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Resumen. El trabajo presentado en esta Tesis está motivado por la necesidad de
los motores de combustión interna alternativos de reducir el consumo de combustible y
las emisiones de CO2 mientras se satisfacen las cada vez más restrictivas regulaciones
de emisiones contaminantes. Por lo tanto, el objetivo principal de este estudio es
optimizar un sistema de combustión de encendido por compresión controlado por
mezcla para probar su potencial como motores de futura generación. Con esta
meta se ha desarrollado un sistema automático que combina CFD con métodos de
optimización avanzados para analizar y entender las configuraciones óptimas.

Los resultados presentados en este trabajo se dividen en dos bloques principales.
El primero corresponde a la optimización de un sistema de encendido por compresión
convencional alimentado con diésel. El segundo se centra en un concepto de
combustión avanzado donde se ha sustituido el fuel por Dimetil-eter. En ambos casos,
el estudio no sólo halla una configuración óptima sino que también se describen las
relaciones causa/efecto entre los parámetros más relevantes del sistema de combustión.

El primer bloque aplica métodos de optimización no-evolutivos a un motor
medium-duty alimentado por diésel tratando de minimizar consumo a la vez que se
mantienen las emisiones contaminantes por debajo de los estándares de emisiones
contaminantes impuestos. Una primera parte se centra en la optimización de la
geometŕıa de la cámara de combustión y el inyector. Seguidamente se extiende el
estudio añadiendo los settings de renovación de la carga de y de inyección al estudio,
ampliando el potencial de la optimización. El estudio demuestra el limitado potencial
de mejora de consumo que tiene el motor de referencia al mantener los niveles de
emisiones contaminantes. Esto demuestra la importancia de incluir parámetros de
renovación de la carga e inyección al proceso de optimización.

El segundo bloque aplica una metodoloǵıa basada en algoritmos genéticos al
diseño del sistema de combustión de un motor heavy-duty alimentado con Dimetil-
eter. El estudio tiene dos objetivos, primero la optimización de un sistema de
combustión convencional controlado por mezcla con el objetivo de lograr mejorar
el consumo y reducir las emisiones contaminantes hasta niveles inferiores a los
estándares US2010. Segundo la optimización de un sistema de combustión trabajando
en condiciones estequiométricas acoplado con un catalizador de tres v́ıas buscando
reducir consumo y controlar las emisiones contaminantes por debajo de los estándares
2030. Ambas optimizaciones incluyen tanto la geometŕıa como los parámetros más
relevantes de renovación de la carga y de inyección. Los resultados presentan un
sistema de combustión convencional óptimo con una notable mejora en rendimiento y
un sistema de combustión estequiométrica que es capaz de ofrecer niveles de NOx
menores al 1% de los niveles de referencia manteniendo niveles competitivos de
rendimiento.

Los resultados presentados en esta Tesis ofrecen una visión extendida de las
ventajas y limitaciones de los motores MCCI y el camino a seguir para reducir las
emisiones de futuros sistemas de combustión por debajo de los estándares establecidos.
A su vez, este trabajo también demuestra el gran potencial que tiene el Dimetil-eter
como combustible para futuras generaciones de motores.



Resum. El treball presentat en esta Tesi està motivat per la necessitat dels
motors de combustió interna alternatius de reduir el consum de combustible i les
emissions de CO2 mentres se satisfan les cada vegada més restrictives regulacions
d’emissions contaminants. Per tant, l’objectiu principal d’este estudi és optimitzar
un sistema de combustió d’encesa per compressió controlat per mescla per a provar
el seu potencial com a motors de futura generació. Amb esta meta s’ha desenrotllat
un sistema automàtic que combina CFD amb mètodes d’optimització avançats per a
analitzar i entendre les configuracions òptimes. Els resultats presentats en este treball
es dividixen en dos blocs principals. El primer correspon a l’optimització d’un sistema
d’encesa per compressió convencional alimentat amb dièsel. El segon se centra en un
concepte de combustió avançat on s’ha substitüıt el fuel per Dimetil-eter. En ambdós
casos, l’estudi no sols troba una configuració òptima sinó que també es descriuen les
relacions causa/efecte entre els paràmetres més rellevants del sistema de combustió.

El primer bloc aplica mètodes d’optimització no-evolutius a un motor medium-
duty alimentat per dièsel tractant de minimitzar consum al mateix temps que
es mantenen les emissions contaminants per davall dels estàndards d’emissions
contaminants impostos. Una primera part se centra en l’optimització de la geometria
de la cambra de combustió i l’injector. A continuació s’estén l’estudi afegint els
settings de renovació de la càrrega de i d’injecció a l’estudi, ampliant el potencial de
l’optimització. L’estudi demostra el limitat potencial de millora de consum que té el
motor de referència al mantindre els nivells d’emissions contaminants. Açò demostra
la importància d’incloure paràmetres de renovació de la càrrega i injecció al procés
d’optimització.

El segon bloc aplica una metodologia basada en algoritmes genètics al disseny del
sistema de combustió d’un motor heavy-duty alimentat amb Dimetil-eter. L’estudi té
dos objectius, primer l’optimització d’un sistema de combustió convencional controlat
per mescla amb l’objectiu d’aconseguir millorar el consum i reduir les emissions
contaminants fins nivells inferiors als estàndards US2010. Segon l’optimització d’un
sistema de combustió treballant en condicions estequiomètriques acoblat amb un
catalitzador de tres vies buscant reduir consum i controlar les emissions contaminants
per davall dels estàndards 2030. Ambdós optimitzacions inclouen tant la geometria
com els paràmetres més rellevants de renovació de la càrrega i d’injecció. Els resultats
presenten un sistema de combustió convencional òptim amb una notable millora en
rendiment i un sistema de combustió estequiomètrica que és capaç d’oferir nivells
de NOx menors al 1% dels nivells de referència mantenint nivells competitius de
rendiment.

Els resultats presentats en esta Tesi oferixen una visió estesa dels avantatges i
limitacions dels motors MCCI i el camı́ que s’ha de seguir per a reduir les emissions
de futurs sistemes de combustió per davall dels estàndards establits. Al seu torn, este
treball també demostra el gran potencial que té el Dimetil-eter com a combustible
per a futures generacions de motors.



Abstract. The work presented in this Thesis was motivated by the needs of
internal combustion engines (ICE) to decrease fuel consumption and CO2 emissions,
while fulfilling the increasingly stringent pollutant emission regulations. Then, the
main objective of this study is to optimize a mixing-controlled compression ignition
(MCCI) combustion system to show its potential for future generation engines. For
this purpose an automatic system based on CFD coupled with different optimization
methods capable of optimizing a complete combustion system with a reasonable time
cost was designed together with the methodology to analyze and understand the new
optimum systems.

The results presented in this work can be divided in two main blocks, firstly an
optimization of a conventional diesel combustion system and then an optimization of
a MCCI system using an alternative fuel with improved characteristics compared
to diesel. Due to the methodologies used in this Thesis, not only the optimum
combustion system configurations are described, but also the cause/effect relations
between the most relevant inputs and outputs are identified and analyzed.

The first optimization block applies non-evolutionary optimization methods in two
sequential studies to optimize a medium-duty engine, minimizing the fuel consumption
while fulfilling the emission limits in terms of NOx and soot. The first study targeted
four optimization parameters related to the engine hardware including piston bowl
geometry, injector nozzle configuration and mean swirl number. After the analysis of
the results, the second study extended to six parameters, limiting the optimization
of the engine hardware to the bowl geometry, but including the key air management
and injection settings. The results confirmed the limited benefits, in terms of fuel
consumption, with constant NOx emission achieved when optimizing the engine
hardware, while keeping air management and injection settings. Thus, including air
management and injection settings in the optimization is mandatory to significantly
decrease the fuel consumption while keeping the emission limits.

The second optimization block applies a genetic algorithm optimization
methodology to the design of the combustion system of a heavy-duty Diesel engine
fueled with dimethyl ether (DME). The study has two objectives, the optimization
of a conventional mixing-controlled combustion system aiming to achieve US2010
targets and the optimization of a stoichiometric mixing-controlled combustion system
coupled with a three way catalyst to further control NOx emissions and achieve
US2030 emission standards. These optimizations include the key combustion system
related hardware, bowl geometry and injection nozzle design as input factors, together
with the most relevant air management and injection settings. The target of the
optimizations is to improve net indicated efficiency while keeping NOx emissions, peak
pressure and pressure rise rate under their corresponding target levels. Compared to
the baseline engine fueled with DME, the results of the study provide an optimum
conventional combustion system with a noticeable NIE improvement and an optimum
stoichiometric combustion system that offers a limited NIE improvement keeping
tailpipe NOx values below 1% of the original levels.

The results presented in this Thesis provide an extended view of the advantages
and limitations of MCCI engines and the optimization path required to achieve future
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emission standards with these engines. Additionally, this work showed how DME is a
promising fuel for future generation engines since it is able to achieve future emission
standards while maintaining diesel-like efficiency.
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Querŕıa también agradecer a la beca de Formación del Proferosado Universitario
(FPU 13/02817) su constante y puntual apoyo mensual ya que de aire no se vive y
de amor por los motores tampoco.

Finally, I would lke to switch to english to express my sincere gratitude to Sage
Kokjohn and the University of Wisconsin Madison to help me with all their knowledge
and resources because half of this Thesis would not had been possible without them.





Table of Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives and methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature review: mixing-controlled compression ignition
engine 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 MCCI combustion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Combustion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1.1 Ignition delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1.2 Premixed combustion . . . . . . . . . . . . . . . . . . . . 18

2.2.1.3 Mixing-controlled phase . . . . . . . . . . . . . . . . . . 19

2.3 Optimization strategies for MCCI . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Strategies based on geometric parameters . . . . . . . . . . . 22

2.3.2 Strategies based on air management parameters . . . . . 26

2.3.3 Strategies based on injection parameters . . . . . . . . . . . . 28

2.3.4 Strategies based on after-treatment . . . . . . . . . . . . . . . . . 30

2.3.5 Strategies based on alternative fuels . . . . . . . . . . . . . . . . 31

2.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



ii Table of Contents

3 Literature review: optimization methods 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Non-evolutionary optimization methods . . . . . . . . . . . . . . . . . . . 42

3.2.1 The 2k factorial design . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Response surface methods . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Evolutionary optimization methods . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1.1 Micro genetic algorithm . . . . . . . . . . . . . . . . . . 50

3.3.1.2 NGSA-II algorithm . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1.3 DKGA algorithm . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Particle swarm algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Experimental and theoretical tools 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Experimental tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Non-evolutionary optimization experimental tools . . . . 62

4.2.1.1 Experimental facilities . . . . . . . . . . . . . . . . . . . . 62

4.2.1.2 Engine characteristics . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Evolutionary optimization experimental tools . . . . . . . . 64

4.2.2.1 Experimental facilities . . . . . . . . . . . . . . . . . . . . 64

4.2.2.2 Engine characteristics . . . . . . . . . . . . . . . . . . . . 66

4.3 Computational approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Non-evolutionary optimization computational approach 67

4.3.1.1 CFD software and models . . . . . . . . . . . . . . . . . 67

4.3.1.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Evolutionary optimization computational approach . . . 68

4.3.2.1 CFD software and models . . . . . . . . . . . . . . . . . 68



Table of Contents iii

4.3.2.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Optimization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Injector profile generator . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.2 Bowl geometry generator . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.3 Pumping work model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.4 Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.4.1 Genetic algorithm benchmarking . . . . . . . . . . . 82

4.4.4.2 DKGA setup parameters . . . . . . . . . . . . . . . . . . 85

4.5 Optimization methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.1 Non-evolutionary optimization methodology . . . . . . . . . 90

4.5.2 Evolutionary optimization methodology . . . . . . . . . . . . . 91

4.5.2.1 Optimization methodology improvements . . . 92

4.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Conventional combustion engine optimization with non-
evolutionary optimization methods 100

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Stage 1: 4 parameters DOE optimization . . . . . . . . . . . . . . . . . . 102

5.2.1 Optimization parameters and setup . . . . . . . . . . . . . . . . 102

5.2.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Stage 2: 6 parameters DOE optimization . . . . . . . . . . . . . . . . . . 108

5.3.1 Optimization parameters and setup . . . . . . . . . . . . . . . . 109

5.3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.3 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.A Annex: Response surface functions . . . . . . . . . . . . . . . . . . . . . . . 123

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



iv Table of Contents

6 Advanced mixing-controled combustion concept optimiza-
tion using evolutionary optimization methods 133

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Stage 1: Lean combustion optimization . . . . . . . . . . . . . . . . . . . 135

6.2.1 Optimization parameters and setup . . . . . . . . . . . . . . . . 135

6.2.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2.2.1 Optimization results . . . . . . . . . . . . . . . . . . . . . 137

6.2.2.2 Parametric dependence . . . . . . . . . . . . . . . . . . . 142

6.2.2.3 Parameter evolution . . . . . . . . . . . . . . . . . . . . . . 147

6.3 Stage 2: Stoichiometric combustion optimization . . . . . . . . . . . 148

6.3.1 Optimization parameters and setup . . . . . . . . . . . . . . . . 149

6.3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3.2.1 Optimization results . . . . . . . . . . . . . . . . . . . . . 151

6.3.2.2 Parametric dependence . . . . . . . . . . . . . . . . . . . 159

6.3.2.3 Parameter evolution . . . . . . . . . . . . . . . . . . . . . . 162

6.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.A Annex: Reduced cost optimization . . . . . . . . . . . . . . . . . . . . . . . . 167

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7 General conclusions and future work 171

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

References 177



Index of Figures

1.1 Evolution of number of cars on road. Adapted from [1, 2] . . . 2

1.2 Emission standards for the last 30 years. Adapted from [3] . . 3

1.3 Global CO2 production per sector. Adapted from [4] . . . . . . . 3

1.4 Evolution of transport energy towards 2040. Adapted from [5] 4

1.5 Evolution of fuel usage in heavy-duty engines. Adapted from
[6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Technological evolution of the flexibilitation trend in diesel
engines. Adapted from [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Thesis methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Combustion process phases defined by the heat release rate and
injection profile. Adapted from [7] . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Diffusive flame structure during the quasi stationary phase
according to the conceptual model proposed by Dec. Adapted
from [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Diffusive flame structure during the quasi stationary phase
according to the conceptual model proposed by Dec. Adapted
from [20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 CI engine piston bowl geometries. Adapted from [28] . . . . . . . 25

2.5 Pumping work required for each PIVC value . . . . . . . . . . . . . . . 27

2.6 Engine efficiency and NOx emissions trade-off for increasing
EGR levels. Adapted from [28] . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Evolution of IP since 1930. Adapted from [40] . . . . . . . . . . . . . 29

3.1 Example of a 2k factorial design. Adapted from [2] . . . . . . . . . 44



vi Index of Figures

3.2 Central composite designs for k = 2 and K = 3. Adapted from
[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Sketch of an evolutionary algorithm process. Adapted from [6] 48

3.4 Sketch of a generic genetic algorithm. Adapted from [6] . . . . 49

3.5 Example of Punnet Square technique for 5 parents. Adapted
from [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Sketch of a particle swarm algorithm. Adapted from [6] . . . . 55

3.7 Sketch of a perceptron model. Adapted from [22] . . . . . . . . . . 56

4.1 Sketch of the tools used in this Thesis . . . . . . . . . . . . . . . . . . . . . 63

4.2 Experimental vs CFD results with the reference combustion
system at (top) 1200 rpm, (middle) 1600 rpm and (bottom)
1800 rpm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Effect of cell size on (Left) HRR and (Right) NOx emissions 72

4.4 Comparison of Pcyl and HRR between CFD and experiments
at (up) SOI -13 cad, (middle) SOI -10 cad and (bottom) SOI -8
cad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 CFD results of Pcyl and HRR using diesel and DME as fuels 75

4.6 Reference injection profile, 2 new generated profiles with the 0D
model and the adjusted profiles with Bezier curves . . . . . . . . . . 77

4.7 Distribution of Bezier parameters in the geometry generator
tool. The circles are the control points p1 - p5 . . . . . . . . . . . . . 78

4.8 Optimization parameters related to Bezier geometric points used
in the geometry tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 Example of geometries generated with the geometry generator
tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.10 Fitness function output for s=2 and n=5 . . . . . . . . . . . . . . . . . . 83

4.11 Optimization results for the benchmark function with 2 variables
and n=5 with DKGA algorithm, micro-GA and NSGA II. Top
figure compares the average result for 100 repetitions with the
three optimization algorithms. The bottom figures show the
average result of 100 optimizations with a line and the dispersion
with a gray shade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.12 Fitness function output for s=2 and n=25 . . . . . . . . . . . . . . . . . 85



Index of Figures vii

4.13 Optimization results for the benchmark function with 2 variables
and n=25 with DKGA algorithm, micro-GA and NSGA II. Top
figure compares the average result for 100 repetitions with the
three optimization algorithms. The bottom figures show the
average result of 100 optimizations with a line and the dispersion
with a gray shade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.14 Optimization results for the benchmark function with 22
variables and n=25 with DKGA algorithm, micro-GA and
NSGA II. Top figure compares the average result for 100
repetitions with the three optimization algorithms. The bottom
figures show the average result of 100 optimizations with a line
and the dispersion with a gray shade . . . . . . . . . . . . . . . . . . . . . . 87

4.15 Optimization results for the RSM generated in the non-
evolutionary optimization with 6 parameters with DKGA
algorithm, micro-GA and NSGA II. Top figure compares the
average result for 100 repetitions with the three optimization
algorithms. The bottom figures show the average result of 100
optimizations with a line and dispersion with a gray shade . . . 88

4.16 Average optimization results for different σ values . . . . . . . . . . 89

4.17 Average optimization results for different population per
generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.18 (Left) Average optimization results for different maximum
number of generations, (Right) maximum dispersion of the
100 optimization repetitions for different maximum number of
generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.19 Sketch of the methodology for non-evolutionary optimizations 91

4.20 Sketch of the methodology for evolutionary optimizations . . . . 91

4.21 Mutation normal distribution for (Left) original behavior,
(Right) improved behavior. Input range limit represented by
a red line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.22 Range of NA parameter divided in 5 sections . . . . . . . . . . . . . . 94

4.23 Sketch of the structure of a DKGA algorithm coupled with
COSSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Sketch of the bowl geometry for the central point of the DOE
and definition of the K factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



viii Index of Figures

5.2 DOE test plan for the input parameters in Stage 1. Reference
engine represented as a triangle . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Effect of d/B (top) and K (bottom) on key combustion,
emissions and performance parameters. Reference engine levels
are included as dashed lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Effect of swirl (top) and Nozzle included angle (bottom) on key
combustion, emissions and performance parameters. Reference
engine levels are included as dashed lines . . . . . . . . . . . . . . . . . . 107

5.5 Optimum combustion systems after Stage 1 . . . . . . . . . . . . . . . . 108

5.6 Stage 1 optimized combustion system assessment at 1200 rpm -
low load (top), 1600 rpm - half load (mid) and 1800 rpm - full
load (bottom). Rf refers to the reference combustion system, o1
to the S1 Opt1 and o2 to the S1 Opt2 combustion systems . . 109

5.7 DOE test plan for the input parameters in Stage 2. Reference
engine represented as a triangle . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.8 Effect of d/B (top) and K (bottom) on key combustion,
emissions and performance parameters. Reference engine levels
are included as red lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.9 Effect of PIVC (top) and EGR (bottom) on key combustion,
emissions and performance parameters. Reference engine levels
are included as red lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.10 Effect of IP (top) and SOI (bottom) on key combustion,
emissions and performance parameters. Reference engine levels
are included as red lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.11 (Left) NOx and ISFC trade-off for both optimization stages.
(Right) Pmax and ISFC trade-off detected from the results of
Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.12 Optimized piston bowl profiles for best ISFC (left) and for best
NOx-Smoke (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.13 Stage 2 optimized combustion systems assessment at 1200 rpm
- low load (top), 1600 rpm - half load (mid) and 1800 rpm - full
load (bottom). Rf refers to the reference combustion system, o1
to the S2 Opt1 and o2 to the S2 Opt2 combustion systems . . 117

5.14 Response surface of the combined effects of IP,PIVC, SOI with
EGR over ISFC, NOx and Smoke. The S2 Opt1 optimum value
for every input is represented as a black dot . . . . . . . . . . . . . . . 119



Index of Figures ix

5.15 Comparison of experimental and CFD results for the optimum
combustion systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 Optimum NIE for each generation . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Optimum and baseline case bowl geometry and NA configura-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 Input versus output for all optimization cases. All data points
are shown in gray circles and the optimum solution is shown by
the black triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Output versus output for all optimization cases. All data points
are shown in gray circles and the optimum solution is shown by
the black triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5 CFD results of Pcyl and HRR using diesel and DME as fuels 142

6.6 Comparison between the baseline DME case and the optimum
case of the normalized mass with equivalence ratio over 1, 1.5
and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.7 Phi distribution on (Left column) baseline DME case and (Right
column) optimum case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.8 Response surface of the combined effect of IP,PIVC with EGR
over NIE, HT, combustion duration (CD), combustion efficiency,
NOx and PP. The optimum value for every input is shown by
the black dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.9 Temperature distribution on the (Left column) optimum case
and (Right column) optimum case with lower swirl . . . . . . . . . 146

6.10 Evolution of the optimum DME fueled lean combustion system 149

6.11 Values of PIVC needed to achieve a stoichiometric equivalence
ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.12 Optimum NIE value for each generation . . . . . . . . . . . . . . . . . . . 151

6.13 Optimum and baseline case bowl geometry and NA configura-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.14 Input versus output for all optimization cases. All data points
are shown in gray circles and the optimum solution is shown by
the black triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.15 Output versus output for all optimization cases. All data points
are shown in gray circles and the optimum solution is shown by
the black triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



x Index of Figures

6.16 Pcyl and HRR for the baseline and the optimum cases . . . . . . 156

6.17 (Left) normalized injected fuel mass and normalized burned fuel
mass and (Right) apparent combustion time for the baseline and
optimum cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.18 (Left) mean in-cylinder temperature and (Right) accumulated
HT for the baseline and optimum cases . . . . . . . . . . . . . . . . . . . 157

6.19 Instantaneous HT for the baseline and optimum cases . . . . . . . 158

6.20 In-cylinder temperature for (left column) the DME fueled
baseline case and (right column) the optimum case . . . . . . . . . 159

6.21 Response surface of the combined effect of EGR, IP, swirl with
SOI over NIE, HT, combustion duration (CD), combustion
efficiency, NOx and PP. The optimum value for every input is
shown by the black dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.22 Evolution of the optimum stoichiometric DME fueled combus-
tion system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.23 Full cost optimization optimum geometry compared to the
reduced cost optimum geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 168



Index of Tables

4.1 Engine main characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Engine operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Engine main characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Engine operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Experimental vs CFD results with the reference combustion
system for the three operating conditions of the engine
performance and emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Comparison of the selected key parameters between experiments
and CFD results with diesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Comparison of the restricted parameters and performance
between diesel and DME fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Ranges of the input factors for the optimization Stage 1 . . . . . 103

5.2 Optimized combustion systems after Stage 1 . . . . . . . . . . . . . . . 105

5.3 Ranges of the input factors for the optimization Stage 2 . . . . . 110

5.4 Optimized combustion systems after Stage 2 . . . . . . . . . . . . . . . 116

5.5 Experimental results for S2 Opt1 and S2 Opt2 at 1200 rpm -
low load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Experimental results for S2 Opt1 and S2 Opt2 at 1800 rpm -
high load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7 RSM coefficients for the Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.8 P-value for all the coefficients used in the RSM for Stage 1 . . 125

5.9 R2 values for the surfaces obtained for every output in Stage 1 126

5.10 RSM coefficients for the Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 126



xii Index of Tables

5.11 P-value for all the coefficients used in the RSM for Stage 2 . . 129

5.12 R2 values for the surfaces obtained for every output in Stage 2 131

6.1 Target values used in the optimization for the restrictions . . . 136

6.2 Intervals used for the optimization parameters and ranges . . . 136

6.3 Optimum values for the 22 inputs optimized (up/mid) geometric
inputs, (bottom) injection and air management settings . . . . . 138

6.4 Performance and emissions for the baseline and optimum case 141

6.5 Energy balances for the baseline and optimum cases . . . . . . . . 141

6.6 Target values used in the optimization for the restrictions
imposed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.7 Ranges used for the optimization inputs on Stage 2 . . . . . . . . . 150

6.8 Optimum values for the 21 inputs optimized (top/mid)
geometric inputs, (bottom) injection and air management
settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.9 Performance and emissions for the baseline and optimum cases 153

6.10 Energy balances for the baseline and optimum cases . . . . . . . . 153

6.11 Target values used in the optimization for the restrictions
imposed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.12 Ranges used for the optimization inputs on the reduce cost
optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.13 Optimum values for the air management and injection settings
inputs optimized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.14 Performance and emissions for the full cost and reduced cost
optimizations optimum cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



Nomenclature

Latin

b Bias
�C Celsius degrees

CA90abs Angle when 90% of the injected energy is released

d{B Geometric parameter that refers to the piston bowl width

dP {da Pressure gradient

dS Cell size

Exp Experimental

G1 �G15 Geometric parameters

K Reentrant parameter for the non-evolutionary optimization

Kd Reentrant parameter for the evolutionary optimization

maxD Maximum depth

MaxGen Maximum number of generations

maxPRR Maximum pressure rate

maxW Maximum width

p1h� p5h Horizontal dimension of the bezier points 1 to 5

p1v � p5v Vertival dimension of the bezier points 1 to 5

Greek

τGA,0 Initial time constant

σ Convergence constant

Initials and acronyms

ACT Apparent combustion time

ANN Artificial neural network

BDC Bottom dead center



xiv Nomenclature

BSFC Brake specific fuel consumption

cad Crank angle degree or deg aTDC

CARB California air resources board

CCD Central composite design

CD Combustion duration

CDC Conventional diesel engine

CFD Computational fluid dynamics

CI Compression ignition

CP Current position

CR Compression ratio

DEF Diesel exhaust fluid

DME Dimethyl ether

DPF Diesel particle filter

Dnoz nozzle hole diameter

EGR Exhaust gas recirculation

ERC Engine research center

EV O Exhaust valve opening

FSN Filter Smoke number

FTIR Fourier transform infrared

GA Genetic algorithm

GBP Global best position

GHG Green house gas

GIE Gross indicated efficiency

GIW Gross indicated work

HC Hydrocarbon

HD Heavy-duty

HRR Heat release rate

HSDI High-speed direct injection

HT Heat transfer

ICE Internal combustion engine

IP Injection pressure

IMEP Indicated mean effective pressure

IRDI Discharge rate curve indicator

ISFC Indicated specific fuel consumption



Nomenclature xv

IV C Intake valve closing

IW Inertia weight

LDEF Lagrangian-Drop and Eulerian-Fluid

LIV Last iteration velocity

LNT Lean NOx trap

LPG Liquefied petroleum gas

LTC Low temperature combustion

MCCI Mixing-controlled compression ignition

MD Medium-duty

NIE Net indicated efficiency

NSD New search direction

PBP Personal best position

Pcyl In-cylinder pressure

PIV C In-cylinder pressure at IVC

PM Particulate matter

Pmax Maximum pressure

PP Peak pressure

PSA Particle swarm algorithm

RMS Root mean square

RSM Response surface method

SCR Selective catalytic reduction

SI Spark ignition

SOI Start of injection

TDC Top dead center

TWC Three way catalyst

WSR Well stirred reactor





Chapter 1

Introduction

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives and methodology . . . . . . . . . . . . . . . . . . . 7

1.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Introduction

The first four-stroke internal combustion engine (ICE) that constitutes
the base for the modern vehicle engine was created by Nikolaus Otto in 1876.
However, it was not until 1908 when Ford sold the Model T as the first mass-
produced vehicle. This was the first model designed to be affordable for the
average costumer. The first year of production, the number of cars produced
were just over 10000 but 10 years later the car production exceeded the
million units already. This trend continued over the years increasing the car
production and sales until today. The number of cars has increased drastically
over the last 30 years and it is expected that by 2040 the number of cars on the
road will be nearly doubled (see Fig. 1.1), specially in developing countries like
China or India. This growth directly affects the worldwide pollution, therefore
the emission levels of the vehicles is a topic that has been extensively discussed
in recent years.
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Figure 1.1. Evolution of number of cars on road. Adapted from [1, 2].

Nowadays the engines are already really optimized and can offer higher
efficiency and lower emission levels than 30 years ago. However, that
improvement is insufficient to control the increase in pollutant levels because
the vehicles sales increase at a faster rate than the emission levels are decreased
[2]. In order to control the pollution, the emission standards are becoming

more and more restrictive. Although the new generation engines are able
to offer emission levels many times lower that their predecessors, the target
emission levels are becoming difficult to achieve and that hinders the design
of future generation engines. Fig. 1.2 shows the evolution of the emission
standards since 30 years ago and it can be seen how nowadays the engines are
allowed to pollute significantly less than compared to 30 years ago.

Another aspect that is gaining a lot of attention in recent years is the engine
efficiency. It is driven by the concerns over greenhouse gas (GHG) emissions
and long term energy supplies, specially CO2 that is directly related to the use
of fossil fuels. This is particularly relevant in transport applications because
they represent the second sector that produces the most CO2 (see Fig. 1.3) and
the main sector that produces environmental pollution and climate change.
This forces new generation engines to not only accomplish the new emissions
standards but also offer higher efficiencies and lower fuel consumption.

The researchers are following two main paths to offer higher efficiency and
lower emissions:
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Figure 1.4. Evolution of transport energy towards 2040. Adapted from [5].

� Improve the existent ICE to be cleaner and more efficient. This path
not only considers improving the current combustion concepts but also
developing and optimizing advanced combustion systems.

� Substitute the ICE with electric motors and provide the customers with
robust and fast charging networks.

The electric motors have been suggested as the alternative to the ICE for
a long time but in recent years that idea is building strength. Nevertheless, it
is expected that by 2040 the 80% of vehicles will still depend on an ICE (see
Fig. 1.4).

In big cities where the distances are short and the limited capacity of the
batteries are less problematic, the electric motors will dominate in the future.
However, this plug-in electrification will be less relevant in non-city heavy-
duty (HD) vehicles due to the high energetic requirements. For that reason in
HD (also medium duty (MD)) applications the electrification of the engines is
not a short term option and the optimization of the current ICE to improve
efficiency is the way to go [5].
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The HD applications are mainly dominated by diesel engines (see Fig. 1.5).
Even though there are some alternatives, the robustness and efficiency of the
diesel engines ensures that the transport vehicles are at their destination on
time with a minimal cost. Additionally, emission controlling strategies that
can not be used for small vehicles due to overcost (i.e. SCR) are widely used
in HD vehicles allowing them to achieve low emission levels without punishing
efficiency.

Diesel HD engines have suffered several changes over the years, most of
them focused on reducing their pollutant levels to achieve more stringent
emission standards. Most of these changes have been focused on improving
the flexibility of the subsystems coupled with the diesel engine like fuel multi-
injection or variable valve timing. Fig. 1.6 represents the subsystems that have
been applied to diesel engines in chronological order. Some of these systems
have been crucial to control the pollutant emissions. For example, the exhaust
gas recirculation (EGR) system is compulsory nowadays in every conventional
diesel combustion (CDC) engine. At reasonable levels, EGR allows to control
NOx emissions with minimal degradation of the engine efficiency. In the same
manner, the after-treatment systems like diesel particle filter (DPF) allows
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the vehicle to emit really low particle levels and are present in most of the
vehicles nowadays. Even though these techniques allowed the evolution of
the engines to meet the current standards, those emission levels are becoming
more a more stringent at a really fast rate, therefore a bigger step in the field
of engine optimization is needed to meed future regulations.

The exponential increase in the engine system flexibility increases at the
same time the complexity of designing and optimizing an engine. This
task has been done experimentally in the past but due to the increasing
difficulty, doing a parametric study experimentally is no longer enough and
optimization methods coupled with Computational Fluid Dynamics (CFD)
are gaining interest. These methods are becoming more and more accurate
and robust, and are a lot cheaper than the experimental version in terms of
time and resources cost. Additionally, they permit the study of situations
that can not happen with the current technology or are just dangerous to
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test experimentally. Nevertheless, experimental testing would never dissapear
because all the optimizations end up being validated experimentally.

In this context, the research work presented in this Thesis is focused on
applying optimization methods to design and analyze the combustion system
of medium and heavy-duty engines aiming to show their potential to meet
current and future emissions standards. Due to the long journey that MD
and HD engines have and the increasing potential of the CFD optimization
methods, this Thesis will provide useful information and tools for future engine
designs.

1.2 Objectives and methodology

This section presents the main objectives of this research work and the
main working path followed to accomplish them. It will be seen how the
methodology presented in this section is directly related to the structure of
the Thesis.

1.2.1 Objectives

The final objective of this Thesis is to optimize a mixing-controlled
compression ignition (MCCI)1 combustion system to show its potential for
future generation engines. This implies improving efficiency to keep the CO2

under control while keeping the NOx and soot levels under current and future
emission standards. Due to the long life expected for diesel engines, the first
steps will be focused on CDC engines. Then, Dimethyl ether (DME) will be
introduced as a diesel substitute and its potential will be analyzed. However,
in order to achieve the main objective it is necessary to complete some extra
objectives that are directly related to the main one:

� Create an automatic system capable of optimizing a complete com-
bustion system with a reasonable time cost. This implies creating a
system that can generate, simulate and post-process CFD cases of a
complete combustion system coupled with an optimization method. This
is necessary because the combustion systems have become really complex
with too many variables to be handled by a person so an automatic

1The term MCCI is used to represent the type of engines that are going to be studied in
this Thesis because it is considered the most suitable term, however, the term diesel is often
used as a synonym.
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system capable of performing and controlling the whole process is
compulsory.

� Create a new methodology to analyze and understand the cause/effect
relations of the input and output variables considered in the optimiza-
tions. This objective is of big interest because the optimization process
usually gives the optimum configuration, however, the reasons behind
that configuration being the optimum are not usually fully understood.
Moreover, the methodology should be able to identify correlated effects
that can not be considered with simpler analysis like parametric studies.
Therefore, developing a method that provides the reasons behind each
change on each input variable to reach the optimum configuration is
necessary.

� Perform an experimental validation of the results obtained from the
optimization process (only when it is possible).

1.2.2 Methodology

A detailed methodology was followed to achieve the objectives presented in
the previous section. That methodology is summarized in Fig. 1.7. It can be
divided in 3 clear steps that are directly related with the main work structure.

1. Literature review. The main objective of the literature review is to
summarize the state-of-the-art knowledge related to the subject of this
Thesis. It was divided in two blocks to make it clearer and easier to
understand:

� Engine optimization strategies. This first block is developed
in Chapter 2. The initial part of the chapter presents the
main advanced and conventional combustion concepts and their
advantages and disadvantages are compared. The objective of
this initial part is to justify why the CDC concept is chosen as
the starting point for this Thesis. Then this combustion concept
is described in detail and the state-of-the-art strategies used to
improve efficiency and control emissions on these engines are
described. Those strategies are divided in 5 sections, combustion
chamber geometry, air management settings, injection settings,
after-treatment and alternative fuels. This block is essential for this
Thesis because it presents the tools that the optimization systems
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Figure 1.7. Thesis methodology.
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will use to improve the reference engine and achieve current and
future emission standards.

� Optimization methods. This second block is developed in
Chapter 3. It describes the optimization methods used in this
work highlighting the differences between evolutionary and non-
evolutionary methods. These differences between both methods
will justify what method should be used for each optimization in
order to get the best and more accurate result with the least cost
possible.

2. Experimental and theoretical tools. This part of the methodology
is presented in Chapter 4 and is focused on describing the main tools
integrated to create and validate the automatic optimization system used
in this work. It starts presenting the experimental facilities where the
experimental data used to calibrate the CFD model was obtained. Then
the CFD model is presented together with all the tools coupled with
it to create the optimization system, this is, the optimization method,
geometry generator, injection generator and pumping work model.
Additionally, examples of the geometry generator capabilities or the
genetic algorithm working with different populations is shown to prove
the potential of the system and decide the best initial configuration.

3. Reference engine optimization. This part of the methodology is
presented in chapters 5 and 6.

� Chapter 5. It summarizes the results from the optimization
of a CDC engine optimized with non-evolutionary optimization
methods. The process is divided in two main blocks, the first one is
a simpler optimization where only 4 parameters are optimized and
the results are used to complement the second and more complete
optimization where 6 parameters are optimized. Then these results
are used to conclude if the combustion concept has potential for
future generation engines.

� Chapter 6. In this chapter the results from a DME fueled MCCI
engine optimized with evolutionary methods are summarized. Two
different optimizations are performed but, unlike chapter 5, both
optimizations are independent and used to show the flexibility and
potential of the DME for achieving current and future emission
standards.
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2.1 Introduction

The use of ICE engines allowed the industry and global transportation to
become what it is nowadays. These engines have been modified for decades but
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the core of the combustion concepts has been kept almost unmodified and most
of the engines can be classified as compression ignition (CI) or spark ignition
(SI). Spark ignition engines operate with a premixed mixture whose ignition
is controlled by the spark timing. The mixture is usually stoichiometric to
allow the use of cost-efficient after-treatment equipment. Since the mixture
is stoichiometric, the load of the engine is controlled by the total mass flow.
This type of combustion offers soot emission levels that are orders of magnitude
lower than these of CI engines but suffer a reduction in efficiency compared
to them. Additionally, they are forced to use low compression ratio (CR) to
avoid knock and that produces low efficiency and cold start problems. CI
engines usually work with higher compression ratios. They inject the fuel in
the cylinder and the mixture autoignites due to the piston compression, this
is, no spark is needed. Between the injection and the ignition of the fuel there
is a really complex process where the fuel is evaporated and mixed with the
in-cylinder flow. The speed of the combustion is controlled by this process.
During the combustion the fuel mixes generating rich regions, where the soot is
formed, and lean regions. In addition, the gas temperature during a CI engine
combustion is usually really high, what promotes the formation of NOx. Both
NOx and soot emissions are higher than in SI and have become the main
drawback of these engines, therefore further research must be done in this
topic [1]. On the contrary, CI engines are able to provide higher efficiency
and lower fuel consumption than SI engines. The problems attached with CI
emissions can be controlled by after-treatment, that is expensive and not used
very often in the past in high-speed direct injection (HDSI) engines but has
been used for years in MD and HD engines with impressive results. For that
reason, as noted in Chapter 1, most of the off road transportation is equipped
with CI engines, therefore it is compulsory to keep researching in this topic.

The NOx-soot trade-off is not easy to break in CI engines. Researchers
have paid attention to this topic during the last decades and new advanced
combustion concepts have been developed like premixed low temperature
combustion (LTC) or mixing-controlled LTC. Both concepts follow the same
strategy, to reduce NOx and soot emissions by lowering the combustion
temperature.

Premixed LTC concept tries to lower the combustion temperature by
extending the ignition delay period coupled with early injection timings so the
mixture is almost homogeneous when the ignition occurs [2]. This strategy is
able to simultaneously reduce soot and NOx emissions. The mixture is almost
homogeneous, therefore there are no rich regions and the soot formation is
drastically reduced. At the same time the in-cylinder temperature is more
uniform, there are no local peak temperatures and due to the low global
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equivalence ratio the flame temperature is lower, thus the NOx formation
is sharply reduced. However, premixed LTC has some drawbacks that need
further research. Premixed LTC engines usually lack of control on the ignition
timing and combustion rate over a range of speeds and loads, specially at
high loads where they also suffer from noise and higher NOx emissions.
Additionally, LTC is really sensitive to the intake temperature and further
research is needed in LTC cold start [3].

Mixing-controlled LTC follows the same objective than the premixed
version, to reduce emissions though low temperature combustion. However,
the objective is achieved with a different strategy. The main idea is to reduce
the flame temperature by reducing the intake temperature, the nozzle hole
diameter or the O2 concentration. A reduction of the intake temperature
directly reduces the in-cylinder temperature but the margin is really limited
using this technique. The O2 concentration is easily reduced by increasing
the EGR rate and offers high flexibility, therefore high EGR rate and small
nozzle hole diameter are usually used to achieve mixing-controlled LTC. The
implementation of this LTC strategy worsens the mixing capacity of the in-
cylinder gas resulting in a smoother heat release rate and a lower adiabatic
flame temperature. As a result, the soot and NOx emissions are significantly
reduced, however, the HC/CO emissions are increased and the engine efficiency
worsened [4].

The LTC concepts have shown significant advantages over the conventional
MCCI engines. However, at its current state, the advantages of these strategies
do not compensate the lack of control at high loads for premixed LTC or
the worsening of efficiency and HC/CO emissions for mixing-controlled LTC.
For that reason, this Thesis and literature review will be focused on MCCI
concepts for MD and HD engines, specially in optimization strategies used
to improve them trying to achieve future emission standards with low fuel
consumption.

2.2 MCCI combustion process

This section focuses on describing the main physical processes that occur
in a combustion chamber of a MCCI engine. The main objective of this
description is to introduce the main concepts that will be used in the section
2.3 and the rest of this Thesis. This section is structured in a first description
of the main phases of a combustion process and a second part with a detailed
explanation of the main phenomena that happen in each phase.
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Figure 2.1. Combustion process phases defined by the heat release rate and injection
profile. Adapted from [7].

2.2.1 Combustion process

The heat release rate (HRR) is one of the most important parameters used
to describe a combustion process. It is calculated from the evolution of the
in-cylinder pressure applying a zero-dimensional model based on the first law
of thermodynamics [5]. Comparing the HRR and the fuel injection profile,
it is possible to perform a chronological description of the phases that take
place in a combustion process. Fig. 2.1 shows a comparison of a fuel injection
profile and the related HRR, and the main phases can be distinguished [6]:

� Ignition delay. This phase occurs between the start of the injection
and the start of the combustion process. When the fuel is injected in
the combustion process, it mixes with the air due to several physical
phenomena like the atomization of the liquid fuel, evaporation of the
fuel and air entrainment. Since the in-cylinder mass contains oxygen,
the mixture air-fuel is unstable and produces several low intensity
chemical pre-reactions that end up with the autoignition of the mixture,
generating a sudden increase in the heat release.
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� Premixed combustion. Once the combustion process has started,
the fuel mixed during the ignition delay phase is oxidized. This fuel is
inside the inflammability limit but did not autoignite because it did not
reach the autoignition condition. In this phase, the HRR shows a sharp
increase until a maximum value that decreases until a local minimum.
The duration of this phase is usually defined as the period between the
start of the combustion and the first local minimum in HRR.

� Mixing-controlled phase. This phase starts when the fuel mixed
during the ignition delay phase is completely burned. In this phase
it is assumed that the heat is released at the same rate that the fuel
and air are mixed. During the injection phase, the mixing process is
controlled by the momentum introduced by the spray in the combustion
chamber. In this phase, the flame reaches a quasi stationary state while
the injection process continues. Once the fuel injection stops, it can
be observed a reduction in HRR because of the absence of momentum
introduced by the spray. Then the flame shows random shapes and
the HRR reduces intensity until the process ends, usually during the
expansion stroke.

The phases of the combustion process described above are further described
in the following subsections ordered chronologically.

2.2.1.1 Ignition delay

After the start of the injection, during the ignition delay phase, several
physical and chemical phenomena guide the process until the start of the
ignition. That moment when the ignition starts has been related to the
moment when an increase in pressure or temperature due to the combustion
process is detected, or when the heat release rate starts to increase or when a
visible flame due to the smoke oxidation process appears.

The first phenomena related to the start of ignition that can be detected
is a weak emission related to a phenomena called chemiluminescence [8].
This phenomenon of chemiluminescence is not an isolated case and it has to
be considered as a continuous process that can be studied in terms of time
and space [9]. Then, a summary of the phenomena that happen during
the continuous process of chemiluminescence is described below following the
phases proposed by Higgins et al. [10].

� Physical induction period. This phase starts with the start of
injection and lasts until a pressure increase or an emission related to
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the chemiluminescence is detected. During this phase the fuel starts to
penetrate the chamber following the physical processes of atomization,
vaporization and air entrainment. It is the evaporation of the fuel what
lowers the temperature of the mixture near the liquid fuel inhibiting the
autoignition chemical reactions. As time goes by, the fuel penetration
and air entrainment continues and at some point a certain region of the
jet reaches the optimal conditions to develop the first ignition stage;
however, the physical processes of evaporation and mixing keep being
equally important.

� First stage ignition period. This phase exists between the first
detected pressure increase or chemiluminescence emission until the
beginning of the rapid heat release. In this phase the reactions develop on
the downstream region of the jet in a rich region with equivalence ratios
between 2 and 4 [11]. The origin of the chemiluminescence that appear
in this phase is mainly due to the presence of formaldehyde (CH2O)
and radicals CH [12]. However, as temperature increase continues due
to mixing and heat release, the dissociation reactions of intermediate
products reduce the chain branching, explaining the reduction in heat
release at the beginning of the next phase.

� Second stage ignition/premixed-burn period. This stage
corresponds to the what we called premixed combustion phase so in
this Thesis we will keep the classic structure described in section 2.2.1.

2.2.1.2 Premixed combustion

The premixed combustion has been extensively studied by different authors
[8, 9] but only a brief summary will be presented in this Thesis. Firstly,

the chemical reactions during the ignition delay phase produce a temperature
increase in the region between the liquid length and the tip of the jet. In this
region reacts all the fuel that has been mixed during the ignition delay phase
and has the proper conditions to be inflammable. This generates a sharp
increase in temperature and pressure as shown in Fig. 2.1. The premixed
combustion is mainly controlled by the injection profile, injection rate and
ignition delay [13], and is fast compared to the combustion controlled by the
diffusion phenomena.

In terms of pollutants formation, it is important to consider the location
of the premixed combustion and the equivalence ratio of that region. Smoke
and NOx emissions depend mainly on two variables, the local equivalence ratio
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and temperature of the zone. The premixed combustion happens in the region
between the tip of the jet and the lift-off, if the fuel injection continues after
the premixed phase. This region presents high equivalence ratios with values
between 2 and 4 [14].

Under those conditions, the premixed combustion is too rich to produce
significant amounts of NO and therefore NOx [15]. However, for operating
conditions where the ignition delay is long enough, there are regions where
the mixture has low equivalence ratios and can generate significant amounts
of NO [16]. In terms of Smoke, the premixed combustion region presents
high equivalence ratios. This promotes the formation of small soot particles
that covers the whole region. The soot starts forming when the maximum
heat release rate is reached because it is needed some time to increase the
temperature and reduce the oxygen to match the conditions that the soot
reaction mechanisms require.

2.2.1.3 Mixing-controlled phase

Finally the process enters the phase called mixing-controlled combustion
that extends until the injected fuel is burned. During this phase, the flame
front generated in previous phases is consolidated and fed by the convective
and diffusive contribution of the fuel and oxygen. The convective input from
the fuel is crucial because it acts like the engine that moves the mixing process
by the momentum introduced with the jet. Therefore, at the end of the
injection there is one last important change in the structure of the flame and
the process is then dominated by the diffusion between the oxygen and the
fuel. Some authors [17] even consider this last phase as an independent phase
and call it ”late combustion phase”. This section is going to be focused on the
phenomena that happen until the end of the injection.

The most extended model about the flame generated at the beginning of
the mixing-controlled phase is the model from Dec [14] that was then extended
by Flynn et al. [18], that is shown in Fig. 2.2.

According to this model, there is a first zone between the injector nozzle
hole and the position where the diffusive flame starts, which is called Zone
I. In this zone the physical phenomena atomization, air entrainment and
evaporation happen similar than in a non reactive and evaporative jet.
However, this processes are influenced by the presence of a diffusive flame
downstream Zone I. The length of this zone is known as lift-off. After the
lift-off (Zone II), the jet faces reactive conditions and downstream the lift-
off there is a premixed reaction zone that consumes all the oxygen mixed
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Figure 2.2. Diffusive flame structure during the quasi stationary phase according to
the conceptual model proposed by Dec. Adapted from [18].

with the jet during Zone I [19]. As a consequence it can be assumed that
inside the diffusive flame there is no oxygen concentration. The products from
this premixed combustion are generated in a rich region and contain partially
oxidized hydrocarbons that will act as precursors for soot formation.

After the premixed combustion region, the flame adopts a structure of
a diffusive flame. The basic structure is an internal zone composed by the
partially oxidized unburned fuel and the soot. This region is surrounded
by the reaction surface where the fuel is oxidized to CO2 and water. Even
though the formation of soot precursors depend mainly on the conditions
of the premixed reaction, the formation and growth of the soot particles is
produced in the internal zone of the diffusive flame. Moreover, as seen in
Fig. 2.3, the soot proportion reaches its maximum at the low velocity vortex
that is produced at the front part of the flame, where both the soot formation
and growth are enhanced. When the soot finally reaches the reaction zone,
it is almost completely oxidized by the effect of OH radicals generated in the
diffusion flame. In terms of NO formation, the species NO is mainly formed
in the external zone of the diffusion combustion, where the conditions of high
temperature and high presence of oxygen are met [15]. However, in the
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internal zone of the flame there is no presence of the necessary oxygen to form
NO.

This conceptual model can be extended with a qualitative description of
the temporal-spatial evolution of a fuel mass that passes and evolves through
the different zones. Fig. 2.3 represents that temporal-spatial evolution adapted
from Molina [20].

The injected fuel mass is first atomized and mixed with the high
temperature air that finds in the combustion chamber. As a consequence,
the liquid fuel temperature increases and is evaporated progressively until
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the liquid phase completely dissapears. The fuel mass keeps mixing with
the air and advancing until reaching the premixed reaction zone when the
temperature has increased to 700 K and the average equivalence ratio is rich,
about 4. While advancing through the premixed reaction zone the 10% - 15%
of the fuel energy is released increasing its temperature to 1600 K. During this
premixed combustion the oxygen concentration is too low to form NO but the
conditions are suitable to form soot precursors.

Then, the fuel keeps advancing and reaches the diffusive flame zone. In
this first region there is no oxygen input because it is consumed in the outer
region where the reactive zone of the diffusion combustion zone is located.
Since there is no oxygen, there is no significant heat release in the internal
zone of the flame. While advancing towards the reactive zone of the flame,
the temperature of the fuel mass keeps increasing and the soot particles
grow until reaching its maximum at the flame front. Finally, the fuel mass
passes through the reaction zone that is a thin surface where the equivalence
ratio is stoichiometric and the temperatures are close to the adiabatic flame
temperature. In this surface, the mass is burned with the oxygen added by
diffusion, releasing the rest of the remaining energy (85% - 90%) in the fuel.

While in the flame front, the soot concentration is reduced to near zero, the
NO formation rate is significantly increased in the outer part of the diffusion
flame. Then, the combustion products are mixed with the rest of gases in the
combustion chamber.

2.3 Optimization strategies for MCCI

The combustion process is the most important stage of the cycle of a MCCI
engine, it is the moment when the fuel is converted into heat. For that reason
a lot of research has been done around this topic and many strategies and
subsystems have been developed aiming to improve that combustion efficiency
and emissions. These strategies have been classified in 5 groups for this Thesis,
geometry of the combustion chamber, air management, injection settings,
after-treatment or alternative fuels. These strategies are well known and allow
the current MCCI engines to provide high efficiency with emission levels under
the emission standards.

2.3.1 Strategies based on geometric parameters

The main strategies based on geometric parameters used for engine design
are the geometry of the combustion chamber shape, the spray angle and CR.
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These type of strategies are usually costly to test experimentally because
any hardware modification requires the manufacture of new components.
However, until the CFD’s birth, any geometric optimization and test was
done experimentally. Nowadays there are still hardware optimization studies
performed experimentally that offer very interesting results but the amount
of different combustion chamber or injection geometries tested is limited due
to related costs [21, 22].

The CR is the ratio between the maximum volume (volume at BDC)
and the minimum volume of the combustion chamber (volume at TDC).
Nowadays the CR is used as a design variable due to its influence over
the engine efficiency and pollutant emissions. Theoretically, increasing the
compression (or expansion) ratio increases the thermal efficiency of the engine
[23], however, there are some drawbacks that limit the maximum CR of the

current engines:

� Peak pressure (PP). An increase in CR keeping the same heat released
results in an increase in compression pressure and PP. This increment in
pressure increases the noise and, when it is too high, can overcome the
mechanical PP limit of the engine.

� NOx emissions. A high CR not only improves efficiency but also
increases the NOx emissions due to higher in-cylinder temperature.
In some cases, the NOx increase is significant and further engine
adjustments are required to keep the NOx emissions under control [24].

� Surface/volume ratio. The surface/volume ratio increases for higher
CR, what increases the heat losses on the piston and cylinder head [25].

When the first ICE were born, the values of the CR were related to the type
of combustion, in SI the value should be low enough to avoid autoignition and
in CI should be high enough to let the autoignition happen [26]. Nowadays, in
order to control pollutant emissions and PP, CR is becoming lower. However,
the CR has a key roll in the CI engine cold start, specially in extreme low
temperatures (i.e. -20 �C), therefore low CR applications are currently being
studied [27].

The shape of the combustion chamber in a CI engine is also one of the
most important and discussed topics because it plays an important role in
generating the gas motion in the cylinder. It is really difficult to obtain
general conclusions about the effect of the geometry on a combustion system
because the combustion chamber geometry interacts with the in-cylinder flow
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and spray, therefore, the design rules are usually case specific. However, there
are four main criteria followed when designing a new combustion chamber
[24]:

� Improve mixing. The combustion chamber is the container where all
the fuel/air admission, mixing and combustion occurs. Therefore the
swirl, injector and combustion chamber shape are the main tools that
control the mixing process so a well design chamber can improve the
in-cylinder turbulent level resulting in a better mixing process, faster
combustion and higher efficiency.

� Reduce pollutant emissions. Following the previous point, the
combustion chamber has a significant effect over the mixing process
of the combustion. This means that it has an indirect effect over
the combustion speed, temperature and equivalence ratio distribution
resulting in a noticeable influence over the pollutant formation.

� Reduce surface/volume ratio. The main reason behind reducing the
surface/volume ratio is to reduce the heat losses. Heat losses are energy
directly taken from the in-cylinder fluid during the expansion stroke
that is transferred to the environment as heat, thus a reduction in heat
losses becomes a direct reduction of the engine losses and an efficiency
improvement. In MCCI engines the losses generated by heat transfer
(HT) represents between 16% and 35% of the total injected energy [17],
therefore, a surface reduction would result in a significant efficiency
improvement, even overcoming some mixing worsening in certain cases.

� Improve volumetric efficiency. The size and shape of the piston
and cylinder head affects the valves design, which directly affects the
cylinder filling process and the volumetric efficiency [26]. The volumetric
efficiency is the main parameter to characterize the cylinder filling
process and is defined as the ratio between the mass flow rate of the
engine and the maximum mass flow rate that the engine would have
at the considered reference conditions. Higher volumetric efficiency
provides higher power density, therefore high volumetric efficiency is
required.

In the course of the history many piston bowl geometries have been
developed, however, nowadays most of the conventional CI engines can be
included in any of these 3 types of geometries (see Fig. 2.4).

Fig. 2.4 (top) represents a reentrant piston shape. This type of geometry
is considered an improvement for soot emissions allowing higher EGR levels
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Figure 2.4. CI engine piston bowl geometries. Adapted from [28].

to further control NOx emissions [24]. The fuel spray usually interacts with
the lower lip shape affecting the overall in-cylinder fluid motion resulting in a
impact over the efficiency and pollutant emissions [29]. Fig. 2.4 (middle)
represents a stepped-lip bowl geometry. These type of bowls are mainly
designed to reduce soot-in-oil. By redirecting the spray towards the head of
the engine, the spray penetration in the squish region is reduced and the soot
formed during the combustion is separated from the cylinder walls, directly
reducing the soot-in-oil [30]. Additionally, stepped bowls are expected to
reduce heat losses through the liner and the piston bowl due to surface/volume
ratio reduction. Finally, Fig. 2.4 (bottom) represents a bathtub shape. This
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geometry is focused on reducing the surface area to reduce the HT losses and
improve engine efficiency and fuel consumption. Even though this type of
shapes are penalized in terms of emissions compared to the other two shapes,
they still manage to keep the emissions under the current standards while
offering higher efficiency [31].

Finally, the included nozzle angle (NA) or spray angle is the design
parameter that controls the angle between two opposite sprays. The optimal
value of the spray angle strongly depends on the combustion chamber
geometry since for a certain geometry the NA would determine the air/fuel,
geometry/fuel and spray/spray interaction. Accordingly, an absolute optimum
of nozzle angle exists for every combustion chamber design that usually is able
to simultaneously improve efficiency and emissions [32, 33].

2.3.2 Strategies based on air management parameters

The main air management strategies are based on air intake pressure, swirl
and exhaust gas recirculation (EGR). This type of parameters are used to
control the quality, quantity and velocity of the air admitted in the engine.
Due to the engine evolution and the introduction of electronic devices, the
current engines have different air intake pressure, swirl and EGR for each
operating point aiming to provide maximum efficiency and low emissions for
every operating condition. This is possible because, contrary to the hardware
related parameters, the air management settings are easily modified and can
be optimized for different environmental and operating conditions.

The swirl is defined as the rotational motion of the air around the cylinder
axis. It is generated due to the initial momentum of the admission air created
by the intake ports. The intensity of the rotational motion is defined by the
ports and piston geometry. After the valve closing, the swirl level during the
compression and expansion strokes is only controlled by the piston geometry
and the losses due to friction [26]. The swirl level has a noticeable effect
over the combustion process, higher swirl improves the air/fuel mixing and
facilitates the available oxygen usage which allows to provide higher efficiency
and lower soot emissions [33]. In addition, higher swirl levels imply higher in-
cylinder air velocities resulting in higher convective HT coefficient and higher
heat losses [34], and can reduce the sprays penetration if the swirl level is too
high resulting in a degradation in air utilization [24].

The air intake pressure is defined as the pressure of the fresh air introduced
in the cylinder through the intake port. In current engines the intake pressure
is higher than the external environment pressure, therefore a turbocharger
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Figure 2.5. Pumping work required for each PIVC value.

system is needed to accomplish the desired intake pressure values. An increase
in air intake pressure generates an increase in in-cylinder density and O2

mass that enhances the air/fuel mixing. This results in higher in-cylinder PP,
increased NOx emissions and improved soot levels [35]. In terms of engine
efficiency, the indicated efficiency improves but the effect on the brake specific
fuel consumption (BSFC) is case specific. Higher air intake pressure implies
higher pumping work (see Fig. 2.5, note that pressure at intake valve closing
(PIVC) is presented instead of air intake pressure), therefore, the increase in
indicated efficiency has to compensate the increase in pumping work, which
strongly depends on the turbo system efficiency and operating condition.

The EGR is the most common technique used in current MCCI engines to
control the NOx emissions. It consists on recirculating a portion of the engine
exhaust gases to the engine admission. EGR is defined as the ratio between
the gas mass coming from the recirculation and the total in-cylinder mass, see
equation 2.1.

EGR �
mEGR

mEGR �mair
(2.1)

This process adds inert substances to the cylinder that displaces a portion
of the intake oxygen and increases the heat capacity of the mixture [36].
This results in a reduction of combustion rate, instant temperature and peak
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Figure 2.6. Engine efficiency and NOx emissions trade-off for increasing EGR
levels. Adapted from [28].

temperature, which is considered the main reason behind the NOx reduction
[37]. However, increasing EGR not only affects NOx emissions but also tend

to increase soot, HC, CO emissions and reduce the engine efficiency [38].
The effect of the EGR over the NOx emission is more relevant than the
effect over the efficiency for low EGR levels, however, for high EGR levels
the combustion efficiency starts to decrease exponentially. Fig. 2.6 shows the
NOx emissions and combustion efficiency trends for increasing EGR levels
and at some point the NOx levels become unchanged while the combustion
efficiency drops drastically.

2.3.3 Strategies based on injection parameters

In MCCI engines, the mixing and combustion processes are strictly related
because they happen simultaneously; accordingly, the fuel injection law has a
significant impact on the engine performance. The design strategies based on
injection parameters aim to improve that injection law modifying the injection
profile and timing [26]. The main parameters are injection pressure (IP), start
of injection (SOI) and nozzle hole diameter (Dnoz).

The IP is the pressure of the fuel when it is injected in the cylinder. It
is known that higher IP offers many advantages to DI engines but there has
always been limitations in the maximum IP offered by the available injectors.
That limitation has been overcome over the years, specially after 1967 when
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Figure 2.7. Evolution of IP since 1930. Adapted from [40].

Bosch introduced the first mass-produced electronic injector that allowed
faster and more accurate injections [39]. Nowadays, the modern common-
rail systems offer up to 2500 bar of IP.

Higher IP improves the fuel atomization and evaporation, this is, improves
the mixing process, shortens the ignition delay and shortens the combustion
duration [35]. As a result, the engine efficiency and emissions are strongly
affected by IP variations. Higher IP improves the engine efficiency and soot
emissions, however, it also has a negative effect over the NOx emissions that
is usually very significant and has to be controlled by other means [41].

The second parameter that, for a given fuel mass and nozzle hole number,
defines the shape of the injection profile is Dnoz. At constant IP, Dnoz defines
the nozzle flow capacity, thus defines the injection duration. In addition, lower
Dnoz not only reduces the nozzle flow capacity but it also influences how the
fuel spray interacts with the piston bowl geometry and the flow [24], resulting
in an improvement in fuel consumption and an increase in NOx emissions [42].

Finally, SOI or injection timing is defined as the crank angle at which
the fuel starts to be injected in the cylinder. Advancing SOI leads to longer
ignition delays, this is, the time gap between the fuel injection and the fuel
burn increases and that promotes premixed combustion. This results in higher
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peak heat release rate (HRR), therefore higher PP [43]. In addition, in-
cylinder temperature increases for advanced SOI, thus NOx emissions increase
significantly. Finally, the soot emissions are also affected, advanced SOI results
in lower soot emissions [44].

2.3.4 Strategies based on after-treatment

The increasingly stringent emission standards (i.e. US2030 or EURO VI)
become a real challenge for new generation engines. The already presented
techniques are not enough to fulfill the requirements because the current
engines are already optimized in terms of injection/air management settings
and new strategies have to be applied to control emissions. The after-
treatment strategies, contrary to the previously presented strategies, do not
modify the combustion process because they treat the exhaust gas in order to
achieve lower emission levels. This kind of strategies are used in HD engines
but they were not very common in small vehicles due to the high cost involved,
however, due to the new emission standards, the after-treatment equipments
are becoming more and more common. Specially in CI engines, soot emissions
are difficult to control and most vehicles wear a Diesel Particulate Filter
(DPF). In addition, other after-treatment techniques are used to limit the
NOx emissions like Urea Selective Catalytic Reduction (SCR), Lean NOx Trap
(LNT) or Three Way Catalyst (TWC).

The DPF is the most commonly used after-treatment technique in CI
engines to meet the soot emission standards. It is composed of a porous
substrate wall-flow where the diesel particulates are deposited, specially the
solid particles. The DPF has been developed since 1970 and now can offer
a soot reduction efficiency of nearly 95%. In addition, certain DPF also
reduce CO emissions with 50%-90% efficiency and HC emissions with 85%-95%
efficiency. However, these filters often produce an engine efficiency degradation
when the accumulation of particulates becomes significant and creates a back
pressure that increases pumping loses, worsens the combustion process and
increases the fuel consumption. For that reason, the engines that are equipped
with DPF have to regenerate the filter by oxidizing the trapped particles
[45, 46].

The LNT is a widely used technique to control NOx emissions. This
method reduces the pollutants in 2 cycles, a lean and a rich cycle. During
the lean cycle, the NOx is stored, then, once the capacity of the absorber
is overcome, the stored NOx is released and reduced to N2 during the rich
cycle [47]. LNT systems offer up to 90% NOx reduction efficiency [48] but
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they struggle to reach the high NOx conversion efficiencies required to meet
current and future regulations over the wide range of conditions experienced
during engine operation [49]. Additionally, LNT systems often increase fuel
consumption due to periodic rich operation required for regeneration.

Urea SCR is a direct competitor of LNT as a NOx reducer, it injects
urea that is transformed into NH3 and then reacts with the exhaust gases to
transform NOx into nitrogen [47]. They were introduced in the market in 2003
with a modest 75% NOx conversion efficiency, since then it has been developed
to have much higher NOx conversion efficiency [50] (conversion efficiencies can
be in the range of 90% to 95%); however, diesel exhaust fluid (DEF) dosing
required for NOx reduction may increase the overall operational cost compared
to a non-SCR equipped engine. Additionally, SCR systems struggle to achieve
high NOx conversion efficiencies at temperatures below 200 �C due to deposit
formation from DEF dosing [51] and poor catalyst activity [52]. Currently,
SCR equipped HD CI engines are capable of meeting current regulated NOx
emissions limits on the order of 0.268 g/kWh. However, the California Air
Resources Board (CARB) has proposed future NOx targets of 0.0268 g/kWh
[53]. Reaching this level of tailpipe NOx with a urea SCR or LNT system

will likely be challenging. That is, NOx conversion efficiencies would need to
be on the order of 99%.

An alternative approach to enable low NOx emissions is the use of
stoichiometric operation coupled with a TWC. The TWC is a widely used
technique, is low cost, and can simultaneously reduce CO and HC while
reaching NOx reductions over 99% [54]. It is based on a 2 stage conversion,
a first stage where a reduction catalyst transforms NOx into N2 and O2

and a second stage where a oxidation catalyst converts CO and HC into
CO2 and H2O. The drawback is that, because stoichiometric operation is
required, its use with fueled CI engines results in extremely high soot emissions
[55–57]; however, further research has been done with near-stoichiometric CI

combustion combining DPF and TWC with very encouraging results [58].

2.3.5 Strategies based on alternative fuels

Compression ignition engines have been developed for decades and its
performance, efficiency and emission levels have been improved to levels that
were not even dreamed when the first CI engine was produced. Thanks to
the optimization strategies presented in this chapter, CI engines fueled with
diesel are able to meet the current emission standards and still manage to
be extremely efficient. However, pollutant standards keep being more a more
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restrictive at a fast rate and the CI engine improvement is not able to follow
the same rate just with the already presented strategies. A new path that is
being followed is the use of new fuels with improved characteristics that are
able to offer similar performance and efficiency but with unique characteristics
to overcome the emission issues of the diesel fuel. Diesel fuel offers high
efficiencies but can not avoid the NOx-soot trade-off, which is the main reason
behind its pollutant level problems.

An alternative that has been considered is the use of biodiesels. Biodiesels
are fuels obtained from vegetable oils or animal fat, they are non-toxic,
renewable, have combustion properties similar to the conventional diesel and
reduces most of the pollutant emissions (except NOx). Additionally, biodiesels
are easily obtainable and that would permit the energy independence from
diesel fuels. However, there are a number of reasons why the biodiesels have
not substituted the conventional diesel. Biodiesel deteriorate some component
of the injector, what forces to modify the injection system, it is oxidized when
in contact with the environment, has lower heating value and generates higher
NOx emissions. On top of that, biodiesels are more expensive than fossil fuels
[59].

An improved alternative for diesel and biodiesel is a new oxygenated
fuel similar to diesel. Dimethyl ether (DME) is a liquefied gas with good
thermal and chemical properties which is considered an excellent substitute
for conventional diesel and liquefied petroleum gas (LPG) fuels [60, 61]. DME
can be produced from crude oil or residual oil but also from other sources such
as natural gas, coal or waste products [62].

DME is a colorless, non-toxic, highly flammable gas under ambient
conditions with physical properties similar to those of LPG, high cetane
number (55-60) and good evaporation characteristics in the combustion
chamber; therefore, it is a suitable fuel for MCCI engines. DME is the simplest
ether with the chemical formula CH3-O-CH3, gaseous at room temperature
that becomes liquid at 6 atm or -25�C and less viscous and lubricating than
diesel fuel. This means that it has to be liquefied in the storage and some
additives are needed to improve the viscosity and lubricity such as Lubrizol,
biodiesel or other hydrocarbon fuels [62–65].

The combustion properties of DME are quite comparable to those of diesel
fuel. The lower heating value of DME (28.8 kJ/kg) is less than that of diesel
fuel (42.5 kJ/kg). Accordingly, the amount of fuel injected has to be increased
leading to longer injection durations. However, the stoichiometric air/fuel
ratio of the DME is 8.99 kg-air/kg-DME while that of diesel fuel is equal to 14.6
kg-air/kg-diesel, what means that, for a given mass of fuel, DME combustion
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needs less air than diesel fuel. After combining the differences in lower heating
value and stoichiometric air/fuel ratio, around 10% less air is required by DME
at iso-injected energy conditions, resulting in a positive impact on pumping
losses. In addition, the ignition delay of DME was observed to be shorter than
that of diesel due to the difference in cetane number, its better evaporation
characteristics, and its oxygenated chemical structure [66].

Controlling emission levels below the current standards is one of the main
research challenges in the field of ICE for road and rail transport applications.
Due to the increasingly stringent emissions regulations, current engines are
often operated away from the peak efficiency point to control NOx emissions.
This often results in an increase in soot or particulate matter (PM) emissions,
requiring the addition of post-treatment of both NOx and soot. A primary
benefit of the use of DME is its non-sooting nature [67]. Soot precursors
do not form easily during DME combustion because the oxygen content of
DME is 34.8% and there are no direct carbon-to-carbon bonds [68, 69].
As a result, DME combustion has almost zero-soot emission characteristics,
however, very small soot emissions are detected due to the additives used
to improve lubrication [70, 71]. Regarding NOx emissions, due to DME
chemical properties, its adiabatic flame temperature is lower compared to
that of diesel, which is reflected in lower NOx emissions [61]. However,
there is controversy about this topic in the literature since some studies using
DME in compression ignition engines reported an increase in NOx emissions
compared to the reference levels using diesel in the same operating conditions,
while the opposite trend is also found [63]. These opposite trends arise
from the differences in how the experimental activities have been carried
out since NOx emissions are strongly dependent on engine architecture and
settings. Nevertheless, this increase in NOx can be easily controlled with
state-of-the-art strategies such as EGR. This technique has some drawbacks
operating with diesel, such as the increase in soot emissions, but there are no
significant problems using DME as fuel because it avoids soot formation even
operating with high equivalence ratio and low oxygen concentration. In terms
of combustion efficiency, higher EGR value extends combustion duration but
the combustion efficiency is weakly affected until EGR levels over 30% where
the effect starts to be more noticeable [72]. Therefore, DME is extremely
compatible with EGR to control simultaneously NOx and soot emissions [73].

HC emissions are usually lower with DME than with diesel [74, 75]. The
most relevant sources of HC emissions are the liquid wall impingement onto
the combustion chamber walls together with the over-lean and the over-rich
mixtures remaining along the combustion process. DME evaporates faster
than diesel, so the liquid wall impingement onto the combustion chamber
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walls is largely reduced. The shorter ignition delay of DME decreases the
presence of over-lean mixtures before the onset of combustion. DME’s low
stoichiometric air/fuel ratio is also favorable to avoid over-rich mixtures along
the combustion. CO emissions are also an output of an incomplete combustion,
located where fuel concentration is too lean or too rich [17]. Then, the same
reasons previously discussed, particularly the reduction of the over-lean and
over-rich mixtures along the combustion, explain the benefits of DME in terms
of CO emissions compared to diesel combustion [76].

2.4 Summary and conclusions

In this chapter, a review of the main optimization strategies used to
improve efficiency and emission levels in MCCI engines was discussed in detail.
In addition, advanced combustion concepts were presented as alternatives
for the conventional MCCI concept. However, even though they offer many
advantages over the conventional MCCI, they have to be further developed
to be able to compete with MCCI engines in on-road situations. For that
reason the literature review and the main work in this Thesis was focused on
optimizing MCCI engines using the strategies presented in this chapter.

Geometry, injection and air management based strategies modify the
combustion process itself. They modify the mixing process, HT or burning
rate resulting in efficiency and emission levels variations. These strategies
were born with the increasing engine flexibility and the addition of engine
subsystems but they are struggling to reach future emission levels standards
and extra strategies are needed for future generation engines.

Nowadays, after-treatment systems are widely used to complement the
geometry, injection and air management based strategies. They do not affect
the combustion process but they treat the exhaust gases aiming to control
the emission levels, which are usually too high in the exhaust flow and do not
satisfy the emission standards. The DPF is the main after-treatment used to
control soot emissions, it is necessary and affordable, therefore most of the
MCCI engines use it. The SCR is the equivalent for NOx emissions, however,
it is expensive and requires reductants, therefore it is usually only used in
MD and HD duty engines. Finally, the TWC is presented as a good option
to simultaneously control NOx, CO and HC but working in stoichiometric
conditions has proven to be a difficult task with MCCI engines fueled with
diesel.

The previously discussed strategies allowed to improve MCCI engines for
decades but they are no longer enough to achieve future emission standards. A
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new path that is followed is the use of new fuels with improved characteristics
that are able to offer similar performance and efficiency but with unique
characteristics to overcome the emission issues of the diesel fuel. Biodiesels
have been extensively studied but they produce higher NOx emissions, lower
efficiency and are more expensive. DME is an improved alternative for diesel
and biodiesel. It has similar combustion properties than that of diesel and
offers lower NOx and HC, no soot emissions, lower pumping losses and higher
efficiency. In addition it is extremely easy to obtain from different sources.

From the detailed analysis performed, it can be highlighted that MCCI
engines have many tools to keep improving and offering high efficiency and
low emissions standards. Therefore a conventional combustion system will
be optimized aiming to find the maximum potential that they can offer and
find if they are able to satisfy future emission levels. Additionally, new fuels
clearly offer advantages that are not reachable by conventional diesel fuels,
even after an optimization with the already mentioned strategies, like the
non-sooting nature of the DME. For that reason the study will be extended
to MCCI engines fueled with DME. It does not only offer better properties
than diesel, but those properties permit stoichiometric combustion conditions
with non-soot emissions, therefore a TWC can be used to reduce NOx, CO
and HC. However, these differences between DME and diesel fuels in terms of
combustion and emissions imply that it is likely that the optimum combustion
chamber for a DME fueled engine would be different from the combustion
chamber optimized for a diesel fueled engine. The design of the combustion
chamber geometry of MCCI engines has a significant impact on the combustion
process and it is nowadays critical to control pollutant emissions keeping
competitive efficiency levels (as seen in previous sections). Thus, an extreme
optimization of the combustion chamber and the injection nozzle designs
coupled with a set of the most relevant air management and injection settings
would be critical for designing a combustion system fueled with DME [77].

More engine flexibility has also a drawback, it is harder to optimize all the
subsystems simultaneously. For that reason, the next chapter will be focused
on optimization methodologies and tools that can be used for that purpose.
It provides information about evolutionary and non-evolutionary algorithms
together with information about the CFD software that will be used in this
Thesis.
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3.1 Introduction

The engine design and optimization strategies have evolved during the past
decades forced by the increasingly stringent regulations. To counter the more
a more difficult task of designing a future generation engine with improved
efficiency and emissions, the amount of subsystems attached to a modern
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engine has grown to improve flexibility and provide more tools to the research
community. However, the number of parameters that have to be studied in
order to optimize an engine is increasing exponentially, accordingly new and
improved optimization methods are needed.

Parametric studies have been the preferred optimization method for a long
time and there are still occasions where this method is of interest and still used.
A parametric study is a non-systematic method that is based on calculating
the effect of an isolated variable over the objective output variable. It is a
straightforward method that provides robust and accurate results. However,
the intuition and experience of the designers are fundamental to success in
this type of methods. Additionally, parametric studies are not designed to
study coupled effects. Furthermore, this method is used to optimize a limited
number of inputs because the number of iterations increases significantly with
the number of inputs and that limits its use with complex problems [1].
Different alternatives are available for engine optimization methods. All of
them can be included in two main groups, evolutionary and non-evolutionary
methods. These methods are really efficient with a large number of variables
because they substitute the human intelligence with automated optimization
systems.

In the past, optimizations have been done experimentally but with
the significant amount of iterations that non-evolutionary and specially
evolutionary methods require, optimizing an engine experimentally has
become a hard task. These problems are more noticeable when hardware
components are included in the optimization and due to the importance of
these components in engine design (see section 2.3.1), experimental testing has
become a validation step in the field of engine combustion system optimization.
The alternative to experimental testing is CFD modeling since nowadays it
has gained reliability in predicting emissions and combustion characteristics by
using properly calibrated and validated models. Additionally, CFD methods
can be coupled with evolutionary and non-evolutionary methods to create a
completely automated system to be able to work more and better. These
automated systems are the reason behind the significant development of the
optimization methods presented in this chapter.

3.2 Non-evolutionary optimization methods

Non-evolutionary methods are statistical methods that use a predefined
population of input combinations to obtain the wanted information. These
methods rely heavily on spatial information to find the optimum, such as
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a mathematical response surface generated from the initial population. In
general, these methods are extremely efficient for a moderate number of
optimization variables but rapidly become costly to use with increasing
amount of inputs. In addition, when applied to really non-linear problems
the approaches followed by non-evolutionary methods lack accuracy and are
not always applicable [1]. For that reason, this kind of methods are often
used for cases where previous experience on the topic helps to define the
optimization inputs and ranges. That way the non-evolutionary algorithms
can be applied with reasonable time cost. In this section two different non-
evolutionary methods are presented, the 2k factorial design method and the
response surface method.

3.2.1 The 2k factorial design

Factorial designs are commonly applied to experiments with numerous
factors when the coupled effect of the factors over a response is of interest. A
special case of factorial design is the 2k factorial design. It has been widely
used in research studies because it requires the minimum amount of runs to
study k factors in a complete factorial design. Accordingly, they are commonly
used in factor screening experiments at early stages of the experiments [2].

The 2k factorial design only considers two levels for each factor. These
levels can be quantitative (i.e. pressure or temperature values), qualitative
(i.e. high or low) or simply the existence and absence of the value. Due to
having only two levels per factor, it is assumed that the factor effect is linear.
This assumption is considered acceptable when the region of interest is small
enough.

The main objective of this kind of technique is to find the magnitude and
direction of the effect of each independent variable over the response variable
to be able to determine which factors are more relevant to the study. In order
to specify how are they calculated in 2k factorial designs, an example of a 2
factor design is presented (example obtained from [2]). Then the methodology
used in this example can be extrapolated to k factors. Imagine we want to
study the yield of an experiment, which is the objective of the study, and
two factors, reactant concentration (A) and amount of catalyst (B) that affect
the yield of the experiment. Since we are doing a 2k factorial design, only 2
levels for each factor are considered. The values of each factor level and the
yield value are presented in Fig. 3.1. It can be seen in the figure that the
high level of the factor is represented by the lowcase letter that represents the
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Figure 3.1. Example of a 2k factorial design. Adapted from [2].

factor and the low value is represented as the absence of it ((1) represents the
combination of the lower value of both factors).

Once the 2k factorial design is defined, the main objective is to obtain the
main effect of each factor. The main effect of factor A would be the average
between the effect of A at the low level of B and the effect of A at he high
level of B, this is

A �
1

2n
pab� a� b� p1qq (3.1)

where n is the number of replicates, in this case each value was measured
3 times. In the same manner, the main effect of B is described as

B �
1

2n
pab� b� a� p1qq (3.2)

The correlated effect of both factors is defined as the average difference of
B at high and low level of A (average difference of A at high and low level of
B also works), this is,
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AB �
1

2n
pab� p1q � a� bq (3.3)

After applying the equations, the main effects of the factors of this design
would be A = 8.33, B = -5 and AB = 1.67. These results suggest that the
effect of A is positive (increasing A increases the yield), the effect of B is
negative (increasing B decreases the yield) and the joint effect of AB is not
relevant compared to that of A and B. These results and the relevance of
certain factors can be supported by the application of an ANOVA study.

This method is a powerful tool but has a significant limitation when
working with non-linear systems. Then, due to the highly non-linear behavior
of the combustion engines, this technique has its use limited in this field.

3.2.2 Response surface methods

The RSM method is a set of statistical and mathematical tools used to
analyze and model problems where the main objective is to optimize a response
that is affected by numerous variables [2]. This is, if it is wanted to improve the
engine efficiency (ef) by finding the optimum values of intake flow temperature
(T) and pressure (P), then the engine efficiency would be a function of intake
temperature and pressure, this is,

ef � fpT, P q � err (3.4)

where err is the error observed in the response (ef). If the expected
response is noted as E(ef) = f(T,P) = RS, the response surface is represented
by

RS � fpT, P q (3.5)

In most cases the real shape of the response surface is unknown, therefore
the first step when optimizing with RSM is to find a reasonable approximation
for the response surface. First a low-order approximating function is used to
model the relationship between the response and independent variables. If the
behavior is properly modeled, then a first order model is used to approximate
the response.

y � β0 � β1x1 � β2x2 � ...� βkxk � err (3.6)
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where y is the response variable, x are the independent variables (factors),
k is the number factors and β are the coefficients that define the response
surface. If this approximation is not good enough because there is curvature in
the real behavior of the response, then a higher degree polynomial is required,
like a second order model.

y � β0 �
ķ

i�1

βixi �
ķ

i�1

βiix
2
i �
¸¸

i j

βijxixj � err (3.7)

For most of the problems, high order polynomials are used to create the
response surface. Even then, it is expected that the response surface is not a
perfect approximation of the real response behavior. However, if the ranges
taken into account to build the response surface are small enough, a second
order model or even a first order model is considered accurate.

The coefficients of eq. 3.6 and 3.7 are approximated with the method
of least squares, then the surface can be analyzed and the optimum can be
found. The accuracy of the results not only depend on the polynomial used
to generate the surface but also on the data used to estimate the coefficients
and adjust the model, which is usually called response surface design. The
central composite design (CCD) is the response surface design chosen for this
Thesis. It offers a proper distribution of the data over the experimental region,
requires reasonable number of runs and independent variables levels, is robust
with incomplete data and is rotational and orthogonal.

The CCD is a 2k factorial with nc center points and 2k axial points. In
order to keep the rotatibility, the value of α (see Fig. 3.2 for α definition) has
to be calculated as in eq. 3.8. A sketch of a CCD with 2 and 3 factors can be
found in Fig. 3.2.

α � p2kq
1
4 (3.8)

This optimization methods have been applied in the past to engine
optimizations, mostly to experimental approaches. Atmanli et al [3] used RSM
methods on an experimental optimization for finding the optimum diesel-n-
butanol-cotton oil ternary blend ratios for controlling emissions. Saravanan et
al [4] performed an statistical experimental engine optimization using RSM
methods to analyze the effects of IP, injection timing and EGR aiming to
improve efficiency and emissions. Then, it can be seen that RSM methods can
be used to optimize many different aspects of an engine but they are always
limited to a small number of parameters.
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Figure 3.2. Central composite designs for k = 2 and K = 3. Adapted from [2].

3.3 Evolutionary optimization methods

Evolutionary methods are very different but the core idea behind them is
common. They are based on an initial population of individuals that evolves
due to environmental pressure aiming to improve the fitness of the individuals
of the population. Every iteration the initial population is controlled and
classified by certain external requirements imposed to the problem and the
fittest individuals (parents) will be chosen to have a strong influence on the
new generation (children) while the weaker ones will not, just like natural
selection does in the nature, this is called ’survival of the fittest’. The process
stops once a child with enough quality is found or after certain generations
[5]. The process is presented in Fig. 3.3.

Most of these methods are based on natural mechanisms from cells or
animals but at the end the only difference is how the initial population
evolves and finds the final optimum. In this section three evolutionary
methods are presented: particle swarm algorithms, genetic algorithms (GA)
and artificial neural networks. They have been widely used and have proven
to behave well against real non-linear problems. Contrary to the non-
evolutionary algorithms, these methods have proven their potential when
optimizing unknown problems with several input parameters but they are only
be coupled with modeling approaches due to the high number of iterations
required [7].
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Figure 3.3. Sketch of an evolutionary algorithm process. Adapted from [6].

3.3.1 Genetic algorithm

Genetic algorithms were first introduced in the literature by John Henry
Holland in 1975. They are evolutionary methods that try to mimic the
mechanisms of natural selection and evolution, this is, genetic evolution.
Like any other evolutionary algorithm, an initial population is generated
and the fittest individuals are chosen to become the parents of the new
generation but the mechanisms used to exchange information between the
parents and generate the new population is what characterizes all the GAs,
this is, selection, mutation and crossover [8]. A sketch of the process followed
by a GA is summarized in Fig. 3.4.

In GAs, the first step is to generate a random initial population. Each
individual is represented as a chromosome, which is a combination of several
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Figure 3.4. Sketch of a generic genetic algorithm. Adapted from [6].

genes, and the genes represent the values of the input variables that are going
to be optimized. The individuals of this initial population, just like any other
future generation, are evaluated and ranked in terms of its fitness value. Then
a new generation is created by applying the 3 genetic operators to the current
population. The genetic operators are [6, 9]:

� Selection. This operator selects the individuals that become parents
for the next generation. Based on the ’survival of the fittest’ theory,
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the fittest individuals that were ranked better have more chances of
becoming the future generation parents.

� Crossover. This operator combines the chromosomes of the parents to
create new individuals. The fittest individuals are used as parents more
often than the rest, therefore, after applying the crossover operator,
the average fitness of the new population increases. Additionally,
this operator tends to generate very similar individuals after several
generations, reducing diversity and leading to population stagnation.

� Mutation. This operator is in charge of increasing the diversity of
the population to compensate the tendency of the crossover operator to
population stagnation.

Once the new population is generated, it is ranked and used as parents for
the next generation until a convergence criteria is reached. Although all GAs
follow this steps, there are several variants of GA that use different methods
to perform selection, crossover and mutation. In this section 3 of the most
used GAs are presented, micro genetic algorithm (micro-GA), nondominated
sorting genetic algorithm (NSGA-II) and DKGA. They have been widely used
in several research topics but specially in the engine optimization field proving
its potential to be used as an optimization methodology for engine design. Kim
et al. [10] used a micro-GA on a HD engine optimization. Fuel fraction,PIVC,
EGR,SOI and delay between first an second injection were used as inputs
for the algorithm and the results presented an optimum configuration with
improvements in both soot and NOx emissions. Ge et al. [11] used a NSGA-II
algorithm to preform a HSDI engine optimization. They optimized the engine
configuration in 2 steps, a first optimization focused on the piston bowl and
injector geometry and a second step using the optimum configuration from
step 1 as baseline case while optimizing the SOI, PIVC, swirl and IP. The
result was an optimum configuration able to simultaneously improve emission
levels and performance.

3.3.1.1 Micro genetic algorithm

Krishnakumar developed the micro-GA in 1989 [12] and it has been
further developed by other researchers like Coello et al. [13] and Senecal
[14]. The motivation behind this GA was to modify the existing algorithms

to be applicable to computationally expensive problems. The micro-GA has
the population size limited to a maximum of 5. Due to this characteristic, it
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is suitable for problems where expensive simulations are required and a large
number of parallel cases can not be run due to lack of resources.

An algorithm with such a very small population needs additional
mechanisms to offer robust results. It uses a reinitialization procedure with
an external memory to save the pareto front optimums. The algorithm has
four main step presented below that are repeated until a maximum number of
iterations is reached [15].

1. An initial population of 5 individuals is generated ( one is the present
baseline case and the rest are generated randomly).

2. The population is evaluated and the fittest individual is kept for the next
generation (elitist strategy).

3. A tournament selection strategy is used to determine the parents for the
remaining 4 individuals for next generation. Then the new generation is
created using uniform crossover.

4. If the convergence criteria is not satisfied, go to step 2 to evaluate the
new population. If the population is considered converged, then go to
step 1 and generate a new initial population keeping the current best
optimum case (new cycle).

3.3.1.2 NGSA-II algorithm

The NSGA-II [16] is based on the original nondominated sorting genetic
algorithm with improved aspects that makes it one of the most popular GA due
to its robustness and efficiency. The main improvement from its predecessor
is the fast nondominated sorting approach, a fast crowded distance estimation
procedure and a simple crowded comparison operator. The description of the
algorithm is summarized in the following steps [17]:

1. Create initial population

2. Rank the individuals based on their nondomination level (apply the
nondomination sorting approach).

3. Estimate the crowding distance of each individual. Then the population
individuals can be selected based on their crowding distance and rank
(nondomination). This is necessary because the number of individuals
is higher than the population size so crowding distance decides which
individuals are chosen from individuals with the same rank.
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4. The chosen individuals are used to generate the new population by
applying the genetic operators, this is, selection, crossover and mutation.
To perform the selection process, a tournament selection strategy is used.
The crowding comparison procedure is used in the selection process to
introduce diversity.

5. If convergence is reached, keep the optimum pareto solution. If the
solution is not converged then go to step 2.

3.3.1.3 DKGA algorithm

The DKGA algorithm [18] was developed as an alternative for the
previously presented GAs because it was thought that there was room for
improvement. This algorithm has two main differences compared to the
previously mentioned GAs, the chromosomes are represented in decimal
format and the initial mutations are large but decrease while the optimization
progresses to force convergence. The description of the algorithm is
summarized in the following 7 steps:

1. Create initial population

2. Rank the individuals based on fitness.

3. Choose the best individuals to be the parents for the next generation.

4. Create a new generation using the Punnett square technique (discussed
below) to cross breed the parents.

5. Mutate the chromosomes of each child of the new generation.

6. Evaluate the new generation.

7. Penalize the children that does not meet the constraints.

8. Classify the generation from best to worst.

9. Repeat steps 2 to 8 until the maximum number of generations is reached.

Four coefficients are required to configure the GA : initial time constant
(τGA,0), convergence constant (σ), number of parents and number of
generations. The length of the optimization is controlled by the number of
generations because there is no other convergence criteria and the optimization
continues until the maximum number of generations is reached.
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A B C D E

A AA AB AC AD AE

B BA BB BC BD BE

C CA CB CC CD CE

D DA DB DC DD DE

E EA EB EC ED EE

Figure 3.5. Example of Punnet Square technique for 5 parents. Adapted from [18].

The number of parents controls the selection of children that become
parents for the next generation and the population. As noted in step 4, the
DKGA uses a Punnet square to do the mating selection, this is, the best nd
designs are chosen from the previous generation to become the parents of the
new generation. With this technique, each parent has two children with every
other parent and one with himself, generating a total of nd2 children for the
next generation. An example of a Punnett square mating selection is shown
in Fig. 3.5 for 5 parents.

After applying the Punnet square technique, a new generation is created
and each chromosome of each child is mutated. The mutated values are a
random number from a normal distribution with its mean set to the non-
mutated value and the standard deviation controlled by the DKGA. The
standard deviation decreases as the optimization progresses, being large for
initial generations to completely explore the design space and small at the
later generations to help the process to converge. The behavior of the standard
deviation is described in equation 3.9.

τGA,i � τGA,0 � expp�σ
i

MaxGen
q (3.9)

where i is the number of generation, τGA,i is the current standard deviation
for generation i, the coefficient τGA,0 represents the initial time constant and
MaxGen is the maximum number of generations.



54 3. Literature review: optimization methods

3.3.2 Particle swarm algorithm

The particle swarm algorithm (PSA) was developed by Kennedy and
Eberhart in the 1995 [19]. It is based on the natural behavior of the flocks
of birds and the collective intelligence. The main idea is that past experiences
and knowledge of the individuals of a flock can affect positively the rest of
the birds and influence their behavior, like regrouping and synchronously
changing direction. This has been observed in the nature and is considered as
an evolutive advantage, and this hypothesis is the base of the algorithm. A
sketch of the PSA structure is presented in Fig. 3.6

In PSA, a swarm is a group of particles dispersed over the N-dimensional
space, where N is the number of inputs to optimize. This particles are
initialized randomly with a position and a velocity (just like if they were
birds flying). Then that position is evaluated and all the particles are ranked
in terms of their fitness value. The individual position for each particle and
the global best position are stored every iteration. If the converge criteria is
not satisfied, a new generation of particles is created with the position and
velocity of each particle assuming a certain time step. This loop is repeated
until the convergence criteria is satisfied [6].

The step where the search direction or current velocity is calculated is
where the ’collective intelligence’ is implemented. The formula that updates
the velocity of each particle is influenced by two factors, the global best
position and the position of the particle with the best average fitness value.
This assures that the particles have their own path but end up going towards
the optimal region of the space. The formula used to calculate the search
direction is presented in eq. 3.10.

NSD � IW �LIV �2�randpq�pPBP�CP q�2�randpq�pGBP�CP q (3.10)

The new search direction is represented as NSD, inertia weight as IW, last
iteration velocity as LIV, personal best position as PBP, current position as
CP and global best position as GBP.

3.3.3 Artificial Neural Network

Artificial neural networks (ANN) try to mimic the behavior of biological
nervous systems. ANN are a combination of interconnected neurons that are
able to learn, process inputs and respond without a mathematical relationship
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Figure 3.6. Sketch of a particle swarm algorithm. Adapted from [6].

between the inputs and outputs. Even though it can not be strictly classified
in the evolutionary methods definition provided, it learns and evolves during
the process, simulating the behavior of a human brain.

Warren S. McCulloch and Walter Pits presented the first ANN concept
[20]. They described the idea of an artificial neuron able to process

information that is usually a really easy task for humans but incredibly difficult
for machines. The model of an artificial neuron (this is the simplest neural
network possible) was invented by Frank Rosenblatt in 1957 [21] and was
called a perceptron. A sketch of a single perceptron is presented in Fig. 3.7.
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Figure 3.7. Sketch of a perceptron model. Adapted from [22].

The perceptron model is considered as a construction block used to build the
ANN system. In this block the inputs (x1, x2...xj) are weighted by applying
coefficients (w1, w2...wj) to obtain the output response. In addition to the
weight coefficients there are extra features to control the neuron response.
The activation function is used to limit the value of the output signal, usually
within a range of [-1,1] or [0,1], and the bias that is represented as b in the
sketch [22].

Equations 3.11 and 3.12 describe the behavior of a perceptron.

tk �

j̧

i�1

xiwik (3.11)

a � fptk � bq (3.12)

where xi represents the inputs and wik the weights. Then tk represents
the summation of the weighted inputs and f is the activation function. The
activation function is the last step of the perceptron model and simplifying its
role in the process, it decides the answer of the neuron based on the sum of
the weighted inputs obtained. It has a wide variety of shapes but it is usually
described by Heaviside, Piecewise-linear, Log-sigmoid and Tangent-sigmoid
functions [22].
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A key aspect of ANN is that they are able to learn, this is, it is not a
rigid system but adaptative that can evolve depending on the information
received. This learning process is performed by adjusting the weights and it
is usually guided by how good or bad was the answer from the neuron. There
are many strategies developed for ANN learning like supervised learning or
unsupervised learning. The main difference is that the supervised learning
has a smarter teacher that provides the ANN with inputs and outputs and
the neural network has to readjust its weights to obtain better results in those
specific cases, while in the unsupervised learning there is not a predefined set
of values to train the ANN.

ANN are useful for many situations, but just like human brain, not all
humans are good for the same situations. Depending on how this building
blocks (neurons, perceptrons) are combined and connected, the ANN can
be classified in two main classes, feedfoward and recurrent neural networks.
The main difference is that feedfoward networks are a one-way process (like
perceptrons) while the recurrent network reintroduce the output of the model
as a new input. This variety of ANN allows them to be very efficient in several
problems like pattern recognition, time series prediction or signal processing
[21].

These methods have been also used in the automotive field. Costa et
al. [23] developed a methodology to reduce the computational cost of the
optimizations of combustion engines combining CFD with neural networks.
The main objective is to reduce computational cost related to 3D CFD
simulations. To achieve that the author proposes to couple genetic algorithms
with CFD simulation to generate a training set to later train a neural network.
Then, this network can be used to predict optimum configurations avoiding the
high cost of running 3D CFD simulations. Other authors like Channapattana
et al. [24] adapted the method using experimental data to train the network.
Then this network was used to find the optimal combination of injection
settings and fuel blend to obtain a more efficient and clean engine.

3.4 Summary and conclusions

In this chapter a review of the most common optimization methods has
been presented. In the past, simple parametric studies were powerful enough to
perform engine calibration and optimization. However, nowadays the number
of inputs available for engine design is overwhelming and optimizing all of them
at the same time has become a hard task. The optimization methodologies
have been categorized in two groups, evolutionary and non-evolutionary.
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Non-evolutionary methods are statistical methods that use a predefined
population of input combinations to obtain the wanted information. They
rely on spacial information to find the optimum and are extremely efficient for
a moderate number of optimization variables. However, they lack accuracy
when applied to highly non-linear problems. RSM based on CCD designs
are robust non-evolutionary methods able to capture curvatures and coupled
effects. They have been used in real engine optimizations [25, 26] with
promising results, therefore they were chosen as the best option for this Thesis.
It is known that for significant number of inputs the amount of simulations
required increases exponentially and for that reason they were chosen to
perform only the CDC engine optimization where previous experience on CDC
engines permits the reduction of optimization inputs and ranges.

Evolutionary methods are based on the evolution of an initial population
of individuals aiming to improve its fitness. In every iteration, the initial
population is checked to ensure that only the strong individuals keep growing.
Even though there are many evolutionary algorithms, they are all based on
the same evolution concept. These methods, contrary the non-evolutionary,
are more flexible and perform better with higher number of inputs and bigger
ranges. Therefore they are often used with less known problems where the
previous experience on the topic is insufficient or nonexistent. For that reason,
an evolutionary method is used in the DME fueled engine optimization. The
GAs were chosen as the best approach for this problems because they have
been widely used in the field of engine optimization with encouraging results.
As pointed out in the review and literature, there are several GAs with different
properties, thus the election of the best GA for the DME optimization will be
done in the next chapter.
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4.1 Introduction

Computational optimizations usually involve many simulations, up to
thousands for GAs, that have to be supported by a number of softwares to be
able to be automatically configure, simulate and post-process. Those softwares
have to be validated with experimental data to ensure the accuracy and
robustness of the models. This chapter focuses on describing the experimental
and computational tools used in this Thesis.

The work presented in this Thesis is divided in two main blocks, non-
evolutionary optimization of a CDC system and evolutionary optimization of
a DME fueled system. The tools used for both processes are mostly different
except for the injection profile generator and geometry generator. Fig. 4.1
sums up the tools used for each optimization.

4.2 Experimental tools

This section presents the experimental tools used in this Thesis, this is,
the reference engine used to obtain the experimental data necessary for the
CFD software validation and the experimental facilities where the data was
generated. As seen in Fig. 4.1, the experimental facilities and reference engine
are different for both main activities carried out in the Thesis, for that reason
this section is divided into non-evolutionary optimization experimental tools
and evolutionary optimization experimental tools.
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Figure 4.1. Sketch of the tools used in this Thesis.

4.2.1 Non-evolutionary optimization experimental tools

4.2.1.1 Experimental facilities

The engine is assembled into a fully instrumented test cell. An external
compressor provides the intake air (oil and water-free) required to simulate
boost conditions, while the exhaust backpressure is reproduced and controlled
by means of a throttle valve placed in the exhaust line after the exhaust settling
chamber. The experimental facility also includes a high pressure EGR system,
designed to provide arbitrary levels of cooled EGR.

The test cell is equipped with a dedicated air and fuel flow meters, and
a set of temperature and pressure sensors to assure the proper operation of
the system. Data of O2, CO, CO2, HC, NOx, N2O and EGR is measured
with a state-of-the-art exhaust gas analyzer, while Smoke emissions in Filter
Smoke Number (FSN) units are measured by a Smokemeter connected to the
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exhaust line. Instantaneous high frequency signals such as cylinder pressure,
pressures at the intake and exhaust ports and energizing current of the injector
are sampled with a resolution of 0.2 crank angle degree (degree to top dead
center). Cylinder pressure is measured using a state-of-the-art piezoelectric
sensor. The most important combustion parameters like indicated mean
effective pressure (IMEP), maximum cylinder pressure (Pmax), pressure
gradient (dP/da), combustion noise, combustion phasing angles and heat
release rate (HRR); as well as the initial thermodynamic conditions and
wall temperatures required for performing the setup of the CFD model, are
calculated from the experimental cylinder pressure signal by means of the in-
house combustion analysis software (CALMEC) [1, 2]. This 0-Dimensional
model simplifies the phenomena occurring inside the engine cylinder, so it
does not provide any information related to local thermochemical conditions.
However, the instantaneous evolution of the energy released by the progress
of the combustion can be obtained with accuracy by resolving the first law
of thermodynamics taking the combustion chamber as the control volume
independently from the local conditions where this energy is being released. [1]

Measurements of injection rate were carried out with an Injection
Discharge Rate Curve Indicator (IRDCI) commercial system. The device
makes it possible to display and record the data that describe the chronological
sequence of an individual fuel injection event. The measuring principle used
is the Bosch method [3], which consists of a fuel injector that injects into a
fuel-filled measuring tube.

The fuel discharge produces a pressure increase inside the tube, which is
proportional to the increase in fuel mass. The rate of this pressure increase
corresponds to the injection rate. A pressure sensor detects this pressure
increase, and an acquisition and display system further processes the recorded
data for further use.

4.2.1.2 Engine characteristics

The experimental data required for the calibration and validation of the
CFD model was obtained from a 4-cylinder 4-stroke Medium Duty Direct
Injection CI engine, equipped with a common-rail injection system. Table 4.1
contains the main engine characteristic, while Table 4.2 shows the key settings
for the reference engine operating at three different operating conditions.
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Table 4.1. Engine main characteristics.

Engine data

Max Torque [Nm] 550 (1400rpm –2200 rpm)

Max Power [kW] 128 (2200 rpm)

Unitary Displacement [cm3] 738.3

Bore x stroke [mm] 96 x 102

Connecting rod length [mm] 154.5

Geometric compression ratio [-] 15.5

IVC [deg aTDC] -113.8

EVO [ deg aTDC] 103

Nozzle hole number 9

Included Spray Angle [deg] 74

Nozzle Hole Diameter [µm] 126

Table 4.2. Engine operating conditions.

Operating conditions

Speed [rpm] 1200 1600 1800

Fuel mass [mg/cc] 26.8 70.2 100.5

IMEP [bar] 6.5 16.2 24.9

EGR [%] 17.7 13 11.3

Intake temperature [K] 324.9 313.15 318.9

Boost pressure [bar] 1.15 2.28 3

Swirl number [-] 2 2 2

4.2.2 Evolutionary optimization experimental tools

4.2.2.1 Experimental facilities

A compressor and drier located outside the lab supplies dry intake air to the
test cell. PID controlled intake air heaters precisely control the temperature of
the charge entering the engine. Large (265 L) surge tanks ensure stable intake
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and exhaust pressure. PID controlled valves control the intake and exhaust
pressure and EGR rate. A Fourier Transform Infrared (FTIR) spectrometer
(Nicolet Model CQ1319-100) is used to measure the asymmetric species in
both the intake and exhaust. The EGR rate is calculated from measurements
of carbon dioxide in the intake and exhaust stream. Soot is measured using
an AVL 415 SE Smoke meter. A magnetopneumatic oxygen analyzer (Horiba
Model MPA-220) and Bosch LSU4.9 oxygen sensors provide measurements of
intake and exhaust oxygen concentration. A Coriolis-type mass flow meter
(Emerson Coriolis Elite Model CMFS100M) measures the intake air flow rate
and positive displacement flow meters (Max Machinery Model 213) measure
the volumetric fuel flow rates. The fuel temperature was maintained constant
at 20 �C using a high efficiency heat exchanger with process water and the
fuels density at 20 �C was used to convert the fuel flow rates from a volumetric
to mass basis.

4.2.2.2 Engine characteristics

The engine used is a single cylinder version of a Caterpillar C-15, 15-L
six-cylinder engine. Table 4.3 contains the main engine characteristic. For
the validation tests carried out using diesel fuel, the engine was operated at
1800 rev/min and a nominal load of 18 bar gross IMEP, the fueling was held
constant and the SOI timing was swept from -18 deg aTDC to -3 deg aTDC.
The EGR rate, intake pressure, and intake temperature were held constant
and its related settings are included in Table 4.4.

4.3 Computational approach

The calculations involved in the evolutionary and non-evolutionary
optimizations were done with different CFD softwares. The non-evolutionary
optimization was performed by the commercial software Star-CD because it
proved to be a robust and accurate software in previous projects performed
by our research team. However, when working with genetic algorithms it was
decided that it was a good opportunity to test the capabilities of the open-
source code Kiva-3v. The description of all the models used in this Thesis are
presented in this section.
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Table 4.3. Engine main characteristics.

Engine data

Unitary Displacement [cm3] 2500

Bore x stroke [mm] 137 x 171

Connecting rod length [mm] 270.6

Geometric compression ratio [-] 17

IVC [deg aTDC] -154

EVO [ deg aTDC] 113

Nozzle hole number 6

Included Spray Angle [deg] 65

Nozzle Hole Diameter [µm] 214

Table 4.4. Engine operating conditions.

Operating conditions

Speed [rpm] 1800

Fuel mass [mg/cc] 252

IMEP [bar] 18

EGR [%] 25

Intake temperature [K] 333

Boost pressure [bar] 3.1

Swirl number [-] 0.7

SOI [deg aTDC] -18 to -3

Injection Pressure [bar] 1800

4.3.1 Non-evolutionary optimization computational approach

4.3.1.1 CFD software and models

The StarCD code version 4.18 [4] was used to perform the CFD simulations
of the engine combustion system. The combustion model was the ECFM-3z
developed by IFP [5]. Concerning pollutants, NOx were calculated using the
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extended Zeldovich (thermal) mechanism, where source terms were obtained
from a flamelet library [6]. A two-step Hiroyasu-like model was used for soot
formation and oxidation [7].

Concerning the physical sub-models, the diesel spray was simulated with
the standard Droplet Discrete Model available in StarCD. Spray atomization
and break-up were simulated by means of the Huh-Gosman [8] and Reitz-
Diwakar [9] models, respectively. Diesel fuel physical properties were given
by the DF1 fuel surrogate [10]. In these simulations, turbulent flow was
modeled by means of the RNG k-ε model [11], with wall functions based
on the model from Angelberger [12] in order to account for wall HT. An
implicit scheme was used for time discretization, while divergence terms used
the second order Monotone Advection and Reconstruction Scheme (MARS)
[4]. Velocity-pressure coupling was solved by means of a Pressure-Implicit

with Splitting of Operators (PISO) algorithm [13].

4.3.1.2 Model validation

This section presents the validation and calibration of the models used
in the non-evolutionary optimization. The axisymmetry of the combustion
chamber allowed to consider a sector of the combustion chamber representing a
single nozzle hole to reduce computational time. Additionally, the simulations
are restricted to the closed engine cycle, from intake valve closure (IVC) to
exhaust valve opening (EVO). The sector mesh contained a total of 131360
cells at BDC with periodic boundary conditions after performing a grid
convergence study. The simulations were calculated with 12 cores with an
average time cost of 36 hours per simulation.

The CFD model was thoroughly validated by simulating the three
operating conditions under investigation described in Table 4.2. The results
of the CFD model compared to the experimental data in terms of HRR
and in-cylinder pressure (Pcyl) are included in Fig. 4.2. Results related
to performance and pollutants after calibrating the sub-model constants,
specially those related to the soot model, are shown in table 4.5. Those figures
show a fair agreement in terms of performance (IMEP), indicated specific
fuel consumption (ISFC) and combustion characteristics (HRR). In addition,
the final soot levels were close to the experimental data after adjusting the
constants of the soot formation model. An over-prediction of NOx emissions
is observed for the high load condition, probably related with the faster rise
of the HRR compared to experimental data, however, the quality of the CFD
model was considered suitable for carrying out the optimization activities.
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Figure 4.2. Experimental vs CFD results with the reference combustion system at
(top) 1200 rpm, (middle) 1600 rpm and (bottom) 1800 rpm .
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Table 4.5. Experimental vs CFD results with the reference combustion system for
the three operating conditions of the engine performance and emissions.

Case
ISFC IMEP NOx Soot

[g/kWh] [bar] [g/h] [FSN]

1200 rpm
Exp 201.5 6.5 28.6 0.29

Diesel CFD 203.1 6.2 27.6 0.24

1600rpm
Exp 188.8 17.7 213.3 0.078

Diesel CFD 186.3 18.3 218.6 0.08

1800 rpm
Exp 194.3 24.7 249.16 0.4

Diesel CFD 193.7 24.96 368.4 0.42

4.3.2 Evolutionary optimization computational approach

4.3.2.1 CFD software and models

Computations were performed using an in-house CFD code based on the
KIVA-3v release 2 platform [14] with improvements to many physical and
chemistry models developed at the Engine Research Center (ERC) [15], [16],
[17].

The KIVA-3v code is coupled with the SpeedCHEM [18] solver for detailed
chemistry calculations. The RNG k-ε model [19] is used for the turbulence
calculations; however, sub grid turbulence chemistry interactions are not
considered. That is, the current implementation of the SpeedCHEM solver
considers every computational cell to be a Well Stirred Reactor (WSR) and
the cell average species production rates are assumed to be equal to the
species production rates evaluated at the average cell conditions. At each
time step, species concentrations and thermodynamic conditions are passed to
the chemistry solver for each computational cell. The chemistry solver then
integrates the mass and energy equations at constant volume over a period of
time equal to the computational time step. Although, sub grid scale turbulent
chemistry interactions are not considered, by coupling the chemistry solver
with the CFD code, the effects of turbulence on combustion are accounted
by modeling the effects of turbulence on property transport, heat flux, and
mixture formation. Justification for this modeling approach has also been
discussed by Kokjohn and Reitz [20].
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The chemistry of DME was simulated using a reduced reaction mechanism
consisting of 29 species and 66 reactions [21]. Validation simulations of CDC
were carried out using n-heptane as surrogate and describing its oxidation by
a reduced reaction mechanism made up of 45 species and 142 reactions [16].

The spray model employed in this study uses the Lagrangian-Drop and
Eulerian-Fluid (LDEF) approach. Because a detailed chemistry model is used,
it is desirable to use a relatively coarse computational mesh; however, severe
grid size dependency has been observed in LDEF spray models. The problem
is most severe in the near nozzle region where the droplets are very close
together and occupy only small portions of the Eulerian mesh cell. Abraham
[22] showed that accurate modeling of the near nozzle region required grid

resolution on the order of the orifice diameter. However, it is not feasible
from a computational time standpoint to solve engine problems on such a fine
mesh. Furthermore, a fundamental assumption of the LDEF approach is that
the volume fraction of droplets in each cell is small, that is, the void fraction
is near unity. Thus, this assumption may be violated if the mesh size is overly
refined up to a mesh size of the order of the droplet size. In order to reduce
the grid size dependency of the LDEF spray model and allow accurate spray
simulation on a relatively coarse grid, the Gasjet model of Abani et al. [17, 23]
is employed to model the relative velocity between the droplets and gas phase
in the near nozzle region.

Droplet breakup is modeled using the hybrid Kelvin Helmholtz (KH) -
Rayleigh Taylor (RT) model described by Beale and Reitz [15]. The droplet
collision model is based on O’Rourke’s model; however, a radius of influence
method is used to determine the possible collision partners to further reduce
mesh dependency [24]. In addition, the collision model was expanded by
Munnannur [24] to include a more comprehensive range of collision outcomes.
The current implementation of the droplet collision model considers the effects
of bounce, coalescence, and fragmenting and non-fragmenting separations.
Droplet interactions with the wall are considered through a wall film submodel
[25], which includes the effects associated with splash, film spreading, and

motion due to inertia.

4.3.2.2 Model validation

Experimental data for the engine fueled with DME was not available.
Accordingly, the CFD code was validated by first comparing to engine data
from Allen [26] where the same engine was operated at the condition of interest
(18 bar IMEP and 1800 rev/min) using diesel fuel over a range of SOI timings.
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Next, DME fueled simulations were performed to verify that the model is able
to qualitatively capture the changes in combustion characteristics expected
when diesel fuel is replaced with DME (i.e., shorter ignition delay and shorter
combustion duration). The justification for using this approach is

� The operating range considered in this study is expected to be mixing
controlled. Accordingly, validation using diesel fueled combustion in a
mixing controlled combustion regime provides validation that the CFD
model adequately captures the mixing characteristics.

� The DME chemical kinetics mechanism and spray model have been
validated in previous work (see Pan et al. [21]). The reaction mechanism
has been shown to accurately capture the ignition delay from shock
tube basic configuration to ICE applications. The spray model has been
shown to capture DME spray penetration accurately.

To reduce computing time, simulations consider a sector of the combustion
chamber, representing a single nozzle hole of the six hole fuel injector.
Additionally, the simulations are restricted to the closed engine cycle, from
IVC to EVO. The simulations were initialized using solid body rotation to
specify the azimuthal velocity flow field at IVC. Prior to performing model
validation, a grid convergence study was performed to identify the necessary
grid resolution. The CFD results for axial cell sizes (dS) between 2 mm and
4 mm are shown in Fig. 4.3. It can be seen that the effect of the cell size
starts to minimize at dS 3 mm showing almost negligible differences between
dS 3 mm and 2 mm in terms of NOx emissions and very little variations in
terms of HRR. Accordingly, cell sizes of 3 mm or lower were considered to
generate grid independent results. The final setup used a cell size of 2 mm to
minimize CR discrepancies between cases. The typical cell count was 30,000
to 40,000 cells at BDC, depending on the shape of the piston , and each case
took approximately 20 h to complete with a single processor.

Fig. 4.4 shows the comparison between the experimental and CFD Pcyl
and HRR profiles for the baseline diesel case with 3 different SOI values.
Although several cases show a slight over prediction of the PP value resulting
from a more intense premixed combustion stage, in general, the simulations
accurately reproduce the combustion characteristics under mixing controlled
operation.

Table 4.6 compares the experimental and modeling results in terms of
gross indicated efficiency (GIE), maximum pressure rise rate (maxPRR),
NOx emissions and PP. In general, it is shown that the experimental results
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Figure 4.3. Effect of cell size on (Left) HRR and (Right) NOx emissions .

Table 4.6. Comparison of the selected key parameters between experiments and CFD
results with diesel.

Case
GIE maxPRR NOx PP

[%] [bar/deg] [g/kWh] [bar]

SOI -13
Exp 44.43 5.88 2.9 188.12

Diesel CFD 42.48 6.19 3.28 188.16

SOI -10
Exp 43.31 4.72 2.05 173.27

Diesel CFD 42.37 5.16 2.58 174.2

SOI -8
Exp 42.3 4.7 1.66 164.75

Diesel CFD 42.37 4.71 2.13 166.95

agree with the simulations adequately. The NOx emissions are slightly
over predicted by the simulations; however, since the trends are captured
accurately, the results are deemed acceptable. Additionally, the CFD results
show lower IMEP and GIE values mainly due to the pressure evolution during
the expansion stroke, where it is underpredicted in all 3 cases. This drop in the
cylinder pressure results from the differences in HRR observed in all 3 cases
around 27 deg. After Top Dead Center (aTDC), as the CFD results show a
sudden HRR decrease while the experimental results do not show this effect.

After performing the CFD model validation with diesel fuel, the same
model setup was then used to carry out simulations with DME. The quantity
of fuel injected was increased by adjusting the Dnoz (from 214µm to 300µm)
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Figure 4.4. Comparison of Pcyl and HRR between CFD and experiments at (up)
SOI -13 cad, (middle) SOI -10 cad and (bottom) SOI -8 cad .
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Figure 4.5. CFD results of Pcyl and HRR using diesel and DME as fuels.

to match the energy injected in the diesel case keeping the injection length
and pressure constant. The comparison of the pressure and HRR profiles of
the CFD results with diesel fuel and DME is shown in Fig. 4.5.

Despite not having experimental results operating with DME to compare
directly with the modeling results, the main differences between diesel fuel
and DME are consistent with those found in the literature. Fig. 4.5 shows
a faster HRR for DME leading to higher PP and higher GIE, as seen in
Table 4.7. The higher PP and GIE is due to the shorter ignition delay of
DME and increased mixing energy resulting from the higher fuel quantity.
In relation to NOx emissions, there is some uncertainty since it is not clear
if DME levels should be higher or lower than those operating with diesel
since there are multiple competing effects [27] [28]; however, the general
trends of the model working with DME are similar to the diesel cases, as
seen in Table 4.7. In addition, as reported in the literature carbon monoxide
(CO), unburnt hydrocarbons (UHC) and soot emissions generated by DME
combustion systems are noticeably lower than the diesel values [29], and for
this reason they are not considered as restrictions for the optimization so they
are not taken into account in the validation process.

To summarize, the KIVA-3v CFD code was validated against experimental
data for diesel fuel and found to yield acceptable results. The previously
validated DME reaction mechanism and spray model was used to simulate
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Table 4.7. Comparison of the restricted parameters and performance between diesel
and DME fuels.

Case
GIE GIW maxPRR NOx PP

[%] [kJ] [bar/deg] [g/kWh] [bar]

SOI -13
Diesel CFD 42.48 4790 6.19 3.28 188.16

DME CFD 42.82 4854 6.14 2.81 193.88

SOI -10
Diesel CFD 42.37 4760 5.16 2.58 174.2

DME CFD 42.55 4808 5.13 2.1 177.72

SOI -8
Diesel CFD 42.37 4760 4.71 2.13 166.95

DME CFD 42.38 4778 4.71 1.74 168.85

DME combustion and was shown to follow the general trends discussed in the
literature review. Accordingly, it is concluded that the integrated CFD model
setup is suitable for performing the optimization of the engine combustion
system operating with DME.

4.4 Optimization tools

4.4.1 Injector profile generator

The injection rate profile has a critical effect on the combustion process so
in order to be consistent with the experimental data, an in-house 0D model
code capable of reproducing any injection rate profile was developed. Due to
its high flexibility, any profile can be adjusted and then modified to fit the
required values. The required inputs to make the model work depend on the
case, for both optimizations the fuel mass was kept constant so only the IP
was modified.

The 0D model needs experimental data from the same injector in order to
generate new consistent results. The original shape is adjusted using Bezier
curves so a continuous set of data is available and then modified to fit the
required IP and mass. Fig. 4.6 shows the experimental injection profiles and
the curves obtained from the software, which used the 1200 bar case to be
trained and then predict the other profiles.

A critical aspect of the injection is the slope of the injection rate when the
injector receives the electric signal and when the signal ends. It can be seen in
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Figure 4.6. Reference injection profile, 2 new generated profiles with the 0D model
and the adjusted profiles with Bezier curves.

Fig. 4.6 how the injection profile generator keeps the original slopes, even for
the pilot injection, what ensures the consistency with the experimental data.

4.4.2 Bowl geometry generator

The generation of the combustion chamber geometry is one of the most
time consuming steps in an optimization, specially when coupled with an
evolutionary optimization method with a large population. For that reason,
a code capable of generating an arbitrarily shaped axisymmetric piston bowl
geometry and automatically producing a block structured mesh suitable for
KIVA-3v and StarCD was developed. The code generates the new piston shape
and adjusts the clearance height to achieve a target CR. The bowl shape is
parametrized by five control points, as shown by p1 to p5 in Fig. 4.7. Each
control point is connected by a Bezier spline that is controlled by another 8
offline control points (Bezier control points that are not part of the piston
shape), which are represented as arrows in Fig. 4.7.

Since the control points of a Bezier curve are compulsory tracks for the
curve, they determine the depth of the bowl and if it is going to be reentrant or
not, giving a general idea of the shape of the combustion chamber. The control
points need 2 coordinates to completely define them ( X and Y position) so a
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total of 26 parameters are needed to complete define the final spline generated
by the code. However, 26 inputs are not acceptable due to the required size of
the population that would be needed to optimize an engine with that flexibility.
In order to reduce the inputs of the geometry tool several hypothesis were
assumed.

� The bowl chamber geometry is symmetric, so the slope of the spline in
the symmetric axis is 0 and only 1 parameter is need to define the arrow
of the Bezier point 1 (p1t2h).

� The piston shape defined by the 5 bezier points will always connect to a
horizontal line so the slope of the curve in the last Bezier point is also 0
and the arrow of the last Bezier point can be defined only by 1 parameter
(p5t1h)

� The connection between 2 curves defined by Bezier points should be
smooth so the slope of both of the arrows for each Bezier point should
have the same value. This means that only 3 parameters are needed to
define both arrows on each bezier point.

� The X coordinate of the first Bezier point is always 0.
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� The Y coordinate of the second Bezier point is 0, being always the point
with maximum depth. The derivative on this point is also 0.

Taking into account all the hypothesis only 15 input parameters are needed.
The Bezier points function of the 15 input parameters are defined in equation
4.1 to 4.27, where the bowl maximum width is defined as maxW, the bowl
maximum depth is defined as maxD, cell size is defined as dS and G1-G15 are
the 15 input parameters optimized in the evolutionary optimization.

p1h � 0 (4.1)

p1v � G1 � pmaxD � 3 � dSq (4.2)

The coordinate p1v can not have the value maxD in order to avoid
interactions between the bowl central protrusion and the injector so the
maximum value that p1v can reach is limited.

p2h � G2 �maxW (4.3)

p2v � 0 (4.4)

p3h � p2h�G3 � pmaxW � p2hq (4.5)

p3v � G4 �maxD (4.6)

The parameter G5 is the only parameter that goes from -1 to 1 because it
has to define if the geometry is reentrant or non-reentrant. If G5 is positive
and the geometry is non-reentrant, the code uses equation 4.7 to define p4h.

p4h � p3h�G5 � pmaxW � p3hq (4.7)

However, if the geometry is reentrant, the code uses equation 4.8 to define
p4h.

p4h � p3h�G5 � pp3h� p2hq (4.8)

p4v � p3v �G6 � pmaxD � p3vq (4.9)

p5h � p4h�G7 � pmaxW � p4hq (4.10)

p5v � p4v �G8 � pmaxD � p4vq (4.11)

p1t2h � G9 � pp2h� p1hq (4.12)
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p1t2v � 0 (4.13)

p2t1h � G10 � pp2h� p1hq (4.14)

p2t2h � G10 � pp3h� p2hq (4.15)

p2t1v � p2t2v � 0 (4.16)

p3t1h � G11 � pp3h� p2hq (4.17)

p3t1v � G12 � pp3v � p2vq (4.18)

p3t2h � G12pmaxW � p3hq (4.19)

p3t2v � p3t2h �
p3t1v

p3t1h
(4.20)

p4t1h � G13 � pp4h� p3hq (4.21)

p4t1v � G14 � pp4v � p3vq (4.22)

Similar to equation 4.7 and 4.8, if the bowl has a non-reentrant shape
equation 4.23 is used.

p4t2h � G14 � pp5h� p4hq (4.23)

if the bowl has a reentrant shape equation 4.24 is used.

p4t1h � G14 � pp2h� p4hq (4.24)

p4t2v � p4t2h �
p4t1v

p4t1h
(4.25)

p5t1h � G15 � pp5h� p4hq (4.26)

p5t1v � 0 (4.27)

In order to have a better understanding of the influence of each geometric
parameter on each dimension of the bowl, Fig. 4.8 represents the 15
parameters.

To illustrate the flexibility of the code, a test was performed to the in-house
geometry code with the most common bowl geometries until date and results
are shown in Fig. 4.9.
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4.4.3 Pumping work model

An in-house code is used to estimate the pumping work needed to achieve
the required intake boost to estimate the net indicated work (NIE). The model
is based on basic thermodynamic calculations supported by the hypothesis
marked below.

� Compressor and turbine work are considered equal so no mechanical
losses are taken into account.

� The compressor and turbine efficiencies are considered constant.

� A constant pressure drop is considered between the compressor and the
engine intake valve to simulate the effect of the aftercooler.

The target of this Thesis is to optimize an engine and not a turbocharger.
Accordingly, it is assumed that, for every case simulated, the turbocharger
has been chosen to have a compressor and turbine efficiency of 70% and
80%, respectively. The aftercooler pressure drop is set to 0.15 bar. These
assumptions have been previously accepted in other studies with successful
results [26].

4.4.4 Genetic algorithm

In this section the selection of the best GA for this Thesis and the optimal
calibration for that algorithm is performed. Note that this approach is
not performed for the non-evolutionary optimization methods because in the
literature it was concluded that the RSM coupled with a CCD was the best
option due to its capability of predicting non-linear shapes and coupled effects.

4.4.4.1 Genetic algorithm benchmarking

The genetic algorithms presented in section 3.3.1 were written in Matlab
and their performance was compared. The fitness function used for the
performance test is described in equation 4.28, where s is the number of
variables.

FitnessFunc �
s¹

i�1

|15 �Xi � p1 �Xiq � sinpn � π �Xiq| (4.28)
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Figure 4.10. Fitness function output for s=2 and n=5.

When n is odd, the function has its maximum at 0.5 and many peaks with
local optimums to make it difficult to find the absolute solution. Fig. 4.10
shows the fitness function output for s=2 and n=5. All three algorithms
were tested with this function starting from the same initial point [0.1 , 0.1
, 0.1] and the results are shown in Fig. 4.11. The optimizations were run
until 2000 function evaluations were performed or the optimum was reached.
Additionally, all the optimizations were repeated 100 times because they are
not guaranteed to reach the same optimum every time due to the randomness
involved in the mutations. The plotted line represents the average results every
100 function evaluations and the gray shade represents the dispersion of the
100 repetitions. It can be seen that, even though all three genetic algorithm
are able to reach the optimum after 500 function evaluations, the DKGA
algorithm is able to always find the absolute optimum after 800 evaluations
while the NSGA-II needs 1300 evaluations and the micro-GA can not assure
a 100% success rate with 2000 function evaluations.

The difficulty of the test was increased to s=2 and n=25, Fig. 4.12 shows
the output of the benchmark function. Following the same criteria, 100
repetitions of the optimization were performed and the results are shown
in Fig. 4.13. Similar to the previous test, DKGA, NSGA-II and micro-GA
are able to find the absolute optimum, however, the differences between the
algorithms seem to increase with the increasing difficulty. After 2000 function
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Figure 4.11. Optimization results for the benchmark function with 2 variables and
n=5 with DKGA algorithm, micro-GA and NSGA II. Top figure compares the average
result for 100 repetitions with the three optimization algorithms. The bottom figures
show the average result of 100 optimizations with a line and the dispersion with a gray
shade.

evaluations the DKGA algorithm is the only one that guarantees to find
the absolute optimum. This means that the DKGA is able to avoid local
optimums and keep searching for the absolute optimum better than the other
two algorithms, which is a key aspect of this type of optimizations.

A third difficulty was tested with s=22 and n=25. The number of variables
chosen was based on the number of inputs optimized in the evolutionary
optimization chapter aiming to simulate a problem with equivalent difficulty.
Additionally, 2000 function evaluations were not considered enough to give an
accurate result of the performance of the algorithm with this problem so it was



4.4. Optimization tools 85

Figure 4.12. Fitness function output for s=2 and n=25.

increased to 15000 function evaluations. The results are shown in Fig. 4.14.
These results show that the DKGA is able to find the optimum on most of
the repetitions after 13000 function evaluations while the micro-GA and the
NSGA-II are not able to find the absolute optimum in any of the repetitions.

A final test was performed with a different test function. It is known that
the behavior of the benchmark functions and an engine are not necessarily
equal so in order to have a closer view of the algorithms with a real case, the
response surface calculated in section 5.3 for the non-evolutionary optimization
with 6 parameters was used to test the performance of the DKGA, micro-GA
and NSGA-II. The results are shown in Fig. 4.15. Similar to the previous
tests, the DKGA is faster and more robust than the rest of the algorithms.
Although the reasoning behind it is unclear, the NSGA-II and micro-GA were
outperformed by the DKGA. For that reason, it was chosen for this study and
was coupled with KIVA-3v.

4.4.4.2 DKGA setup parameters

The DKGA coupled with the benchmark fitness function for 22 variables
and n=25 was tested to determine the best values for the algorithm
parameters. The main parameters of the DKGA are the σ that controls the
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Figure 4.13. Optimization results for the benchmark function with 2 variables
and n=25 with DKGA algorithm, micro-GA and NSGA II. Top figure compares the
average result for 100 repetitions with the three optimization algorithms. The bottom
figures show the average result of 100 optimizations with a line and the dispersion
with a gray shade.

convergence law, the population and the maximum number of generations.
Fig. 4.16 shows the average results for different σ after 100 repetitions. It
can be seen that for higher σ values, the algorithm shows a faster converge
rate because the mutation range is quickly restricted and the case is forced
to converge. However, if σ is too high, the algorithm has more difficulties to
avoid local optimums. In this case the optimum seems to be at σ � 7 were
there is a compromise between a fast convergence but enough mutation range.

Additionally, different populations were tested and the results are shown
in Fig. 4.17. The results show that higher population always improve the
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Figure 4.14. Optimization results for the benchmark function with 22 variables
and n=25 with DKGA algorithm, micro-GA and NSGA II. Top figure compares the
average result for 100 repetitions with the three optimization algorithms. The bottom
figures show the average result of 100 optimizations with a line and the dispersion
with a gray shade.

results. This behavior was expected since for the same amount of generations,
the higher the population the higher the chances of finding a better optimum
each generation. Therefore, a population of 529 cases per generation was
chosen because it was the maximum capability for the available resources. It
has to be taken into account that higher population means more simulations
but since they are all done simultaneously, increasing population does not
increase the time cost of the optimization significantly, contrary to increasing
maximum number of generations.
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Figure 4.15. Optimization results for the RSM generated in the non-evolutionary
optimization with 6 parameters with DKGA algorithm, micro-GA and NSGA II. Top
figure compares the average result for 100 repetitions with the three optimization
algorithms. The bottom figures show the average result of 100 optimizations with
a line and dispersion with a gray shade.

Finally, a set up of 529 cases per generation and σ = 7 was used to test the
effect of the maximum number of generations. Fig. 4.18 shows the results for
30, 40 and 50 maximum number of generations. It can be seen that the average
results of the optimization is not very sensitive to the maximum number of
generations; however, Fig.4.18 (Right) shows that the dispersion of the results
for the 100 repetitions is strongly affected by this parameter. Even though the
time cost of the whole optimization is proportional to the maximum number of
generations and the time cost is one of the main aspects of a GA optimization,
the robustness and reliability of the optimization was chosen as the main
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Figure 4.18. (Left) Average optimization results for different maximum number
of generations, (Right) maximum dispersion of the 100 optimization repetitions for
different maximum number of generations.

criteria for this optimization and, as seen in Fig 4.18 (Right), a value of 40
gives the best result.

4.5 Optimization methodology

Accuracy is one of the most difficult aspects when optimizing unknown
processes that cannot be tested experimentally. Part of this inaccuracy
comes from the CFD model but an important fraction also comes from the
optimization methodology. For that reason two methodologies (based on the
same principle) were developed for this study and are described in this section.

4.5.1 Non-evolutionary optimization methodology

A sketch of the methodology for non-evolutionary optimizations is
represented in Fig. 4.19. The methodology described in this section has 3
different stages. Each of them has their own tools, which are described in the
tools section.

The first step is the configuration of the CFD model used for the later
optimization. It has to be properly calibrated and validated with experimental
data because the main objective of the optimization process is to vary
parameters in a given range so not having a well calibrated model could change
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Figure 4.19. Sketch of the methodology for non-evolutionary optimizations.

the trends provided by the engine. The following stage is dedicated to the
optimization of the combustion system. The methodology for this optimization
is based on RSM methods. The final stage focuses on validating the optimums.
Once the RSM is applied, a series of convenient optimums are obtained from
the response surface and those optimums have to be validated with the CFD
model to ensure the accuracy of the method. Additional validations at other
operating conditions are necessary to check if the new set up has a better
performance than the original in well-representative points of the engine map.
Finally, the optimum configuration has to be validated experimentally to check
is the results predicted by the CFD are correct.

4.5.2 Evolutionary optimization methodology

A sketch of the methodology for evolutionary optimizations is represented
in Fig. 4.20. The methodology described in this section has 3 different stages.
Each of them has their own tools, which are described in the tools section.

The first step is common with the non-evolutionary optimization, the
configuration of the CFD model has to be properly calibrated and validated
with experimental data. This step becomes a hard task when the optimization
is focused on new combustion concepts or fuels because the experimental
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Figure 4.20. Sketch of the methodology for evolutionary optimizations.

data available is limited, accordingly new ways of validation have to be
found. An example of this issue can be found in the validation of the CFD
model working with a DME fueled diesel engine, the results are presented
in section 4.3.2.2. The second stage is dedicated to the optimization of the
combustion system. The methodology for this optimization is based on genetic
algorithms, particularly the DKGA. This method was selected due to its
superior performance compared to other algorithms. Finally, the optimum
obtained from the optimization process has to be validated experimentally.

4.5.2.1 Optimization methodology improvements

Most of the tools presented in this chapter were developed and coded
for this work except for the CFD codes and part of the DKGA code. The
CFD codes can not be modified but the GA code, which is the key of the
optimization, was modified to be more robust and faster. Even though not all
the ideas ended up with successful results, some of them are presented in this
section.

Mutation generation

It was said in the description of the DKGA algorithm that the mutated
values were a random number from a normal distribution with its mean set to
the non-mutated value and the standard deviation controlled by the DKGA.
That definition work well when the non-mutated value is far from the input
range limit but when the mean value of the normal distribution is close or
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Figure 4.21. Mutation normal distribution for (Left) original behavior, (Right)
improved behavior. Input range limit represented by a red line.

at the range limit, all the values higher than the boundary are set to the
maximum value allowed, generating an increasing probability of mutating to
the limit value. This behavior can be seen in Fig. 4.21 (Left). That aspect
of the GA was noticed because many input parameters were located at the
boundaries of the input ranges after a few iterations and they were not able
to properly scan the rest of the domain. In order to solve the problem it
was proposed to treat the boundary as a mirror. The behavior of the new
proposed method is represented in Fig. 4.21 (Right). The performance of
both approaches was tested for the same problem and the results proved the
superiority of the new approach.

After the mutation operator improvement the calculations and the input
values distributions were closely monitored and a potential new problem was
noticed. The NA of many optimizations was guided towards a high value
(usually 90 deg or close) because that way the spray did not have to interact
with the geometry and then, once the air management and injection settings
were optimized, the NA was reduced and the geometry was finally optimized.
This behavior has a negative impact on the optimization because the geometry
(15 parameters out of the 22 optimization parameters) has almost no influence
for half of the optimization and many resources are wasted during those
generations. The solution proposed was to force the algorithm to divide the
NA optimization range in sections, as seen in Fig.4.22, and always keep at
least two children in each of the NA range sections (two children per section
are kept with the elitism mechanism). However, after several tests the new
approach was rejected, mainly because forcing the elitism mechanism to store
children with different NA values is equivalent to divide the potency of the
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Figure 4.22. Range of NA parameter divided in 5 sections.

algorithm into the number of NA sections and the results proved to be worse
in all cases.

Restriction function

This idea was born due to the difficult task of programming an automatic
mesh generator for Kiva. Once the bowl geometry is generated by the input
parameters and bezier curves, it has to be converted into a mesh readable by
Kiva. However, the Kiva mesh generator has not been updated for a long time
and that means that it is very rigid, the curves have to be correctly structured
into blocks and the cells have to be properly described. Knowing the flexibility
of the geometry generator tool presented in section 4.4.2 it is understandable
that some critical shapes (note that not all the shapes are as good looking as
the ones presented in this chapter) can not be properly converted into a mesh
and the CFD cases would not work. For that reason, when the first attempts
to run the complete system was successful it was noticed that about 20% of
cases produced some kind of error due to the geometry and that error was
reduced progressively while the optimization advanced due to the convergence
nature of the algorithm. That 20% of the cases that do not work imply that
the effective population of the optimization is reduced by a 20% and lower
population reduces the effectiveness and robustness of the optimization.

The solution to the problem was to apply a double check to each generated
case in each generation of the optimization with a function called restrictions.
The double check consists on checking the Kiva mesh generator software
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output to make sure that the mesh is properly generated and no inversion
cells are found. This solution increased the time needed to generate a complete
new generation of cases by about 1 hour but was able to reduce the amount of
error cases to less than 2%. The restrictions function was further expanded to
other aspects of the optimization process and the error cases per generation
was finally reduced to less than 1%.

DKGA coupled with COSSO

One of the main problems with CFD optimization coupled with genetic
algorithms is the time cost. Usually, CFD simulations of ICE engines take
several hours or even days to finish so reducing the number of generations
that a genetic algorithm needs to converge is one of the main research topic in
this field. For that reason a new approach was proposed, the coupling of the
DKGA algorithm with the COSSO tool, a non-parametric 1 regression model
based on the Component Selection and Smoothing Operator (COSSO) [27].
The sketch of the new optimization methodology is presented in Fig. 4.23.

The main idea behind this approach is that the COSSO tool does not
affect the genetic algorithm process when the predictions of COSSO are not
good enough, but when the predictions of COSSO are good enough, then that
optimum obtained form the COSSO tool is added to the elitism group. With
this approach a new complementary convergence criteria was added, if the
COSSO tool finds three times in a row an optimum that becomes the fittest
individual of the next DKGA generation, then the optimization is considered
converged. The approach was tested several times with different number of
generations and populations but the COSSO tool was never able to improve
the predictions of the DKGA. Therefore, this approach was removed because
it increased the postprocess time cost.

4.6 Summary and conclusions

The theoretical and experimental tools used in this Thesis were presented
in detail in this chapter. In the experimental tools section, the experimental
facilities used to obtain the validation data for the CFD models calibration
were presented. In the theoretical tools section, the CFD softwares and the
in-house codes developed for this Thesis were presented. Additionally, all the
genetic algorithms presented in the review chapter (see section 3.4 to find the

1Non-parametric regression models are models that do not have a predefined predictor
form. That means that they are more flexible and able to better adjust diverse data shapes
but at the same time they need more data to be trained.
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Figure 4.23. Sketch of the structure of a DKGA algorithm coupled with COSSO.

explanation of why non-evolutionary algorithms are used for CDC engines and
evolutionary algorithms are used for DME fueled engine.) were compared and
the results proved a clear superiority of the DKGA code. Finally the set up
constants for the DKGA were tested and optimized, ensuring that all the tools
presented in this chapter were ready to use in it optimal condition. Finally,
the methodologies followed during the optimizations performed for this thesis
and the most relevant improvements were described.

The tools and methodologies presented in this chapter, together with
the knowledge obtained from the literature review chapters ensures that the
objectives proposed for this Thesis can be achieved.
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5.1 Introduction

The research work reported in this chapter describes the results obtained
from the first optimization performed for this Thesis. It is important to
remember that pollutant emission standards are becoming difficult to achieve
and due to the promising long life of the diesel engines it is compulsory to keep
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researching in this topic. For that reason, this chapter focuses on optimizing
the combustion system of a MD 4-cylinder 4-stroke CDC engine following the
non-evolutionary optimization methodology developed for this Thesis.

The optimization process carried out is divided in 2 stages, an initial and
simpler optimization with 4 parameters mainly focused on geometry hardware,
and a second more complete and complex optimization with 6 parameters that
includes air management and injection parameters. Each stage follows the
methodology developed for non-evolutionary optimizations.

� The initial part presents the optimization setup, this is, the parameters
that are going to be optimized and the ranges of those parameters.
Additionally, the objective of the optimization and the restrictions
imposed for pollutant emissions are presented. Note that the first step
where the CFD models are validated and calibrated discussed in the
methodology section and will not be included in this chapter.

� The second part presents and analyzes the results. The optimum
configuration is described and understood. In addition, the cause/effects
of the inputs and outputs are detailed to clarify the reasons behind
the new optimum configuration. Finally, the optimum configuration
is applied to other operating conditions to ensure that the new
configuration performs well in all engine operating points.

� The last part of the methodology includes the experimental validation
of the optimums obtained from the CFD calculations. This step was not
applied to the 4 parameter optimization since the benefits observed after
the optimization were marginal, therefore there is only experimental data
of the 6 parameter optimization optimums.

Both stages focus on two objectives: improve ISFC while keeping NOx-
soot trade-off (Opt 1) and improve NOx-soot trade-off while keeping ISFC
(Opt 2). It is important to highlight how despite the well-known trade-
off existing between ISFC and BSFC, specially when the boost pressure is
adjusted, the analysis was carried out considering ISFC and not BSFC since
this research focuses on understanding the requirements of the combustion
system to optimize the energy conversion from heat to work respecting
emission constraints. These processes are intrinsically controlled by the
combustion process, while the mechanical losses (including pumping losses) are
not accounted for since they depend on external factors not directly controlled
by the combustion process such as the lubrication and surface finish (friction



102
5. Conventional combustion engine optimization with non-evolutionary

optimization methods

losses), the mechanical efficiency of auxiliary systems (auxiliary losses) or the
turbocharging system efficiency and its matching (pumping losses).

Most of the RSM calculations are now shown in the results section but a
detailed description of the process and the mathematical models used for this
section can be found in annex 5.A.

5.2 Stage 1: 4 parameters DOE optimization

This section presents the results of the first optimization performed for
this Thesis. It is the simplest optimization with only 4 parameters, this
means that not all the important parameters can be considered, however,
it also means that it is fast, needs less resources and provides early useful
information for future stages. For that reason, this stage optimizes mainly
geometric parameters aiming to obtain early information about the effect of
the geometry over the combustion system.

5.2.1 Optimization parameters and setup

This stage focuses on investigating the impact of the engine hardware
and nozzle configurations on emissions and fuel consumption, this is, the
combustion chamber geometry, NA (note that in this Thesis the acronym
NA refers to half included nozzle angle) and swirl number. These inputs were
chosen trying to follow an optimization path based on designing a quiescent
combustion system with low swirl and non-reentrant bowl shape, which is
expected to improve engine efficiency by reducing the convective HT to the
combustion chamber walls. The optimization focuses on finding both Opt1
and Opt2 (see table 4.5) for the medium speed/load condition, evaluating later
the optimum configurations at low speed/load and high speed/load operation
conditions. Air management and injection settings were kept constant at
their reference values. Then, a double shot injection (pilot plus main) at
the reference timings and IP were considered. The engine CR was also kept
constant at the reference values shown in Table 4.1.

The bowl geometry was parametrized by means of two geometrical
relations, the ratio between the rip bowl diameter (d) and the cylinder bore
(B) and a second parameter (K) defined specifically to control the reentrant
shape of the bowl avoiding the artificial generation of extremely deformed bowl
shapes. Due to its definition, included in Fig. 5.1 together with the geometry
of the central point of the DOE, the higher the K the more reentrant bowl
shape.
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Figure 5.1. Sketch of the bowl geometry for the central point of the DOE and
definition of the K factor.

Table 5.1. Ranges of the input factors for the optimization Stage 1.

d/B K swirl NA

[-] [-] [-] [deg]

Ref 0.57 0.14 2 74

min 0.53 0 0.5 70

max 0.63 0.2 2.5 78

In order to implement these geometric inputs in the optimization, the
geometry generator tool presented in section 4.4.2 was simplified, the original
15 geometric parameters were combined into two final inputs, d/B and K,
limiting the flexibility of the original tool to match the resources available for
this optimization. The ranges for the input parameters used in Stage 1 are
shown in Table 5.1.

As said in the methodology section, a CCD design defined the DOE test
plan and a total of 25 simulation were needed. The distribution of the 25 cases
compared to the baseline case are shown in Fig. 5.2.

5.2.2 Results and discussion

Before presenting the optimum and understanding the reasons behind its
improvement, it is mandatory to understand the effect of each parameter
optimized and why the optimum followed that optimization path. Fig. 5.3
and 5.4 show the effect of bowl geometry (d/B and K) and the effect of swirl
and NA respectively on the end of combustion angle (CA90abs), ISFC and
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Figure 5.2. DOE test plan for the input parameters in Stage 1. Reference engine
represented as a triangle.

NOx-Smoke emissions. In these figures, the red line1 shows the isolated effect
of the represented input parameter when the other inputs are set at constant
values. The shade represents the results of the response surface, which contrary
to the red line, takes into account the coupled effects between the inputs.

The general behavior of the inputs are already known so these red lines
are only used to check if the isolated effects of each parameter are consistent,
this is, if the RSM method and the CFD model are capturing properly the
engine behavior. In this case it can be seen how the isolated effect of the
swirl is well known [1]. Higher swirl values help the mixing process producing
an improvement in ISFC followed by a NOx increase and a Smoke reduction.
Regarding the geometric parameters, it is known that their effect over the
combustion parameters is case specific so they are considered correct [2].

Focusing on the main general trends observed in Fig. 5.3, it can be seen
that the geometric parameters have little effect over the engine behavior.
Increasing bowl diameter (d/B) results in a slightly later CA90abs but ISFC
stays unaffected. Higher d/B also decreases NOx but its effect is moderate
and the engine is able to achieve the emissions target for almost every d/B
value. In terms of the reentrant shape of the bowl (K), more reentrant bowls
advance the CA90abs while decreasing ISFC. NOx emissions also decrease for
higher K but Smoke was much less affected.

Switching to the most relevant trends observed in Fig. 5.4, increasing swirl
advances CA90abs and increases combustion efficiency reducing ISFC. Higher

1In some figures the red line is not present because it is located over the axis range.
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Table 5.2. Optimized combustion systems after Stage 1.

d/B K swirl NA

[-] [-] [-] [deg]

S1 Opt1

(best ISFC)
0.605 0.15 2 76

S1 Opt2

(best NOx-Smoke)
0.595 0.06 2 75

swirl also increases NOx and reduces Smoke making it impossible to satisfy
Smoke target levels with low swirl levels. Finally, increasing NA provided
better results in terms of ISFC with advanced CA90abs but increases NOx
emissions. The Smoke emissions, just like with other inputs, is able to reach
any wanted value for any NA value.

On the light of the results, Table 5.2 describes the two optimum combustion
systems defined following two different optimization paths, minimizing ISFC
keeping emissions (S1 Opt1), and improving the NOx-Smoke trade-off
accepting 2% ISFC penalty (S1 Opt2). The optimized bowl profiles compared
to that of the reference combustion system are shown in Fig. 5.5. Observing
this data, both optimization paths resulted in similar bowl diameter, with
d/B around 0.6, but more reentrant shape was required for the minimum
ISFC criterion compared to the improving NOx-Smoke trade-off criterion. In
all cases higher NA than the reference engine were obtained, specially for the
minimum ISFC combustion system configuration, and swirl levels were forced
to be high to improve ISFC and control Smoke.

The two optimized configurations were modeled by CFD for their first
validation and the results are included in Fig. 5.6 compared to those of the
reference engine. It is shown how S1 Opt1 (best ISFC) provided slightly
decreased fuel consumption by less than 0.5%, while NOx slightly increases by
1.4% and the Smoke level is nearly unchanged, keeping Smoke below 0.1 FSN.
For S1 Opt2 (best NOx-Smoke trade-off) NOx decreases by 17% with Smoke
still below 0.1 FSN at the expense of a minor increment in ISFC by 0.7%, below
the acceptable limit. The two optimized piston bowl geometries were also
evaluated at the other two operating conditions, 1800 rpm - high load and 1200
rpm - low load. Results shown in Fig. 5.6 confirm that both optimized piston
bowl geometries also work adequately in these other operating conditions.
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Figure 5.3. Effect of d/B (top) and K (bottom) on key combustion, emissions and
performance parameters. Reference engine levels are included as dashed lines.
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Figure 5.4. Effect of swirl (top) and Nozzle included angle (bottom) on key
combustion, emissions and performance parameters. Reference engine levels are
included as dashed lines.
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Figure 5.5. Optimum combustion systems after Stage 1.

As a key conclusion of this Stage 1, the implementation of the original
attractive optimization path based on designing a quiescent combustion system
with low swirl and non-reentrant bowl shape was not possible because low swirl
would increase ISFC and Smoke emissions, at least keeping the reference air
management and injection settings defined by the current engine technology.
Additionally, this Stage 1 evidences the low potential of improvement in terms
of ISFC while keeping constant emissions attainable by optimizing only the
combustion chamber geometry of the engine. This very limited improvement
encourages the definition of a second optimization stage adding the key
air management (PIVC and EGR) and injection settings (SOI of the main
injection and IP) for further investigating the potential for ISFC reduction.

5.3 Stage 2: 6 parameters DOE optimization

This section presents the results of the second optimization performed for
this PhD project. From the results obtained in the first stage it was concluded
that the inputs optimized in Stage 1 were insufficient and could not show the
full potential of the geometry, therefore air management and injection settings
were considered together with the geometric parameters to perform the next
optimization.
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Figure 5.6. Stage 1 optimized combustion system assessment at 1200 rpm - low load
(top), 1600 rpm - half load (mid) and 1800 rpm - full load (bottom). Rf refers to the
reference combustion system, o1 to the S1 Opt1 and o2 to the S1 Opt2 combustion
systems.

5.3.1 Optimization parameters and setup

From the knowledge generated in Stage 1, this Stage 2 focuses on defining
a set of optimum combustion chambers, injection settings and air management
settings to improve ISFC while keeping pollutants under the reference engine
levels (see table 4.5). Since the maximum number of optimization parameters
considered as suitable to have an acceptable time cost is six, and the reference
NA and swirl level were both quite optimized, only the two geometrical
parameters related to the bowl shape (d/B and K) were kept for Stage 2.
The rest of the air management and injection settings were kept constant at
their reference values. This optimization is also performed at the medium
speed/load operating condition, evaluating the performance of the optimized
combustion systems in the other two operating conditions. The ranges for the
input parameters used in Stage 2 are shown in Table 5.3.
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Table 5.3. Ranges of the input factors for the optimization Stage 2.

Geometry Air manag. Injection

d/B K PIVC EGR IP SOI

[-] [-] [bar] [%] [bar] [deg aTDC]

Ref 0.57 0.14 2.28 13 1230 -0.5

min 0.53 0 2.28 13 1200 -4.5

max 0.63 0.2 2.48 23 1600 1.5

The geometric parameter definition can be found in section 5.2.1 and
the engine volumetric CR was kept constant at the reference value shown
in Table 4.1.

The test plan for the Stage 2 optimization needed a total of 77 simulations.
The distribution of the cases compared to the baseline case are shown in
Fig. 5.7.

5.3.2 Results and discussion

The impact of the input parameters over the output responses was analyzed
in order to establish clear cause/effect relationships. Fig. 5.8 shows the effect
of bowl geometry (d/B and K), Fig. 5.9 the effect of air management settings
(PIVC and EGR) and Fig. 5.10 the effect of injection settings (IP and SOI)
on the end of combustion angle (CA90abs), ISFC and NOx-Smoke emissions.
In these figures, the red line shows the isolated effect of each input parameter
when the other inputs are set at constant values. The shade represents the
results of the response surface.

Similar to the previous section, red lines are only used to check if the
isolated effects of each parameter are consistent. Higher IP and PIVC help
the mixing process and improve ISFC but increase NOx emissions [3]. Higher
EGR has a strong effect over NOx but worsens ISFC and Smoke levels at the
same time [4]. Finally earlier SOI is able to improve ISFC while increasing
NOx [5].

Focusing on the main optimization trends observed in Fig. 5.8, increasing
bowl diameter (d/B) clearly delays CA90abs and increases ISFC even
compensating its effect by adjusting the other five input parameters. The
impact on NOx and Smoke emissions is moderate and both can be easily
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Figure 5.7. DOE test plan for the input parameters in Stage 2. Reference engine
represented as a triangle.

controlled. Increasing K has a moderate impact on CA90abs and ISFC but,
contrarily to what was observed in Stage 1, now its effect can be compensated
by combining properly the other input factors and the optimum has shifted
towards a value of 0.1. Additionally, NOx emissions increase with K while
Smoke only increases for highly re-entrant bowl shapes.

Regarding the impact of air management settings shown in Fig. 5.9,
increasing PIVC results in a slightly earlier CA90abs and then in a reduction
in ISFC. The impact on NOx and Smoke emissions is moderate and levels
below those generated by the reference engine can be easily attained at all
PIVC levels. Increasing EGR retards CA90abs and then increases ISFC but,
on the contrary, NOx emissions are sharply reduced while Smoke emissions
can be controlled by adjusting the other parameters.

Closing this analysis by observing the effects of injection settings included
in Fig. 5.10, CA90abs advances and ISFC decreases by increasing IP, and the
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impact on NOx and Smoke can be also minimized by adjusting the other input
parameters. Advancing SOI advances CA90abs and then decreases ISFC. NOx
emissions increase while Smoke can be kept at levels below the reference engine
for all SOI values.

Results confirm how the bowl shape is strongly coupled to the injector
nozzle configuration and, in this case, the NA is slightly narrow (74 deg) and
then the optimized combustion systems shifts towards bowls with lower d/B
values. Additionally, the path for optimizing ISFC starts by advancing SOI to
decrease it significantly and introducing the suitable rates of EGR in order to
control NOx emissions keeping a moderate impact on ISFC, while adjusting
IP and PIVC helps to compensate the negative effect of EGR over ISFC and
control Smoke emissions. This path fits with the current trends followed in
the field of diesel engine development.

The NOx-ISFC trade-offs obtained after Stage 1 and Stage 2 are included
in Fig. 5.11 (left). It shows the limited potential for optimization provided
by modifying only the geometry (Stage 1), while this potential increases
significantly by including the air management and injection settings (Stage
2). However, an important limitation was detected after the analysis of the
Stage 2 related to the relation between maximum cylinder pressure (Pmax)
and ISFC observed in Fig. 5.11 (right). It is evident how ISFC is constrained by
Pmax, generating an additional trade-off that must be carefully considered.
In fact, the current engine ISFC level cannot be further improved without
increasing Pmax, even optimizing the combustion chamber geometry and air
management/injection settings altogether.

As in Stage 1, the same two optimization paths were followed for the
optimization, the first based on minimizing ISFC and the second on improving
the NOx-Smoke trade-off accepting a small ISFC penalty of 2%. The S2
Opt1 was selected following the first path, while the S2 Opt2 was selected
considering the second path. The combustion system definitions for those
optimal configurations are included in Table 5.4, and the bowl profiles
compared to the reference combustion system and Stage 1 optimums are shown
in Fig. 5.12.

In this Stage 2 the two optimization paths provided quite similar bowl
geometries, with d/B 0.56 for best ISFC against 0.55 for best NOx-Smoke
and K equal to 0.1 in both cases. Injection settings were also similar with
the highest IP of 1520 bar and the earliest SOI of -3.3 deg aTDC, and they
even share the highest PIVC equal to 2.44 bar. Therefore, the key difference
between both optimization paths is observed in the EGR level, which shifts
from 17% for the best ISFC to 21% for the best NOx-Smoke.
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Figure 5.8. Effect of d/B (top) and K (bottom) on key combustion, emissions and
performance parameters. Reference engine levels are included as red lines.
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Figure 5.9. Effect of PIVC (top) and EGR (bottom) on key combustion, emissions
and performance parameters. Reference engine levels are included as red lines.
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Figure 5.10. Effect of IP (top) and SOI (bottom) on key combustion, emissions and
performance parameters. Reference engine levels are included as red lines.
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Table 5.4. Optimized combustion systems after Stage 2.

d/B K PIVC EGR IP SOI

[-] [-] [bar] [%] [bar] [deg aTDC]

S2 Opt1

(best ISFC)
0.56 0.1 2.44 17 1520 -3.3

S2 Opt2

(best NOx-Smoke)
0.55 0.1 2.44 21 1520 -3.3
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Figure 5.12. Optimized piston bowl profiles for best ISFC (left) and for best NOx-
Smoke (right).
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Figure 5.13. Stage 2 optimized combustion systems assessment at 1200 rpm - low
load (top), 1600 rpm - half load (mid) and 1800 rpm - full load (bottom). Rf refers to
the reference combustion system, o1 to the S2 Opt1 and o2 to the S2 Opt2 combustion
systems.

Fig. 5.13 compares the CFD results of the two optimized configurations
from Stage 2 with those obtained with the reference combustion system.
According to these results, S2 Opt1 and S2 Opt2 decrease fuel consumption
by 4.3% and by 3.2% respectively, NOx slightly increases by 1% for S2 Opt1
but sharply decreases by 43% for S2 Opt2. Smoke level is kept controlled at
FSN levels below 0.1 in both cases.

As shown in Fig. 5.13 the optimized piston bowl geometries were also
evaluated for the other two operating conditions, 1800 rpm - high load and
1200 rpm - low load. The S2 Opt1 combustion system also works adequately
under high-load conditions. It is noticeable how the S2 Opt2 further improves
the NOx emissions and keeps a modest reduction in ISFC and Smoke except
at 1800 rpm - high load that suffers a noticeable Smoke increase.

The study was further expanded and the analysis was focused on the
effect of the input parameters over the optimum configuration S2 Opt1.
Fig. 5.14 presents the effect of air management and injection settings over the
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performance of the optimum configuration. The first thing to notice is that the
effect of the input parameters over ISFC and NOx has not changed (compared
to Fig. 5.8 to 5.10) and no correlated effects are present in these figures,
meanwhile the Smoke behavior is different. For most of the domain, the input
parameters have moderate effect over Smoke and the optimum configuration
is able to keep Smoke emissions under the reference engine levels for any
value of PIVC and SOI. However, IP is required to have high values combined
with medium EGR levels to be able to control Smoke. The only exceptions
are combinations of extreme values of EGR with other inputs because the
mathematical accuracy of the RSM is lower for combinations of extreme values
of the inputs. In this case the PIVC, SOI and IP of the S2 Opt1 are the
maximum value allowed so the response surface loses accuracy when EGR is
also at the extreme, as seen in Fig. 5.14. This drawback is easily solved by
validating with CFD the results obtained from the RSM or limiting the RSM
to avoid combinations of extreme values of the inputs.

5.3.3 Experimental validation

The piston geometries for both optimized combustion systems were
machined and installed in the engine with the aim of validating the quality of
the CFD optimization results. The injection and air management settings of
the CFD optimums were implemented in order to replicate the exact conditions
for both S2 Opt1 and S2 Opt2 combustion systems. Both cases were tested
experimentally at medium speed/load and the performance was compared with
the CFD results in Fig. 5.15.

In general, the agreement is good, confirming how the CFD model
setup and the optimization methodology performed well. According to the
experimental results, the main objective, ISFC, was reduced by 5% and 4%
with S2 Opt1 and S2 Opt2 respectively, fairly similar to the 4.3% and 3.2%
predicted by the CFD, while the NOx and Smoke were kept constant or
improved compared to the reference. In addition, the emission optimum, S2
Opt2, was able to reduce almost 40% NOx emissions with slightly higher ISFC
following also the trends predicted by CFD. Finally, the pressure gradient
increases by 10% in both cases, showing a possible noise restriction, what was
also captured accurately by the CFD except for a small underprediction with
the S2 Opt1.

As a result, the error between the CFD predictions and the experimental
validation results is below 3% in the emissions, 2% in ISFC and 5% in pressure
gradient, proving the robustness and accuracy of the new method.
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Figure 5.14. Response surface of the combined effects of IP,PIVC, SOI with
EGR over ISFC, NOx and Smoke. The S2 Opt1 optimum value for every input
is represented as a black dot.

Following the structure of the section, the optimum bowls were evaluated
at the other operating conditions, 1200 rpm - low load and 1800 rpm - high
load, keeping their respective reference settings and the results are shown in
Table 5.5 and 5.6. However, in the particular case of 1800 rpm - high load the
air management and injection settings were slightly re-adjusted to fulfill the
mechanical restrictions of the engine along the experiments.

As concluded at the end of Stage 1, the impact of the geometry itself on
ISFC is very limited, while the effect on pollutant emission levels is higher.
At the low speed/load case both optimized bowls are able to reduce NOx
emissions by around 15%, keeping ISFC almost constant with less than a
0.5% difference. At the high speed/load case the trend is very similar with
a reduction by 6.3% NOx for S2 Opt1 bowl and by 5% for S2 Opt2 bowl
compared to the reference, together with a reduction in ISFC of less than 1%
for both optimized bowls. Soot emission levels show little discrepancies that,
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Figure 5.15. Comparison of experimental and CFD results for the optimum
combustion systems.

Table 5.5. Experimental results for S2 Opt1 and S2 Opt2 at 1200 rpm - low load.

ISFC NOx Soot dP/da

[g/kWh] [g/h] [g/h] [bar/cad]

Reference 197.72 9.52 0.04 3.92

S2 Opt1 198.23 8.07 0.03 4.79

S2 Opt2 197.52 8.18 0.05 4.5
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Table 5.6. Experimental results for S2 Opt1 and S2 Opt2 at 1800 rpm - high load.

ISFC NOx Soot dP/da

[g/kWh] [g/h] [g/h] [bar/cad]

Reference 181.29 103.69 0.02 4.95

S2 Opt1 179.95 94.19 0.07 5.04

S2 Opt2 179.32 98.43 0.05 5.14

due to the low value of the experimental measurements, could be explained
by experimental errors and/or inaccuracies in the soot model predictions.
Nonetheless, the optimum bowl geometries provide competitive soot levels
compared to the reference bowl, even following the trends predicted by the
modeling results. Focusing now on pressure gradient, it increases by around
18% in the low load case and by 2% in the high load case, also according with
the trends previously predicted.

As a final remark, these results confirm how the reference bowl geometry
was already optimized in terms of ISFC and therefore, the potential for
further improvement by reoptimizing the bowl geometry is very limited. As
a consequence, other air management and injection setting in addition to the
bowl geometry must be included in the optimization in order to decrease ISFC
by improving the combustion system.

5.4 Summary and conclusions

An optimization methodology based on a combination of CFD modeling
and RSM methods were applied to a MD 4-cylinder 4-stroke CDC engine
in order to reduce ISFC while keeping the main pollutants constant. This
methodology provided not only the optimum configurations but also the
cause/effect relations between the control and target parameters. This
improves the understanding of the requirements of the conventional diesel
combustion system and what parameters are more attractive for being
optimized.

In a first optimization stage, it has been found how the combustion system
geometry could only improve ISFC by 0.5% without increasing NOx and
Smoke emissions levels, showing the low potential of optimizing only the
geometry. The study also indicated that a swirl-supported with re-entrant
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bowl shape combustion system is still required for this engine and the swirl
number was removed for later optimizations.

After that, injection and air management settings were included in order
to increase the potential of the optimization and to be able to significantly
reduce ISFC (around 5%), for constant emissions, as confirmed by the second
optimization stage. It is also noticeable that 40% NOx reduction can be
obtained keeping constant ISFC and soot emissions. Optimization path leads
to advanced SOI for improved ISFC, increased EGR in order to control NOx
emissions keeping a moderate impact on ISFC, while adjusting IP and PIVC
helps to control soot emissions. This path fits with the current trends followed
in the field of diesel engine development. Then the optimums were validated
at other operating conditions and the results showed that they also work
adequately at these other operating conditions.

Additionally, strong trade-off between ISFC and NOx, and between
ISFC and Pmax were found. The NOx-ISFC trade-off proved that there
is a very limited potential of improving this engine optimizing just the
geometry. However, after adding the air management and injection settings as
optimization parameters, the potential of the optimization process increased
significantly. On the contrary, the ISFC-Pmax trade-off demonstrated that it
is now possible to improve the ISFC without increasing at the same time the
Pmax. That means that if there is a mechanical limitation in terms of Pmax,
there is no potential for improving for this engine.

Finally, an experimental validation of the results was performed. The
results confirmed the superior performance of the new optimum configurations
proving the robustness and accuracy of the optimization method. The
optimum piston bowl geometries were also tested in other operating conditions
confirming that both configurations also work adequately in these other
operating conditions.

From the study performed in this chapter it can be concluded that the
optimization methodology provides accurate results within a reasonable time
cost, therefore it is a design tool with a lot of potential. However, the
optimization was limited to a maximum of 6 parameters and that limited the
potential of the optimums. Additionally, further reduction in NOx emissions
would penalize the ISFC (see Fig. 5.11), therefore future emission standards
are not reachable keeping the efficiency levels. That suggests that the CDC
engines are already optimized and are difficult to improve, therefore other
optimization strategies such as after-treatment or alternative fuels are needed.
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5.A Annex: Response surface functions

The mathematical model used to correlate the optimized input and the
outputs of the Stage 1 are shown below.

Output � C1� db � C2� k � C3� Swirl � C4�

�NA � C5� db2 � C6� k2 � C7� Swirl2 � C8�

�NA2
� C9� db � Swirl � C10� db � k � C11� db �NA � C12�

�k � Swirl � C13� k �NA � C14� Swirl �NA � C15� db � k � Swirl � C16�

�db � k �NA � C17� k � Swirl �NA � C18� db � Swirl �NA � C19�

�db � k � Swirl �NA � C20� Swirl3 � C21� db3 � C22�NA3
� C23

(5.1)

Where the inputs db, k, Swirl and NA as calculated as the example below.

db �
dbvalue� dbmax�dbmin

2
dbmax�dbmin

2

(5.2)

being dbvalue the value of db that want to be calculated, dbmax the
maximum value of db in the range used for the optimization and dbmin the
minimum value of db in the range used for the optimization.

The coefficients C1 to C23 are described in Table 5.7.

A study of the significance level of the coefficients was performed. The
results obtained from the ANOVA for each coefficient is shown in Table 5.8.

All the coefficient shown in Table 5.8 proved to be significant at least
for one of the outputs studied in this paper so as a matter of simplifying
the calculations, they were all kept. In order to show the fit of the surfaces
compared to the original data, Table 5.9 shows the R2 values.

It can be seen that, except for the pressure gradient that shows a lower
fitting level than the other, all the surfaces can accurately predict the values
of the original DOE points.

The mathematical model used to correlate the optimized input and the
outputs of the Stage 2 are shown in Table 5.3.
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Table 5.7. RSM coefficients for the Stage 1.

Mathematical fit coefficients

Output Pmax dP/da NOx Smoke ISFC CA90abs

C1 106.645 4.277 160.159 2.911 192.207 398.306

C2 0.809 0.030 5.365 -0.118 0.367 2.625

C3 1.321 0.005 27.339 -0.806 -2.668 -4.482

C4 1.438 -0.064 38.838 -4.533 -9.701 -18.410

C5 0.421 0.003 29.962 -3.121 -8.638 -13.717

C6 0.513 0.014 3.692 -0.069 0.035 3.724

C7 1.134 0.016 -8.132 0.659 1.392 4.845

C8 0.132 0.006 12.259 -0.169 -0.079 3.014

C9 0.193 0.031 -14.017 1.293 6.670 17.469

C10 1.547 0.041 7.776 -0.485 -2.338 -3.830

C11 -0.523 -0.007 -27.225 2.281 4.958 7.690

C12 0.464 -0.037 23.413 -0.537 -4.443 -8.081

C13 1.462 0.001 17.723 2.436 1.411 2.702

C14 1.278 -0.034 38.268 -1.751 -3.512 -3.262

C15 -1.166 0.016 -21.264 3.060 10.073 19.932

C16 0.023 -0.022 -6.944 0.733 -1.686 -4.781

C17 0.030 -0.020 13.047 -2.269 -3.828 -8.712

C18 -0.586 0.011 -14.584 1.698 1.479 0.082

C19 -0.378 0.005 21.693 -0.588 0.884 5.400

C20 -0.156 -0.040 49.228 -5.027 0.929 4.656

C21 - - -12.957 1.496 5.349 10.925

C22 - - -18.227 2.481 3.684 3.728

C23 - - -4.325 -0.451 -2.468 -6.683
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Table 5.8. P-value for all the coefficients used in the RSM for Stage 1.

P-values for all coefficients

Output Pmax dP/da NOx Smoke ISFC CA90abs

C1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C2 0.0050 0.0020 0.2764 0.0542 0.0501 0.0432

C3 0.0000 0.0579 0.0031 0.2592 0.0442 0.0328

C4 0.0000 0.0000 0.0012 0.0007 0.0160 0.0003

C5 0.0036 0.1753 0.0028 0.0012 0.0118 0.0001

C6 0.0095 0.0046 0.0182 0.0656 0.6413 0.6588

C7 0.0068 0.0698 0.0002 0.0226 0.3081 0.5701

C8 0.0001 0.0072 0.3220 0.0186 0.0386 0.0689

C9 0.0000 0.2239 0.0159 0.2703 0.0198 0.1567

C10 0.0002 0.0045 0.4115 0.6025 0.0063 0.1781

C11 0.0207 0.4582 0.0258 0.4750 0.0298 0.0031

C12 0.0318 0.0071 0.0430 0.5656 0.0332 0.0260

C13 0.0002 0.9531 0.0967 0.0384 0.1038 0.3432

C14 0.0005 0.0101 0.0070 0.1011 0.0420 0.2622

C15 0.0007 0.1135 0.0580 0.0172 0.0147 0.0006

C16 0.8189 0.4682 0.8249 0.6217 0.1711 0.0371

C17 0.7649 0.5000 0.6897 0.8537 0.0769 0.2885

C18 0.1299 0.8362 0.6595 0.5325 0.3079 0.1662

C19 0.0845 0.6659 0.5401 0.8495 0.1938 0.2591

C20 0.4563 0.6451 0.0168 0.7431 0.0088 0.6117

C21 - - 0.1891 0.0303 0.8195 0.5569

C22 - - 0.032 0.3963 0.06325 0.0042

C23 - - 0.7656 0.2488 0.0062 0.8537
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Table 5.9. R2 values for the surfaces obtained for every output in Stage 1.

Output Pmax dP/da NOx Smoke ISFC CA90abs

R2 0.9888 0.9409 0.9918 0.9838 0.9975 0.9986

Output � C1 � db � C2 � k � C3 � PIV C � C4 � EGR � C5 � IP � C6 � SOI � C7�

�db
2
� C8 � k

2
� C9 � PIV C

2
� C10 � EGR

2
� C11�

�IP
2
� C12 � SOI

2
� C13 � PIV C � IP � C14�

�PIV C � EGR � C15 � PIV C � SOI � C16 � PIV C � db � C17�

�PIV C � k � C18 � EGR � IP � C19 � EGR � SOI � C20 � EGR � db � C21�

�EGR � k � C22 � IP � SOI � C23 � IP � db � C24 � IP � k � C25�

�SOI � db � C26 � SOI � k � C27 � db � k � C28�

�db
3
� C29 � k

3
� C30 � PIV C

3
� C31 � EGR

3
� C32�

�IP
3
� C33 � SOI

3
� C34 � db

2
� k � C35�

�db � IP � PIV C � C36 � db � k � PIV C � C37 � db � k � EGR � C38�

�db � k � IP � C39 � db � k � SOI � C40 � EGR � IP � SOI � C41 � EGR � PIV C � k � C42�

�db
2
� PIV C � C43 � PIV C � IP � k � C44 � PIV C � IP � SOI � C45 � PIV C � k � SOI � C46�

�db
2
� k

2
� C47 � db � k � IP � SOI � C48 � db � k � IP � PIV C � C49 � db � k � IP � EGR � C50

(5.3)

Where the inputs db, k, PIVC, EGR, IP and SOI as calculated as the
example below.

db �
dbvalue� dbmax�dbmin

2
dbmax�dbmin

2

(5.4)

The coefficients C1 to C50 are described in Table 5.10.

Table 5.10: RSM coefficients for the Stage 2

Mathematical fit coefficients

Output Pmax dP/da NOx Smoke ISFC CA90abs

C1 120.017 4.454 149.017 0.485 185.110 393.201

Continued on next page
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Table 5.10 – from previous page

Output Pmax dP/da NOx Smoke ISFC CA90abs

C2 0.016 -0.040 -29.074 4.132 5.690 6.148

C3 2.220 -0.022 24.229 0.284 0.186 -1.707

C4 4.323 0.122 12.870 -0.294 -2.336 -1.322

C5 -2.108 -0.150 -90.032 0.745 2.467 2.076

C6 3.742 0.110 12.108 0.817 -0.892 -1.576

C7 -16.124 0.007 -31.926 -0.698 4.501 2.818

C8 -0.793 0.056 -35.064 2.079 5.223 7.165

C9 -0.290 0.054 -26.282 1.487 3.123 4.153

C10 -0.093 0.051 -2.743 0.432 0.190 0.037

C11 -0.190 0.060 6.215 0.292 0.348 0.229

C12 -0.115 0.051 -2.924 0.117 0.156 0.191

C13 2.105 0.032 1.256 0.610 0.571 0.088

C14 0.061 -0.006 1.561 0.084 -0.053 -0.031

C15 0.100 -0.031 0.401 -0.179 -0.528 -0.306

C16 -0.540 0.008 -3.760 0.120 0.070 0.035

C17 0.191 0.003 1.728 -1.926 -1.543 -0.728

C18 -0.041 -0.019 3.879 0.152 -0.527 -0.487

C19 -0.302 0.039 -5.705 0.021 -0.099 -0.160

C20 0.414 0.001 10.982 -0.117 0.072 0.089

C21 0.506 -0.032 17.965 1.574 1.045 0.223

C22 -0.321 -0.016 -9.766 0.149 0.113 -0.054

C23 -0.772 -0.016 -1.329 0.126 -0.507 -0.232

C24 -1.044 -0.029 -14.468 2.219 1.923 1.240

C25 0.780 -0.003 -3.073 -0.584 1.119 1.162

C26 0.631 -0.001 20.299 -2.074 -2.873 -2.897

C27 -0.129 -0.005 6.356 0.021 -2.061 -1.948

C28 -2.940 -0.010 -65.452 4.177 7.212 8.576

Continued on next page
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Table 5.10 – from previous page

Output Pmax dP/da NOx Smoke ISFC CA90abs

C29 2.071 0.011 36.321 -2.335 -4.346 -4.082

C30 -0.529 0.008 -5.271 1.339 -0.564 -0.674

C31 0.008 0.015 3.204 -0.506 -0.009 0.024

C32 0.142 0.010 8.861 -0.057 -0.003 0.000

C33 -0.413 0.031 -0.448 -0.435 -0.007 0.148

C34 2.327 -0.021 0.582 -0.256 -0.368 -0.221

C35 - - - 7.720 - -

C36 - - - 0.310 - -

C37 - - - 0.759 - -

C38 - - - 0.223 - -

C39 - - - -2.115 - -

C40 - - - 0.979 - -

C41 - - - 0.354 - -

C42 - - - 0.406 - -

C43 - - - -2.684 - -

C44 - - - 0.488 - -

C45 - - - -0.587 - -

C46 - - - -0.653 - -

C47 - - - 1.517 - -

C48 - - - 25.523 - -

C49 - - - 1.793 - -

C50 - - - -2.335 - -

A study of the significance level of the coefficients was performed. The
results from the ANOVA for each coefficient is shown in Table 5.11.
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Table 5.11: P-value for all the coefficients used in the RSM
for Stage 2

P-values for all coefficients

Output Pmax dP/da NOx Smoke ISFC CA90abs

C1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C3 0.0000 0.0091 0.0000 0.0000 0.0000 0.0000

C4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C7 0.0000 0.0230 0.0000 0.0000 0.0000 0.0000

C8 0.5700 0.6420 0.0398 0.4825 0.0747 0.0127

C9 0.1705 0.2001 0.0329 0.5237 0.0000 0.0185

C10 0.6505 0.5300 0.0000 0.3154 0.0000 0.1019

C11 0.0245 0.5276 0.2360 0.0587 0.5424 0.0000

C12 0.1376 0.2663 0.1135 0.0000 0.5721 0.6085

C13 0.0176 0.3975 0.0556 0.6393 0.6081 0.4058

C14 0.1405 0.9186 0.0000 0.6269 0.2372 0.0011

C15 0.0309 0.0329 0.0575 0.3139 0.0000 0.0000

C16 0.0000 0.6125 0.0000 0.4784 0.1610 0.0001

C17 0.0013 0.6125 0.0000 0.0000 0.0000 0.0000

C18 0.3005 0.1559 0.0000 0.3973 0.0000 0.0000

C19 0.0001 0.0243 0.0000 0.8713 0.0664 0.5043

C20 0.0000 0.7598 0.0000 0.5138 0.1373 0.0021

C21 0.0000 0.0613 0.0000 0.0000 0.0000 0.0000

C22 0.0001 0.2106 0.0000 0.3973 0.0443 0.0000

C23 0.0000 0.2818 0.0001 0.4613 0.0000 0.0001

C24 0.0000 0.0449 0.0000 0.0000 0.0000 0.0000

C25 0.0000 0.7598 0.0000 0.0092 0.0000 0.0000

Continued on next page
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Table 5.11 – from previous page

Output Pmax dP/da NOx Smoke ISFC CA90abs

C26 0.0000 0.9186 0.0000 0.0000 0.0000 0.0000

C27 0.0103 0.7598 0.0000 0.8945 0.0000 0.0000

C28 0.0000 0.2818 0.0000 0.0000 0.0000 0.0000

C29 0.0431 0.0531 0.2179 0.1067 0.0591 0.3849

C30 0.3313 0.0378 0.0370 0.5781 0.2798 0.1015

C31 0.2462 0.3716 0.1160 0.3768 0.0182 0.5971

C32 0.5816 0.5454 0.4214 0.6973 0.5600 0.0435

C33 0.0410 0.6538 0.0184 0.0547 0.3020 0.2457

C34 0.3848 0.0909 0.0458 0.3099 0.6375 0.3593

C35 0.0081

C36 0.0522

C37 0.0142

C38 0.0063

C39 0.0026

C40 0.0463

C41 0.0469

C42 0.0421

C43 0.0021

C44 0.0333

C45 0.025

C46 0.0194

C47 0.1311

C48 0.0289

C49 0.021

C50 0.011

All the coefficient shown in Table 5.11 proved to be significant at least
for one of the outputs studied in this paper so as a matter of simplifying
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Table 5.12. R2 values for the surfaces obtained for every output in Stage 2.

Output Pmax dP/da NOx Smoke ISFC CA90abs

R2 0.9981 0.9597 0.998 0.9904 0.9978 0.9934

the calculations, they were all kept. In order to show the fit of the surfaces
compared to the original data, Table 5.12 shows the R2 values.

It can be seen that, except for the pressure gradient that shows a lower
fitting level than the other, all the surfaces can accurately predict the values
of the original DOE points.
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6.1 Introduction

The research work reported in this chapter describes the results obtained
from the second block of optimizations performed for this Thesis. The first
block was focused on CI engines because they are one of the most efficient
thermal engines in the world. They are known as economical and robust, but
also for their smoke and NOx emissions levels [1]. However, according to
the previous chapter results, CDC systems are already optimized so future
emissions standards are expected to be reached after suffering an efficiency
degradation. For that reason this chapter leaves behind the CDC systems and
focuses on alternative systems, less known but with a lot of potential aiming to
achieve future emission standards with better efficiency. DME was considered
the best alternative to enable high efficiency and low emissions because it
forms little to no soot emissions even under stoichiometric operation allowing
to have diesel like efficiency with significantly lower emissions.

The optimization process carried out is divided in 2 stages, an initial stage
aiming to achieve current emission standards and a second optimization aiming
to achieve future emission standards. Each stage follows the methodology
developed for evolutionary optimizations.

� The first part of these studies presents the optimization parameters,
ranges, restrictions and objectives. Additionally, the optimization
objective and the restrictions are presented. The validation of the CFD
model can be found in section 4.3.2.2.

� In the second part the optimization results are presented and analyzed
in detail, including the optimum configuration description and the
cause/effects of the inputs and outputs. Finally, since an experimental
optimization is not available, the evolution of the reference engine
towards the optimum configuration is described to validate the individual
effect of each parameter presented in the analysis section and to give
a better idea of the contribution of each parameter to the optimum
configuration.

It is important to highlight that in both stages the net indicated efficiency
(NIE) is the main objective of the optimization, this is, the pumping work
is taken into account when optimizing the DME fueled engine, because
the DME lower stoichiometric air-mass/fuel-mass ratio [2] generates a
noticeable improvement in pumping work compared to diesel fueled engines.
Additionally, soot emissions were expected to be negligible for the DME fueled
engine; accordingly, no constraint was placed on soot.
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In this framework, this chapter focuses on optimizing with DKGA (see
section 3.4 for explanation) a HD CI engine fueled with DME aiming to
achieve current and future emissions standards. Both optimization stages
focus on improving NIE while keeping NOx , PP and maximum pressure rise
rate (maxPRR) under the target values. The first stage focuses on optimizing
a diesel engine where diesel is directly replaced by DME while the second
stage goes a step further and takes advantage of the non-sooting nature of the
DME to optimize a stoichiometric combustion system coupled with a TWC.
Additionally, an extra optimization with reduced number of inputs but also
reduced demand of resource requirements is performed and presented in annex
6.A, whose main objective is to adapt the current optimizations to situations
where only limited resources are available and evaluate its performance.

6.2 Stage 1: Lean combustion optimization

This section presents the results of the first optimization performed with
the DKGA algorithm. It focuses on optimizing an engine fueled with DME
aiming to control emissions and improve efficiency, compared to the diesel
fueled engine used as reference. This first optimization switching to show the
potential of the new engine compared to modern HD engines before aiming
for future generation targets. For that reason this optimization focuses on
designing an engine that achieves current US2010 emission standards without
post-treatment.

6.2.1 Optimization parameters and setup

This optimization focused on maximizing NIE while keeping NOx
emissions, PP, and maxPRR below the specified limits. Table 6.1 summarizes
the limits used for each restriction in the optimization. The PP and maxPRR
limits were set at 200 bar and 15 bar/deg, respectively. These values were
selected to be comparable to a modern HD engine operating at the rated
power condition and meet US2010 emission standards [3].

The optimization inputs include 15 geometric parameters and 7 injection
and air management settings. The 15 geometric parameters are the minimum
set required in order to allow the geometric tool, presented in section 4.4.2, to
be flexible enough to be able to generate any kind of piston bowl geometry.
The other 7 inputs were chosen as the most relevant in an internal combustion
engine optimization and consist of SOI, EGR, PIVC, swirl, Dnoz, NA and IP.
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Table 6.1. Target values used in the optimization for the restrictions.

NOx PP maxPRR

[g/kWh] [bar] [bar/deg]

0.268 200 15

Table 6.2. Intervals used for the optimization parameters and ranges.

G1-G4 G5 G6-G15 Dnoz NA SOI IP EGR PIVC swirl

[-] [-] [-] [µm] [deg] [deg aTDC] [bar] [%] [bar] [-]

Min. 0.01 -0.99 0.01 200 45 -35 500 2 2.5 0.1

Max 0.99 0.99 0.99 350 90 5 2600 62 4 3

The ranges of the inputs for the optimization were taken from the limits of
current technology and are shown in Table 6.2.

The optimization process consists of a population of 529 cases per
generation with 40 generations having a total of 21,160 function evaluations.
The number of function evaluations and generations was based on other similar
optimizations carried out previously to this study (see section 4.4.4). The
optimization results were analyzed using the non-parametric regression model
based on the Component Selection and Smoothing Operator (COSSO) method
[4]. The low root-mean-square (RMS) error of 0.12% in NIE ensures the

quality of the fitting function. With this regression it is possible to complete
the study by providing not only the optimum values for the inputs, but also
the description of the effects of any of the inputs over the optimized NIE.
The 15 piston bowl parameters are difficult to interpret; accordingly, they
are transformed into 3 new geometric parameters when discussing the results.
The new parameters are defined as bowl width, bowl height and reentrant
parameter (Kd). Revisiting Fig. 4.7, bowl width is defined as the horizontal
distance between p5 and p1, bowl height as the vertical distance between p5
and p2 and Kd as the horizontal distance between p4 and p3 being positive
when the bowl has a reentrant shape.

6.2.2 Results and discussion

This section presents the optimization results, compares the optimized
solution to a baseline case, and discusses the most relevant cause/effect
relations between the optimized inputs and outputs.
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Figure 6.1. Optimum NIE for each generation.

6.2.2.1 Optimization results

The optimum was found after 40 generations and the NIE converged to
a value of 46.11% as seen in Fig. 6.1. The set of optimum values for the 22
input parameters are shown in Table 6.3 and Fig. 6.2 compares the optimum
piston geometry with the baseline shape.

The optimization process resulted in a more reentrant, narrower and less
deep piston compared to the baseline case. Since the CR has to be constant,
the squish has to be higher for the newly generated geometry. The optimized
solution uses an injector with 300 µm hole diameter and a NA of 86.7 deg.
The start of injection timing is -8.19 deg aTDC and the IP is 2500 bar. It also
uses a high swirl ratio at 2.82 and 40% EGR.

The results of the optimization in terms of the inputs variables are shown
in Fig. 6.3. It shows broad coverage of the design space and convergence to
a solution. The peak NIE of the entire optimization was 46.41% with a NOx
level of 14.53 g/kWh, maxPRR of 8.8 bar/deg, and PP of 216 bar. Both NOx
and PP values of the peak NIE case exceeded the restriction values, resulting
in reduced merit. The peak NIE case (unconstrained) had a wider and non-
reentrant bowl geometry to that of the constrained optimum solution with a
difference of 7 deg SOI advancement, 500 bar lower IP and, the main reason
for the high NOx emission, 27% lower EGR.
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Table 6.3. Optimum values for the 22 inputs optimized (up/mid) geometric inputs,
(bottom) injection and air management settings.

G1 G2 G3 G4 G5 G6 G7

[-] [-] [-] [-] [-] [-] [-]

0.48 0.77 0.2 0.26 0.15 0.02 0.67

G8 G9 G10 G11 G12 G13 G14 G15

[-] [-] [-] [-] [-] [-] [-] [-]

0.07 0.29 0.51 0.53 0.65 0.04 0.11 0.71

Dnoz NA SOI IP EGR PIVC swirl
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Figure 6.2. Optimum and baseline case bowl geometry and NA configuration.



6.2. Stage 1: Lean combustion optimization 139

Figure 6.3. Input versus output for all optimization cases. All data points are shown
in gray circles and the optimum solution is shown by the black triangle.
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Figure 6.4. Output versus output for all optimization cases. All data points are
shown in gray circles and the optimum solution is shown by the black triangle.

To investigate the impact of the constraints, Fig. 6.4 shows the
optimization outputs plotted as functions of each other. These results show
that the output space was adequately covered and that allowing operation at
higher maxPRR, higher NOx levels, or higher PP levels would only enable
marginal increases in NIE.

The efficiency and emissions of the optimum are shown in Table 6.4
compared to the baseline case. The baseline case selected for comparison
is the validation case that corresponds to SOI -13 fueled with DME because
it has the best efficiency out of the 3 cases used for validation.

The optimum configuration increased NIE by 3.3% from 42.8% to 46.1%,
reducing drastically the NOx emissions from 2.81 g/kWh to the US2010
standards limit of 0.268 g/kWh. Additionally the maxPRR was kept always
under the restrictions imposed for the optimization and the PP increased to
199 bar, just under its 200 bar limit imposed for the PP.
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Table 6.4. Performance and emissions for the baseline and optimum case.

NIE maxPRR NOx PP

Case [%] [bar/deg] [g/kWh] [bar]

Baseline DME case 42.8 6.1 2.81 193.9

Opt. case 46.1 6.6 0.26 199.4

Table 6.5. Energy balances for the baseline and optimum cases.

Gross Ind. Work Heat Trans. Exh. Losses Unburnt Fuel Pump. Work

Case [J] [J] [J] [J] [J]

Baseline 4854 1926 4215 268 31

Optimum 5207 1779 4183 94 13

Table 6.5 shows the energy balances of the baseline and optimum cases.
It can be seen that, even though there is an improvement in pumping work,
the main difference in NIE between the optimum and the baseline case is
generated by the gross indicated work. The optimum case has a 7.2% higher
gross indicated work that is generated by two main sources, a reduction of
7.6% in HT and a 65% reduction in unburnt fuel. The unburnt fuel reduction
means that the optimum case is able to improve the mixing process compared
to the baseline case (see Fig. 6.6) and the HT reduction is caused mainly by
the surface area reduction of the new geometry (from 4909 mm2 to 3933 mm2)
and the high swirl (swirl effect over HT is later explained in detail).

Fig. 6.5 compares the HRR and Pcyl for the optimum and the baseline case
fueled with DME. It can be seen how the optimum clearly promotes mixing
since it is able to have a later SOI and still finish the combustion process earlier
resulting in a much faster combustion process. Regarding PP and maxPRR,
the optimum generates a higher PP and maxPRR due to the faster combustion
process but the values are always kept under the restrictions imposed. The
faster combustion process does not only affect PP and maxPRR but also
increments the pressure during most of the expansion stroke that results in an
increase in NIE, as seen in Table 6.4.

To explain the faster combustion, Fig. 6.6 shows the temporal evolution
of the cylinder mass over several key equivalence ratios for the baseline and
optimum cases. It can be seen that the optimized case has a later SOI, but it
still manages to mix better and provides leaner equivalence ratios earlier than
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Figure 6.5. CFD results of Pcyl and HRR using diesel and DME as fuels.

the baseline case, leading to faster combustion as seen in Fig. 6.5. On the
contrary, the baseline case is not able to completely burn all the fuel during
the combustion process leaving some rich mass in the cylinder at EVO. This
mixing improvement was represented in Table 6.5 where the optimum case
showed an improvement in unburnt mass resulting in a gross indicated work
increase.

To further illustrate the differences in mixing leading to a shorter
combustion duration for the optimized case, Fig. 6.7 shows equivalence ratio
contours for both cases. The baseline case is not able to reach the fresh air
available in the center of the combustion chamber leading to a higher mass
with equivalence ratio over 1. On the contrary, the optimized case shows a
more homogeneous mixture and is able to access to more of the available fresh
air.

6.2.2.2 Parametric dependence

An important aspect of an optimization is to not only provide the optimum
results and compare the results with the reference case, but also to show and
understand the trends of each input parameter. For that reason, all the results



6.2. Stage 1: Lean combustion optimization 143

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

cad [deg aTDC]

N
or

m
al

iz
ed

 m
as

s 
[−

]

 

 

phi>1 BL
phi>1 DME opt
phi>1.5
phi>1.5
phi>2
phi>2

Figure 6.6. Comparison between the baseline DME case and the optimum case of
the normalized mass with equivalence ratio over 1, 1.5 and 2.

were gathered and adjusted with COSSO and the results for the most relevant
parameters are shown in Fig. 6.8. This analysis follows the same structure
of the parametric study performed on the optimum configuration in section
5.3.2 for the non-evolutionary optimization, however, with a GA there is a
higher concentration of cases simulated near the optimum configuration and
the accuracy of this parametric study is noticeably higher. At the same time,
the parametric study performed in the rest of the domain in section 5.3.2
can not be performed here due to the low density of points in the rest of the
domain.

The EGR is one of the most influential inputs because it is the main tool to
control NOx emissions among the parameters investigated. It has a noticeable
effect on NIE that is mainly explained by the worsening of the combustion
efficiency for high EGR values. Usually, the EGR has a moderate effect on
NIE but for moderate to high EGR values (over 30%) the NIE becomes more
sensitive. Additionally, high EGR also slows down the combustion process
and that results in a reduction of PP. Focusing on NOx emissions, EGR is
by far the most effective input to control NOx, higher EGR values reduce
significantly the NOx emissions at the expense of worsening the combustion
efficiency and lowering the maximum temperature.
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Figure 6.7. Phi distribution on (Left column) baseline DME case and (Right column)
optimum case.

In terms of PIVC, high levels of PIVC seem to offer the best NIE. The
increase in fresh air reduces the global equivalence ratio helping the mixing
process and reducing the combustion duration and efficiency. This offers higher
NIE, however, when the PIVC is too high, it does not seem to further improve
combustion efficiency nor combustion duration and NIE values are reduced
due to the increased pumping work required to achieve those pressure values.
The Pcyl increases for higher PIVC and also the NOx. Similar to other inputs,
better and faster combustion increases the maximum local temperatures and
that increases NOx emissions.

In the case of swirl, higher swirl increases NIE. On one hand, higher swirl
improves mixing, mainly in the later part of the combustion, reducing the total
combustion duration and improving the combustion efficiency, resulting in a
NIE increase. On the other hand, higher swirl reduces HT, contrary to the
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Figure 6.8. Response surface of the combined effect of IP,PIVC with EGR over NIE,
HT, combustion duration (CD), combustion efficiency, NOx and PP. The optimum
value for every input is shown by the black dot.
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Figure 6.9. Temperature distribution on the (Left column) optimum case and (Right
column) optimum case with lower swirl.

general trend. This happens because, as seen in Fig. 6.9, the swirl separates
the flame from the liner and, even though the local temperatures are higher
due to higher swirl, the temperature is lower next to the liner and the HT is
reduced, what also helps to improve NIE.

The parameter SOI shows a noticeable effect on NIE, delayed SOI provides
lower NIE values. This effect on NIE is also promoted by the sensitivity of the
combustion efficiency to SOI where delayed SOI has a negative impact on the
combustion efficiency. It also shows a big impact on PP and NOx and both of
them are due to the same phenomena, earlier SOI will advance the combustion
towards TDC generating higher PP and maximum local temperatures.

Finally, higher IP helps the mixing during the first and later part of
the combustion improving NIE. It can be seen that contrary to the other
parameters, IP has no direct effect over the combustion efficiency and focuses
only on improving mixing. It also affects HT, where higher IP increases HT but
like in other parameters, the combustion duration effect over NIE overcomes
the HT effect.
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Some of these parameters are forced to high values in order to achieve
the restrictions shown in Table 6.1, like EGR, which is forced to high values
to compensate NOx emissions even thought it has a negative effect over the
main objective of the optimization. In the same manner, other inputs like
swirl and IP focus on improving the engine NIE by improving mixing and
increasing a combustion efficiency. Both trends are coupled because, as seen
in Fig. 6.8, higher swirl and IP compensates the negative effect of the EGR
over the combustion process and higher EGR compensates the increase in
NOx emissions generated by higher swirl and IP, then the combined effect of
all three parameters allows the new optimum to show better efficiency with
lower NOx emissions. Additionally, higher EGR, swirl and IP produce an
increase in PP that is easily controlled by adjusting SOI making possible the
whole new system.

6.2.2.3 Parameter evolution

After the comparison of the optimum and the baseline cases and the
isolated effects of the most relevant inputs on the engine performance are
described, it is easier to understand the optimum combustion system. Starting
with the geometry, the process shifted the reference shape towards a slightly
more reentrant, narrower and less deep piston. This new piston geometry
helps to improve HT and mixing resulting in an improvement in combustion
duration and efficiency, see Fig. 6.10. Once the geometry is set, the NA
is adjusted to have the best interaction possible with the optimum geometry
further improving the mixing process. The EGR is the first and more sensitive
parameter to be adjusted since the NOx restriction is very strong and EGR
is the main strategy to improve NOx. For that reason the EGR is set to
a value of 40%, reducing drastically the NOx emissions but worsening the
combustion process. In order to compensate the effect of high EGR over
the combustion, high IP and large Dnoz are needed to improve combustion
duration and efficiency, and high swirl compensates the increase in HT by
isolating the flame from the liner walls and further improves the later part
of the combustion. Once the injection settings are set, PIVC is adjusted to
control the equivalence ratio at a suitable level. As a result, PP is affected
but it is kept under the limits by the SOI.

To illustrate the evolution of the combustion system, CFD simulations
were repeated at various key points during the optimization process. Fig. 6.10
shows the results of this investigation. First, a DME case with the optimum
piston bowl geometry was run keeping all of the baseline settings. This resulted
in a significant increase in GIE and HT reduction. The optimum geometry
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was able to improve mixing and efficiency and at the same time reduce HT,
proving that for this advanced combustion system the geometry is one of
the inputs with more potential to improve engine performance and is worth
taking into account. Next, the case was repeated with the optimum swirl.
The results show a noticeable worsening of the combustion system performance
with increased incomplete combustion. Even though higher swirl number helps
the mixing process, when the swirl number is too high and the sprays do
not have high momentum, the sprays-to-spray interaction worsens the overall
mixing process. Next, the case was repeated with the optimum NA. This
resulted in an improvement in incomplete combustion and GIE due to the
improved oxygen utilization generated by the matching of the new geometry
with the optimum NA. Next, the case was repeated with the optimum IP.
The results show that this is the best engine configuration in terms of energy
balance (although NOx emissions are not under the limits). Higher IP helps to
improve mixing and combustion efficiency reducing the incomplete combustion
and increasing GIE from 40.7% to 46.7%. In this particular case, due to the
high swirl number of the optimum configuration, higher IP helps to avoid
early spray-to-spray interaction, further improving mixing. Additionally, HT
increased from 13.5% to 18.1%, highlighting the importance of increasing swirl
to deflect the flame and reduce HT compensating its increase caused by a
higher IP. Next, the case was repeated with the optimum EGR and PIVC.
This resulted in a GIE reduction. Higher EGR reduces the fresh air availability
worsening the mixing and combustion efficiency of the engine which results in
a GIE reduction despite the HT reduction. However, high EGR is compulsory
to control the excess of NOx emissions generated after optimizing the other
parameters. Finally, the case was repeated with the optimum SOI to reach
the optimum configuration. This caused an increment in GIE from 45.4% to
46.2% while keeping PP just under the restriction.

6.3 Stage 2: Stoichiometric combustion optimiza-
tion

The results obtained from the second stage of the DME fueled engine
optimization are presented in this section. Based on the results obtained in
the first stage of this chapter, the DME fuel has proven its potential to provide
higher efficiency and lower emission levels than diesel fueled engines. Based on
that, this section tries to go further and design an engine fueled with DME able
to achieve future emission standards, in this case US2030. In order to achieve
the goal, and thanks to the non-sooting nature of the fuel, it is proposed to
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Figure 6.10. Evolution of the optimum DME fueled lean combustion system.

optimize an engine operating in stoichiometric combustion conditions coupled
with a TWC to be able to completely control NOx emissions.

6.3.1 Optimization parameters and setup

The optimization focuses on maximizing NIE while keeping PP and
maxPRR under 200 bar and 15 bar/deg., respectively. A TWC with a NOx
conversion efficiency of 99% is assumed [5]. To meet a tailpipe NOx target
of 0.0268 g/kWh [3], an engine out NOx constraint of 2.68 g/kWh was
applied. Table 6.6 summarizes the limits used for each output restriction
in the optimization.

A total of 21 input parameters are optimized. The input parameters
are divided into 15 geometric parameters needed to describe the piston bowl
shape and 6 important injection and air management settings. The geometric
parameters are the same inputs used to describe the geometry in the previous
section. The 6 injection and air management settings are SOI timing, EGR,
swirl, Dnoz, NA and IP. The PIVC is adjusted with the EGR level to maintain
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Table 6.6. Target values used in the optimization for the restrictions imposed.
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Figure 6.11. Values of PIVC needed to achieve a stoichiometric equivalence ratio.

Table 6.7. Ranges used for the optimization inputs on Stage 2.

G1-G4 G5 G6-G15 Dnoz NA SOI IP EGR swirl

[-] [-] [-] [µm] [deg] [deg aTDC] [bar] [%] [-]

Min. 0.01 -0.99 0.01 200 45 -35 500 2 0.1

Max 0.99 0.99 0.99 350 90 5 2600 62 3

stoichiometric operation. The values of PIVC needed to keep a stoichiometric
equivalence ratio for each EGR value are shown in Fig. 6.11.

Table 6.7 shows the ranges of design parameters considered. The parameter
ranges were chosen to span the design space relevant to current and future
technology.
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Figure 6.12. Optimum NIE value for each generation.

Similar to the previous optimization, a population size of 529 cases per
generation and 40 generations were used, resulting in a total of 21,160 function
evaluations. To analyze the effects of each of optimization parameter, the
COSSO method [4] was used to fit a response surface to the outputs as
a function of each input. The non-parametric fitting method showed a
root-mean-square (RMS) error of 0.1% in NIE, assuring an accurate fit.
Additionally, the 15 piston bowl parameters are transformed into bowl width,
bowl height and reentrant parameter.

6.3.2 Results and discussion

This section is focused on the optimization results of Stage 2. The optimum
is compared with the baseline case, and the most relevant cause/effect relations
between the inputs and outputs are discussed.

6.3.2.1 Optimization results

The optimum was found after 40 generations and the NIE converged to a
value of 43.4% as seen in Fig. 6.12. The set of optimum values for the input
parameters are shown in Table 6.8.
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Table 6.8. Optimum values for the 21 inputs optimized (top/mid) geometric inputs,
(bottom) injection and air management settings.

G1 G2 G3 G4 G5 G6 G7 G8

[-] [-] [-] [-] [-] [-] [-] [-]

0.02 0.74 0.53 0.68 0.36 0.46 0.3 0.27

G9 G10 G11 G12 G13 G14 G15

[-] [-] [-] [-] [-] [-] [-]

0.87 0.42 0.49 0.45 0.36 0.58 0.47

Dnoz NA SOI IP EGR swirl

[µm] [deg] [deg aTDC] [bar] [%] [-]

330 61.7 -13.09 2594 33 2.98

Fig. 6.13 compares the optimum piston shape with the baseline geometry.
The process shifted the reference piston geometry towards a non-reentrant
shape. The optimum geometry is flat (i.e., the GA removed the pip) and
shallower than the stock diesel bowl. The piston width is similar to the baseline
engine. Additionally, the Dnoz was selected to be slightly narrower than the
baseline geometry.

Fig. 6.14 shows the optimization results in terms of the input variables.
It can be seen that the design space is broadly covered and the algorithm
converges to the optimum solution.

In order to investigate the impact of the constraints, the optimization
outputs plotted as functions of each other are shown in Fig. 6.15. It can be
seen that reducing the constraints would not enable further increases in NIE
because the unconstrained peak NIE case corresponds to the current optimum
configuration. This is interesting because it suggests that the combustion
system would be able to meet more stringent emissions regulations with
minimal degradation of NIE.

The efficiency and emissions of the optimum solution and the baseline case
are compared in Table 6.9. The baseline case selected for comparison is the
validation case with a SOI timing of -13 deg aTDC fueled with DME (the
same case used in Stage 1).
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Figure 6.13. Optimum and baseline case bowl geometry and NA configuration.

Table 6.9. Performance and emissions for the baseline and optimum cases.

NIE maxPRR NOx PP

Case [%] [bar/deg] [g/kWh] [bar]

Baseline DME case 42.8 6.1 2.81 194

Opt. case 43.4 9.2 0.74 197

Table 6.10. Energy balances for the baseline and optimum cases.

Gross Ind. Work Heat Trans. Exh. Losses Unburnt Fuel Pump. Work

Case [J] [J] [J] [J] [J]

Baseline 4854 1926 4215 268 31

Optimum 4832 1991 4076 364 -58

The optimum configuration increased NIE from 42.8% to 43.4% and
reduced the engine out NOx emissions from 2.81 g/kWh to 0.74 g/kWh.
Assuming a 99% efficient TWC, the resulting tailpipe NOx would be 0.0074
g/kWh (i.e., 72% below the proposed future NOx emissions targets of 0.0268
g/kWh). Additionally, the maxPRR and PP were similar to the baseline
values.

The energy balances of the baseline and optimum cases are shown in
Table 6.10. It can be seen that the gross indicated work is very similar for
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Figure 6.14. Input versus output for all optimization cases. All data points are
shown in gray circles and the optimum solution is shown by the black triangle.
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Figure 6.15. Output versus output for all optimization cases. All data points are
shown in gray circles and the optimum solution is shown by the black triangle.

both cases. The main advantage from the optimum case can be attached to the
pumping work, that is able to compensate the slightly lower gross indicated
work of the optimum case, leaving an overall increase in NIE of 0.6%. This
improvement in pumping work is due to the lower airflow needed to operate at
stoichiometric conditions. That is, the DME case needs 0.94 bar less pressure
at IVC, which reduces the pumping losses by 0.8% of the fuel energy. This
effect can be seen in Fig. 6.16 where there is a noticeable difference in the
pressure profile.

In terms of HRR, Fig. 6.16 shows that the optimum case is able to
significantly shorten the combustion duration. This effect compensates the
lower PIVC of the DME case resulting in a slightly higher PP than the baseline
case. Even though the optimum case has a higher equivalence ratio and should
mix slower, also seen in Table 6.10 where the unburnt fuel mass is higher for
the optimum, the optimum case is able to noticeably reduce the combustion
duration compared to the baseline case.
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Figure 6.16. Pcyl and HRR for the baseline and the optimum cases.

In order to better understand the differences in combustion duration,
Fig. 6.17 left shows the normalized fuel injection rate and normalized burned
fuel mass. The optimum case, which keeps the same SOI as the baseline
case, reaches both 90% fuel mass injected and 90% fuel burned earlier than
the baseline case. However, since the injection rate is different, reaching the
90% fuel mixed mass earlier does not mean that the optimum case mixes
better than the baseline case. To compare the mixing velocity for two cases
with different injection profiles, Fig. 6.17 right shows the apparent combustion
time (ACT) [6, 7]. ACT is defined as the time interval between the instant
at which the percentage of the mass is injected and the instant at which the
same percentage of fuel mass is burned, that is, shorter ACT means shorter
mixing time. These results are of interest since they show that even though
the combustion duration is shorter for the optimum case, the baseline case has
a lower ACT for most of the combustion process, that is, it mixes better than
the optimum. Then, as expected operating in stoichiometric conditions, the
optimum case has difficulties mixing compared to the baseline case because
there is less fresh air and in-cylinder gas density. As a direct consequence, to
avoid the negative impact of the poor mixing performance of the combustion
system on NIE, the optimum case is forced to compensate it by adjusting the
injection settings in order to maintain a short combustion duration.
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Figure 6.17. (Left) normalized injected fuel mass and normalized burned fuel mass
and (Right) apparent combustion time for the baseline and optimum cases.
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Figure 6.18. (Left) mean in-cylinder temperature and (Right) accumulated HT for
the baseline and optimum cases.

Differences in in-cylinder temperature and HT losses can be also noticed
between the optimum case and the baseline case in Fig. 6.18. As expected,
the stoichiometric optimum case shows higher average temperature than the
baseline case. As a consequence, the total HT through the combustion
chamber walls increases by v 3%. It is interesting to note that, although
the exhaust temperature of the optimum case is higher than the baseline case
(see Table 6.10), the exhaust energy is higher for the baseline case. This is
due to the lower trapped mass of the optimum case, which results in lower
exhaust energy even with higher exhaust temperature.
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Figure 6.19. Instantaneous HT for the baseline and optimum cases.

To better understand the small difference in HT, Fig. 6.19 shows the HT
rate. Initially, the HT rate is higher for the optimum case, but by 10 deg
aTDC, the situation switches and the HT rate decreases to a value lower than
that of the baseline case for the rest of the cycle. In order to understand
the HT characteristics, Fig. 6.20 shows local temperature distributions for the
baseline and optimum cases. It can be seen that the in-cylinder temperature
of the optimum case rapidly increases due to the shorter combustion process,
explaining the higher initial HT rate found in Fig. 6.19. However, the
increased mixing of the optimum case results in rapid homogenization of the
gas temperature. That is, by 30 deg aTDC, the in-cylinder gas temperature
distribution is relatively uniform for the optimum case; however, the lower
mixing rate of the baseline case results in higher local temperatures near the
cylinder liner and cylinder head. This results in relatively high HT losses
later in the cycle. In addition, the surface area of the optimized piston bowl
is 29.7% smaller than that of the reference bowl (baseline bowl shape has a
surface area of 4909 mm2 and optimum bowl shape has a surface area of 3451
mm2), which helps to reduce HT losses during the whole cycle.
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Figure 6.20. In-cylinder temperature for (left column) the DME fueled baseline case
and (right column) the optimum case.

6.3.2.2 Parametric dependence

To identify parametric dependencies, the results were analyzed using
COSSO, and the results for the most relevant inputs on the optimum
configuration are presented. Fig. 6.21 shows the impact of EGR, swirl ratio, IP,
and SOI timing on performance (NIE, HT, combustion duration, combustion
efficiency and PP) and NOx emissions. Note that EGR, swirl ratio and IP are
plotted against SOI timing due to the strong impact of SOI timing on PP and
NIE.
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All four parameters have a noticeable effect on NIE. Retarding SOI
timing decreases combustion efficiency and increases the combustion duration,
resulting in lower NIE. Similarly, retarding SOI timing shifts the combustion
phasing towards the expansion stroke, decreasing PP, maximum mean
temperature, peak temperature, and total HT. Although delayed SOI timing
reduces HT, the effect is outweighed by the decrease in combustion efficiency
and increase in combustion duration. The PP restriction imposed in this
optimization limits the advance of the SOI timing to -13.09 deg aTDC.

EGR is one of the most influential inputs in the optimization. It has an
effect on NIE, but it is mainly used to control the NOx emissions. The results
show that, when a stoichiometric mixture is maintained, the trade-off between
NOx and NIE is removed and both parameters improve with increasing EGR.
Higher EGR levels reduce the oxygen mole fraction, reducing the adiabatic
flame temperature and decreasing NOx emissions and peak temperature.
Additionally, at a fixed equivalence ratio, higher EGR levels increase the
in-cylinder trapped mass, further reducing the in-cylinder temperature and
HT losses. Conversely, since the oxygen concentration is reduced, lack of
free oxygen results in slower combustion (increased burn duration) and lower
combustion efficiency. Evidently, the reduced HT losses outweigh the longer
burn duration and lower combustion efficiency, resulting in a net increase in
NIE with increased EGR.

Since the charge is stoichiometric, access to free oxygen is limited in the
late stages of the combustion process. Increasing the swirl ratio allows the
later injected fuel to access oxygen between the spray flames, shortening the
combustion duration, and increasing combustion efficiency. However, the
higher swirl ratio also increases the in-cylinder velocities, which results in
higher HT losses. In contrast to the effect of EGR, where the reduced HT
losses outweighed the increase in burn duration, the shorter burn duration for
increased swirl ratio outweighs the increased HT. That is, NIE increases with
increasing swirl ratio due to the trend of decreasing combustion duration with
increasing swirl ratio.

The effect of IP is similar to that of swirl ratio. That is, increasing IP
increases HT, but also shortens combustion duration and increases combustion
efficiency resulting in a NIE improvement. It is interesting to note that IP
and swirl ratio are complimentary. This shows the importance of the mixing
process in stoichiometric DI engines.

The main restrictions in this optimization are NOx emissions and PP.
It has been seen that EGR is able to control NOx and at the same time
improve efficiency, breaking the NOx-NIE trade-off. However, PP is not
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Figure 6.21. Response surface of the combined effect of EGR, IP, swirl with SOI
over NIE, HT, combustion duration (CD), combustion efficiency, NOx and PP. The
optimum value for every input is shown by the black dot.
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controllable while improving NIE and it has to be reduced at the cost of
increased combustion duration and reduced efficiency. It can also be seen that
lower EGR ratios could solve the PP problem. That is, because the required
intake pressure decreases with decreasing EGR, the PP also decreases with
decreasing EGR. However, SOI timing has a stronger effect on PP than EGR.
Accordingly, SOI timing was used to control PP.

6.3.2.3 Parameter evolution

In the first part of this section the optimum and the baseline case have been
compared and the effects of the most relevant inputs on the engine performance
are understood, therefore the optimum combustion system is now easier to
understand. The process shifted the reference piston shape towards a flatter,
shallower bowl than the baseline geometry to reduce the surface area to offset
the increased HT associated with high IP and high swirl. The geometry is
non-reentrant and has a rounded bowl rim to allow access to oxygen in the
squish region. Similar to the bowl geometry, the injector geometry is adjusted
to have the best interaction possible with the optimum piston geometry and
improve mixing. Then the swirl ratio, IP and Dnoz are needed to shorten the
combustion duration and increase efficiency. EGR is used to control the NOx
emissions, but since adding EGR also increases NIE due to reduced HT, the
final EGR levels are higher than the necessary levels to control NOx emissions.
Finally, SOI is used to adjust PP.

To illustrate the evolution of the combustion system, CFD simulations were
repeated at various key points during the design evolution. Fig. 6.22 shows the
results of this investigation. First, a stoichiometric DME case was run with all
of the baseline parameters. The only change from the lean DME fueled case
was that the intake pressure was reduced to 2.06 bar to achieve stoichiometric
operation. This resulted in a significant increase in incomplete combustion due
to the difficulty for accessing free oxygen. The HT reduces slightly due to the
lower combustion efficiency. The result is a reduction in GIE from the baseline
value of 42.8% to 35.6%. This shows that replacing a conventional diesel fueled
combustion system with a stoichiometric DME fueled combustion system with
no other changes would result in poor performance. That is, the system must
be re-optimized to enable peak performance. Next, the case was repeated with
the optimum piston bowl geometry. This caused a reduction in HT due to the
lower surface area to volume ratio and resulted in a marginal increase in GIE
from 35.6% to 35.8%. Notice that most of the reduced HT losses end up as
exhaust energy rather than increased work. It is also interesting to note that
the combustion efficiency was approximately constant when the piston bowl
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was changed from the baseline case to the optimum bowl geometry. Next, the
case was repeated by changing NA from the baseline value of 65 deg to the
optimum value of 61.7 deg. This caused an increase in GIE from 35.8% to
37.3% due to reduced incomplete combustion resulting from improved oxygen
utilization. Note that the HT and exhaust losses are nearly unchanged. Next,
the case was repeated with the optimum IP (i.e., IP was increased from the
baseline value of 1800 bar to the optimum value of 2594 bar). This caused
a further improvement in the mixing process, increasing the GIE from 37.3%
to 40.9%. The increase in GIE is due to reduced incomplete combustion and
a shorter combustion duration (i.e., reduced exhaust losses) and suggest that
(together with the previous section IP results) DME fueled combustion system
development efforts should focus on enabling high injection pressure operation.
Notice that HT increases back to a value nearly the same as the baseline lean
case. This shows the importance of the reduced HT losses resulting from the
improved piston bowl geometry. That is, although the addition of the piston
bowl alone does not directly improve efficiency, it reduces HT and allows
higher IP to be used to improve efficiency. Next, the case was repeated with
the optimum Dnoz (i.e., the Dnoz was increased from 300 µm to 330 µm). This
caused a slight increase in HT and reduced the GIE from 40.9% to 40.7%. This
suggests that the Dnoz has a minimal influence on the efficiency. This makes
sense for a stoichiometric combustion system, as the fuel needs to both be
introduced into the combustion chamber and be able to find free oxygen. The
increased Dnoz addresses the fuel introduction, but does not improve access
to oxygen. Next, the case was repeated with the optimum EGR (i.e., the EGR
was increased from 25% to 33%). This caused a slight reduction in HT due
to the increased in-cylinder mass and lower temperature, increasing GIE from
40.7% to 40.9%. Next, the case was repeated with the optimum swirl ratio
(i.e., the swirl ratio was increased from 0.7 to 2.98). This caused a noticeable
improvement in the mixing process, reducing the incomplete combustion, and
increasing the GIE from 40.% to 43.2%. In terms of HT, it is unchanged
when increasing swirl from the baseline value (0.7) to the optimum value (3),
contrary to Fig. 6.21. This happens because the baseline swirl is out of the
range shown in Fig. 6.21 and the behavior of HT in terms of swirl changes for
very low swirl values. Finally, the next case is the optimum case after adding
the optimum SOI. This caused almost no effect since the optimum SOI and
the baseline SOI are almost identical, but the trends presented are consistent
with the small GIE increase with advanced SOI.
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Figure 6.22. Evolution of the optimum stoichiometric DME fueled combustion
system.

6.4 Summary and conclusions

An optimization system based on a GA algorithm coupled with CFD has
been applied to a HD CI engine fueled with DME. The results not only
provided the optimum configuration but also the cause/effect relations between
the input and output parameters on the optimum configuration. The study
was divided in two stages, a first optimization aiming to improve efficiency
while keeping the NOx emissions under the current emissions standards and
a second optimization aiming to achieve future emissions standards with an
engine working in stoichiometric combustion.

The first optimization considered 22 input variables (15 geometric, 4
injection settings and 3 air management settings). The final optimum
configuration obtained improved NIE a 3.3% and the NOx emissions, PP and
maxPRR were kept under the limit values. The DME optimum combustion
system resulted in a slightly more reentrant piston, narrower and less deep
with an included angle of 86.7 deg. The EGR was set to a value of 40%, its
effect over the combustion was compensated by high IP (2500 bar), high swirl
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(2.82), early SOI (-8.19 deg aTDC), high PIVC (3.25 bar) and a large Dnoz
(330 µm ).

The sensitivity of the input variables was presented in order to have a
better understanding of the optimum combustion system configuration. The
geometry inputs mainly improved HT, combustion duration and combustion
efficiency with a low effect over PP and NOx. Then EGR was the main
parameter that guided the optimization. High EGR level was necessary
to control NOx but it worsened noticeably the combustion duration and
efficiency. Swirl, Dnoz, PIVC and IP, contrary to EGR, had to potential
to improve the combustion process with a lower effect over NOx and PP
(compared to EGR) and were used to compensate the effect of high EGR
over the combustion. Finally, SOI showed a significant effect over PP and was
used to keep PP values under the limits.

Based on the results of the first optimization, the second stage applied the
optimization method to the same HD CI engine fueled with DME working
under stoichiometric conditions aiming to achieve more stringent emissions
standards. The optimization considered 21 input variables (15 geometric,
4 injection settings and 2 air management settings). The final optimum
configuration improved NIE by 0.6% while enabling the use of a TWC for NOx
reduction. Considering a 99% efficient TWC, the tailpipe NOx levels would be
0.0074 g/kWh (72% below the proposed future emission targets). That is, the
proposed solution shows the potential to meet future NOx regulations while
maintaining diesel-like thermal efficiency.

The new combustion system resulted in a shallow, non-reentrant piston
with a flat center (i.e., the central protrusion was removed). The NA of
61.7 deg was selected to enable access to oxygen throughout the combustion
chamber. The EGR was set to a value of 33% with high IP (2594 bar), high
swirl ratio (2.98), early SOI timing (-13.09 deg aTDC), and a large Dnoz
(330 µm). This optimum coincides with the unconstrained peak NIE case
because the restriction of controlling NOx emissions is easily achievable by a
stoichiometric combustion system coupled with a TWC, removing the trade-off
between NIE and NOx.

Mixing and HT were proven to be the main challenges of the new
combustion system. This is because the configuration operates under
stoichiometric conditions, resulting in high bulk gas temperature and limited
access to free oxygen. The optimum geometry was adapted to reduce surface
area in order to reduce HT and the high IP and swirl improved the mixing
process. The sensitivity of the input variables was analyzed using non-
parametric fitting methods to identify the key optimization parameters. EGR
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was the main parameter used to control NOx emissions. Contrary to the lean
mixing-controlled combustion, it was found that increasing EGR also increased
NIE due to reduced HT loss. Swirl, Dnoz, and IP had the potential to improve
combustion duration and efficiency with a small effect on NOx and PP. Finally,
SOI showed a significant effect over PP and was used to keep PP under the
limits with a degradation of the combustion duration and efficiency that was
compensated with higher swirl and IP levels.

This work showed that DME is a promising fuel for future generation CI
engines and provides guidelines to design CI engines fueled with DME or other
high cetane, non-sooting fuels. Additionally, it shows that a stoichiometric
DME fueled combustion system coupled with a TWC has potential to be used
for future generation CI engines. The non-sooting nature of DME together
with the capability of the TWC to control NOx permits the new combustion
system to completely manage NOx and soot emissions while maintaining
diesel-like efficiency.
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Table 6.11. Target values used in the optimization for the restrictions imposed.

NOx PP maxPRR

[g/kWh] [bar] [bar/deg]

2.68 200 15

Table 6.12. Ranges used for the optimization inputs on the reduce cost optimization.

G1-G7 NA SOI IP EGR swirl

[-] [deg] [deg aTDC] [bar] [%] [-]

Min. 0.01 45 -35 500 2 0.1

Max 0.99 90 5 2600 62 3

6.A Annex: Reduced cost optimization

The main problem with optimizing with a GA algorithm coupled with
CFD calculation is the cost in terms of resources and time. In this annex
an extra optimization with the same targets than ”Stage 2: Stoichiometric
combustion optimization” was performed but with lower populations and
number of generations. The targets of the optimization are presented in
Table 6.11. However, the optimization can not be simply performed with
less resources and expect to get good results, the number of inputs have to be
adapted. The main source of optimization inputs is the geometry, it requires
15 parameters to be fully flexible but that number can be reduced at the cost
of some flexibility, therefore the number of geometric inputs was reduced to 7,
removing the capability of the geometry to be able to switch between reentrant
and non-reentrant geometries. Additionally, the parameter Dnoz showed little
effect on the optimum efficiency and it was removed from the reduced cost
optimization. To sum up, 8 geometric parameters and Dnoz where removed
as inputs in the reduced cost optimization and only 12 optimization inputs
were considered. The parameters and ranges are presented in Table 6.12.

In terms of computational resources, the full cost optimization used a
population size of 529 cases per generation and 40 generations were used,
resulting in a total of 21,160 function evaluations, and the reduced cost
optimization used 64 cases per generation and 20 generations, resulting in a
total of 1280 function evaluations. Transformed into real time, the original
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Figure 6.23. Full cost optimization optimum geometry compared to the reduced cost
optimum geometry.

optimization took over 2 months and the reduced cost optimization was
finished in less than 2 weeks.

The optimum configuration obtained in both optimizations are compared
in Fig. 6.23 and Table 6.13. Focusing first on the piston bowl geometry, it
can be seen that both shapes are fairly similar, except for slight differences
in the center region of the bowl and the fact that the geometry obtained
in the reduced cost optimization looks smoother, both geometries can be
considered equal. Then in terms of injection and air management settings,
both combustion systems are also very similar and only differ in 6 deg NA,
2.6 deg in SOI and 1% EGR. These similarities are also seen in the efficiency
and performance in Table 6.14.

As expected due to the really similar combustion systems that both
optimizations presented, the differences in efficiency and performance is
minimal. Both optimum were able to improve the baseline case efficiency
of 42.8% and reduce the NOx emissions under the US2030 standards while
keeping maxPRR and PP under the restriction levels. In other words, the
reduced cost optimization system was able to provide similar results than
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Table 6.13. Optimum values for the air management and injection settings inputs
optimized.

NA SOI IP EGR swirl

Case [deg] [deg aTDC] [bar] [%] [-]

Full cost opt. 61.7 -13.09 2594 33 2.98

Red. cost opt. 67.7 -15.66 2593 34.5 2.9

Table 6.14. Performance and emissions for the full cost and reduced cost
optimizations optimum cases.

NIE maxPRR NOx PP

Case [%] [bar/deg] [g/kWh] [bar]

Full cost Opt. 43.4 9.2 0.74 197

Reduced cost Opt. 43.1 9.1 0.61 196

the full system with 16 times less function evaluations in a quarter of time.
However, even though the reduced cost optimization was able to provide really
good results, it can never substitute the original optimization. In order to
reduce the number of inputs, the knowledge of the shape of the optimum piston
geometry and the relevance of certain parameters on the engine efficiency
was required and that information is unknown for new combustion concepts
without a previous full cost optimization. For that reason, the reduced cost
optimization is proposed as a good option to compliment the results obtained
from the full cost optimization. Then, it can be used to expand the results
including minor modifications of the restrictions or objectives, or it can be
used to improve the optimum.
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7.1 Introduction

The last chapter of this Thesis focuses on summarizing the main
conclusions obtained in this research study and establish the possible
relationship between them. This work is the first contact of this research
group trying to optimize engines coupling 3D CFD with evolutionary and
non-evolutionary algorithms and the conclusions obtained will be the base for
future research paths proposed in this field.

7.2 Conclusions

Before summarizing the most important conclusions of this work, it is
important to remember that the main objective of the Thesis is to optimize a
MCCI combustion system to show its potential for future generation engines,
this is, to improve its efficiency while keeping the emissions levels under the
current and future emission standards. In order to achieve it, an automatic
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optimization system and a methodology had to be developed and implemented
for this study.

In Chapter 1 it is described the motivation behind this study and the
methodology followed to ensure that the main objective is achieved. In order
to be consistent, the same structure is followed to present the final conclusions
of this Thesis.

Firstly, it was concluded in Chapter 1 that MCCI engines still have a
long life in the field of HD and MD engines for on-road and off-road vehicles,
therefore it is worth to follow up the development of those type of engines. For
that reason, a review of the main optimization strategies and methodologies
used in MCCI engine design was discussed and a valuable set of conclusions
were obtained.

� Optimization strategies based on modifying the combustion character-
istics of the engine (geometry, air management and injection strategies)
have been used for decades with excellent results. However, the emission
standards are becoming more stringent and the potential of these
strategies is nowadays close to its limit in current generation engines
and might not be enough to achieve the emission objectives of future
generation engines. For that reason additional strategies based on after-
treatment and alternative fuels were presented as a complement to
achieve future emission and fuel consumption targets. Based on that a
first optimization of a CDC engine was suggested to find their maximum
potential and then an alternative approach with DME is suggested to
prove that MCCI engines are able to achieve more stringent emission
standards and are a valid option for future generation engines.

� The main drawback attached to the increasing flexibility that the
engines are offering lately is that more subsystems imply a harder
optimization task, therefore advanced optimization methods are needed.
Non-evolutionary methods were chosen to perform the CDC engine
optimization because their combustion system is well known and then
the previous experience of the research team in CDC engines permitted
a reduction of optimization inputs and ranges, then a RSM method
was used for this task. A RSM method was the preferred option due
to its capability of capturing single and coupled trends and was the
most efficient optimization method for a limited number of parameters.
Then evolutionary optimization methods were chosen for the DME fueled
MCCI engine because, contrary to the CDC engine optimization, the
behavior of DME engines are less known and the experience of the
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research group was insufficient or nonexistent. A GA method was the
chosen option due to the extensive number of literature examples where
they have proven success in the field of engine optimization. Concretely,
the DKGA was decided as the best option for DME fueled engine
optimization after testing its superior performance compared to the other
GAs presented.

Then, the results of the non-evolutionary optimization were presented and
the following conclusions were obtained

� The optimization methodology based on RSM methods and CFD
provided accurate results and proved to be a good optimization option
for CDC concepts. This statement was specially demonstrated after the
experimental validation.

� The methodology not only provided the optimum configuration but also
the cause/effect relationship between the inputs and outputs. This
allows the research community to have a better understanding of the
combustion concept and completely understand why the reference engine
evolved towards the optimum configuration.

� Two optimum configurations were found in two different optimization
stages, all optimums offered improved efficiency keeping the emission
levels under the reference values. The first optimum was focused on
improving the fuel consumption while the second optimum was focused
on the NOx/ISFC trade-off. It was found that the room for improvement
was very limited and that suggests that new optimization paths for
MCCI engines, such as alternative fuels, are needed to achieve future
emission standards without an efficiency penalization. Stage 1 optimums
were limited at 0.5% ISFC improvement, showing the low potential of
optimizing only the geometry and demonstrating that the idea of a
quiescent combustion chamber was not achievable with the reference
engine. Then, Stage 2 increased the optimization parameters from 4
to 6 (including air management and injection settings as inputs). The
optimums found were able to improve ISFC around 5% for constant
emissions or 4% for a 40% NOx reduction, but further NOx reduction
would not be possible without penalizing the engine ISFC.

The results from the CDC engine optimization demonstrated than adding
air management and injection settings as optimization parameters increase
the potential of the optimization method but they also suggested that CDC
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engines are already optimized and future standards are hardly reachable with
this combustion concept. For that reason an alternative path was proposed,
MCCI engine fueled with DME, a fuel with diesel-like combustion properties
coupled with a non-sooting nature. The optimization was performed and a
series of conclusions were obtained from the DME engine optimization.

� The optimization methodology based on GAs and CFD was successfully
applied to a DME fueled MCCI engine. It was adjusted to not only
provide accurate results but also to provide cause/effect relationship
between inputs and outputs, following the structure used in the non-
evolutionary optimization.

� The first optimization tried to achieve current emission standards and
maximize the engine efficiency. The final optimum provided a 3.3%
NIE improvement while satisfying the US2010 standards. The EGR was
the main parameter that guided the optimization process. The main
restriction was the NOx emissions and the EGR was the main strategy
to control it, therefore, the EGR was set to a value of 40% to ensure
low NOx emissions and then the rest of the parameters were adjusted to
maximize NIE compensating as much as possible the negative impact of
medium to high EGR levels. The piston bowl geometry was modified,
keeping the reentrant shape, to enhance mixing and reduce HT. Then
the injection and air management settings were optimized also to provide
faster mixing and combustion, this is, to improve efficiency.

� The second optimization tried to achieve future emission standards with
a DME fueled stoichiometric MCCI concept coupled with a TWC. The
results proved that it is possible to achieve stremely low NOx emissions
(less than 1% of the original values or 72% lower than the target US2030
standards after the TWC) keeping competitive NIE values. This suggests
that DME fueled engines can be used for future generation engines
achieving US2030 or even more strict regulations maintaining diesel-like
efficiencies. Similar to the previous optimization, EGR was the main
tool used to control NOx but this time the EGR did not show a negative
effect over NIE and the optimization algorithm pushed the EGR to a
higher level than that needed to control NOx emissions. The rest of
the optimization inputs had similar effects over the engine, however,
the non-sooting nature of the DME allowed the use of a TWC, proving
superiority to any fuel concerned with soot emissions.

The results presented in this Thesis not only show the limitations and
advantages of the different optimization methods but also offer improved
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analysis strategies applicable to RSM and GA. Additionally, it is shown that
CDC CI engines are already optimized and can not be largely improved with
the state-of-the-art MCCI engine optimization strategies (based on hardware
and settings) to achieve future emission standards without an efficiency
penalization. On the contrary, this work showed that DME is a promising
fuel for future generation engines, specially stoichiometric DME fueled MCCI
concepts coupled with a TWC, that are able to achieve future emission
standards while maintaining diesel-like efficiency.

7.3 Future work

When a research work is finished, it is not possible to deepen in all
the concepts and aspects equally, therefore, it has to be shifted to future
projects. Additionally, after analyzing the results obtained there are always
new challenges and questions that have to be answered. This Thesis is not
an exception and after the detailed summary performed in this chapter, there
are new research paths that can be investigated to complement this Thesis.
Focusing first on the optimization tools and methodologies.

� One of the main problems when generating the CFD cases was the
geometry generator because the codes used for this study are already
outdated in several aspects. Then this work could be performed in other
CFD codes with improved performance to see the real potential of the
methodologies without the restrictions imposed by the software.

� The RSM methods are already mature methods that have demonstrated
great performance so it is suggested to combine them with evolutionary
optimization methodologies trying to improve the accuracy and speed of
the optimization. This idea is based on the approach followed in section
4.5.2.1 with the COSSO fitting tool.

� When an optimization is performed with GAs, the algorithm provides the
optimum configuration but the analysis of the cause/effect relationships
are done in post-process with external softwares. This aspect is specially
important when the optimizations are applied to new combustion
concepts that are still unknown and the understanding of the path
followed by the algorithm is really valuable. For that reason, even though
in this Thesis it has been tried to provide this information, it can be
further improved and other analysis approaches should be tested.
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� The evolutionary optimization method chosen to perform the DME
engine optimization was GA because the literature review proved that
optimization methodologies based on GA provide robust and accurate
results when applied to MCCI engines. However, the other algorithms
presented, like PSA, are gaining reliability and should be tested and
compared to the GA performance. Then it is proposed to keep
investigating the field of optimization methodologies and test alternative
evolutionary algorithms like PSA. The main reason behind the interest
on PSA algorithms is that they are less likely to converge into a local
optimum and, since the real behavior of the DME engine is unknown
(i.e. shapes of the response surface), it is worth to try new and more
robust alternatives.

The provided optimum configurations presented really good properties and
proved their potential for current and future generation engines, then the
following future work is proposed.

� The stoichiometric combustion DME engine proved that it could provide
lower NOx emissions that the targets proposed for this Thesis with
minimal NIE penalization. In this context, it is proposed to keep
optimizing the engine with more stringent targets to find the maximum
potential of the engine.

� In this Thesis only the DME was proposed as an alternative, however,
there are new fuels every year that are worth investigating. Then, it is
proposed to modify the code to easily switch the fuel of the MCCI engine
and test the potential of alternative fuels to achieve future emission
standards.
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