Figure 26. Inclined crack under axial tension.  a) Model.  b) Estimated error convergence curve 

6. CONCLUSIONS 

This paper has presented a recovery error estimator based on a modified version of 

the SPR technique that has been specifically adapted for error estimation in LEFM 

problems solved using the XFEM. The proposed recovery technique, called SPRXFEM, is 

based on the following ideas: 

 ▪ Direct calculation of recovered stresses at integration points. The use of the 

conjoint polynomial enhancement [23] permits the direct calculation of these 

stresses using adequately weighted stress interpolation polynomials calculated 

from different patches (and not just using their nodal values, as proposed in the 

standard SPR technique). This avoids the problem associated with having to 
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assign two different stress states to a single node if this is located on the crack, 

and the problem associated with calculating stresses in a possible node located on 

the crack tip. 

 ▪ Use of singular + smooth stress field decomposition. This permits the accurate 

description of both the singular part of the solution based on SIF values obtained, 

for example, using the interaction integral, and the smooth part based on an 

SPR-type method. 

 ▪ Use of different stress interpolation functions at each side of the crack. The patch 

formation criteria in the original SPR technique has been modified so that the 

stresses at each side of the crack are represented by different functions; this 

provides a better description of the discontinuity of the solution introduced by the 

crack. 

The numerical results presented in this paper show that the method provides accurate 

estimations of the energy norm error both locally and globally, and that asymptotic 

exactness of the error estimator is achieved. The good quality of the error estimator is 

due to the accuracy of *σ . The accuracy of *σ  was quantified by calculating the 

accuracy of the von Mises stresses. It was seen that the von Mises stress values 

calculated with *σ  were considerably more accurate than those calculated with hσ . The 

SPRXFEM method can therefore be considered as a valid method for improving the 

accuracy of the stress field provided by the XFEM in LEFM problems. 
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