
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://doi.org/10.1016/j.jclepro.2016.11.002

http://hdl.handle.net/10251/104443

Elsevier

Salido Gregorio, MÁ.; Escamilla Fuster, J.; Barber Sanchís, F.; Giret Boggino, AS. (2017).
Rescheduling in job-shop problems for sustainable manufacturing systems. Journal of
Cleaner Production. 162(20):121-132. doi:10.1016/j.jclepro.2016.11.002



Rescheduling in Job-Shop Problems for Sustainable
Manufacturing Systems

Miguel A. Salido, Joan Escamilla, Federico Barber, Adriana Giret
 Instituto de Automáica e Informáica Industrial 

Universitad Politècnica de València, Spain

in: Journal of Cleaner Production 162.(2017)  http://dx.doi.org/10.1016/j.jclepro.2016.11.002

Abstract

Manufacturing industries are faced with environmental challenges so their in-

dustrial processes must be optimized in terms of both profitability and sustaina-

bility. Most of these processes are dynamic, so the previously obtained solutions

cannot be valid after incidences or disruptions. This paper is focused on recovery

in dynamic job-shop scheduling problems where machines can work at different

rates. Machine speed scaling is an alternative framework to the on/off con-trol

framework for production scheduling. Thus, given a disruption, the main goal is

to recover the original solution by rescheduling the minimum number of tasks. To

this end, a new match-up technique is developed to determine the rescheduling

zone and a feasible reschedule. Then, a memetic algorithm is pro-posed for

finding a schedule that minimize the energy consumption within the rescheduling

zone but maintaining the makespan constraint. An extensive study is carried out

to analyze the behavior of our algorithms to recover the original solution and

minimize the energy reduction in different benchmarks, taken from the OR-

Library. The energy consumption and processing time of the involved tasks in the

rescheduling zone will play an important role to determine the best match-up

point and the optimized rescheduling. Upon a disruption, different rescheduling

solutions can be obtained, all of them holding with the require-ments, but with

different values of energy consumption. The results proposed in this paper may

be useful to be applied in real industries for energy-efficient production

rescheduling.

*



Keywords: Manufacturing problem, Multi-objective, Rescheduling, Memetic

algorithm, Energy consumption

1. Introduction

In manufacturing industries, there exist many unexpected disruptions every

day (machine breakdown, order modification, disruptive events, order cancela-

tions, etc). After a disruption, the original schedule may become invalid by

5 the new conditions. In some cases, it is possible to easily modify the solution

to absorb the disruption but in many cases rescheduling is mandatory to mini-

mize the effects of such disruption and recover the original solution as soon as

possible.

In the literature, there are many dynamic scheduling methods to manage

10 online scheduling. Arnaout (2014) tackles rescheduling for the unrelated paral-lel

machine problem with sequence dependent setup times and different rates of

breakdowns or urgent jobs arrivals. To this end, a new repair rule referred to as

Minimum Weighted Cmax Difference (MWCD) is developed and compared to

existing algorithms based on both schedule quality and stability. Hall and

15Potts (2004) work with scheduling problems where a set of original jobs has already

been scheduled to minimize some cost objective when a new set of jobs arrives and

creates a disruption. The decision maker needs to insert the new jobs into the

existing schedule without excessively disrupting. The authors pro-vide either an

efficient algorithm or a proof that such an algorithm is unlikely

20 to exist. In Qi et al. (2006) the problem of updating a machine schedule is pro-posed

when either a random or an anticipated disruption occurs after a subset of the jobs.

The proposed approach differs from most rescheduling analysis in that the cost

associated with the deviation between the original and the new schedule is included

in the model. Vieira et al. (2000) presents new analytical

25 models that can predict the performance of rescheduling strategies and quan-tify

the trade-off between different performance measures. To this end, three

rescheduling strategies are studied: periodic, hybrid, and event-driven based

2



on the queue size. Vieira et al. (2003) present a framework for understand-

ing rescheduling strategies, policies and methods in rescheduling manufacturing

systems. The work explains methods for generating robust schedules and meth-30

ods for updating schedules. In Subramaniam and Raheja (2003), the typical

job shop disruptions are studied and their repair processes are decomposed into

four generic repair steps, which are achieved using a modified affected oper-

ation rescheduling (mAOR) heuristic. In Herroelen and Leus (2004), several

methodologies for proactive and reactive project scheduling are reviewed. They35

also offer a framework that allow project management to identify the proper

scheduling methodology for different project scheduling environments.

Furthermore, the main objective of manufacturing industries is to improve

profitability and competitiveness. These improvements can be obtained with

a good optimization of resources allocation. In the last years, many industries40

are not only facing complex and diverse economic trends of shorter product

life cycles, quick changing science and technology, increasing customer demand

diversity, and production activities globalization but also enormous and heavy

environmental challenges of global climate change (Mestl et al. (2005)) and rapid

exhaustion of various non-renewable resources (Yusoff (2006)). Research on re-45

ducing the energy consumption of manufacturing processes has mainly focused

on the energy consumption optimization based on the machine level and the

product level (Neugebauer et al. (2011)). In Gahm et al. (2016), a research

framework for energy-efficient scheduling is developed. Different proposals have

been classified following different attributes and criteria. Tonelli et al. (2016)50

propose a centralized and distributed model for an off-line energy-aware sched-

uling problem. Liu et al. (2014) propose a model for the bi-objectives problem

that minimizes total electricity consumption and total weighted tardiness in

JSP. To this end the Non-dominant Sorting Genetic Algorithm is employed to

obtain the Pareto front. In May et al. (2015), a green genetic algorithm is pro-55

posed to achieve a semi-optimal makespan with a significantly lower total energy

consumption in job shop scheduling problems. The study demonstrated that the

worthless energy consumption can be reduced significantly by employing com-

3



plex energy-efficient machine behavior policies. Mouzon et al. (2007) developed

several algorithms and a multiple-objective mathematical programming model60

to investigate the problem of scheduling jobs on a single CNC machine in order

to reduce energy consumption and total completion time. They pointed out

that there was a significant amount of energy savings when non-bottleneck ma-

chines were turned off until needed. It is well-known that machines consume

a considerable amount of energy when left idle. Thus, many works propose a65

turn-on and turn-off scheduling framework to control the machines. Thus the

overall energy consumption can be reduced. For some manufacturing systems,

however, it is not possible to turn off machines completely during each of the

idle intervals, either because restarting the machines requires a large amount of

energy or because frequent on and off switches may damage to the machine com-70

ponents. In these cases, the on/off control framework is not applicable (Zhang

and Chiong (2016)). Thus, an alternative to the on/off control framework is a

new framework based on machine speed scaling (Fang et al., 2013 for flow shop

scheduling)(Salido et al. 2013 for job shop scheduling). In this new framework,

machines are allowed to work at different speed levels when processing differ-75

ent jobs. Some researchers have focused their research in this framework. In

Zhang and Chiong (2016), a multiobjective genetic algorithm with enhanced

local search for minimizing the total weighted tardiness and total energy con-

sumption is proposed. Fang et al. (2013) propose mathematical programming

and combinatorial approaches to consider a flow shop scheduling problem with80

a restriction on peak power consumption.

One of the most important production scheduling problems studied in the

literature is the job-shop scheduling problem (JSP) that represents a problem

in which some tasks are assigned to machines with a specific processing time.

In comparison, studies on the JSP with energy-saving objectives are limited,85

although currently some works are considering this feature in JSPs.

This paper works with an extension of the job-shop scheduling problem

where each machine can work at different rates (JSMS) (Salido et al. (2013)).

It is assumed that when a job is processed at a higher speed, its processing time

4



decreases, while its power consumption increases (Fang et al. (2013)). Power90

consumption is the energy consumption per unit of time. Thus the energy con-

sumption of a task with duration time is given by the formula Energy = Power

* Time. In tasks related with manufacturing processes is usually assumed that

as higher power in machines, less processing time is required. This relationship

is not lineal since it depends on the efficient rate, which usually decreases from95

a certain point of the power supplied Draganescu et al. (2003). Thus, although

the power consumption increases, the energy consumption may be lower, equal

or higher depending on the point of the efficiency rate where machine is work-

ing. For instance, if all machines can use less energy at maximum speed for all

tasks, the problem remains trivial with respect to power consumption, due to100

the fact that only this machine speed (from available) will be selected. Thus,

the problem remains a classical job shop scheduling with the only objective of

minimizing makespan. Indeed if a machine uses less energy at maximum speed

(and therefore lowest processing time), the other available machine speeds can

be removed from the list, in a preprocess step, due to the fact that they will not105

take part of a solution. Thus, it is considered the case in which there is a tradeoff

between energy consumption and machine speed so all available machine speeds

can take part of a solution according to operator preferences.

Thus, without loss of generality, it is considered energy consumption instead

of power consumption, as the processing time to execute a task at each machine110

speed is known in advance. Similar to Zhang and Chiong (2016), the processing

time in JSMS depends of the machines speed and therefore the energy consump-

tion. Thus, it is assumed that increasing the machine speed will lead to higher

energy consumption despite the shorter processing time.

Furthermore, most of the existing research on reducing energy consumption115

in JSP has focused on static scheduling models (Zhang and Chiong (2016); May

et al. (2015); Liu et al. (2014)). Thus, it is needed to develop new techniques to

address rescheduling and reduce the energy consumption in job-shop scheduling

problems. In this paper a new rescheduling technique is developed to recover

the original solution by minimizing energy-consumption within the rescheduling120

5



zone.

2. Rescheduling and Recovery

As it has been pointed out, unpredictable events/disruptions occur every-

day in manufacturing industries. Sometimes these events can be absorbed by

the original schedule and no rescheduling technique is needed. In this case,125

the schedule is considered robust and it is able to absorb minor disruptions.

However, when the event cannot be absorbed by the schedule, a rescheduling

process is required to obtain a new valid schedule. In this process, the number

of affected tasks should be minimized. To this end, the concept of nervousness is

used to measure the amount of changes needed to recover an original schedule.130

The term of nervousness was coined by Steele (1975) to be used in the context

of Material Requirement Planning System. It was used by Pujawan (2004) in

manufacturing problems to represent the propagation of changes at the master

production schedule into instability in the requirements of parts or components

at lower levels of the product structure. To adapt the definitions of robustness,135

stability and recoverability given in Barber and Salido (2015), it is considered:

• A schedule is robust if it is able to absorb the disruption without affecting

further tasks. Thus, if a machine is disrupted during a task execution, only

the end time of this task is affected by the disruption.

• A schedule is stable if there exist a new feasible schedule in the neigh-

borhood of the disrupted schedule. Thus, if a machine is disrupted during

a task execution, only the start time of few tasks along the schedule are

affected by the disruption.

• A schedule is recoverable if only some few consecutive tasks are affected

and the original schedule is recovered from a time point. Thus, if a ma-

chine is disrupted during a task execution, only the start time of some

few consecutive tasks are affected by the disruption and the rest of the

following tasks remain unaltered.

6



The main difference between stability and recoverability is that in recovera-

bility, the tasks to be repaired are consecutive over time and distributed among150

machines. Thus, there is a time point called match-up point, where the origi-

nal schedule is recovered and all these tasks maintain their original start time.

However, in stability, the start time of tasks to be repaired may be sparse along

the schedule.

During the rest of the paper, the term of recoverable schedule will be used155

to measure the number of changes needed from the disruption point to recover

the original schedule.

The three most used schedule repair methods to recover the original schedule

are: regeneration, partial rescheduling, and right-shift scheduling (Vieira et al.

(2003)):160

• Regeneration (Church and Uzsoy (1992), Wu et al. (1993)) constructs

a complete schedule by rescheduling all the tasks. It is also called total

rescheduling. This strategy takes more computational effort to run since

more tasks must be scheduled. It produces the most schedule nervousness

and least stability.165

• Partial rescheduling (Li et al. (1993), Wu and Li (1995)) takes into

account only the tasks that were affected by the incidence. This reduces

the schedule nervousness and increases stability.

• The right-shift method (Abumaizar and Svestka (1997)) postpones the

remaining tasks by the amount of downtime. In some cases, right-shift170

might be a special case of partial rescheduling. The right-shift method

produces the least schedule nervousness and most schedule stability. This

idea was used in Akturk and Gorgulu (1999) for determining the match-up

point to reschedule as few tasks as possible.

In this paper, we focus our attention in rescheduling using a match-up tech-175

nique to reduce nervousness, increase stability and recover the original schedule

as soon as possible. Thus, after a machine breakdown, a match-up point for

7



Figure 1: Rescheduling by recovery.

8



each machine is determined and part of the original schedule ranged between

the disruption point and match-up point must be rescheduled (see Figure 1). 

180 There are two problems that must be addressed:

1. The problem of finding a match-up point for the schedule to determine

the interval to be rescheduled (rescheduling zone in Figure 1). A specific

technique must be developed to find the match-up point and as a result

an initial and valid schedule is obtained.

2. The problem of searching for a new schedule that minimizes the energy185

consumption in the range between the disruption point and the obtained

match-up point.

Both problems must be managed in a different way:

• The first problem could be considered a new scheduling problem where

the objective is to minimize makespan (match-up point) by penalizing the190

modified variables with respect to the original solution. However, it could

return a stable schedule and not a recovered schedule. Thus, a breadth

first search technique must be developed to minimize the propagation of

the disruption along the schedule.

• The second problem is a scheduling problem with a given makespan thresh-195

old, so a metaheuristic search technique must be applied/developed to

minimize energy consumption. It must be taken into account that the

makespan threshold is only a hard constraint in this problem and not

a parameter to optimize, because the rest of the original schedule (from

the match-up point) is not modified. Minimizing the makespan in this200

rescheduling problem could return a non-energy efficiency reschedule.

3. Problem Description

Most manufacturing industrial processes can be represented as a job-shop

scheduling problem where machines can work at different speeds/rates (JSMS).

9



This problem consists of a set of n jobs {J1, . . . , Jn} and a set of m machines205

{R1, . . . , Rm}. Each job Ji consists of a sequence of vi tasks (θi1, . . . , θivi
).

Each task θil has a single machine requirement Rθil and a start time stθil to be

determined. Each machine can work at different rates, so the combination of

processing time and energy consumption is presented by a tuple {pθil ,eθil}.
A feasible schedule is composed of a complete assignment of starting times210

of tasks that satisfy the following constraints:

1. The tasks of each job are sequentially scheduled.

2. Each machine can process at most one task at any time.

3. No preemption is allowed.

The aim of the JSMS problems is to find a feasible schedule that minimizes215

makespan and energy consumption meanwhile maximizes the robustness of the

schedule.

This problem represents an extension of the standard job-shop scheduling

problem (J ||Cmax) Blazewicz et al. (1986). An association between process-

ing time and energy has been created so the problem JSMS can be denoted as220

J(Speed)||Cmax, Energy. For each task, three different speeds/modes (called

{1,2,3}) have been defined. Each possible processing speed/mode of a machine

is associated to a processing time and an energy consumption. As we have

pointed out before, it is assumed that as the working speed of a machine in-

creases, the energy consumption also increases despite the shorter processing225

time (Zhang and Chiong (2016)). However there is neither normalized pro-

portional processing speed nor a direct relationship among these parameters.

It is typical to have energy consumption as an exponential function of speed

(Fang et al. (2013); Bouzid (2005)). However, the user could select another

relationship among these parameters.230

According to the classification proposed in Gahm et al. (2016), our problem

can be categorized as:

• Energetic coverage: Directly reduce AES demand (PS).

10



• Energy demand: Job related (JR), Machine related (MR), Flexible (FLX).

• Objective criteria: Non-monetary (makespan)235

• System of objectives: Multi-objective.

• Manufacturing model: Jobshop/projects cheduling (J/PS).

• Solution method: Heuristic.

4. Rescheduling by Match-up in JSMS

Once a schedule suffers an incidence and it cannot be absorbed by robustness,240

rescheduling is required to minimize the needed changes in the original schedule.

Our main objective is to develop a technique to search for a time point called

match-up point where the original schedule can be re-established/recovered.

Thus, the rescheduling is only necessary in the period between the disruption

point and the match-up point (Figure 1). It reduces the computational cost245

and the time needed to re-establish the schedule. At the same time, part of

the schedule remains unaltered so the stability is increased and nervousness

decreased. Without loss of generality, we assume that a disruption is only

generated in a single machine during a task processing.

4.1. A Match-up technique250

In JSMS problems, the machines can work at different speeds with their cor-

responding energy consumptions and processing times. This variability can be

used to minimize the match-up point for each machine. Due to the fact that an

incidence appears in a random machine during task execution, these incidences

can be propagated and they can affect other tasks executed in other machines.255

The main goal of the proposed algorithm is to analyze the propagation of a

disrupted task, and to accelerate each involved machine to absorb the incidence

or to reduce it. Once the incidence has been absorbed, the original schedule is

recovered in a given time point (match-up point). It must be taken into account

11



that the algorithm returns a match-up point and also a valid reschedule. How-260

ever, it can be observed that the involved machines in the rescheduling process

have been accelerated, so the obtained reschedule is not an energy efficient so-

lution. Thus, a memetic algorithm will use the match-up point to minimize the

energy consumption in this rescheduling zone.

Figure 2: Task relationship by job or machine

Following the example of Figure 1, Figure 2 shows the relationship between265

a disrupted task θ22−3 and the next two related tasks. One task θ23−1 related

with task θ22−3 by the precedence constraint in the same job 2, and task θ12−3

related with task θ22−3 by the same machine 3. Algorithm 1 shows the pseudo-

code of the match-up technique. The input of the algorithm is the original

schedule (Schedule) and the incidence that occurs in a machine during task270

execution (IncidentTask). The output of the algorithm is the match-up point

of the schedule (MatchUpSchedule) and a valid reschedule (Solution) if the

incidence is absorbed, or the algorithm returns that the makespan of the original

solution has been reached.

The algorithm 1 works as follow. There is a queue called InvolvedTasks275

that stores all tasks affected by the incidence. These tasks, inserted in the

queue, store its own delay-propagated by the incidence. The first task inserted

in InvolvedTasks is IncidentTask and this task stores as delay-propagated the

initial disruption time (see Figure 1). Then, it is checked if next task by machine

and the next task by precedence constraint are able to absorb the incidence (see280

12



Algorithm 1: CalculateMatch-Up(Input (Schedule,IncidentTask), Output

((MatchUpSchedule,Solution)∨(MakespanReached))

InvolvedTasks= φ; //The queue is initialized empty

InvolvedTasks ← IncidentTask;

MakespanReached= False;

while (InvolvedTasks �= φ and !MakespanReached) do

CurrentTask=InvolvedTasks.pop; //Access next element in the queue

InvolvedTasks ← InvolvedTasks\CurrentTask;

NextTaskMach = GetNextbyMach(CurrentTask); //Select next task by machine

NextTaskJob = GetNextbyJob(CurrentTask); //Select next task by precedence constraint

Check(NextTaskMach, &MakespanReached);

Check(NextTaskJob, &MakespanReached);

end while

if (!MakespanReached) then

MatchUpSchedule = Max(MatchUp[NMach]);

Return (MatchUpSchedule,Solution);

else

Return MakespanReached

end if

Algorithm 2). If both tasks absorb the incidence, then the algorithm returns the

match-up schedule, that is, the latest end time of the affected tasks. However

if any task cannot completely absorb the incidence, it will be inserted in the

InvolvedTask queue to be checked in next iterations. The amount of time that

this task was not able to absorb is calculated and stored. Once a task is able285

to absorb the propagated incidence, a match-up for the involved machine is

store (MatchUp[NMach]). The algorithm is iteratively executed until there

is no task in the queue or the makespan of the original schedule is reached

(MakespanReached= True). If the InvolvedTasks queue is empty, then the

incidence has been absorbed, a match-up point of the schedule and a valid290

reschedule is obtained. Otherwise, the incidence has not been absorbed in the

given makespan.

Algorithm 2 checks if a task is able to absorb its delay-propagated. To this

end, the function AbsorbIncidence is committed to set the involve machine at

highest speed to minimize the duration of this task, which it is updated. Thus,295

13



Algorithm 2: Check(Input (Task,MakespanReached), Output (Makespan-

Reached))

RecovTime=AbsorbIncidence(Task);

Update(end time(task));

if (RecovTime ≥ delay-propagated(Task)) then

UpdateMatchUp(machine(Task),end time(Task));

else

Delay propagated(Task)=Delay propagated(task)-RecovTime;

InvolvedTasks ← Task; //The task is added in the queue.

if (MakespanReached(Task)) then

MakespanReached=True;

end if

end if

Return MakespanReached;

the recovered time (RecovTime) is calculated. If this time is enough to recover

the incidence, then the match-up point of the involve machine is updated with

the new end time of this task. If not, the delay-propagated of this task is

updated and the task is inserted in the queue. Finally, it is checked that the

updated task has not reached the makespan of the original solution.300

4.2. Rescheduling to minimize energy consumption

Once a match-up point is obtained, a new scheduling sub-problem can be

defined from the incidence point until the match-up point. In the previous

section a valid solution was obtained, so our aim in this section is to improve

this solution in terms of energy consumption.305

In Algorithm 3 the rescheduling algorithm is presented. The aim of this

algorithm is to minimize the energy consumption and a makespan lower than a

given threshold (the match-up point). Thus, the algorithm starts by minimizing

only the energy consumption (λ = 0, see 1). If no solution is found with lower

makespan that the given threshold (match-up point), then the lambda value is310

increased and the process is repeated. Thus, the first solution found by algori-

thm 3 will be the best solution found with the minimum energy consumption

and makespan lower that the given threshold. If algorithm 3 finds a better so-

14



lution, in terms of energy consumption than the one obtained by algorithm 1,

then this solution will be returned as final schedule for the given subproblem.315

If not, the algorithm returns the same solution obtained by algorithm 1.

Algorithm 3: Rescheduling (Sub-problem, Schedule, MatchUp

lambda = 0;

Makespan=MatchUp + 1;

while (lambda <=1 and Makespan>MatchUp) do

ScheduleImp=MemeticAlgorithm (Sub-problem, λ)

Makespan=ScheduleImp.Mk;

lambda = lambda + 0.1;

end while

if ((ScheduleImp.Mk<=Schedule.Mk) and (ScheduleImp.En<Schedule.En)) then

Return ScheduleImp;

else

Return Schedule;

end if

4.2.1. Memetic Algorithm (GA*+LS)

In this section we present the memetic algorithm which combines a genetic

algorithm (GA) with a local search (LS). Genetic Algorithms are adaptive meth-

ods which may be used to solve optimization problems Beasley et al. (1993).320

The pseudo code for the proposed genetic algorithm is shown in algorithm 4.

Chromosome encoding and decoding. Each candidate represents a solu-

tion in the solution space. The first step to construct the GA is to define

an appropriate genetic representation (coding). In Varela et al. (2005),

it is proposed a coding where a chromosome is a permutation of the set325

of tasks that represents a tentative ordering to schedule them, each one

being represented by its job number. This encoding has a number of

interesting properties for the classic job-shop scheduling problem. How-

ever, in the JSMS problem, the machine speed of each operation has to

be represented. Thus, we add a value to each task in order to represent330

the speed of the machine that processes this task. When the chromosome

representation is decoded, each task starts as soon as possible following

15



Algorithm 4: MemeticAlgorithm (JSMS, λ)

Initial-Population(Population, Size);

Evaluate-Fitness(Population);

while (Stopping criterion is not fulfilled) do

RandomShuffle(Population);

for (i=0; i<populationsize; i=i+2) do

Crossover(Population[i],Population[i+1],Brother,Sister);

Mutation(Brother,Sister,Brother’,Sister’);

if (Runtime>80%timeOut) then

LocalSearch(Brother’);

LocalSearch(Sister’);

end if

Evaluate-Fitness(Brother’,Sister’);

SaveTempPopulation(TempPopulation,Brother’,Sister’);

end for

Update-Population(Population,TempPopulation);

end while

Return Best Schedule;

the precedence and machine constraints. With the machine speed repre-

sentation, the processing time for each task and the energy consumption

can be calculated.335

Initial population and Fitness. Each gene represents one task of the prob-

lem. The position of each task determines its dispatch order in this

genome/solution. The initial chromosomes are obtained following some

dispatching rules or by random permutation. We employ common dis-

patching rules such as SPT (Shortest Processing Time), LPT (longest340

Processing Time), JML (Job with More Load), JMT (Job with More

Tasks), MML (Machine with More Load) and MMT (Machine with More

Tasks). We also employ a random rule, which randomly select a job from

the remaining jobs. To create each genome, each dispatching rule is ran-

domly selected. Thus, it obtains variety and diversity in the initial pop-345

ulation. Machine speed for each gene is generated depending on the λ

value. For λ values lower than 0.6 the machine speed value is set to 1; if

λ = 0.6 the speed value is set to 2; for λ values equals to 0.7, 0.8 and 0.9,

16



the machine speed value is set to a random value in {2,3}; and for λ = 1

the speed value is set to 3.350

The definition of fitness function is just the objective function value pro-

posed in 1. The objective is to find a solution that minimizes the multi-

objective makespan and energy consumption. So the fitness function is

defined as (equation 1), where the weights assigned to both variables

are given by the λ value. Since the values of energy consumption and355

makespan are not proportional, it is necessary to normalize both measures.

Makespan is divided by MaxMakespan which is the maximum makespan

value in a GA execution when λ is equal to 0. MaxEnergy is the sum of

the energy needed to execute all tasks at top speed.

F = λ ∗ Makespan

MaxMakespan
+ (1− λ) ∗ SumEnergy

MaxEnergy
λ ∈ [0, 1] (1)

Crossover operator. For chromosome mating, the GA uses the Job-based360

Order Crossover (JOX) described in Bierwirth (1995). Given two parents,

JOX selects a random subset of jobs and copies their genes to the offspring

in the same positions as they are in the first parent, then the remaining

genes are taken from the second parent so as they maintain their relative

ordering.365

The remaining elements of GA are rather conventional. To create a new

generation, all chromosomes from the current one are organized into cou-

ples which are mated two offsprings in accordance with the crossover prob-

ability.

Mutation operator. The two offsprings generated with the crossover oper-370

ation can also be mutated in accordance the mutation probability. Two

positions of chromosome child are randomly chosen (position ”a” and posi-

tion ”b”), where ”a” must be lower than ”b”. Values between ”a” and ”b”

are shuffled randomly. Each position represents a task, so the tasks are

shuffled randomly and also the machine speed is changed for each task be-375

17



tween the possible speeds. Finally, tournament replacement among every

couple of parents and their offsprings is done to obtain the next generation.

4.2.2. Local Search

Conventional GAs can produce good results. However, significant improve-

ments can be obtained by hybridization with other methods. A local search380

algorithm starts from a solution and then iteratively moves to neighbour so-

lutions. This is possible only if a neighbourhood relation is defined on the

search space. Local search (LS) is implemented by defining a neighbourhood of

each point in the search space as the set of chromosomes reachable by a given

transformation rule. Then, a chromosome is replaced by the selected neighbour385

that satisfies the acceptance criterion. We propose a neighbourhood structure

based on the concepts of critical path and critical block Matsuo et al. (1989),

Van Laarhoven et al. (1992) and Nowicki and Smutnicki (1996). A critical block

is a maximal subsequence of operations of a critical path requiring the same ma-

chine. In Mattfeld (1995) is defined the neighbourhood structure N1 for JSP.390

It considers a set of moves called ”interchange near the borderline of blocks on

a single critical path”, what means swapping pairs of operations only at the

beginning or at the end of a critical block Mattfeld (1995).

Following the idea of neighbourhood structure N1 and the concepts of crit-

ical path and critical block, we have defined energy-efficiency neighbourhood395

structure (NEE) where each task in the critical path is analysed to check if the

next tasks of the same machine are consecutive and involved in the critical path.

If this condition is met a new neighbour is created swapping both tasks and the

machine speed is increased if its fitness is not worsened. Furthermore, when a

task is not in a critical path, its speed is decreased to create a new neighbour400

in order to save energy. LS is only carried out if the runtime is bigger than the

80% of the assigned time-out.

18



Figure 3: Original solution, recovered solution, improved solution after a disruption and

breadth-first search 19



4.2.3. Example

Figure 3 shows an example of how algorithms work. It shows a scheduling

problem with 3 jobs, 3 machines and 3 tasks per job. Figure 3a shows an405

optimize schedule in terms of makespan and energy consumption. The tasks

in green were executed at low speed (1) so they required a large processing

time; the tasks in yellow were executed at medium speed (2), so they required

a medium processing time; and the tasks in red were executed at high speed

(3), so they required a low processing time. Thus, given a disruption, the410

match-up algorithm searches for a solution by increasing the speed of some

machines and using the existing buffers/gaps (see figure 3b). The match-up

point of each machine is calculated and therefore the match-up point of the

scheduling is obtained. Furthermore the original schedule was recovered with a

valid solution. To this end, some of the involved tasks were executed at higher415

speed in order to reduce this match-up point. Finally, the memetic algorithm

carries out improvements between the disruption point and the obtained match-

up point (Figure 3c). It can be observed that the task 2 of job 1 was executed

before task 2 of job 2 (both using machine 3), so task 3 of job 1 was executed

at lower speed and therefore its processing time was increased and the energy420

consumption reduced. However these changes did not modify the rest of the

schedule. Figure 3d shows the tree search carried out by the match-up technique.

5. Evaluation

In this section, an evaluation of the proposed techniques is carried out. First

of all, some incidences were simulated over the schedules and robustness was425

measured. When the machines that suffer the incidences cannot absorb them

(by robustness), our rescheduling methods are applied. These incidences are

analyzed with our match-up technique to determine the temporal interval of the

schedule that had to be rescheduled (sub-problem). Thus, this sub-problem is

solved with the proposed memetic algorithm to obtain the best energy-efficiency430

schedule in a given timeout (100 seconds).

20



In this evaluation, the Lawrence benchmarks from OR-Library were used.

Lawrence instances have 10, 15, 20 and 30 jobs (J). The number of tasks per

job (Vmax) is 5, 10 and 15, and the number of machines is equal to the number

of tasks per job. The range of processing times (pi) is a value between [1, 100].435

In all cases, 5 instances were considered from each combination (JxVmax) 10x5,

15x5, 20x5, 10x10, 15x10, 20x10, 30x10 and 15x15, with a total of 40 instances.

These instances were extended (as explained in Escamilla et al. (2014)) assign-

ing to each task three different modes/speeds, so each task can be executed in

three different processing times with their corresponding energy consumptions.440

In all instances, the objective is the fitness function proposed in formula (1).

It generates the Pareto Front by increasing the λ values. For λ = 0, the ob-

jective is to minimize energy consumption, meanwhile for λ = 1 the objective

is to minimize makespan. These instances and further information about the

extended benchmarks can be found in the webpage1.445

5.1. Incidences and Robustness

Once an initial solution was obtained for each instance, some incidences were

simulated to measure the robustness. Thus, for each solution, 100 incidences

were generated (500 for each group of instances). Once an incidence was assigned

to a machine during a task execution, the duration of this disrupted task was450

randomly increased between 1 and 30% of the maximum processing time of this

instance.

Figure 4 shows that all instances maintained a similar behaviour against

the incidences. When the λ values are low the objective is mainly focused

on minimizing energy, so makespan is higher and therefore, there exists many455

buffers/gaps between consecutive tasks. In this case, many incidences can be

absorbed without rescheduling (robust schedules). It must be taken into account

that for instances with less tasks (10x5, 15x5, 20x5), the robustness is lower

(mainly is high λ values) because there is less variability in the allocation of

1http://gps.webs.upv.es/jobshop/

21



Figure 4: Absorbed incidences for different instances

tasks, so the number of buffers/gaps is lower.460

5.2. Evaluating the Match-up technique

All the incidences/disruptions that were not absorbed by the own robustness

of the schedule, must be managed in the rescheduling process. To this end,

our match-up technique was applied to recover as soon as possible the original

schedule. To this end, given an incidence, the algorithm searches for the best465

match-up point or returns that the makespan of the original schedule is achieved.

This last case occurs when the incidence is located at the end of the schedule,

so there is not enough time to recover the solution. Figure 5 shows the runtime

of the Match-up technique for different group of instances. It represents the

average runtime (milliseconds) to solve each type of instances over an Intel470

Core 2 Duo Processor with 1Gb Ram Memory.

Tables 1 and 2 show, for each group of instances, the amount of incidences

(from a total of 500) that were absorbed by robustness (Rb), by our match-up

techniques (MUp) or not recovered because the makespan was reached (Mk).

It can be observed the importance of the λ value. For low λ values, the ob-475

jective is to minimize energy consumption so most machines work at low speed

22



Figure 5: Average runtime of Match-up technique for different instances

Table 1: Number of incidences absorbed by robustness (Rb) by the match-up point (MUp) or

not recovered (Mk) for different instances

10x5 15x5 20x5 10x10

λ Rb MUp Mk Rb MUp Mk Rb MUp Mk Rb MUp Mk

0 447 40 13 461 35 4 446 53 1 456 27 17

0.1 437 55 8 459 40 1 436 61 3 458 24 18

0.2 433 56 11 455 45 0 427 66 7 454 33 13

0.3 419 67 14 440 56 4 421 72 7 441 42 17

0.4 404 70 26 423 71 6 401 95 4 434 48 18

0.5 381 95 24 391 100 9 383 112 5 423 57 20

0.6 342 113 45 297 170 33 299 169 32 348 97 55

0.7 256 165 79 225 217 58 160 252 88 270 128 102

0.8 179 170 151 128 206 166 120 204 176 221 120 159

0.9 155 137 208 117 209 174 120 199 181 175 83 242

1 65 141 294 65 235 200 53 177 270 96 109 295

23



Table 2: Number of incidences absorbed by robustness (Rb) by the match-up point (MUp) or

not recovered (Mk) for different instances

15x10 20x10 30x10 15x15

λ Rb MUp Mk Rb MUp Mk Rb MUp Mk Rb MUp Mk

0 456 38 6 455 38 7 453 45 2 453 28 19

0.1 450 42 8 454 44 2 455 45 0 448 27 25

0.2 445 46 9 457 40 3 455 44 1 449 29 22

0.3 438 54 8 450 48 2 449 50 1 452 29 19

0.4 431 64 5 440 49 11 440 55 5 440 43 17

0.5 421 63 16 421 79 0 432 63 5 426 49 25

0.6 349 114 37 343 140 17 341 146 13 364 78 58

0.7 282 177 41 274 193 33 258 214 28 311 119 70

0.8 213 222 65 218 230 52 210 253 37 272 145 83

0.9 166 196 138 177 237 86 180 271 49 249 128 123

1 109 171 220 86 180 234 92 234 174 136 138 226

and the makespan increase. This makes that many buffers/gaps appear along

the schedule and most incidences are absorbed by using these buffers (robust

solutions), so no rescheduling is needed. It can be observed in Tables 1 and 2

that as the λ values increased, the number of incidences absorbed by robustness480

(Rb) decreased meanwhile the number of incidences absorbed by our match-up

techniques (MUp) increased. The highest values of MUp were reached for λ

values of 0.7, 0.8 or 0.9, when the objective is to mainly focused on minimiz-

ing makespan and there are not many buffers/gaps in the original schedule to

absorb the incidences by robustness, so our match-up techniques could recover485

more schedules. It must be taken into account that for λ = 1, the objective is

only focused on minimizing makespan, so all machines are working at highest

speed and it is less probably to recover the solution because the makespan is

achieved.

24



5.3. Evaluating the Memetic algorithm for rescheduling490

In this evaluation, we consider that the match-up technique has achieved a

match-up point and therefore an initial recovered schedule has been obtained.

Thus, the objective of the memetic algorithm is to improve the solution obtained

in terms of energy efficiency in a given timeout fixed to 100 seconds.

Table 3: Rescheduling in Match-up results

15x10 30x10

MUp Rec %Rec EnRed %EnRed MUp Rec %Rec EnRed %EnRed

0 38 27 71.1% 3960 35.62% 45 30 66.7% 5318 43.82%

0.1 42 34 81.0% 6512 39.05% 45 38 84.4% 5756 46.12%

0.2 46 31 67.4% 6050 41.74% 44 31 70.5% 7061 47.14%

0.3 54 36 66.7% 6672 38.89% 50 32 64.0% 6308 43.35%

0.4 64 52 81.3% 11599 43.48% 55 40 72.7% 7549 44.95%

0.5 63 49 77.8% 9472 39.27% 63 46 73.0% 10281 44.07%

0.6 114 94 82.5% 18413 30.11% 146 105 71.9% 18374 22.36%

0.7 177 119 67.2% 22903 19.92% 214 103 48.1% 16272 7.23%

0.8 222 102 45.9% 21782 7.78% 253 86 34.0% 15260 4.93%

0.9 196 64 32.7% 87961 25.36% 271 55 20.3% 24391 5.04%

1 171 114 66.7% 187027 74.52% 234 177 75.6% 739241 86.08%

Table 3 shows the results for instances 15x10 and 30x10 which are consid-495

ered representative instances. The column (MUp) represents the total num-

ber of instances recovered by the match-up technique, the columns (Rec) and

(%Rec) represent the number and the percentage of recovered instances that the

memetic algorithm was able to reduce the energy consumption, respectively. Fi-

nally, the columns Energy-Reduced and %Energy-reduced represent the amount500

of energy and the percentage of energy that the memetic algorithm was able to

reduce in the obtained schedule with respect to the schedule recovered by the

match-up technique.

It can be observed in Table 3 that the memetic algorithm was able to reduce

the energy consumption in a significative number of incidences. For low λ505

values, the number of instances that the memetic algorithm was able to reduce

the energy consumption did not vary significatively (around 40). However,

when λ is equal to 0.6 and 0.7, the values of (Rec) increased and when λ is

25



Figure 6: Comparative of Mu and NEn for instance 10x5

equal to 0.8 and 0.9, the values of (Rec) decreased. This behavior is justified

by the characteristic of the original schedule. For high λ values, the (MUp)510

values were high because robustness was low, so there were more options for

rescheduling. Thus, more rescheduling processes were carried out for λ equals to

0.6 and 0.7 and therefore the memetic algorithm was able to reduce the energy

consumption in a high percentage of instances. However, when λ is equal to

0.8 and 0.9 this percentage decreased, because the fitness function is mainly515

focused on minimizing makespan. Thus, most machines are working at highest

speed so energy used cannot be reduced. Finally, when λ = 1, it is considered

an special case because the makespan in only taken into consideration in the

objective function, so many tasks that are not involved in the critical path can

be executed at lower speed without worsening the makespan. This behavior can520

be highlighted in Figure 6 with the tendency curve of (Rec).

Table 3 also shows the total energy saved during the energy reduction carried

26



out by the memetic algorithm. The values of Energy Reduced (EnRed) increased

when λ increased because for high values of λ, the energy used was higher

so it was possible to reduce more energy. The column (%EnRed) represents525

the percentage of energy saved. It can be observed that for low λ values, the

percentage of energy reduced did not vary significatively. However, when λ is

equal to 0.6, 0.7 and 0.8, the percentage decreased and when λ is equal to 0.9, the

percentage increased again. This behavior is also related with the characteristic

of the original schedule because for λ equals to 0.6 and 0.7 the memetic algorithm530

was able to reduce the energy consumption in a high percentage of instances

but not a high quantity. For these λ values, the energy used was not too high

but for λ = 0.9, the technique was able to save more amount of energy.

6. Conclusion

Manufacturing industries involve a large number of scheduling problems.535

Most of these problems are dynamic so they face with incidences so, recovery

techniques are needed to re-establish the original scheduling as soon as possi-

ble. Moreover, industries are facing increasing requirements of sustainability, so

energy consumption processes should be minimized.

In this paper, we propose two different techniques to manage rescheduling540

over an extended version of the job-shop scheduling problem. Thus, given an

incidence, a first technique, called match-up technique, is committed to deter-

mine the time point of the schedule where the original solution is recovered and

a non-energy efficient solution is obtained. Afterwards, a memetic algorithm is

proposed to search for an energy efficient solution in the established reschedul-545

ing zone. An extensive study was carried out to analyze the behavior of the

proposed techniques. To this end, some incidences were simulated over some

well-known benchmarks. The proposed match-up technique maintained a good

performance and many instances were recovered in an efficient way. Finally most

of the rescheduling solutions were improved to save more energy consumption.550

It can be seen that upon a disruption, different rescheduling solutions can be

27



obtained , all of them holding with the requirement of the initial makespan, but

with different values of energy consumption. These techniques can be applied

in real industry where minor disruptions daily occurs and the original schedule

must be reestablished as soon as possible to reduce nervousness and improve in555

stability, as well as energy consumption and sustainability

Acknowledgment

This research has been supported by the Seventh Framework Programme un-

der the research project TETRACOM-GA609491 and the Spanish Government

under research project TIN2013-46511-C2-1.560

References

References

Abumaizar, R.J., Svestka, J.A., 1997. Rescheduling job shops under random

disruptions. International Journal of Production Research 35, 2065–2082.

Akturk, M.S., Gorgulu, E., 1999. Match-up scheduling under a machine break-565

down. European journal of operational research 112, 81–97.

Arnaout, J.P., 2014. Rescheduling of parallel machines with stochastic process-

ing and setup times. Journal of Manufacturing Systems 33, 376–384.

Barber, F., Salido, M.A., 2015. Robustness, stability, recoverability, and reliabil-

ity in constraint satisfaction problems. Knowledge and Information Systems570

44, 719–734.

Beasley, D., Martin, R., Bull, D., 1993. An overview of genetic algorithms: Part

1. fundamentals. University computing 15, 58–58.

Bierwirth, C., 1995. A generalized permutation approach to jobshop scheduling

with genetic algorithms. OR Spectrum 17, 87–92.575

28



Blazewicz, J., Cellary, W., Slowinski, R., Weglarz, J., 1986. Scheduling under

resource constraints-deterministic models. Annals of Operations Research 7,

1–356.

Bouzid, W., 2005. Cutting parameter optimization to minimize production

time in high speed turning. Journal of Materials Processing Technology 161,580

388–395.

Church, L.K., Uzsoy, R., 1992. Analysis of periodic and event-driven reschedul-

ing policies in dynamic shops. International Journal of Computer Integrated

Manufacturing 5, 153–163.

Draganescu, F., Gheorghe, M., Doicin, C., 2003. Models of machine tool effi-585

ciency and specific consumed energy. Journal of Materials Processing Tech-

nology 141, 9–15.

Escamilla, J., Salido, M.A., Giret, A., Barber, F., 2014. A metaheuristic tech-

nique for energy-efficiency in job-shop scheduling. Workshop on Constraint

Satisfaction Techniques (COPLAS) 2014: 24th International Conference on590

Automated Planning and Scheduling (ICAPS) , 42–50.

Fang, K., Uhan, N., Zhao, F., Sutherland, J., 2013. Flow shop scheduling with

peak power consumption constraints. Annals of Operational Research 206,

115–145.

Gahm, C., Denz, F., Dirr, M., Tuma, A., 2016. Energy-efficient scheduling595

in manufacturing companies: A review and research framework. European

Journal of Operational Research 248, 744–757.

Hall, N.G., Potts, C.N., 2004. Rescheduling for new orders. Operations Research

52, 440–453.

Herroelen, W., Leus, R., 2004. Robust and reactive project scheduling: a review600

and classification of procedures. International Journal of Production Research

42, 1599–1620.

29



Li, R.K., Shyu, Y.T., Adiga, S., 1993. A heuristic rescheduling algorithm for

computer-based production scheduling systems. The International Journal Of

Production Research 31, 1815–1826.605

Liu, Y., Dong, H., Lohse, N., Petrovic, S., Gindy, N., 2014. An investigation

into minimising total energy consumption and total weighted tardiness in job

shops. Journal of Cleaner Production 65, 87–96.

Matsuo, H., Suh, C.J., Sullivan, R.S., 1989. A controlled search simulated

annealing method for the single machine weighted tardiness problem. Annals610

of Operations Research 21, 85–108.

Mattfeld, D.C., 1995. Evolutionary Search and the Job Shop Investigations on

Genetic Algorithms for Production Scheduling. Springer-Verlag.

May, G., Stahl, B., Taisch, M., Prabhu, V., 2015. Multi-objective genetic al-

gorithm for energy-efficient job shop scheduling. International Journal of615

Production Research 53, 7071–7089.

Mestl, H.E., Aunan, K., Fang, J., Seip, H.M., Skjelvik, J.M., Vennemo, H., 2005.

Cleaner production as climate investmentintegrated assessment in taiyuan

city, china. Journal of Cleaner Production 13, 57–70.

Mouzon, G., Yildirim, M., Twomey, J., 2007. Operational methods for mini-620

mization of energy consumption of manufacturing equipment. International

Journal of Production Research 45, 4247–4271.

Neugebauer, R., Wabner, M., Rentzsch, H., Ihlenfeldt, S., 2011. Structure

principles of energy efficient machine tools. CIRP Journal of Manufacturing

Science and Technology 4, 136–147.625

Nowicki, E., Smutnicki, C., 1996. A fast taboo search algorithm for the job shop

scheduling problem. Management Science 42, 797–813.

Pujawan, I.N., 2004. Schedule nervousness in a manufacturing system: a case

study. Production planning & control 15, 515–524.

30



Qi, X., Bard, J.F., Yu, G., 2006. Disruption management for machine schedul-630

ing: the case of spt schedules. International Journal of Production Economics

103, 166–184.

Salido, M.A., Escamilla, J., Barber, F., Giret, A., Tang, D., Dai, M.,

2013. Energy-aware parameters in job-shop scheduling problems. GREEN-

COPLAS 2013: IJCAI 2013 Workshop on Constraint Reasoning, Planning635

and Scheduling Problems for a Sustainable Future , 44–53.

Steele, D.C., 1975. The nervous mrp system: how to do battle. Production and

Inventory Management 16, 83–89.

Subramaniam, V., Raheja, A.S., 2003. maor: A heuristic-based reactive repair

mechanism for job shop schedules. The International Journal of Advanced640

Manufacturing Technology 22, 669–680.

Tonelli, F., Bruzzone, A., Paolucci, M., Carpanzano, E., Nicol, G., Giret, A.,

Salido, M., Trentesaux, D., 2016. Assessment of mathematical programming

and agent-based modelling for off-line scheduling: application to energy aware

manufacturing. CIRP Annals Manufacturing Technology , to appear.645

Van Laarhoven, P.J., Aarts, E.H., Lenstra, J.K., 1992. Job shop scheduling by

simulated annealing. Operations research 40, 113–125.

Varela, R., Serrano, D., Sierra, M., 2005. New codification schemas for sched-

uling with genetic algorithms, in: Artificial Intelligence and Knowledge En-

gineering Applications: A Bioinspired Approach. Springer, pp. 11–20.650

Vieira, G.E., Herrmann, J.W., Lin, E., 2000. Predicting the performance of

rescheduling strategies for parallel machine systems. Journal of Manufacturing

Systems 19, 256–266.

Vieira, G.E., Herrmann, J.W., Lin, E., 2003. Rescheduling manufacturing sys-

tems: a framework of strategies, policies, and methods. Journal of scheduling655

6, 39–62.

31



Wu, H.H., Li, R.K., 1995. A new rescheduling method for computer based

scheduling systems. International journal of production research 33, 2097–

2110.

Wu, S.D., Storer, R.H., Pei-Chann, C., 1993. One-machine rescheduling heuris-660

tics with efficiency and stability as criteria. Computers & Operations Research

20, 1–14.

Yusoff, S., 2006. Renewable energy from palm oil–innovation on effective uti-

lization of waste. Journal of cleaner production 14, 87–93.

Zhang, R., Chiong, R., 2016. Solving the energy-efficient job shop schedul-665

ing problem: a multiobjective genetic algorithm with enhanced local search

for minimizing the total weighted tardiness and total energy consumption.

Journal of Cleaner Production 112, 3361–3375.

32


