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This paper presents a simulation tool designed for predicting the wear pattern on the running 
surface of the rails, and for studying the evolution of rail corrugation after thousands of 
wheelset passages. This simulation tool implements a cyclic track model, a rotating flexible 
wheelset model, a wheel-rail contact model and a wear model. The vehicle-track system is 
modelled by using a substructuring technique, by which the vehicle, the rails, the sleepers 
are treated independently of each other and are coupled by the forces transmitted through 
the wheel-rail contact and the railpad. The vehicle model takes only account of the wheelset 
since the sprung masses of the vehicle are not relevant in the frequency range analysed. The 
wheelset model considers the flexibility of the wheelset and the effects associated with 
rotation. By using the Campbell diagram, two cases have been identified in which the 
combined effect of two different modes may give rise to higher wheel-rail contact forces 
and wear.  
 
Keywords: rail corrugation, cyclic track, rotating flexible wheelset, substructuring 
technique. 

 

1.   Introduction   
Corrugation in rails remains nowadays one of the most widely spread defects in tracks 
worldwide. This defect is known not only to give rise to high-frequency vibrations, 
noise nuisance and loss of ride comfort, but also to trigger the formation of cracks in 
rails. Until now, rail grinding and friction modifiers are the only techniques that have 
proved to be effective in controlling corrugation. But, at the same time, the former 
technique leads to notably higher maintenance costs to be faced by railway 
administrations.  
    Much research efforts have focused on the understanding of the initiation and further 
development of rail corrugation with the aim to prevent or at least control the formation 
of this defect. However, since the first reports on corrugation at the end of the 19th 
century [1], only a few corrugation types were explained through mathematical models 
(see an example in [2]). Most of the wavelength-fixing mechanisms (see definition in 
[3]) were broadly found experimentally by identifying the corresponding frequency of 
the corrugation with certain natural frequency or resonance of the vehicle unsprung 
mass-track system [4]. The corrugation is understood, then, as a dynamic problem 
associated with wear and/or plastic deformation in the wheel/rail contact patch. 
Consequently, any dynamic amplification of the train-track system can potentially be a 
wavelength-fixing mechanism. If the dynamics of the system behaves linearly (which is 
a coherent hypothesis, at least in the beginning stages), the corrugation should be 
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considered as a fixed-frequency phenomenon with few exceptions. One special case 
may be the dynamics of the rotating wheelset, where its resonance frequencies depend 
on the angular velocity of the wheelset. 
    Classic works on Jeffcott rotors and rotating beams showed that the equivalent 
vibration modes of the shaft change with the angular velocity (see monograph in [5]). 
Each mode with multiplicity 2 of the non-rotating system splits into two different 
modes: the forward mode, whose deformed shape rotates in the same direction of the 
spin motion and the backward mode, in the opposite direction. The difference between 
the frequencies of the backward and forward modes of a simply supported Rayleigh 
beam was obtained in [6], that is  

 Ω
λπ

πω∆ 222

222
+

=
k

k
k , (1) 

where k  is the mode index, Ω  is the spinning angular velocity and λ  is the beam 
slenderness. If the slenderness is zero (the railway wheelset slenderness should be 
small) the difference between the modes is twice the spinning velocity. 
    The literature showed few advanced models of the railway wheelset. A flexible but 
non-rotating wheelset model was published in [7], and the moving load effect associated 
with the rotation of a flexible wheel was considered in [8]. It was stated that a 
commercial simulation package implemented a flexible and rotating wheelset model but 
the method is unpublished and cannot be reproduced. The work in [9] presented a 
method for obtaining the dynamic response of rotating flexible solids. This model takes 
account of the inertial and the moving load effects due to rotation. The technique was 
applied to the railway case in [10].  
    The objective of the present work is to demonstrate the capability of the wheelset 
dynamics to produce corrugation in rails. To this end, a computational tool that permits 
to simulate the evolution of the rail roughness has been developed. The program 
combines a dynamic model of the wheelset-track system and a wear model, in 
accordance with the sketch of Figure 1. The track model is based on the periodic 
vehicle-track system proposed in [11]. The track model considers the rail torsion, the 
rotation of the rail section and the lateral and vertical deflections of the rail. The 
FASTSIM algorithm is adopted to compute the contact forces and the local slip.  
    The program implements the wheelset model developed in [10]. This wheelset model 
takes account of the inertial effects due to rotation, that is, it is a rotating wheelset 
model, in contrast to those wheelset models that do not consider these effects, which are 
known as non-rotating wheelset models. A new procedure for developing the wheelset 
model can be found in Section 2 of the present article. Section 3 presents the influence 
of the angular velocity of the wheelset on its natural frequencies. Finally, in Section 4 
results from simulation, namely contact forces and wear, are shown. 
 
 
 



 3 

 
 

 
Figure 1.    Structure of the simulation tool (following the scheme proposed in [3]). 
 
 
2.   Description of the simulation tool  
 
The simulation tool developed in this work is intended to estimate the wear on the 
running surface of the rails and to study the evolution of rail corrugation. To this aim, 
the simulation tool implements a cyclic track model, a rotating flexible wheelset model, 
a wheel-rail contact model and a wear theory. The modelling of the system dynamics is 
done through a substructuring technique, in which the vehicle, the rails and each sleeper 
are considered in an isolated way. The coupling between the substructures is carried out 
through the wheel-rail contact forces and the forces transmitted through the railpads. 
The former forces are calculated by adopting a theory of contact, FASTSIM in this case, 
and the latter forces are computed through the relative displacements between the 
sleepers and the rails. Regarding the model of the vehicle, only a wheelset is considered 
since the influence of the sprung masses of the vehicle is negligible in the frequency 
range to study. Tables 1 and 2 contain the values of the significant parameters of the 
different substructures constituting the model of the track and the parameters of the 
wheelset model, respectively. Next, the models of the track and the wheelset are 
described. 
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                        Table 1.    Parameters of the track model. 
 

Rail  

Density of the rail 7850 kg/m3 

Young’s modulus of the rail 2.1×1011 N/m2 

Shear modulus of the rail 0.81×1011 N/m2 

Cross-sectional area of the rail 7.69×10-3 m2 
Second moment of area of the rail cross-section 30.55×10-6 m4 
Shear coefficient of the rail cross-section 0.4 

Railpad  

Vertical rail pad stiffness 3.5×108 N/m 
Rail pad damping coefficient 50×103  Ns/m 

Sleeper  

          Mass of the sleeper 324 kg 
  Sleeper spacing 0.6 m 

Ballast  

Vertical ballast stiffness 100×106 N/m 
Damping coefficient of ballast 200×103  Ns/m 

Friction coefficient 0.3 

 
 
 
                        Table 2.   Parameters of the wheelset model. 
 

Wheelset properties   

 Mass 
 Static load 
 Rolling radius       
 Moment in the vertical and lateral axes 
 Moment in the rolling axis 

 2700 kg 
200 kN 
0.5 m 
493 kg m2 
169 kg m2 

 
 
2.1.   Track model 
 
In the literature, it can be found both track models representing a finite-length stretch of 
the track and track models of infinite length. Most of the models of the former group are 
based on the direct application of the Finite Element Method, which on the one hand, 
represent the track in a realistic way but, on the other hand, are inefficient from a 
computational viewpoint. All the finite-length track models present a border effect, 
which causes the waves to reflect back at the end of the model. Thus, the waves interact 
again with the vehicle, spoiling the results from the simulation. This fact forces to adopt 
large lengths in order to minimise the border effect, especially when the simulation time 
and the velocity of the vehicle are high.  
    Among the most mathematically sophisticated models are the infinite track models, 
in which the rails are assumed to be discretely supported by the sleepers. There are two 
important groups of infinite track models: the first group uses the Fourier transform in 
the frequency and time domain [12] and the second group is based on the wave 
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propagation models in periodic structures [13]. Both groups of track models require the 
assumption of hypotheses of linearity for the mechanical properties of the track. 
    An alternative that maintains the versatility of the finite track models and minimises 
the border effect corresponds to [14]. In this work, a cyclic vehicle-track model is 
presented, which consists in an infinite track on which an infinite number of identical 
vehicles circulate. The distance between two consecutive vehicles is chosen to be the 
characteristic length L, as can be seen in Figure 2. The modelling of the track is done 
only for a stretch of the track with the characteristic length L. The adoption of a cyclic 
track model has the advantage, thanks to the periodicity properties, that a finite track 
length can be considered to analyse an infinite track without affecting the computing 
accuracy. Thus, the boundary conditions at both ends of the finite track are the same and 
the infinite track can be modelled through the modal properties of the stretch by 
employing a substructuring technique. The track model consists of several 
substructures: rails, railpads, sleepers and ballast. Each track substructure is related to a 
set of modal equations. The rails and sleepers are modelled as flexible beams. The rails 
are considered as cyclic Timoshenko beams, whose mode shapes can be calculated 
analytically. 
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Figure 2.    Sketch of a cyclic vehicle-track model. 
 
 
2.2.    Wheelset model 
 
2.2.1.   The Lagrangian method 
 
The coordinate system adopted for the modelling of the rotating flexible wheelset model 
is based on the formulation of floating frame of reference proposed in [14]. This method 
was adopted in [15] in order to develop the equations of motion of a rotating solid. This 
method obtains the global position of a flexible solid as a sum of two different 
displacement types. The former can be considered as a rigid body displacement, the 
latter corresponds to the displacements due to the deformation of the solid.  
    The floating frame method makes use of two reference frame systems: an inertial 
frame and a mobile frame, which rotates at the angular velocity of the solid Ω  and it is 
associated with the undeformed configuration. A vector referred to the fixed and the 
mobile frames are denoted by a  and a , respectively. The vector position r  of a 
material particle of the solid in relation to the origin of the fixed frame can be expressed 
as follows 
 
 ( ))()( tpuΦuAr += , (2) 
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where u  is the vector position of the particle in the undeformed configuration in the 
mobile frame. The product )()( tpuΦ  corresponds to the displacement of the particle 
due to the elastic deformation of the solid in the rotating frame, being )(uΦ  the matrix 
of functions of the mass-normalised vibration modes of the non-rotating structure, and 

)(tp  is the modal coordinate; A  is the following rotation matrix 
 

 
















−
=

θθ

θθ

cos0sin
010

sin0cos
A , (3) 

 
with tΩθ =  being the angle of rotation.  
 
The method presented in [16] develops the following equation of motion for rotating 
solids 
 
 ( ) LQpEKpJp p

~~~~2 22 ΩΩΩ +=−++   (4) 
 
The components of the last equation are presented as follows. Matrix K~  is the modal 
stiffness matrix whose diagonal contains the square of the undamped natural 
frequencies of the solid. Matrix J~  is associated with the gyroscopic effect. It is 
computed as follows 
 
      ∫=

Volume

uρ d~ T ΦJΦJ , (5) 

where 
 
 θθ AAAAJ TT == , (6) 
 
with θA  being the derivative of the matrix A  with respect to θ . The development of 
the Equation (6) shows that 
 

 
















−
=

001
000
100

J  (7) 

 
Some vibration modes produce deformed shapes which may cause centrifugal forces to 
produce work. This effect is considered through the matrix E~ , which is calculated as 
follows 
 
 ∫=

Volume

uρ d~ T ΦEΦE , (8) 

 
where 
 
 θθθθ AAAAE TT −=−= , (9) 



 7 

 
with θθA  being the second derivative of the matrix A  with respect to θ . It can be 
easily obtained that 

 















=

100
000
001

E  (10) 

 
The centrifugal forces that do not depend on the solid deformation are implemented by 
means of L~ . These forces are associated with modes of single multiplicity, and the 
entries of L~  are non-zero only associated with modes of single multiplicity. The 
column matrix L~  is obtained as follows 
 
 ∫=

Volume

uρ d~ T uEΦL  (11) 

 
If the external forces are applied in fixed material points, the generalised force term is 
computed as follows 
 
 ∫=

Volume

v ttt ud),()()()( TT ufAuΦQp , (12) 

 
where ),( tv uf  is the volume external forces. It can be pointed out that the integral 
kernel is function of time. 
 
 
2.2.2.   The Eulerian approach 
 
The properties of the solids of revolution allow defining the deformed shape of the solid 
through the modal functions in non-rotating coordinates as follows. Let v  be the vector 
position of a spatial point in relation to the origin of the fixed frame. The vector v  is 
defined in the undeformed domain or the volume occupied by the undeformed 
configuration. The vector position of a particle that occupies the spatial position v  in 
the undeformed configuration at the instant t  verifies 
  
 uAv = . (13) 
 
The position of the particle after deformation is 
 
 )()( tqvΦvr +=  (14) 
 
if the particle occupies the spatial position v  in the undeformed configuration, with 

)(tq  being the Eulerian-modal coordinate vector. From Equations (2) and (14), it 
follows that 
 
 )()()()( tt puΦAqvΦ =  (15) 
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Equation (15) is multiplied by T)(vΦρ , where ρ  is the material density of the solid, 
and then it is integrated over the volume of the solid, that is 
 

 )(d)()()( TT tt
Volume

pvAΦAvΦq 







= ∫ νρ  (16) 

 
The last equation provides the coordinate transformation, which can be written in the 
following manner 
 
 )()()( ttt pBq = , (17) 
 
in which )(tB  is the transformation matrix that can be proved to be orthogonal 
(Appendix C) and quasi-diagonal (Appendix D). 
 
The coordinate change in Equation (17) is carried out in Equation (4), and then the 
resulting equation is multiplied by ( )tB , resulting 
 

 
( )

( ) LBQBqBJBBBBEBBKB

qBBBJBq

p
~~2~~

2~2
2TTT2T

TT

ΩΩΩ

Ω

+=++−+

+++








 (18) 

 
Taking into account the properties stated in the Appendixes A, B and E, the following 
equations are found 
 
 JBJB ~~ T =  (19) 
 EBEB ~~ T =  (20) 
 KBKB ~~ T =   (21) 
 and  LLB ~~ =  (22) 
 
The calculation of the term T~BJB   is reduced to the resolution of TBB  , because 

BJBBJBJB ~~~ T == . From Equation (C.2), 
 
 AvΦuΦB TT )()( =  (23) 
 
The last equation is derived with respect to time, 
 
 AvΦAvΦuΦB 

TTT )()()( +=  (24) 
 
In the last equation the function )(uΦ  is constant since it is associated with a material 
point. On the other hand, )(vΦ  has to be computed as the convective term of the 
material derivative, that is 
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Equation  (25) is now post-multiplied by T)( BuΦ resulting 
 

 TTT
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1

T
TT )()()()()()()( BuΦAvΦBuAΦvJvΦBuΦuΦB θΩΩ +








∂

∂
= ∑

=i
i

iv
  (26) 

 
Recalling the result in Equation (14), the last equation becomes 
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Now Equation (27) is multiplied by the density ρ  and it is integrated over the volume 
of the solid. By applying the property of orthogonality of the modes, it yields the 
following expression 
 

 JvΦvJvΦBB ~d)()()(3

1

T
T Ω+








∂

∂
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=

νρ
Volume i

i
iv

  (28) 

 
Applying the first property in Appendix C the integral in the Equation (28) does not 
depend on time. It is associated with a new variable, that is 
 

 ,d)()()(~ 3

1

T

uρuΦuJuΦG ∫ ∑ 







∂

∂
=

=Volume i
i

iu
 and (29) 

 ( )JGBB ~~T +Ω=  (30) 
 
The calculation of TBB  is performed as follows. The product TBB is constant and 
consequently 

 TTT

d
d0 BBBBBB  +==
t

 (31) 

 
From Equations (30) and (31), it is deduced 
 
 ( )( )T2TTTT ~~~~ JGJGBBBBBBBB ++−=−=−= Ω  (32) 
 
Further analysis will show that G~  is antisymmetric, and the last expression can be 
written as follows 



 10 

 
 ( )( )JGJGBBBBBBBB ~~~~2TTTT ++=−=−= Ω  (33) 
 
The generalised force of the Equation (18) is, from (12) 
 
 ∫==

Volume

v ttttt νd),()())(()()( TTT vfAvAΦBQBQ pq  (34) 

 
By substituting Equation (C.2) into the last result, it is found 
 
 ∫∫ ==

Volume

v

Volume

v ttt νν d),()(d),()()( TTT vfvΦvfvΦBBQq  (35) 

In most of the cases, the vector of volume external forces can be written by means of a 
separation of variables, where )(vFv depends on the spatial variable v  and )(tγ  is a 
function of time, as follows 
 
 )()(),( tt vv γvFvf = , (36) 
 
Thus the generalised force can be written as 
 
 )(~)(d)()()( T ttt

Volume

v γνγ FvFvΦQq == ∫  (37) 

 
Now the Equations from (19) to (22), (30), (33) and (37) are substituted into Equation 
(18), and it results 
 

 
( )( )
( )( ) LFqEJJGJJGGGK

qJGJq
~)(~~~~~~~~~~~

~~2~2
22

TT

Ωt

ΩΩ

+=−−−+Ω++

+++

γ



 (38) 

 
Simplifying the last expression, it results  
   
 ( ) LFqCKqGq ~)(~~~~2 22 ΩtΩ +=Ω++− γ   (39) 
 
With the matrix C~  being defined as  
 

 EJJGJJGGGC ~~~~~~~~~~
−−−+=  (40) 

 
It must be drawn attention to the fact that the matrices G~ , J~ , K~ , E~ , F~  and L~  are 
constant matrices and they are computed at the beginning of the simulation. Equation 
(39) is linear and it is expressed in a non-rotating reference frame.  
 
 
2.3.   Contact model 
 
The simulation tool implements the model of Hertz for computing the distribution of 
normal pressure at the contact patch. The tangential contact problem is solved by 
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adopting the FASTSIM algorithm. FASTSIM provides a good precision when calculating 
the relationship between the creepages and contact forces and, in addition, presents the 
advantage of a low computational cost since it is based on a simplified elastic theory. 
However, when using FASTSIM the accuracy of the calculation of the local slip at the 
contact patch may be affected by the adoption of a simplified theory.  
 
 
2.4.   Wear model 
  
In the present work, the model of wear adopted for modelling the sliding wear at the 
wheel-rail contact is the Archard’s model. According to this theory the wear rate w  
[m/s] can be expressed as follows 
 

 sz
w p

H
kw = , (41)  

where zp  is the normal pressure applied to the surface, s  is the modulus of the local 
slip, wk  is the wear coefficient, which depends on the normal load and on the slip 
velocity, and H  is the material hardness. It is assumed that the wear coefficient is 
independent of the variations of the normal contact tractions or local slips at the contact 
patch. In the present study, the value of the relation kw/H is chosen to be 3.4·10-14 m2/N 
[17]. 
    For each calculation instant, the wear rate is obtained at the centre of each element of 
the discretization used by FASTSIM and it is transferred to a regular mesh of nodes on 
the running surface of the rail. Finally, the wear rates in each node of the rail are 
integrated over the time, resulting, thus, the wear depth at each rail node.  
 After each iteration loop of the simulation tool (see Figure 1), the railhead profile is 
modified according to the wear depth calculated in the last simulation.  
 

3.   The influence of the wheelset angular velocity 
 
Table 3 shows the natural frequencies of the seven first modes of a free wheelset 
together with the multiplicity of the vibration modes. These natural frequencies 
correspond to those of the non-rotating wheelset. The effect of the angular velocity of 
the wheelset on the natural frequencies of the free wheelset can be analysed through the 
Frequency Response Function. The expression that can be derived from Equation (39) 
for computing the Frequency Response Function (FRF) is 
 
 [ ] ΦCKGIΦH

122T ~~~
2)(

−
++−−= ΩΩi ωωω , (42) 

 
in which I is the identity matrix and i is the imaginary unit. The direct receptance 

)(ωzzH  represents the response of the contact point of the wheelset in the vertical 
direction when the excitation is applied to the same point in the same direction. In 
Figure 3, the direct receptance is plotted for two velocities of the vehicle: 0 and 100 
km/h. This figure shows, when the velocity of the vehicle is zero, the resonance peaks 
corresponding to the frequency range from 0 Hz up to 400 Hz (see Table 3). When the 
angular velocity of the wheelset is non-zero, the resonance peaks related to the wheelset 
modes with multiplicity 2 (bending modes of the wheelset and wheel modes) split into 
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two different peaks, which can be associated with the backward and forward modes [6]. 
However, the peaks related to the modes with multiplicity 1 remain unchanged. 
    Figure 4 shows the cross receptance )(ωxzH , that is, the response of the contact point 
of the wheelset in the longitudinal direction (x-axis coincident with the track axis 
direction) when the excitation is in the vertical direction. Considering the symmetry of 
revolution of the wheelset, the level of this response should be zero. However, at the 
sight of Figure 4, this fact does not happen when the angular velocity of the wheelset is 
different from zero. Again, it can be appreciated in Figure 4 that when the velocity of 
the wheelset increases, the two resonance peaks derived from the modes with 
multiplicity 2 split into two different peaks. The peaks 2, 4, 7 and 9 correspond to the 
backward modes, while the peaks 3, 5, 8 and 10 are associated with the forward modes. 
The peaks 1 and 6 are related to the first torsional mode and the first umbrella mode, 
which are of multiplicity 1.  
  In the Campbell diagram (Figure 5), the frequencies of the vibration modes of the 
mounted wheelset are represented in function of the velocity of the vehicle.  
    The modes with multiplicity 1 are, when ordered according to growing frequencies, 
the first torsional mode, and the symmetric and the anti-symmetric umbrella modes. The 
modes with multiplicity 2 (the three first bending modes of the wheelset and the wheel 
modes) split into two different modes, the backward and forward modes, when the 
vehicle velocity is different from zero. For the forward modes, the frequency increases 
as the velocity rises, while for the backward modes, the frequency decreases with the 
velocity. Thus, the difference between the frequencies of the backward and the forward 
modes increases as the vehicle speed rises.     
    Particularly interesting for this research work is the coincidence of two vibration 
modes of the wheelset. It can be observed in Figure 5 that there are two intersection 
points of the line of the backward wheel mode with the lines of the forward and 
backward third bending modes of the wheelset. The left-hand intersection point 
corresponds to the coincidence of the backward wheel mode with the forward third 
bending mode of the wheelset (B-F from now on). It occurs at a frequency of 360.8 Hz 
and a vehicle velocity of 142 km/h. The right-hand intersection point is due to the 
coincidence of the backward wheel mode with the backward third bending mode of the 
wheelset (B-B from now on), and it corresponds to a frequency of 352.5 Hz and a 
vehicle velocity of 198 km/h.  
    Figures 6 and 7 show the direct and cross receptances, respectively, in the frequency 
range from approximately 342 Hz up to 375 Hz for the above mentioned vehicle 
velocities. As can be observed in both figures, the resonance peak corresponding to the 
forward third bending mode of the wheelset occurs at a frequency of 360.8 Hz when the 
vehicle velocity is 142 km/h and the resonance peak of the backward third bending 
mode of the wheelset appears at a frequency of 352.5 Hz when the vehicle velocity is 
198 km/h. It cannot be inferred from the analysis of these wheelset receptances that the 
resulting wear depth will be higher at a certain resonance frequency than that at the 
others, that is, the wheelset receptances do not provide information about whether or not 
rail corrugation grows at certain resonance frequencies. 
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     Table 3.   Vibration modes of the wheelset 
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Figure 3.   Direct receptance modulus  Hzz in function of the frequency when the velocity of the vehicle V  
is 0 km/h and 100 km/h. The excitation is applied to the wheel at the contact point in the vertical direction 
and the measure of the response is taken at the same point and in the same direction.  
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Figure 4.   Cross receptance modulus Hxz in function of the frequency when the velocity of the vehicle 
is 100 km/h. The excitation is applied to the wheel at the contact point in the vertical direction and the 
measure of the response is taken at the same point in the longitudinal direction. Peak 1: 1st torsional 
mode; Peaks 2 & 3: 1st bending mode (backward and forward, respectively); Peaks 4 & 5: 2nd bending 
mode (backward, forward); Peak 6:1st umbrella mode; Peaks 7 & 8: 3rd bending mode (backward, 
forward); Peaks 9 & 10: wheel modes (backward, forward). 
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Figure 5.    Campbell diagram for the railway wheelset. Modes with multiplicity 1 (in continuous trace), 
forward modes (in dashed trace), backward modes (in dotted trace). First torsional mode (triangle), first 
bending mode (five-pointed star), second bending mode (cross), first umbrella mode (square), third 
bending mode (black circle), wheel modes (white circle) and second umbrella mode (diamond). 
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Figure 6.   Direct receptance modulus  Hzz in function of the frequency when the velocity of the vehicle V  
is 0 km/h, 142 km/h and 198 km/h. The excitation is applied to the wheel at the contact point in the 
vertical direction and the measure of the response is taken at the same point and in the same direction.  
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Figure 7.   Cross receptance modulus Hxz in function of the frequency when the velocity of the vehicle 
is 142 km/h and 198 km/h. The excitation is applied to the wheel at the contact point in the vertical 
direction and the measure of the response is taken at the same point in the longitudinal direction.  

 
 

 
 

4.   Results from the wear simulation 
 
In a previous work [10], it was concluded that the vibratory responses of the different 
models of the mounted wheelset (the rigid wheelset model, the non-rotating and the 
rotating flexible wheelset models) are virtually coincident, except when the vibration 
modes of the flexible wheelset models are excited. A more recent study [17] analysed 
the wear computed through three different modes at arbitrary velocities and it showed 
similar results and very small wear. Therefore, it was decided to study the rotating 
flexible wheelset model and to compare the results with those from the rigid wheelset 
model when the wavelength of the rail roughness excites the vibration modes of the 
wheelset determined by using the Campbell diagram.  
    Certain combinations of angular velocity of the wheelset and excitation frequency 
can lead to the excitation of several vibration modes with the consequent generation of 
complex dynamics. These cases occur for the configurations associated with the points 
in which two lines in the Campbell diagram intersect. In this section, the effect of the 
excitation of the B-F modes and the B-B modes on the evolution of rail corrugation is 
analysed.      
    To this aim, an initial sinusoidal roughness on the running surface of the rails is 
assumed. For the first simulation, the wavelength of the roughness is set to be 11 cm, 
the amplitude, 100 µm and the vehicle velocity, 142 km/h. Thus, the excitation 
frequency is 360.8 Hz, at which both the backward wheel mode and the forward third 
bending mode of the wheelset are excited (B-F modes). In the second simulation, the 
wavelength of the roughness is assumed to be 15.6 cm, the amplitude, 100 µm and the 
vehicle velocity, 198 km/h, with the objective that the excitation frequency be 352.5 Hz. 
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At this frequency, the backward wheel mode and the backward third bending mode of 
the wheelset are excited (B-B modes).  
    Figure 8 shows the contact forces, namely longitudinal, lateral and vertical contact 
forces, resulting from the first simulation. It must be highlighted that no force related to 
a motor torque was implemented. Therefore the resulting longitudinal and transversal 
forces are consequences of the torsion vibrations, the rotation of the section of the rail 
and the proper dynamics of the wheelset. It can be observed that the use of the rotating 
flexible wheelset model leads to higher contact forces than when using the rigid 
wheelset model, especially in the cases of the longitudinal and lateral contact forces. In 
Figure 9, the contact forces from the second simulation are plotted. Again, the contact 
forces calculated through the rotating flexible wheelset model are higher than those 
obtained through the rigid model, except for the vertical force. 
    The animations of the wheelset dynamics for the above mentioned velocities can be 
found in the electronic annexes of this article. 
    Figures 10 and 11 show the wear depth on the running surface of the rails after a 
wheelset passage when the vehicle velocities are 142 km/h and 198 km/h, respectively. 
In these figures, the wear depth is plotted together with the initial roughness (without 
scale) for two sleeper bays. It can be observed that the wear depth resulting when the B-
F modes are excited (Figure 10) is approximately 5 times higher than that produced 
when the B-B modes are excited (Figure 11). In both simulations, the wear occurs at the 
crests and the troughs with a frequency double that of the initial roughness. 
    Figures 12 and 13 show the evolution of the railhead profile after 100000 wheelset 
passages. The worn rail profile after 100000 wheelset passages is obtained through 100 
simulations. After each simulation the rail profile is updated with the wear depth 
multiplied by a factor of 1000 since it was observed that 10 simulations in which the 
wear was multiplied by 100 passages led to the same worn rail profile as one simulation 
in which the wear depth was multiplied by 1000. While the effect of the excitation of 
the B-B modes on the change of the railhead profile seems to be almost negligible at the 
sight of Figure 13, it appears that the excitation of the B-F modes has a relevant role in 
the evolution of rail corrugation (see Figure 12). In Figure 12, it can be noted that the 
change in the railhead profile is localised on the crest and the trough of the initial 
profile, with wear being deeper at the troughs. 
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Figure 8.    Contact forces computed through the rotating flexible wheelset model (dashed line), and the 
rigid wheelset model (continuous line) for a vehicle velocity of 142 km/h: (a) longitudinal force, (b) 
lateral force, (c) vertical force. (The vertical dashed lines indicate the position of the sleepers). 
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Figure 9.    Contact forces computed through the rotating flexible wheelset model (dashed line), and the 
rigid wheelset model (continuous line) for a vehicle velocity of 198 km/h: (a) longitudinal force, (b) 
lateral force, (c) vertical force. (The vertical dashed lines indicate the position of the sleepers). 
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Figure 10.    Depth of the railhead wear for a wheelset passage at the vehicle velocity of 142 km/h 
(continuous line), initial rail roughness (dashed line, without scale)  
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Figure 11.    Depth of the railhead wear for a wheelset passage at the vehicle velocity of 198 km/h 
(continuous line), initial rail roughness (dashed line, without scale).  
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Figure 12.    Railhead profile after 100000 wheel passages for a vehicle velocity of 142 km/h (continuous 
line) and initial profile (dashed line). (The vertical dashed lines indicate the position of the sleepers). 
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Figure 13.    Railhead profile after 100000 wheel passages for a vehicle velocity of 198 km/h (continuous 
line) and initial profile (dashed line). (The vertical dashed lines indicate the position of the sleepers). 
 

 
5.   Conclusions 
 
In this work, a simulation tool intended to study the evolution of the rail roughness has 
been presented. The simulation tool consists of a cyclic vehicle-track system model, a 
rotating flexible wheelset model, a wheel-rail contact model and a wear theory. 
    The model of the vehicle-track system assumes the hypotheses of periodicity, and 
consequently it is considered as cyclic. The adoption of hypotheses of periodicity permit 
to eliminate the border effects and to perform integrations without time limitation since 
the vehicle does not reach the border of the track, as happens in finite track models.  
    Regarding the wheelset model, it has been taken into account its flexibility and the 
effects associated with the rotation, namely the gyroscopic effect and the effect of 
mobile force of the contact point with respect to the wheelset. The formulation of the 
flexible wheelset model uses a set of Eulerian modal coordinates and it is based on the 
position of a spatial point in opposition to the Lagragian formulation commonly used in 
mechanical engineering. The Eulerian formulation presents a series of advantages. 
Firstly, the wheel-rail contact force is applied on the wheelset at spatial points, whose 
positions remain unchanged. Consequently, the term of the generalised force becomes 
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significantly simplified. Secondly, from another viewpoint, the wheel-rail contact 
theories were developed through Eulerian coordinates, and therefore the formulation of 
the creep velocities is notably simplified, since the use of Lagrangian coordinates forces 
to implement convective terms complicates significantly the calculation. Finally, the 
Eulerian formulation enables the generation of coherent solid-air meshes in acoustic 
problems since the rotation of the mesh is not required. 
    In this research, further insight into the mechanisms related to the dynamics of the 
wheel-track system that promote the growth of rail corrugation has been gained. By 
using the Campbell diagram, it has been identified the vibration modes of the wheelset 
responsible for a complex dynamics able to produce high forces at the wheel-rail 
contact and wear. Specifically, it has been analysed the coupled influence of the third 
bending mode of the wheelset and the wheel modes on the growth of rail corrugation. 
The possible wavelength-fixing mechanism that has been identified is not constant in 
frequency, but it depends on the velocity of the vehicle.  
    From the results obtained through the simulations, it can be concluded that the 
dynamics of the rotating flexible wheelset, specifically the B-F mode, might give rise to 
generation mechanisms of rail corrugation. However, this theoretical study is not 
definitive since further numerical simulations and comparisons to experimental data are 
needed to confirm the influence of certain resonances of the rotating flexible wheelset 
on the development of rail corrugation.  
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Appendix A 
 
Any scalar field γ  integrable on the domain of the solid of revolution has the following 
property 
 ∫∫ =

VolumeVolume

uγνγ d)(d)( uv . (A.1) 

This is an evident result since the Jacobian determinant of the transformation (13) is 1.  
 
Appendix B 
 
Let us consider the matrix M~ , which is defined as follows 
 
 ∫=

Volume

ud)()(~ T uΦMuΦM , (B.1) 

where M  is a constant 3×3 matrix. Matrix M  verifies that 
 
 AMAM T=  (B.2) 
 
The transformation matrix )(tB  does not affect if it is applied on the matrix M~ , that is 
 
 MBMB ~)(~)( T =tt  (B.3) 
 
The proof is the following 

http://sauwok.fecyt.es/apps/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=R1aMKgM57BaCC1c9m62&page=1&doc=2&colname=WOS
http://sauwok.fecyt.es/apps/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=R1aMKgM57BaCC1c9m62&page=1&doc=2&colname=WOS
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Appendix C 
 
The transformation matrix )(tB  can be proved to be orthogonal. If Equation (8) is 
substituted into Equation (6), one obtains 
 
 )()()( T vAΦABvΦ =t  (C.1) 
 
Each side of the last equation are multiplied by itself (transposed) and the density, 
giving 
 
 )()()()()()( TTTTTT vAΦAAvAΦBvΦvΦB ρρ =tt  (C.2) 
 
The Equation (C.2) is now integrated over the solid volume  
 

 ∫∫ =








VolumeVolume

tt νρνρ d)()()(d)()()( TTTTT vAΦvAΦBvΦvΦB  (C.3) 

 
Through Equation (C.3), the Appendix A, and the property of orthogonality of the 
modal functions, the relation IBB =)()( T tt  is found and consequently )(tB  is an 
orthogonal matrix. 
 
 
Appendix D 
 
Let us consider different modes n-th and m-th and the corresponding modal functions 

><nΦ  and ><mΦ . Equation (C.1) can be written for the n-th mode as follows 
 
 ><>< = nn )()( T vAΦABvΦ  (D.1) 
 
Now, the last equation is pre-multiplied by ><mΦρ , and then integrated over the solid 
volume, giving 
 
 ( )∫ ><><=

Volume

nm
mn dB νρ )( TT vAΦAΦ  (D.2) 



 25 

 
If the modes ><nΦ  and ><mΦ  are orthogonal, due to the geometry of revolution 

><n)( T vAΦA  and ><mΦ  are orthogonal, and consequently 0=mnB .  
    The rows and columns of matrix )(tB  associated with modes with multiplicity 1 have 
null entries except the diagonal entry, which is 1. Due to the orthogonal property of 

)(tB  (Appendix C), the diagonal terms associated with modes with multiplicity 2 
contain rotation matrices, that is 
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Appendix E 
 
Let M~  be a diagonal matrix of dimension NN × , where N  is the number of degrees of 
freedom of the solid model. The following relationship 
 
 MBMB ~)(~)( T =tt  (E.1) 
 
is verified if the pair of entries associated with each mode with multiplicity 2 are equal.     
The proof is found through the structure of the matrix )(tB  showed in the Appendix D.  
    If M~  is a column matrix of dimension 1×N , the following relation is fulfilled 
 

 MMB ~~)( T =t  (E.2) 
 
only if the non-zero entries in M~  are associated with modes of single multiplicity. 
 
 

 

 

 

 

 

 


