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Abstract: A multihead weighing process is a packaging technology that can be 
of strategic importance to a company, as it can be a key to competitive advantage 
in the modern food industry. The improvement in the process quality and sensory 
quality of food packaged in a multihead weighing process investigated in this 
paper is relevant to industrial engineering. A bi-objective ad hoc algorithm based 
on explicit enumeration for the packaging processes in multihead weighers with 
an unequal supply of the product to the weighing hoppers is developed. The 
algorithm uses an a priori strategy to generate Pareto-optimal solutions and select 
a subset of hoppers from the set of available ones in each packing operation. The 
relative importance of both aforementioned objectives is dynamically managed 
and adjusted. The numerical experiments are provided to illustrate the 
performance of the proposed algorithm and find the optimum operational 
conditions for the process. 
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1 Introduction 

1.1 Multihead weighers 

Multihead weighers or combinational weighers are used to provide accurate weights at high 
packing speed, and are they currently the most widely used dosing method for many kinds 
of products, including those with heterogeneous characteristics (Keraita and Kim, 2007). 
Combinational weighers have a number of weighing hoppers that statically weigh the 
product; these weight data are fed into a computer, which calculates all of the possible 
combinations of product weights in order to dispense the best combination (closest match 
to target weight) to a packaging machine.  

The weighing system consists of three elements, namely: A system to automate the 
product feed to the weighing stations (depending on the layout of the machine, the feed 
system is configured either in a radial or in line construction); a system to collect the 
product and feed it into a weighing hopper (this system consists of a set of hoppers, 
commonly known as feed hoppers); and a set of weighing hoppers.  A detailed description 
of the arrangement of feeders and hoppers in a multihead weigher can be found in Pulido-
Rojano et al. (2015). 

1.2 Problem description 

A multihead packing process performs an operation by choosing a subset �′ from set � of 
the current � hoppers to produce a food package. The basic model of the automated packing 
system consists of � weighing hoppers. A quantity of food is placed in each hopper �, (� =1,2, … , �) (Karuno et al., 2007), and the weight signal is transmitted to the built-in 
computer.  The computer calculates the combinations of weights that come closest to the 
desired weight 
, and the combination of the closest weights is ejected from the 
corresponding hoppers. The resulting empty hoppers are supplied with new quantities of 
food. The computer continuously repeats this process until it obtains the number of 
packages () needed, one by one. Based on our experience in this field, multihead 
weighers are able to produce between 50 and 250 packages per minute, depending on the 
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specific setting. The number of possible different hopper subsets �′ depends on the number � of hoppers to be combined each time. In fact, as Imahori et al. (2011) pointed out, the 
optimization problem that focuses on minimizing the difference between the actual and 
target package weight is equivalent to the NP-complete subset-sum combinatorial problem 
(Garey and Johnson, 1979) when � is neither previously fixed nor constant. 

This paper deals with the case where the number of hoppers � to be combined in each 
packing operation is constant and fixed in advance. In addition, it assumes that the weights 
in the hoppers follow a normal probability distribution. 

An additional point to take into account in this kind of packaging process is that a given 
quantity of product can remain for a long time in its corresponding hopper until it is chosen 
for packing. This can be a problem when handling a product that will deteriorate quickly, 
such as, a frozen product. One possible way to tackle this problem is to monitor and control 
the load time spent in each hopper, which can be done by assigning a priority coefficient ��  to each hopper, as suggested by Karuno et al. (2007). The priority ��  measures the 
duration of the load in hopper � before it is chosen for packing, and it can be calculated as 
follows: Let ℓ denote the current iteration number of the packing operation, and let ℓ� 
denote the iteration number at which weight � was thrown into the �-th hopper when the 
hopper was empty. Therefore, �� = ℓ − ℓ� + 1 expresses the residence time (in number of 
packing operations) of weight � in its hopper. Note that 1 ≤ ℓ ≤ Q . The idea is that hoppers 
with higher priorities at a given moment should be more likely to be chosen for emptying 
in that packing operation. 

In real-world engineering, optimization problems are often characterized by the 
presence of multiple objective functions. Multi-objective optimization involves the 
simultaneous optimization of two or more conflicting objectives. A considerable amount 
of research has been conducted in this area in the past thirty years. The principles, 
implementation and applications of multi-objective optimization models in engineering 
optimization problems can be followed in Jaimes and Coello (2008), Marler (2009), Seng 
and Rangaiah (2009), Rangaiah and Bonilla-Petriciolet (2013), Collette and Siarry (2013), 
Liu and Papageorgiou (2013), and Zavala et. al (2014). This short review describes these 
recent studies’ applications in industrial engineering, food engineering, chemical 
engineering, and civil engineering. 

1.3 Previous related works 

The scientific references in the field of multihead weighing are scarce. Basically, 
conference papers, patents, and commercial documentation of manufacturers of this type 
of machine are available. With these restrictions, a state-of-the-art for improving the 
multihead weighing technology is presented. Some authors have studied the possibility of 
improving multiweighing procedures in packing processes’ performance. For example, 
Salicrú et al. (1996) and Barreiro et al. (1998) proposed the use of the percentage variability 
reduction index for the reduction and control of production process variability. Keraita and 
Kim (2006) investigated the optimum scheme for the determination of the operation time 
of line feeders in automatic combination weighers. Keraita and Kim (2007) proposed a 
weighing algorithm for multihead weighers based on bit operation. In Karuno et al. (2007), 
a second objective called “priority” is introduced. They formulated the problem as a bi-
criteria optimization problem, and proposed an algorithm based on dynamic programming. 
The proposed approach aimed to minimize the maximum duration in the system of items 
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heuristically (maximum priority), while making the total weight of each package as close 
to the target weight as possible. Some authors (Imahori et al., 2011; Imahori et al., 2012; 
Karuno et al., 2013; Karuno and Tateishi, 2014) have studied the possibility of improving 
the bi-criteria optimization model proposed by Karuno et al. (2007). Other authors, such as 
Imahori et al. (2012) and Karuno et al. (2010), investigated different types of actual packing 
operations. In these investigations, several algorithms are developed for double-layered 
food packing systems and duplex packing systems, where in an operation two disjointed 
subsets are simultaneously selected to produce two packages. 

1.4. Objectives and structure 

This paper focuses on improving the quality of a multihead packing process in a two-fold 
way: the quality of the process and the sensorial quality of the product. Specifically, we 
propose a bi-objective programming approach in order to simultaneously deal with both 
the criterion of minimizing the difference between the target and actual package weight in 
absolute value (improving the quality of the process), and the criterion of maximizing the 
total priority of the chosen combination of hoppers ∑ �� �∊�� (improving the sensorial 
quality). More precisely, we use compromise programming (Yu, 1973; Zeleny, 1973; 
Marler, 2009; Collette and Siarry, 2013) as a tool to determine the combination of hoppers 
that comes as close to optimizing both criteria at the same time as possible in each iteration 
or packing operation, that is, each time a new package has to be made. An enumerative —
and, therefore, exact— procedure is proposed to determine the best hopper combination 
according to this approach. Our procedure includes an easy-to-implement way to 
dynamically adjust the relative importance of each objective (weight and priority). Further 
information about multi-objective programming and other multicriteria techniques can be 
found in Marler and Arora (2004), Ehrgott (2005), Branke, J. et al. (2008) and Rangaiah 
and Bonilla-Petriciolet (2013). As mentioned above, Karuno et al. (2007) introduced the 
use of multicriteria techniques in automated packing systems. Later in this paper we will 
point out the differences between their approach and ours. 

This paper is organized as follows: In section 2, the problem formulation is presented. 
In section 3, the bi-objective algorithm is explained. Section 4 shows the computational 
experiments. In section 5, we offer the conclusions of this work. 

2 Problem Formulation 

2.1 Notation 

Problem parameters and symbols: 
• �: Set of the current �  hoppers. 
• �′: Subset of the current �  hoppers. 
• ℓ: Current iteration number of the packing operation. 
• ℓ�: Iteration number at which weight � was thrown into the �-th hopper when the 

hopper was empty. 
• �MAX : Maximum allowed priority for any hopper. 
• �: Number of hoppers to be combined in each packing operation. 
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• �� : Real weight in hopper � ∈ �1, … , ��. We assume that each weight follows a 
normal probability distribution N(μ!, σ), with # ∈ �1, … ,5�, depending the 
subgroup to which the hopper belongs (see below). 

• μ! : Average weight for hopper subgroup # ∈ �1, … ,5�. 
• σ: Standard deviation of weights in every hopper. It is equal for all the  �  hoppers. 
• %&: Percentage value used to calculate the standard deviation of weights in every 

hopper (σ). 
• Delta: Real value used to establish μ! for hopper subgroup # ∈ �1, … ,5�. 
• �': Number of hoppers in hopper subgroup # ∈ �1, … ,5�. 
• (: Qualitative factor. It determines how the total number of hoppers (�) are 

distributed in each hopper subgroup # ∈ �1, … ,5�. 
• Z* +, : Critical value of the standard normal probability distribution N(0,1) for a 

significance level ..  
• 
: Target weight for a single package, which is assumed to be a positive number. 
• /: Total weight. It is calculated as the sum of the weights provided by the selected 

combination of  �  hoppers. 
• 01: Difference (in absolute value) between the target weight (
) and the actual 

weight of the selected combination (/). 
• 0+: Sum of the priorities ��  into � hoppers. 
• : Total number of packages needed. 

 
Algorithm parameters and symbols: 
 
• 2: Relative weight or importance of the priority objective. It is dynamically 

adjusted in each iteration. 
• ��: Positive integer priority in hopper � ∈ �1, … ��. 
• z1456: Minimum difference (in absolute value) between the target weight (
) and 

the actual weight of the selected combination (/). 
• z1478: Maximum difference (in absolute value) between the target weight (
) and 

the actual weight of the selected combination (/). 
• z+456: Minimum sum of the priorities ��  in � hoppers. 
• z+478: Maximum sum of the priorities ��  in � hoppers. 
• 9: The set of all valid combinations in each package operation 

2.2 Sources of variability 

The total weight of packages / produced by a multihead weighing process can be seen as 
a random variable. The variability depends on the value of several process and operational 
parameters. 

As mentioned previously, the package weight is the result of the sum of the weights 
contained in the subset of  � hoppers selected to form the package, assuming that the 
weights in each hopper are normally distributed. Particularly, if all the hoppers are 
independently filled according to the same distribution :(;, <) and the � hoppers are 
randomly selected in each packing operation, then the weight of the packages would follow 
a normal distribution :=�;, √�<?, where the average package mean weight  �;  is 

expected to equal the target  
.  The value of  √�<  (the standard deviation if hoppers are 
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selected at random) is considered to be an index of quality in the packaging process. 
However, the subset of hoppers to be discharged �′ is actually not selected at random, but 
rather in a driven way, so that the total weight  / = ∑ ���∈�@  is as close to  
  as possible. 
Therefore, <A7BC7DE+ =  VAR (∑ ���∈�@ ). This proposal was also presented by Salicrú et al. 
(1996) and Barreiro et al. (1998).  

Note that the parameter  �  is one of the factors that can clearly affect the final 
variability of the product, as it limits the number of possible hopper combinations (i.e., =IJ?, 
the number of possible different subsets of size  �  from a set of  �  hoppers) in each packing 
operation. For the same reason, the number of total available hoppers �  is also a source of 
variability in the package weight. Obviously, the existing variability in each hopper (which 
can be represented by the standard deviation (<) will somehow affect the final package 
variability. It can actually be expressed in a dimensionless way by means of the coefficient 
of variation %& (see later in subsection 4.1). 

Furthermore, let us consider the general case where each hopper � is expected to be 
filled with a different average quantity of food ;� (instead of a common value ;). In this 
case, the degree of variability between these average hopper weights ;1, … , ;I is expected 
to somehow be related to the final package variability. In this paper we will explore the 
case where several hoppers weights are set in such a way that they share the same value 
for ;� (see subsections 3.1 and 4.1 later), as this has been shown to be an efficient strategy 
to reduce package variability (Barreiro et al., 1998; Keraita and Kim, 2007; García-Díaz 
and Pulido-Rojano, 2015; Pulido-Rojano and García-Díaz, 2016). More precisely, García-
Díaz and Pulido-Rojano (2015), and Pulido-Rojano and García-Díaz (2016) showed that 
the strategy of dividing hoppers into 5 groups with different average filling weights and a 
certain deviation among these average weights was a better strategy than an equal supply 
of the product to all hoppers. Therefore, in this paper we will use a filling strategy divided 
into "5 subgroups" of hoppers. 

These and other parameters, such as the maximum allowed priority for any hopper 
(which will be denoted as �MAX ) should be considered as sources of variability in a 
multihead packaging process. Later, in Section 4, we perform numerical experiences to 
assess the real influence of these factors on the final package quality, in terms of variability 
from the target 
, when using the hopper selection algorithm we present in subsection 2.5. 

2.3 Problem Constraints 

The decision problem we address in this paper is how to choose the best (or the most 
appropriate) combination of  �  hoppers in each packing operation. 

As mentioned, the number of possible different ways of choosing � hoppers from a set 
of  �  hoppers is =IJ? = �! (�! (� − �)!)⁄ . In order to make the problem more realistic, we 
state two additional constraints that any �-hopper combination  �′ should meet in order to 
be eligible: 

1. M 
 − ∑ ���∈�@  M ≤ ZN +⁄ √�<, which avoids any �-hopper combination that would 
produce a package too far from the target  
.  ZN +⁄  represents the critical value of 
the standard normal probability distribution :(0,1) for a significance level .. 
This is called the confidence level constraint. 

2. �� ≤ �MAX ,   ∀ � ∈ ��, which means that the selected �-hopper combination must 
not involve any hopper containing food that exceeds the maximum allowed 
residence time (in terms of priority, as defined in section 1.2). 
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Every �-hopper combination that simultaneously meets conditions 1 and 2 is said to be 
a valid combination. The set of all valid combinations in each package operation will be 
denoted by S. 

9 = � �� ⊆ �  |   |��| = �  and �� meets conditions 1 and 2 �.   (1) 
 
Thus, the subset �′ of hoppers selected to form the package has to belong to 9. In the 

following subsections, we describe our proposal about how to make this decision. 

2.4 Objective functions 

In line with what was introduced in section 1.2, the selection of hoppers �′ to be discharged 
in each package operation should address the following two objectives in order to be 
considered a good combination: 

• First objective: To try to make the difference between the real package weight / = ∑ ���∈�@  and the target weight  
  as small as possible. This will be expressed 
through the following objective function which will be minimized: 

01 = |  
 − ∑ ���∈�@   | (2) 
 
• Second objective: To make those hoppers that have not been discharged for a long 

time (i.e., with a long residence time) more likely to be selected. In terms of 
priority (see section 1.2), this can be achieved by maximizing the following 
function: 

0+ = ∑ ���∈�@  ,   (3) 
 
which represents the aggregated priority of a given �-hopper combination. In the next 

subsection we develop our proposal about how to simultaneously take into account these 
two objectives in each packing operation. 

2.5 Bi-objective approach 

We propose using a single weighted performance or utility function that combines 
information about the two objectives or criteria being considered in this work (weight and 
priority), where the relative weight or importance of each objective is dynamically adjusted 
in each iteration or packing operation. More precisely, in each iteration, our approach 
consists of looking for the �-hopper combination that minimizes a sort of “distance” to the 
so-called utopia or ideal point =z1min, 0+max? in the criterion space, where 01min is the 
minimum possible difference (in absolute value) between the target and the actual weight 
of a �-hopper combination for the current hopper loads, and 0+max is the maximum possible 
aggregated or total priority, that is: 

01min = min�@∈ V| 
 − ∑ ���∈�@  | ,                    (4) 

and       0+max = max�@∈ V ∑ ���∈�@ .                               (5) 

Therefore,  01min and  0+max are the respective optimal values for the two objectives being 
considered for the current hopper setting, if each of them was optimized separately. Prior 
to calculating the Euclidean distance (Y) from a given solution to the ideal point, each of 
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these two values (difference from target weight and priority) is normalized and then 
assigned a relative weight of  (1 − 2) and 2, respectively, so that the final aspect of the 
function whose value is intended to be minimized is the following:    

Y =  Z(1 − 2) [ \]^\]min

\]max̂ \]min_+ + 2 [ \`^\`max

\`max̂ \`min_+
  ,          (6) 

 
Where 01478 and 0+min are respectively defined as the maximum difference from the 

target weight and the minimum total priority in the current set of valid �-hopper 
combinations. 

The parameter 2 is updated in each iteration. The idea is that the objective of selecting 
a �-hopper combination with a high aggregated priority becomes more important as the 
maximum current hopper priority gets close to the maximum allowed priority �MAX .   With 
this in mind,  2  can be defined as: 

2 =  1 aMAX  ^478b∈c ab d 1   ,        (7) 

 
Therefore, during the first iterations, in which all the hoppers are expected to have low 

priority values, the value of 2 will remain relatively small, and so, the objective of 
minimizing the difference from the target packet weight will be assigned a higher 
importance. As packages production progresses, the closer the maximum hopper priority 
gets to �MAX , the larger 2 will become and the greater the importance given to the priority 
objective. 

The combination of hoppers that minimizes the distance to the ideal point is known to 
be an efficient or nondominated solution (Marler and Arora, 2004), which means that there 
is no other valid combination of � hoppers that is at least as good with regard to (at least) 
one of the objectives (weight or priority) and strictly better in the case of the other objective 
(Ehrgott, 2005). This is generally regarded as a basic desirable property for the solution(s) 
returned by multi-objective techniques. 

This bi-objective approach makes it possible to easily select a valid �-hopper 
combination that is reasonably close to optimizing both objectives being considered. In 
order to show this, a simple practical example and further complete numerical experiences 
are presented in sections 3 and 4, respectively. 

Our approach goes one step further than the one by Karuno et al. (2007), who only 
show how to generate different nondominated solutions, without specifying which of them 
should be selected in each packaging operation, whereas we are suggesting a way to 
automatically determine a compromise solution within the nondominated ones.  Moreover, 
although Karuno et al. (2007) are not following a purely lexicographic approach (i.e., a 
subordinated objective importance structure), they are still considering the weight 
objective to be more important than the priority objective (namely, they look for  solutions 
that reduce residence time without moving too far away from the target weight, rather than 
the other way around). Conversely, we consider both objectives to potentially be equally 
important, as explained above. In addition, the respective contexts for the two studies are 
quite different. To be precise, Karuno et al. (2007) look for combinations of any number 
of hoppers in each iteration; that is, the parameter �  is not fixed in advance and can change 
in each iteration; also, they consider the values for the weights  �� to be integers and 
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uniformly distributed, whereas this paper deals with real-values following a normal 
distribution. 

3 Bi-objective Algorithm 

In this section, our bi-objective algorithm is outlined, along with a numerical example 
showing a sample iteration. This algorithm can be implemented in the software systems 
installed in the control unit of a multihead weigher. 

As suggested by previous studies (see subsection 2.2) aimed at a better performance, 
the set of hoppers will be divided into five subgroups, with the hoppers in each of them 
being filled with a different average amount of product. More precisely, each hopper in the 
third subgroup will be assigned an average weight of ;e = 
/�, whereas the rest of the 
hopper subgroups will be assigned the same average weight plus or minus a certain shift, 
according to a given pattern. The mean shift in groups 1, 2, 4 and 5 is determined by means 
of two parameters,  Yghij  and  k��_ Yghij, to be provided to the algorithm (see Step 1). 
The rest of the details about the algorithm have been introduced in sections 1 and 2. 

3.1 Step-by-step algorithm 

• Input: 

o �:  Total number of hoppers.  � > 0. 

o �:  Number of hoppers to be combined in each packing operation. 2 ≤� < �. 

o 
:  Target weight.  
 > 0. 

o �1, … , �o:  Number of hoppers in each subgroup of hoppers. �' ≥ 0,∀# = 1, … ,5; ∑ �'o'r1 = �. 

o <:  Standard deviation of the weight to be provided to each hopper.  < >0. 

o Yghij:  Relative mean shift for hoppers in subgroups 1 and 5 with regard 
to subgroup 3.  Yghij > 0. 

o k��_ Yghij:  A value such that  Yghij − k��_ Yghij  is the relative 
mean shift for hoppers in subgroups 2 and 4 with regard to subgroup 3.  0 < k��_ Yghij ≤ Yghij. 

o �MAX:  Maximum allowed priority (number of iterations without being 
chosen) for any hopper.  �MAX ≥ 1. 

o :  Total number of packages to be produced.   ≥ 1. 

• Step 1. Initialization. 

o Assign each hopper to a subgroup, so that the number of hoppers in 
subgroup  #  is  �', for all #. 

o Calculate the average hopper weight to be provided to each hopper 
subgroup.  ;1 = 
 �⁄ − Yghij · < ;  ;+ = 
 �⁄ − (Yghij −
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k��_ Yghij) · < ;  ;e = 
 �⁄  ;  ;v = 
 �⁄ + (Yghij − k��_ Yghij) · < ;  ;o = 
 �⁄ + Yghij · <. 

o Set initial values for weights and priorities for each hopper.  �� = 0,�� = 0, ∀� = 1, … , �. 
o Set an initial value for the number of produced packages so far.  w = 0. 

• Step 2. New packaging operation.  Initialize  01min = +∞ , 01max = −∞ , 0+min =+∞ , 0+max = −∞ , Ymin = +∞ ,   �min� = ∅. 

• Step 3. Refill all empty hoppers and update priorities.  For all hopper  �  in 
subgroup  #  such that  �� = 0:  Let  � = Random value from a :=;' , <? 
distribution.  For all hopper  �:  Let  �� = �� + 1. 

• Step 4. Discard and discharge (out of the package) any hopper that does not meet 
the priority constraint.  For all hopper  �  such that  �� > �MAX:  Let  �� = 0, �� =0. 

• Step 5. First evaluation of all valid combinations, in order to calculate 01min ,01max , 0+min , 0+max.  For all �-hopper combination  �′  such that it does not contain 
any hopper  �  with  �� = 0  and such that M 
 − ∑ ���∈�@  M ≤ ZN +⁄ √�< : 

o Calculate  01 = |  
 − ∑ ���∈�@   |.  (difference from target weight) 

o Calculate  0+ = ∑ ���∈�@ .  (sum of priorities) 

o If  01 < 01min,  then  01min = 01. 

o If  01 > 01max,  then  01max = 01. 

o If  0+ < 0+min,  then  0+min = 0+. 

o If  0+ > 0+max,  then  0+max = 0+. 

• Step 6. Check that the set of valid combinations is not empty. If  01min = +∞  then: 
(there is no valid combination; all hoppers must be discharged and refilled)  For 
all hopper  �:  Let  �� = 0, �� = 0; go to Step 2.  Otherwise: go to Step 7. 

• Step 7. Calculate  2 =  1 aMAX  ^478b∈c ab d 1 ,  where  �  is the set of all hoppers.  

(relative importance of the priority objective; it is recalculated before each 
packing operation) 

• Step 8. Second evaluation of all valid combinations, in order to select the one that 
minimises the performance function Y.  For all �-hopper combination  �′  such 
that it does not contain any hopper  �  with  �� = 0  and such that M 
 − ∑ ���∈�@  M ≤ ZN +⁄ √�< : 

o Retrieve  01  and  0+  for  �′.  (they were already calculated in Step 5) 

o Calculate  Y =  Z(1 − 2) [ \]^\]min

\]max̂ \]min_+ + 2 [ \`^\`max

\`max̂ \`min_+
. 

o If  Y < Ymin then  let  Ymin = Y , �min� = �′. 
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• Step 9. The �-hopper combination minimising  Y  is the one that has to be selected 
to produce the package.  Return  �min�   (as the set of hoppers to be combined to 
create the (w + 1)-th package).  For all hopper  �  belonging to  �min� : (it is 
discharged into the package)  Let  �� = 0, �� = 0. 

• Step 10. Update the number of packages produced and check whether the process 
is finished or not.  Let  w = w + 1.  If w <  then go to Step 2; otherwise, END. 

 
Steps 5 and 8 of this algorithm reveal the enumerative nature of our proposal. Each of 

the two steps can easily be implemented by using nested loops (as many loops as  �,  the 
number of hoppers to be combined in each iteration). More precisely, because every 
feasible solution (i.e., valid �-hopper combination) is evaluated in each iteration of the 
algorithm, our approach can be said to follow an explicit enumerative strategy (or 
exhaustive search), as announced in the introduction section. In particular, the number of 
combinations to be evaluated in a single iteration equals =IJ? = �! (�! (� − �)!)⁄  at most 
(because some hoppers can be discarded in Step 4 due to the priority constraint). Although 
it is a simple strategy, this allows our bi-objective algorithm to be considered an exact (not 
heuristic) search (Michalewicz and Fogel, 2004). This establishes another difference 
between our bi-objective approach and the one by Karuno et al. (2007), who propose a 
heuristic strategy (in the sense that they do not necessarily generate all the nondominated 
solutions to the problem, but only those that are close enough to the target weight). The 
computational cost of generating and evaluating all the valid hopper combinations can be 
accepted by our algorithm because it only considers combinations of  �  hoppers, with the 
parameter  �  being fixed in advance. 

Notice that step 6 of the algorithm describes a situation in which all hoppers should be 
discharged in order to avoid producing packages that would not meet the quality 
requirements for the final product in terms of weight. In practical terms, all of this 
discharged product could be taken and reused in the process again, for instance. In any 
case, this full discharge happens very infrequently (as can be seen later in Section 4.4) and, 
therefore, would not significantly affect the final cost of the packaging process.  

3.2 Numerical example 

For clarity, we show an example of how the iterations of the proposed algorithm work. 
Assume 
 = 500 grams and σ = 12.50 grams, and suppose that we are choosing  � = 4 out 
of  � = 16 hoppers in each iteration, which are distributed as stated in step 1 of the 
algorithm, with  �1 = 3, �+ = 3, �e = 4, �v = 3 and �o = 3. Let us also suppose that the 
value of exchange is Yghij = 1.5, k��_ Yghij = 0.5 and the maximum allowed priority for 
any hopper is �MAX  = 10. In these conditions the filling setting would be: μ1 = 106.25 
grams, μ+ = 112.50 grams, μe = 125 grams, μv = 137.50 grams and μo = 143.75 grams. 
Fig. 1 shows the situation at iteration 1000 of this specific example.  

Combining different sets of 4 hoppers results in a total of 1790 valid combinations, 
after discarding those that do not meet the condition stated in steps 4 and 6. In the figure, 
each of these solutions is represented according to its coordinates in the decision or 
criterion space, with the horizontal and vertical axes corresponding to the difference from 
the target weight and the total priority, respectively. 

The lowest difference with regard to the target weight,  01min = 0.05481 grams, is 
achieved by combining hoppers 1, 2, 10 and 14, whereas the highest aggregated priority 
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0+max = 17 corresponds to hoppers 6, 10, 11 and 13. As a direct consequence, the ideal point 
is (01min = 0.05481, 0+max = 17). As shown in the chart, there are five nondominated or 
efficient solutions, which form the so-called Pareto set or Pareto frontier, and the two 
aforementioned solutions are part of it. The maximum current hopper priority in this 
iteration is 5, and therefore 2 = 1 (10 − 5 + 1)⁄ = 0.1667, according to (7). This means 
that, in this very specific iteration, the ratio of importance of the two objectives (weight 
and priority) is (1 − 2): 2 = 5: 1 (namely, the objective of getting a package close to the 
target weight is five times more important than the objective of selecting a 4-hopper 
combination with a high total priority). 

Each of the 1790 solutions is compared to the performance function  Y (weighted 
normalized distance to the ideal point), as defined in (6). Notice that it would only be 
necessary to check the value of Y in the five nondominated solutions, as the point that 
minimizes the value of Y always belongs to the Pareto set in compromise programming. 
However, numerically finding out whether each of the 1790 valid combinations is 
dominated or not would be equivalent to calculating Y in each of them, in terms of 
computational effort. 

In this example, the minimum value of Y is given by choosing hoppers 1, 5, 6 and 11, 
which corresponds to a difference from the target weight of only 0.06173 grams (the second 
best combination, with regards to this objective) and a total priority of 14 (to be more 
precise, one of the priorities of these four hoppers that are going to be discharged is equal 
to 5, which was the maximum priority in this iteration). This example illustrates how 
compromise programming succeeds in balancing the objectives being considered in an 
automatic and reasonable way. 

 

 

 

 

 

 

 

 

Fig. 1. Feasible solutions set and Pareto frontier (nondominated solutions) for the numerical example 
in Section 3.2, showing a snapshot of a specific iteration of the proposed bi-objective algorithm. Each 
point represents a valid hopper combination. The coordinates for each point represent the difference 
of that combination with regards to the target weight (01) and the total priority of that combination 
(0+). The five ‘big’ black dots represent the nondominated solutions (candidates to be returned as the 
selected hopper combination) and the ‘empty’ dot represents the ideal solution (a theoretical one 
combining the best of 01 and 0+). The hopper combination that is finally selected (i.e., the 
compromise solution) is the one that is closer to the ideal point, using the distance D defined in 
Section 2.5.  
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4 Computational Experiments 

In this section, an extensive set of numerical simulation experiments is presented to study 
the performance of the proposed bi-objective algorithm. The algorithm was implemented 
in Pascal and run on a personal computer with Windows 7 Home Premium (64bit), Intel 
Core i5-3317U CPU (1.7 GHz) and 4 GB memory. 

4.1 Tested process and operational parameters 

In order to find the optimum operative conditions to minimize the variability in the total 
weight (/), a design of experiments (DOE) was carried out. The response variable used is 

the "coefficient of variation of the package" (CVA7BC7DE = ���������������� ∗ 100). This DOE takes 

into consideration a large number of possible productive configurations of the multihead 
weigher. The factors and their levels to study in the DOE are shown in Table 1 and 2.  In 
this case, the design of experiments is a balanced factorial design of fixed effects factors.  

 
Table 1. Levels of the factors studied 

Factor Levels 
Number total of hoppers (�) 8,10,12,14,16 
Number of hoppers to be combined (�) 2,3,4,5,6,7 

Target weight (
) 125, 250,500, 1000, 2000 g. 

Coefficients of variation (%&) 1%, 2.5%, 5% 
Distribution of weighing hoppers (()*   Equal, Center, Extreme 
Value of exchange (Yghij) 0.0,0.5,1.0,1.5,2.0,2.5,3.0 
Maximum allowed priority for any hopper (�MAX ) 10, 30, 50, 100 

         * See Table 2 

Table 2. Distribution of weighing hoppers for each subgroup 

   Equal  Center  Extreme 

 
 �1 �+ �e �v �o 

 
�1 �+ �e �v �o 

 
�1 �+ �e �v �o 

T
o

ta
l n

u
m

b
er

 o
f 

h
o

pp
er

s 
 (�) 8 1 2 2 2 1 1 1 4 1 1 3 1 0 1 3 

10  2 2 2 2 2  1 1 6 1 1  4 1 0 1 4 

12  3 2 2 2 3  1 1 8 1 1  4 2 0 2 4 
14  3 3 2 3 3  1 1 10 1 1  5 2 0 2 5 

16  3 3 4 3 3  1 1 12 1 1  6 2 0 2 6 

 
As has been seen, the factor “Value of exchange” (Delta) helps to adjust the filling 

setting during the packaging operation. This means that Delta makes it possible to observe 
the influence of fixing the average weights for the subgroups of hoppers (μ!) in many 
different cases.  In this way, Delta (As has been seen in step 1 of the algorithm) involves 
voluntary changes in the supply of products to different subgroups of hoppers, except for �e.  

On the other hand, the factor ( represents the distribution of the hoppers in each 
subgroup and its levels define the number of hoppers that will be in each. Therefore, an 
Equal level means that the number of hoppers in the subgroups is as homogeneous as 
possible. In the Central level, the largest number of hoppers is concentrated in the subgroup 
of hoppers whose filling objective has not been modified (�e). In the Extreme level, the 
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largest number of hoppers is concentrated in the subgroups of hoppers where the filling 
objective has been modified (�1, �+, �v y �o).  

The coefficient of variation (CV) is used to calculate the standard deviation of the 

weights in every hopper (<) as an input in the packaging process, e.g., if CV = √J�� ∗ 100 =5%, 
 = 500 and � = 4. Theoretically, we have √�σ = 25 and, therefore, σ = 12.50. The 
above allows the simulation of different scenarios of the standard deviation of weights in 
every hopper. However, it does not mean that √�σ will be the actual variability obtained 
in the package produced through our proposed approach. 

Thus, calculating all the combinations of factors will result in 37800 treatments, which 
were simulated 10000 times each, i.e., 10000 units of packaged products for each 
treatment. The conclusions of the analysis are presented in subsection 4.3. 

4.2 Performance measures 

The most important calculated parameters, as a measure of performance to evaluate our bi-
objective approach, are: Average weight of the total number of packages produced (;���J���), the standard deviation of the total number of packages produced (<���J���), 
percentage of discharge due to the confidence level (DCL), the number of hoppers 
discarded by priority for each iteration (HDP), the average maximum priority for each 
hopper (AMP),  and  the Trade-off values. 

4.3 Statistical analysis 

Analysis of variance (ANOVA) was used to determine the statistical significance of the 
factors and their interaction.  The ANOVA procedure assumes that the observations are 
normally and independently distributed, with the same variance for each treatment or factor 
level. In order to verify the statistical validity of the results and ascertain what the best 
configuration is, we performed a multifactor ANOVA where the response variable is 
log(%&���J���). The transformation of the response variable was necessary in order to 
ensure compliance with the ANOVA’s three important hypotheses; normality, 
homogeneity of variance and independence of the residuals (Montgomery, 2009). 

Table 3 shows the results of the ANOVA for the computational experiment carried out 
corresponding to the study of the influence of the factors on the %&���J��� for the proposed 
bi-objective approach. As can be observed, the p-values are less than 0.05, which confirms 
that all the main effects and interactions of the factors are statistically significant when CV���J��� is measured, except for 
. The effect of  %&, �, �, Delta, �MAX  and ( on the 
variability of the package is evident. Note that the %& factor is the most significant and it 
does not interact with any of the other factors. Moreover, significant interactions between 
Delta and k, Delta and d, k and n, and d and k are highlighted. 

The mean plots and least significant differences (LSD) intervals for the type of factor 
are shown in Fig. 2. As Fig. 2 shows, some deductions can be made. The CV���J���  
increases when the coefficient of variation of the final weight (CV) also increases. When 
the number of weighing hoppers combined reaches values of � = 4 or � = 5, low CV���J��� 
values are obtained. The CV���J��� decreases in multihead machines with a high number 
of weighing hoppers (�). Specifically, the lowest value of the CV���J��� during the analysis 
is achieved when � is at its highest level (� = 16). A value of exchange (Delta) of 2.0 
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reduces the CV���J��� value. An increase in the maximum allowed priority for any hopper 
(�MAX ) results in a low CV���J��� value. A homogeneous distribution of hoppers (Equal) 
in subgroups causes a decrease in the CV���J���. 

 
Table 3. ANOVA results of significant factors for log(CV�������) in the proposed bi-objective 
approach. 

 ANOVA results for bi-objective approach 
Source Sum of 

squares 
DF F-ratio  p-value 

Main Effects     
CV 16459.5 2 176100.55 0.0000 
Delta 5256.6 6 28120.34 0.0000 
d 58.6 2 940.30 0.0000 
k 17116.2 5 109876.30 0.0000 
n 4853.1 4 38942.44 0.0000 �MAX  1726.9 3 18476.03 0.0000 
Interactions     
Delta·d 927.5 12 2480.84 0.0000 
Delta·k 4830.6 30 5168.30 0.0000 
Delta·n 240.7 24 321.87 0.0000 
Delta·�MAX  193.8 18 345.62 0.0000 
d·k 569.8 10 1828.85 0.0000 
d·n 22.6 8 90.65 0.0000 
d·�MAX  2.5 6 13.63 0.0000 
k·n 2141.4 20 3436.65 0.0000 
k·�MAX  189.3 15 405.14 0.0000 
n·�MAX  253.0 12 676.74 0.0000 
Residual 1172.1 37622   
Total 56014.2 37799   

 
Fig. 3 shows the interaction plots for significant factors. The analysis of interaction 

plots shows some interesting results. The value of exchange (Delta), which results in a 
reduction in the CV���J��� , depends on the way the weighing hoppers are distributed and 
the number of weighing hoppers combined (�). The values of exchange (Delta) of 1.5, 2.0 
and 2.5 provide the best results when the total number of weighing hoppers (�) is the 
highest.The values of exchange (Delta) of 1.5 or 2.0 are statistically equivalent and provide 
a decrease in CV���J��� when the maximum allowed priority for any hopper (�MAX ) 
reaches its highest value. Extreme or Equal levels are statistically equivalent in reducing 
the CV���J���  when  4, 5 or 6 weighing hoppers are combined. Note that for � = 2, a Central 
distribution of weighing hoppers is preferred. A homogeneous distribution of hoppers 
(Equal) is able to reduce the CV���J���  when multihead machines with a high number of 
weighing hoppers (�) are employed and the maximum allowed priority for any hopper 
(�MAX ) takes the value of 100. A number of weighing hoppers combined (�) of 6 or 7 is 
statistically equivalent and provides the best results in reducing the CV���J��� when the 
total number of weighing hoppers (�) is used. Otherwise, for a minimum number of 
weighing hoppers combined, i.e. � = 2, the total number of weighing hoppers (�) is 
negligible at any level for reducing the CV���J���. Note that the best value of � also 
depends on the value �, which is confirmed by the strong interaction between these factors. 
A number of weighing hoppers combined (�) of 4 or 5 is able to reduce the CV���J��� 
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when the maximum allowed priority for any hopper is the biggest. A maximum allowed 
priority of 100 for any hopper (�MAX ) provides the best results in multihead machines with 
the largest number of hoppers (�). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 

 

Fig. 2. Mean plots and LSD intervals for significant factors as a function of log(CV�������). 
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Fig. 3. Interactions plots and LSD intervals for significant factors as a function of log(CV�������). 

Based on this analysis, we can now obtain optimum operating conditions that minimize 
the response variable. The final levels for the factors are shown in Table 4. 

 
Table 4. The best operational conditions for the multihead weighing process 

 

 
 

 

 

Factor Best Level 
Number total of hoppers (�) 16 
Number of hoppers to be combined (�) 4 
Coefficients of variation (%&) 1% 
Distribution of weighing hoppers (()  Equal 
Value of exchange (Yghij) 2.0 
Maximum allowed priority for any hopper (�MAX ) 100 
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4.4 Numerical results and discussion 

As a supplement to the statistical analysis described in 4.3, a summary of results is 
presented that makes it possible to analyse the behaviour of performance parameters during 
the packaging process when the proposed bi-objective algorithm is run. These results were 
compared to the outputs in a mono-objective approach. Taking into account that the levels 
of certain factors, due to the high interaction between them, depend on the levels of other 
factors, we decided to summarize the results by using the following inputs. 

Consider a packaging process under control where we aim to obtain a target weight of 
500 grams. The computational experiment was performed using the following case: � = 
16, Delta = 2.0, k��_ Yghij = 0.5, �MAX  :{10, 30, 50, 100} and �:{2, 3, 4, 5, 6, 7} hoppers. 
An Equal distribution of the weighing hoppers in each subgroup was used, so: �1 = 3, �+ = 3, �e = 4, �v = 3 and �o = 3. To calculate the standard deviation of weights in 
every hopper (<) as an input in the packaging process, %&:{1%, 2.5%, 5%} were used. 

A way of measuring the loss in the increases in variability in the package in exchange 
for a decrease in the duration of the product in the hopper is to calculate the Trade-off 
value, as follows: 

 Trade-off= � ∆ �package∆ Average maximum priority /Hopper
 �  (8) 

 
where "∆ <package" is a measure of the shift in the package variability, and "∆ Average maximum priority /Hopper" is a measure of the change in the average 

maximum priority for each hopper  for a mono-objective approach and our bi-objective 
approach.  

Tables 5 and 6 show the performance parameters for the bi-objective approach 
proposed and the mono-objective approach. �MAX  values allow the monitoring of the 
evolution of the performance parameters of the process. �MAX  represents the maximum 
residence time of the product in a hopper. For instance, for a multihead weigher with a 
capacity of fifty packages per minute and �MAX   = 100, the residence time is calculated as 
follows: 50 packages/60 seconds is equivalent to 1.2 seconds/package. Therefore, 1.2 
seconds/package·100 packages = 120 seconds.  

In table 5, the results show that when the priority ��  is considered, the variability of the 
package increases and the duration of the product in the hopper decreases (as expected). It 
can be observed that in the bi-objective approach, there were no full discharges for the 
confidence level of any of the �MAX  values considered. The above confirms that, regardless 
of the increased variability in the weight of the packaged product due to low values of 
maximum allowed priority (�MAX ), at least one of the weights obtained from all the 
combinations in each iteration was within the confidence level of 99.73%.  Note that 
discharges of hoppers due to exceeding the maximum allowed priority only occurs when �MAX  = 10 and � = 2. The largest decrease in the duration of the product in hopper and the 
largest increase in variability are produced when we use � = 2 for any of the �MAX  values. 
In fact, in these cases the variability of the packaged product is higher than the variability 
when the packaging process is performed randomly. Note that in each case analysed, when � = 7, the lowest values for the  %&���J��� are obtained in both approaches (bi-objective 
and mono-objective). This shows the strong interaction between the number of weights 
combined (�) and the total number of hoppers (�). 
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Table 5. Simulation results from the bi-objective algorithm for different values of the maximum allowed priority (�MAX ) compared to results from the mono-
objective approach. See section 4.2 for a further explanation of the performance parameters listed. 

 

 

 

 

 

  

 

  

 
 
 
 
 
 
 
 
 
 

    Bi-objective approach 
 

Mono-objective approach 

    
 

�MAX  = 10 
 

�MAX  = 30 
 

�MAX  = 50 
 

�MAX  = 100 
  √kσ � 

 
μpackage  CV j¡�j¢g  DCL HDP APM 

 
μpackage  %& j¡�j¢g  DCL HDP APM 

 
μpackage  CV j¡�j¢g  DCL HDP APM 

 
μpackage  CV j¡�j¢g  DCL HDP APM 

 
μpackage  CV j¡�j¢g  APM 

 
2 

 
499.92 1.1362 0.00 0.0026 9.00 

 
499.67 0.8125 0.00 0.00 13.75 

 
499.70 0.8065 0.00 0.00 17.52 

 
499.77 0.7864 0.00 0.00 24.49 

 
499.99 0.1558 888.84 

 
3 

 
499.98 0.1680 0.00 0.00 6.64 

 
499.99 0.0740 0.00 0.00 7.16 

 
500.00 0.0600 0.00 0.00 7.37 

 
499.99 0.0460 0.00 0.00 7.72 

 
500.00 0.0105 23.95 

 
4 

 
499.99 0.0940 0.00 0.00 5.11 

 
500.00 0.0500 0.00 0.00 5.27 

 
500.00 0.0400 0.00 0.00 5.34 

 
500.00 0.0300 0.00 0.00 5.45 

 
500.00 0.0022 14.08 

5 5 
 

500.00 0.0680 0.00 0.00 4.15 
 

500.00 0.0400 0.00 0.00 4.22 
 

500.00 0.0320 0.00 0.00 4.27 
 

499.99 0.0240 0.00 0.00 4.34 
 

499.99 0.0008 10.46 

 
6 

 
499.99 0.0540 0.00 0.00 3.45 

 
499.99 0.0320 0.00 0.00 3.58 

 
499.99 0.0260 0.00 0.00 3.63 

 
499.99 0.0200 0.00 0.00 3.69 

 
499.99 0.0004 8.22 

 
7 

 
500.00 0.0500 0.00 0.00 3.06 

 
500.00 0.0260 0.00 0.00 3.09 

 
499.99 0.0220 0.00 0.00 3.11 

 
499.99 0.0160 0.00 0.00 3.13 

 
500.00 0.0003 6.70 

 
2 

 
499.82 2.8370 0.00 0.0032 9.00 

 
499.08 2.0257 0.00 0.00 13.66 

 
499.36 1.9585 0.00 0.00 17.48 

 
499.46 1.9141 0.00 0.00 24.14 

 
500.02 0.4122 892.98 

 
3 

 
499.96 0.3840 0.00 0.00 6.64 

 
499.98 0.1860 0.00 0.00 7.17 

 
500.00 0.1500 0.00 0.00 7.34 

 
500.00 0.1160 0.00 0.00 7.66 

 
500.00 0.0269 23.65 

 
4 

 
499.99 0.2400 0.00 0.00 5.11 

 
500.00 0.1280 0.00 0.00 5.27 

 
499.99 0.1020 0.00 0.00 5.35 

 
500.00 0.0780 0.00 0.00 5.45 

 
499.99 0.0056 14.23 

12.5 5 
 

499.99 0.1740 0.00 0.00 4.14 
 

499.99 0.1000 0.00 0.00 4.23 
 

500.00 0.0800 0.00 0.00 4.27 
 

500.00 0.0600 0.00 0.00 4.33 
 

500.00 0.0019 10.38 

 
6 

 
499.99 0.1360 0.00 0.00 3.45 

 
499.99 0.0800 0.00 0.00 3.58 

 
499.99 0.0660 0.00 0.00 3.63 

 
499.99 0.0500 0.00 0.00 3.69 

 
500.00 0.0010 8.12 

 
7 

 
500.00 0.1260 0.00 0.00 3.06 

 
499.99 0.0680 0.00 0.00 3.10 

 
499.99 0.0540 0.00 0.00 3.11 

 
500.00 0.0420 0.00 0.00 3.13 

 
500.00 0.0007 6.54 

 
2 

 
499.65 5.6760 0.00 0.0032 9.00 

 
498.17 4.0589 0.00 0.00 13.66 

 
498.72 3.9220 0.00 0.00 17.48 

 
498.92 3.8323 0.00 0.00 24.14 

 
500.06 0.8259 892.98 

 
3 

 
499.88 0.8002 0.00 0.00 6.64 

 
499.96 0.3720 0.00 0.00 7.15 

 
500.01 0.3020 0.00 0.00 7.33 

 
500.00 0.2320 0.00 0.00 7.68 

 
500.00 0.0543 23.27 

 
4 

 
499.98 0.4760 0.00 0.00 5.11 

 
500.01 0.2580 0.00 0.00 5.27 

 
500.01 0.2060 0.00 0.00 5.34 

 
500.00 0.1560 0.00 0.00 5.45 

 
500.00 0.0111 14.08 

25 5 
 

499.98 0.3540 0.00 0.00 4.14 
 

499.99 0.2020 0.00 0.00 4.22 
 

499.99 0.1600 0.00 0.00 4.26 
 

500.00 0.1220 0.00 0.00 4.33 
 

500.00 0.0040 10.30 

 
6 

 
500.01 0.2760 0.00 0.00 3.45 

 
500.00 0.1580 0.00 0.00 3.58 

 
499.99 0.1320 0.00 0.00 3.63 

 
499.99 0.1020 0.00 0.00 3.69 

 
499.99 0.0020 8.14 

 
7 

 
499.99 0.2580 0.00 0.00 3.06 

 
499.99 0.1400 0.00 0.00 3.09 

 
500.01 0.1120 0.00 0.00 3.11 

 
499.99 0.0860 0.00 0.00 3.13 

 
499.99 0.0014 6.67 
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It can also be observed that the average weight of the final package (μA7BC7DE) is not 
affected in any of cases studied. Additionally, note that the average maximum priority for 
each hopper (AMP) decreases as the � values increases, and at the same time, it is kept 
constant at different levels of %& (represented by √kσ). 
 

Table 6. Trade-off values for maximum allowed priority (�MAX ) of  10, 30, 50 and 100 

Trade-off 

 √kσ �  �MAX  = 10  �MAX  = 30  �MAX  = 50  �MAX  = 100 

 2 0.00557 0.00375 0.00373 0.00365 

 3 0.04548 0.01890 0.01492 0.01092 

 4 0.05117 0.02713 0.02162 0.01611 

5 5 0.05325 0.03141 0.02520 0.01895 

 6 0.05617 0.03404 0.02788 0.02162 

 7 0.06830 0.03562 0.03025 0.02202 

 2 0.01371 0.00915 0.00882 0.00863 

 3 0.10497 0.04828 0.03774 0.02787 

 4 0.12848 0.06828 0.05425 0.04120 

12.5 5 0.13786 0.07972 0.06387 0.04798 

 6 0.14452 0.08698 0.07236 0.05528 

 7 0.18003 0.09782 0.07769 0.06055 

 2 0.02741 0.01830 0.01762 0.01725 

 3 0.22420 0.09854 0.07769 0.05699 

 4 0.25915 0.14013 0.11151 0.08396 

25 5 0.28413 0.16287 0.12918 0.09887 

 6 0.29207 0.17101 0.14408 0.11231 

  7 0.35543 0.19361 0.15537 0.11953 

 
In table 6, the Trade-off values show that the largest increase in variability for each 

reduced unit of the priority occurs when �MAX  = 10, and they are the largest when we want 
to combine the greatest number of weights, i.e., when k = 7 (In the latter case, regardless 
of the value of �MAX ). In addition, the values for the Trade-off progressively decrease as 
the �MAX  value increases and they also progressively increase as the � value increases. 
Additionally, it is clear that the increases in the coefficient of variation (%&) cause 
increments in the Trade-off values. 

5 Conclusions and future research 

A multihead weighing process is a packaging technology that can be of strategic importance 
to a company, as it can be a key to competitive advantage in the modern food industry. The 
improvement of the process quality and sensory quality of food packaged in a multihead 
weighers process investigated in this paper is relevant to industrial engineering. A bi-
objective algorithm for the packaging processes in multihead weighers with an unequal 
supply is developed, and numerical experiments are provided to illustrate the performance 
of the proposed algorithm. 
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Our algorithm simultaneously deals with the objective of minimizing the difference 

between the target and the real package weight and the objective of maximizing the total 
priority of the chosen combination of hoppers. We propose using a single weighted 
performance or utility function that combines information about the two objectives or 
criteria being considered in this study (weight and priority), where the relative weight or 
importance of each objective is dynamically adjusted in each iteration or packing operation. 
Pareto-optimal solutions were obtained for both problems for the conflicting relationships 
between the objectives. To the best of our knowledge, no prior research has considered both 
objectives (weight and priority) to be potentially equally important. 

We also conduct numerical experiments to examine the quality of the solution and 
measure the most important parameters in the packaging operation. The statistical analysis 
carried out allowed us to find the operational conditions that minimize the variability in the 
total weight (/) of the package when our approach is used. This analysis identified the 
main factors affecting the variability of the total weight (/) during the packing process.  

The numerical experiments show that our algorithm succeeds in managing both 
objectives in a reasonable and efficient way. More precisely, the average highest observed 
priority (AMP) is significantly reduced compared to the mono-objective approach (in 
which weight is the only selection criterion), especially when the number � of hoppers to 
be combined is small, with average distance to target weight still remaining acceptable in 
general. Only in the cases where the value of � is minimum was the observed standard 
deviation of package weights slightly greater than what would be expected if the hoppers 
were filled with equal weights and selected at random (√kσ). This reveals that settings with 
small values for � make it more difficult to simultaneously deal with both objectives, 
perhaps due to the relatively low number of possible combinations to test in each iteration. 

Nevertheless, it should be mentioned that the ratio between the increase in package 
dispersion and the improvement in terms of priority reduction (trade-off) remains within 
reasonable levels in all the tested cases. In relative (trade-off) terms, the largest effort in 
reducing priority occurs for higher values of � (which means more possible combinations) 
and smaller values of PMAX  (that is, as the priority objective becomes more important). Our 
proposal goes in a similar direction to the one by Karuno et al. (2007), but it offers a 
different insight into the packaging problem, as has been highlighted previously in the text. 
In conclusion, the effectiveness and efficiency of our approach has been shown.  

Finally, the proposed method provides Pareto optimal sets of solutions to the problem 
of bi-objective optimization that can be analysed to obtain optimal configurations. The 
model will be useful to engineers concerned with the optimal configuration of a multihead 
weigher. 

For future research, at least two issues are worth investigating. First, it would be 
interesting to generalize the current model to include other objectives of an economic 
nature, such as product packaging costs, cost of rejection and reworking of a “non- 
conforming” package. Secondly, we intend to test this methodology using real-data sets 
from the food industry. 
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