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 8 

 ABSTRACT  9 

In this paper we present an innovative framework for an economic risk analysis of 10 

drought impacts on irrigated agriculture. It consists  on the integration of three 11 

components: stochastic time series modelling for prediction of inflows and future 12 

reservoir storages at the beginning of the irrigation season; statistical regression for the 13 

evaluation of water deliveries based on projected inflows and storages; and econometric 14 

modelling for economic assessment of the production value of agriculture based on 15 

irrigation water deliveries and crop prices. Therefore, the effect of the price volatility 16 

can be isolated from the losses due to water scarcity in the assessment of the drought 17 

impacts. Monte Carlo simulations are applied to generate probability functions of 18 

inflows, which are translated into probabilities of storages, deliveries, and finally, 19 

production value of agriculture. The framework also allows the assessment of the value 20 

of mitigation measures as reduction of economic losses during droughts.  21 

The approach was applied to the Jucar river basin, a complex system affected by 22 

multiannual severe droughts, with irrigated agriculture as the main consumptive 23 

demand. Probability distributions of deliveries and production value were obtained for 24 

each irrigation season. In the majority of the irrigation districts, drought causes a 25 

significant economic impact. The increase of crop prices can partially offset the losses 26 
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from the reduction of production due to water scarcity in some districts. Emergency 27 

wells contribute to mitigating the droughts’ impacts on the Jucar river system.  28 

Keywords: Drought, econometric modelling, risk, stochastic modelling 29 

1. Introduction   30 

A drought is an unpredictable extreme hydrological phenomenon, which produces a significant 31 

decrease of water resources during a long period of time (water scarcity), affecting a large area 32 

and reducing the deliveries below the target demands (CHJ, 2007). The water agencies use 33 

different indicators and thresholds together with drought monitoring systems to formally 34 

identify the periods under drought and its severity (Pedro-Monzonís et al., 2015). For example, 35 

the Jucar River Basin Authority uses a combined index that includes storages, streamflow, 36 

groundwater and precipitation (CHJ, 2007).   37 

Severe droughts have traditionally caused considerable socio-economic losses in 38 

agriculture, both in rain-fed and irrigated lands, generating significant reductions in crop 39 

production (Ding et al. 2011).  A remarkable number of studies have analyzed the 40 

impacts of droughts on irrigated agriculture (e.g., Iglesias et. al 2003; Calatrava and 41 

Garrido, 2005; Peck and Adams, 2010; Howitt et al. 2015 and Hlalele et. al 2016) and 42 

the contribution of improved irrigation management in water scarcity areas in order to 43 

reduce their vulnerability and impacts (e.g., Ward, 2014; Santos Pereira et al. 2002, 44 

Garcia-Vila et al. 2008).   45 

Droughts can produce both direct and indirect economic impacts (Logar and van den 46 

Bergh, 2013). Indirect economic costs can be measured using input-output analysis 47 

(Pérez y Pérez and Barreiro-Hurlé, 2009), computable general equilibrium (e.g., 48 

Berrittella et al. 2007; Goodman, 2000; and Wittwer and Griffith, 2011) or non-market 49 

valuation techniques (e.g., Milne, 1991; Martin-Ortega et al., 2012). The methods used 50 



Confidential manuscript submitted to J. Hydrology 
 

3 
 

to estimate direct revenue losses in the agricultural sector are usually based on crop 51 

production functions and crop market prices. Both inputs can be embedded into basin-52 

scale water resource management models through hydroeconomic modelling (Harou et 53 

al., 2009 and Pulido-Velazquez et al. 2008) in order to assess their economic impacts of 54 

droughts subject to the physical, environmental and institutional features of the system 55 

(e.g., Booker et al., 2005; Ward et al., 2006; Harou et al., 2010; Ward and Pulido-56 

Velazquez, 2012). Alternatively, econometric models have been used to assess direct 57 

impacts on irrigated agriculture considering the influence of a variety of factors (e.g., 58 

water availability, crop prices). For instance, Connor et al. (2014) assessed the impacts 59 

of crop price volatility, water availability and climate conditions on the irrigation 60 

revenues at Murray-Darling river basin (Australia). Gil et al. (2010 and 2011) analyzed 61 

the impacts of crop price volatility and water availability on irrigated production value 62 

in several Spanish irrigation districts, linking agricultural productivity with water 63 

availability (based on reservoir storages) and demand. 64 

The prediction of water deliveries to agricultural districts in each irrigation season 65 

requires the forecasting of future inflows and the system operating rules that define 66 

water allocation/distribution. Most previous studies on drought risk analysis treat water 67 

availability as a random variable, without modelling the stochastic nature of the inflows 68 

and the water balance that defines the storages. The simulation of the system operating 69 

rules allows to estimate water deliveries for irrigation. However, stochastic time series 70 

models allow for the characterization of the uncertainty of the hydrological inputs, 71 

which can be transferred into water deliveries through the simulation of the system 72 

operation.   73 

The framework performs an economic risk analysis of drought impacts by combining 74 

stochastic projections of inflows with an explicit reproduction of the system operating 75 
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rules. An econometric model is used to assess the production value in agriculture 76 

depending on water deliveries and crop prices. The work follows as:  the description of 77 

the proposed framework, the characterization of the case study, and the presentation and 78 

analysis of the main results. Finally, the main conclusions and discussion of the 79 

proposed methodology and its application to the case study are presented. 80 

2. Method 81 

The proposed framework aims to develop a risk analysis of the drought economic 82 

impacts that can aid the managers to make decisions to deal with scarcity. It comprises 83 

of three components (see Fig. 1). The first one consists of fitting an econometric model 84 

to assess the economic drought impacts, by evaluating the changes in the production 85 

value due to water scarcity. The model should include the main explanatory variables of 86 

the irrigated production value, including the effect of water availability for irrigation as 87 

a key indicator of scarcity conditions. The choice of the independent variables and the 88 

level of aggregation of the data are conditioned by data availability. The second 89 

component consists of developing an autoregressive stochastic time series model to 90 

forecast the inflows of the system that explain the changes of storage in the main 91 

reservoirs. The third component is the simulation of the system operation, using 92 

statistical regressions among deliveries, storages and inflows. 93 

 94 

Figure 1. Risk analysis of the economic impacts of droughts 95 
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  2.1 Economic assessment through econometric modelling 96 

An econometric model is used as a basis of the risk assessment of drought impacts, 97 

employing water availability and an index of crop prices as explanatory variables of the 98 

production value of irrigated agriculture. The annual historical production value in each 99 

irrigation district “j” and year “t” is calculated as:  100 

 𝑃௩ೕ,೟
= ∑ 𝑆௖,௧ ∙ 𝑌௖,௧

௡
௖ୀଵ ∙ 𝑃௖,௧          [1]                                                                 101 

Where “c” represents each main irrigation crop in irrigation district “j” (c=1,…,n), “Sc,t” 102 

is the crop area in irrigation district “j” in year “t” of each crop “c”, “Yc,t” is the crop 103 

yield and “Pc,t” is the annual crop price  104 

Water deliveries for irrigation are split into two components: surface deliveries (SW) 105 

and groundwater abstraction (GW) for two reasons: 1) the differences in efficiencies of 106 

supply depending on the water sources, and 2), that in most cases the two sources can 107 

be applied to different crops within the irrigation districts (e.g., groundwater is not used 108 

for rice). Therefore, the value of the marginal product of water is different for the 2 109 

sources. 110 

The effect of price change/volatility is isolated from the effect of the change in water 111 

availability by including crop prices as explanatory variable. Thus, the production value 112 

of agriculture at each irrigation district (based on Gil et al., 2011) is assessed as: 113 

             𝑃௩௝,௧
= 𝑎 + 𝑏 ∙ 𝑆𝑊௝,௧ + 𝑐 ∙ 𝐺𝑊௝,௧ + 𝑑 ∙ 𝐼௉௝,௧

+ 𝑢௝,௧                                              [2] 114 

Where “j” is each irrigation district, “t” represents the year, “SWj,t” represents the 115 

surface deliveries, “GWj,t” are the groundwater abstractions (including both normal 116 

abstractions and the additional drought abstractions), “Ipj,t” is the crop price index and 117 

“uj,t” is the error of the model. There will certainly be a range of other influential factors 118 
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affecting the final production (rainfall, temperature, fertilization and irrigation practices, 119 

other natural hazards, etc.).  120 

A price index for each district has been calculated to capture the shifts of the production 121 

value due to crop price volatility (Eq. 3), weighted by the contribution of each family of 122 

crops to the total production value in the district (based on Gil et al. 2011).  123 

 𝐼𝑝௝,௧ = ∑
௉௩ೖ,೟∙௉ೖ,ೕ,೟

௉௩ೕ,೟
                 ௞ 𝑃௞,௝,௧ =

∑ ௉௩೎,ೖ,೟∙௉೎,ೖ,೟೎

∑ ௉௩ೖ,೟೎ೖ
                                        [3] 124 

Where “c” is each crop, “k” represents the crop classes and “j” the crops within each 125 

crop class.  126 

     2.2 Stochastic inflow modelling and forecasting 127 

In order to assess the uncertain future of water availability in the system, a probabilistic 128 

forecasting of the upcoming inflows is needed. Future inflows have been estimated 129 

using stochastic time series modeling. These methods try to reproduce some important 130 

statistical properties observed on the historical inflow time series (average, variance, 131 

skewness, spatial and temporal dependency and so on) for generating large sets of 132 

equally-likely inflow scenarios (Hipel and McLeod 1994; Salas et al. 1980 and 1993). 133 

The generation of future inflow projections using stochastic modeling has been widely 134 

applied in research as the basis of probabilistic assessments (Labadie 2004). Hence, the 135 

statistical distributions of the operational variables (storages, deliveries, production, 136 

etc...) can be derived using multiple time series of inflows for the influential 137 

hydrological subbasins. The methods used in stochastic modeling take advantage of the 138 

spatio-temporal dependency in the values of the inflow time series, estimating future 139 

inflows for the irrigation season based on the previous known values plus a random 140 

component. There is a variety of stochastic alternatives for modeling univariate and 141 

multivariate time series (ARMA models, ARIMA, PARMA, FARMA, Markov chains 142 
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and so on). The correct choice will depend on the case study features and requirements 143 

(Hipel and McLeod 1994; Salas et al. 1980; Sveinsoon and Salas, 2017).  144 

In the research carried out in this paper, without loss of generality, an ARMA (1,1) 145 

model with constant parameters has been used for inflow forecasting. Future inflows 146 

were estimated based on the previous ones plus some random terms, through the 147 

following equation: 148 

𝑧௧ = 𝛿ଵ · 𝑧௧ିଵ + 𝜔଴ · 𝜀௧ − 𝜔ଵ · 𝜀௧ିଵ [4] 

 149 

Where zt is the standard normally-distributed inflow forecast for time stage t; and δ1, ω0 150 

and ω1 are matrices of parameters corresponding to the previous normal standard 151 

inflows (zt-1) and the random terms (εt and εt-1), corresponding to normally distributed 152 

and independent noise with mean zero. The model’s parameters can be estimated using 153 

the procedures described in Salas et al (1980 and 1993), Hipel and McLeod (1994) and 154 

Sveinsoon and Salas (2017): 155 

𝛿ଵ = 𝑀ଶ · 𝑀ଵ
ିଵ [5] 

 156 

Where M2 and M1 are the autocorrelation matrices of order 1 and 2 of the time series of 157 

inflows whose forecasts are desired. The error term of order 0 can be obtained using the 158 

following iterative procedure: 159 

𝜔଴ · 𝜔଴
் = 𝐹 − 𝐺 · (𝜔଴ · 𝜔଴

்)ିଵ · 𝐺் [6] 

Where F = M଴ − δଵ · Mଵ
୘ + G · δଵ

୘; and G = δଵ · M଴ − Mଵ. The ω0 term can be obtained 160 

by applying a Cholesky decomposition to ω଴ · ω଴
୘. The ω1 term can be obtained as: 161 

𝜔ଵ = 𝐹 − 𝐺 · (𝜔଴ · 𝜔଴
்)ିଵ · 𝐺் [7] 

 162 
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Once developed, future inflows can be forecasted following the same stages: 163 

1) Generation of residual time series (εt) for the given forecasting horizon L (e.g. 7 164 

months) for each subbasin in which the forecast is desired. The number of series 165 

should be large enough to guarantee an adequate sampling of the probability 166 

distribution of the future inflows. 167 

2) For each scenario, the forecasted inflows can be obtained by sequentially 168 

applying equation [4] from the current time stage (t) to the forecasting horizon 169 

(t+L), using the previous value of the inflows (t-1) and the residual time series 170 

computed before. The result will be a set of normally distributed inflow time 171 

series. 172 

3) Transformation of the previous normally distributed inflow forecasts into times 173 

series of inflow preserving the main statistical properties of the historical one. 174 

     2.3 Simulation of system operations 175 

In order to reproduce the system operation, empirical regressions based on observed 176 

decisions have been used, linking state variables (reservoir storages, inflows) and 177 

decision variables (releases, deliveries). The lead time for the forecasting for the 178 

upcoming irrigation season should be selected before carrying out this step. For the 179 

simulation of the surface deliveries the procedure includes these steps: 180 

1) A regression model (A) is fitted to explain the storage changes during the lead 181 

time as a function of the observed initial storage and the observed inflow during 182 

the period. The storage at the beginning of the next irrigation season is then 183 

estimated as the observed initial storage at the beginning of the lead time plus 184 

the predicted changes in storage (obtained by the fitted regression model A). 185 
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2) Another regression model (B) is also fitted to explain the surface water 186 

deliveries (SW) depending on the storage at the beginning of the irrigation 187 

season coming from step 1 188 

3) The stochastic inflow forecasting (section 2.2) is combined with the regression 189 

models (A) and (B) to obtain the stochastic surface water deliveries 𝑆𝑊ఫ,௧ାଵ
෫   190 

   2.4 Risk analysis of the economic impact of the drought 191 

 192 

The forecasted value of the production 𝑃𝑣෪
௝,௧ାଵ for the season t+1 has been calculated as: 193 

𝑃௩ఫ,௧ାଵ
ෛ = 𝑎 + 𝑏 ∙ 𝑆𝑊ఫ,௧ାଵ

෫ + 𝑐 ∙ 𝐺𝑊௝,௧ାଵ + 𝑑 ∙ 𝐼௉ఫ,௧ାଵ
തതതതതതതത + 𝑢௝,௧ାଵ                                 [8] 194 

Where “t+1” is the starting of the upcoming irrigation season, and “𝐼௉ఫ,௧ାଵ
തതതതതതതത” is the 195 

forecasted crop price index evaluated as the average of the last two years. 196 

SW఩,୲ାଵ
෫  represents the stochastic surface water deliveries, derived from the stochastic 197 

inflow modelling. The groundwater deliveries (GW) have been estimated as a function 198 

of the observed total demand and surface deliveries.  199 

3. Case study 200 

The Jucar river basin is a complex water resource system located in Eastern Spain (Fig. 201 

2). The system is strongly regulated and with a high share of water used for crop 202 

irrigation (about 83%). Water scarcity, irregular hydrology and groundwater overdraft 203 

cause droughts to have significant economic, social and environmental consequences. 204 

The total water demand has been estimated at 1,397 Mm3/year, while the average water 205 

resources availability is 1,517 Mm3/year (data from 1940/41 to 2011/12) (CHJ, 2015). 206 

The main surface reservoirs are Alarcon (1,112 Mm3 of capacity), Contreras (463 Mm3 207 

of useful capacity) and Tous (378 Mm3). This river basin has suffered several severe 208 
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droughts in the last 60 years with significant socio-economic impacts (CHJ, 2007). The 209 

latest drought periods (1991/92 to 1994/95; 1997/98 to 1999/00 and 2004/05 to 210 

2008/09) were classified as extreme drought periods using the SPI index (McKee et al., 211 

1993). Drought frequency and severity in the basin is expected to increase in the future 212 

due to climate change (Marcos-Garcia and Pulido-Velazquez, 2017).  213 

 214 

  Figure 2. Jucar river district / Jucar river basin 215 

The agricultural demand of water is divided into 3 major irrigation districts (Mancha-216 

Albacete, Canal Jucar-Turia and Riberas del Jucar) (Fig. 2). In Mancha-Albacete the 217 

main crop types are cereals, legumes, tubers, green vegetables, and fodder crops (20 218 

crops); while in both, Canal Jucar-Turia and Riberas del Jucar, the main crops are rice 219 

and citrus (mainly orange, mandarin, and persimmon). The observed production value 220 
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and the price index have been calculated using the available data of crop yield, prices 221 

and surface distribution at the yearly technical reports and inventories of the Ministry of 222 

Agriculture of Spain (e.g., MAPAMA, 2010a,b,c) from 2000 to 2013. Figure 3 shows 223 

the evolution of the observed production value in the Riberas del Jucar from 2002 to 224 

2008. (Table 1 of supplementary material shows the observed production value and crop 225 

price index for the 3 irrigation districts) 226 

 227 

Figure 3. Observed production value in Riberas del Jucar 228 

 229 

With respect to water resources, the historical time series of surface (SW) and 230 

groundwater (GW) deliveries (Fig. 4) are sourced from the Jucar river basin agency and 231 

the Provincial Technical Agronomic Institute of Albacete (ITAP) databases. During the 232 

drought period from 2005 to 2008 the surface deliveries for the 3 irrigation districts 233 

decreased up to 40% in respect to the previous normal years, while groundwater 234 

abstractions increased as a result of the use of drought emergency wells in the Riberas 235 

del Jucar irrigation district. In Mancha-Albacete, the authorities established some 236 

pumping restrictions from 2006 to 2008. 237 

 238 
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 239 

Figure 4.  Surface and groundwater deliveries 240 

4. Results 241 

4.1 Econometric assessment 242 

Table 1 shows the summary of the fitted econometric models according to Eq. [2] for 243 

the 3 irrigation districts. High values of the adjusted coefficient of determination are 244 

obtained in all cases (R2 greater than 70%).  Both surface delivery and crop price 245 

variables are significant in the case of the Riberas del Jucar I.D, which is consistent with 246 

the fact that these districts only use groundwater during drought periods (drought 247 

emergency wells). Fig 1 in the supplementary material shows the plot of the observed vs 248 

simulation values of the production value. We have also tested the existence of 249 

anomalous observations by analysing the time series of studentized residuals. These 250 

residuals measure how many standard deviations each observed value of “Pv” deviates 251 

from the adjusted model using all data except from that observation. No anomalous 252 

observations were found in any of the 3 districts. 253 
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In order to verify that the impact of price volatility can be isolated from the impact of 254 

water resources availability, a test of multicollinearity was carried out. Multicollinearity 255 

reveals the existence of a perfect relationship among some or all the explanatory 256 

variables (Gujarati, 2004).  For that purpose, the variance-inflating factor (VIF)  have 257 

been calculated (Gujarati, 2004).The maximum VIF value in excess of 10 is frequently 258 

taken as an indicator that multicollinearity may be unduly influencing the least squares 259 

estimates (Kutner et al. 2004). Our results demonstrate that multicollinearity is not 260 

significant in any of the regressions, proving that the impacts of crop prices volatility 261 

and water resources availability are independent (Table 1). 262 

Table 1. Regression results of the production value of irrigated agriculture 263 

 264 

These results point out that the set of selected explanatory variables (surface and 265 

groundwater resources availability and crop price index) does explain accurately the 266 

observed changes on the production value of the irrigated districts during droughts.  267 

4.2 Projection of water inflows 268 

As referred in section 2.2, an ARMA (1,1) stochastic model with constant parameters 269 

(Salas et al, 1980) was selected because of the strong temporal dependency (high 270 
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autocorrelation) observed in the inflow time series. The historical streamflow time 271 

series in the Jucar river basin from 1980 to 2012 were used in the determination of the 272 

model parameters. The ARMA (1,1) model was tested and validated analysing the 273 

residuals, assumed to be normally distributed with mean zero, uncorrelated and 274 

independent (Salas et al, 1980). 275 

After its validation, the ARMA (1,1) model was used to generate 10,000 synthetic time 276 

series of inflow for each lead time considered in the analysis. The lead time spans from 277 

October to April (before the irrigation season), and the observed inflows from the 278 

previous September were used as the starting value z0 for the simulations for each 279 

inflow scenario. Figure 5 shows the cumulative distribution function for the inflow 280 

upstream the Tous reservoir at both the beginning of the drought period (2004-2005) 281 

and the rest of the drought period (2006-2007), illustrating the drought effect on the 282 

water input to the system. 283 

 284 

Figure 5. Cumulative distribution of inflows to Tous reservoirs 285 
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4.3 Simulation of the operation of the system 286 

In order to simulate the water deliveries to the irrigation districts under different 287 

conditions of water availability, the system’s operating rules were represented by 288 

statistical regressions. The linear regressions shown in Eq. 9 and 10 represent the 289 

relations among inflows, storages and deliveries during the lead time (from October, t, 290 

to May, t+1, within each hydrological year). Table 2 shows the goodness-of-fit for the 291 

three irrigation districts, with R2 greater than 0.9 in all cases (see figures 2 and 3 in 292 

supplementary material). 293 

∇Vol௧,௧ାଵ = 𝑎 ∙ 𝑉𝑜𝑙 ௧ + 𝑏 ∙ 𝐼𝑛𝑓𝑙𝑜𝑤௧,௧ାଵ + 𝑢                             [9] 294 

𝑆𝑊௧ାଵ = 𝑎 ∙ 𝑉𝑜𝑙 ௧ାଵ + 𝑢                                              [10] 295 

Table 2. Statistical parameters of the regressions of the system’s operating rules 296 

 297 

For the assessment of the storage changes for Canal Jucar-Turia and Riberas del Jucar 298 

districts, all inflows upstream Tous reservoir have been considered. For the Mancha-299 

Albacete case, the regression only considers the inflows to its main reservoir, Alarcon. 300 

All the explanatory variables were found to be statistically significant (Table 2). Figure 301 
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6 shows  observed vssimulated surface deliveries from 2001 to 2010 for the 3 irrigated 302 

districts.  303 

 304 

Figure 6. Observed vs. simulated surface water deliveries 305 
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By the combination of the probability distributions of the future inflows (stochastic time 306 

series model) with the simulation of the operation of the system (statistical regressions), 307 

we derive the probability of the amount of water delivered to the different irrigation 308 

systems for each irrigation season. Figure 7 shows the probability of water deliveries for 309 

the Riberas del Jucar in a normal year (without official declaration of meteorological or 310 

hydrological drought by CHJ) and in a dry year (please see figure 4 in supplementary 311 

material for the Canal Jucar-Turia and Mancha-Albacete irrigation districts).  312 

 313 

Figure 7. Cumulative distribution of surface deliveries for Riberas del Jucar 314 

4.4 Risk analysis 315 

The econometric model presented in section 4.1 has been applied to convert the 316 

probabilities of water deliveries into production values at the different irrigation 317 

districts. The band plot (Fig. 8) shows the forecast of the production value from October 318 

to the upcoming irrigation season (lead time) for each year (from 2002 to 2008, 319 
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including the 2005-2008 drought). The 1st and 99th percentiles are used respectively as 320 

the lower and upper limits of the plot.  Most of the observed values fall within the 321 

confidence intervals, except for a few outliers caused by the uncertainty regarding 322 

inflow prediction. 323 

 324 

Figure 8. Band plot of the production value.  325 

Droughts induce high economic losses in both, Riberas del Jucar and Canal Jucar-Turia 326 

districts (mainly from 2006 to 2008). In the case of the Riberas del Jucar, the 99th 327 

percentile of the predicted production value of year 2007 decreases 40 % with respect to 328 
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2004 (about 153 M€). However, during the beginning of the hydrological drought in 329 

2005, the production value did not decrease, since any storage hedging/water supply 330 

restrictions were imposed due to the large storage in the main reservoirs. The Jucar river 331 

basin authority activated drought emergency wells in the Riberas del Jucar from 2006 to 332 

2008 to partially compensate the economic losses due to the reduced surface water 333 

deliveries. The total pumped groundwater was 40, 40 and 25 Mm3 during the years of 334 

2006, 2007 and 2008 respectively (CHJ, 2010), from which we estimated a reduction of 335 

the potential economic losses at 56, 56 and 28 M€. In the Canal Jucar-Turia, the 99th 336 

percentile of the projected production in 2006 dropped 18 % as compared to the value in 337 

2004 (23 M€ losses). During the beginning of the drought period (2005) the production 338 

value experienced only a slight decrease. In Mancha-Albacete district the production 339 

value does not decrease during the drought period due to the high increase of the crop 340 

prices (crop price index during drought years is higher than the one of the previous 341 

normal year, up to 20%). Moreover, Mancha-Albacete is not strongly subject to surface 342 

water scarcity as 8% of the total supply comes from the surface water and groundwater 343 

is barely restricted.  344 

We have compared the cumulative distribution of the forecast production value from the 345 

worst year in terms of predicted production value for the Riberas del Jucar and Canal 346 

Jucar-Turia irrigation districts (2007 and 2006 respectively, according to figure 8) with 347 

the observed value of production from year 2004 (the year prior to the beginning of the 348 

drought period) (Fig.9). Thus, it is possible to evaluate the forecasted economic losses 349 

with respect to a normal year. The variability of the expected losses is higher for the 350 

Riberas del Jucar than for the Canal Jucar-Turia.   351 

 352 
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 353 

Figure 9. Prediction of production value in drought conditions vs observed 354 

production in a previous normal year  355 

5. Discussion and conclusions 356 

An integrated framework for predictingdirect economic impacts of droughts on irrigated 357 

agriculture has been presented, considering the uncertainty on water resources 358 

availability and the crop price volatility. This approach relies on a combination of 359 

econometric assessment, stochastic projection of inflows, and simulation of the 360 

system’s operation.  361 
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The econometric approach can be an accurate way to simulate the direct economic 362 

impacts of droughts (in the case study, R2 > 0.7). Our results indicate the importance of 363 

considering the price volatility in the assessment of the production value on irrigated 364 

agriculture, as it is a statistically significant variable in the 3 irrigation districts. The 365 

framework allows evaluating the forecasted production losses due to scarce water 366 

deliveries, by comparing the cumulative distribution for the upcoming season with the 367 

value of a normal year. Thus, it can contribute making management decisions in 368 

advance, from October to the upcoming irrigation season, in order to reduce the 369 

potential economic impacts of droughts. Moreover, the results demonstrate the 370 

suitability of the method of combining the stochastic inflows, storages and deliveries 371 

with the prediction of the production value (high values of the R-squared coefficient).  372 

The drought losses might be offset by an increase in crop prices, as in the Mancha-373 

Albacete district, and/or by the use of groundwater, a more reliable source than surface 374 

deliveries. These results illustrate the importance of the conjunctive use of surface and 375 

groundwater resources to buffer drought losses in agriculture. We have also tested the 376 

potential economic impact of applying drought emergency wells to complement the 377 

deliveries, showing that they can significantly reduce economic losses. Other mitigation 378 

measures could also be evaluated with the proposed framework.  379 

The methods adopted in the three main parts of the developed framework (inflow 380 

projections, simulation of system operation, and economic risk assessment) could be 381 

addressed using other approaches. The inflow projections can also be obtained, for 382 

example, from weather forecasts combined with hydrological simulation (Faber and 383 

Stedinger 2001; Ficchì et al. 2015; Roulin 2007), ANNs (Mundher Yaseen et al. 2016) 384 

or fuzzy regression (Macian-Sorribes and Pulido-Velazquez 2017). The system 385 

operation could also be simulated using water resources simulation models, or through 386 
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heuristic approaches such as ANNs (Cancelliere et al. 2002; Raman and Chandramouli 387 

1996) or fuzzy logic (Macian-Sorribes and Pulido-Velazquez 2017; Panigrahi and 388 

Mujumdar 2000). The fact that different modelling alternatives can be accommodated 389 

within the same proposed framework increases its generality, flexibility, and robustness. 390 

The economic risk assessment was performed using a simple forecasting method for 391 

crop price: just considering the crop price as the average of the last two years. More 392 

detailed risk assessment on prices could be tested. Prices depend on both physical (crop 393 

yields, yields of competitors) and economic features (local, regional and even global 394 

crop demand and supply). Nonetheless, taking into account all these features would 395 

require considerable amounts of information regarding variables whose measurement is 396 

difficult or not available. 397 

The proposed framework can be implemented in other agricultural irrigation districts to 398 

evaluate potential economic  losses derived from drought risk In future research, it 399 

could be interesting to extend the study to consider the indirect economic losses of 400 

droughts, other sources of uncertainty, and different risk management strategies (crop 401 

insurances, option contracts in water markets, etc).  402 
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