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This paper presents a simulation tool designed for predicting the wear pattern on the running surface
of the rails and for studying the evolution of rail corrugation after thousands of wheelset passages.
This simulation tool implements a cyclic track model, a rotating flexible wheelset model, a wheel–rail
contact model and a wear model. The vehicle–track system is modelled by using a substructuring
technique, by which the vehicle, the rails and the sleepers are treated independently of each other
and are coupled by the forces transmitted through the wheel–rail contact and the railpad. The vehicle
model takes only account of the wheelset since the sprung masses of the vehicle are not relevant in the
frequency range analysed. The wheelset model considers the flexibility of the wheelset and the effects
associated with rotation. By using the Campbell diagram, two cases have been identified in which the
combined effect of two different modes may give rise to higher wheel–rail contact forces and wear.

Keywords: rail corrugation; cyclic track; rotating flexible wheelset; substructuring technique

1. Introduction

Corrugation in rails remains nowadays one of the most widely spread defects in tracks world-
wide. This defect is known not only to give rise to high-frequency vibrations, noise nuisance
and loss of ride comfort, but also to trigger the formation of cracks in rails. Until now, rail
grinding and friction modifiers are the only techniques that have proved to be effective in
controlling corrugation. But, at the same time, the former technique leads to notably higher
maintenance costs to be faced by railway administrations.

Much research efforts have focused on the understanding of the initiation and further devel-
opment of rail corrugation with the aim to prevent or at least control the formation of this defect.
However, since the first reports on corrugation at the end of the nineteenth century [1], only a
few corrugation types were explained through mathematical models (see an example in [2]).
Most of the wavelength-fixing mechanisms (see definition in [3]) were broadly found exper-
imentally by identifying the corresponding frequency of the corrugation with certain natural
frequency or resonance of the vehicle unsprung mass–track system [4]. The corrugation is
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1750 P. Vila et al.

understood, then, as a dynamic problem associated with wear and/or plastic deformation in
the wheel/rail contact patch. Consequently, any dynamic amplification of the train–track sys-
tem can potentially be a wavelength-fixing mechanism. If the dynamics of the system behaves
linearly (which is a coherent hypothesis, at least in the beginning stages), the corrugation
should be considered as a fixed-frequency phenomenon with few exceptions. One special case
may be the dynamics of the rotating wheelset, where its resonance frequencies depend on the
angular velocity of the wheelset.

Classic works on Jeffcott rotors and rotating beams showed that the equivalent vibration
modes of the shaft change with the angular velocity (see monograph in [5]). Each mode with
multiplicity 2 of the non-rotating system splits into two different modes: the forward mode,
whose deformed shape rotates in the same direction of the spin motion, and the backward
mode, in the opposite direction. The difference between the frequencies of the backward and
forward modes of a simply supported Rayleigh beam was obtained in [6], that is

�ωk = 2k2π2

k2π2 + λ2
�, (1)

where k is the mode index, � the spinning angular velocity and λ the beam slenderness. If the
slenderness is zero (the railway wheelset slenderness should be small), the difference between
the modes is twice the spinning velocity.

The literature showed few advanced models of the railway wheelset. A flexible but non-
rotating wheelset model was published in [7], and the moving load effect associated with the
rotation of a flexible wheel was considered in [8]. It was stated that a commercial simulation
package implemented a flexible and rotating wheelset model, but the method is unpublished
and cannot be reproduced. The work in [9] presented a method for obtaining the dynamic
response of rotating flexible solids. This model takes account of the inertial and the moving
load effects due to rotation. The technique was applied to the railway case in [10].

The objective of the present work is to demonstrate the capability of the wheelset dynamics
to produce corrugation in rails. To this end, a computational tool that permits to simulate
the evolution of the rail roughness has been developed. The programme combines a dynamic
model of the wheelset–track system and a wear model, in accordance with the sketch of
Figure 1. The track model is based on the periodic vehicle–track system proposed in [11].

Wheelset–track dynamic interaction

Wheel–rail contact model

Wear model

Wheel

Rail

Development of the
railhead profile

Figure 1. Structure of the simulation tool (following the scheme proposed in [3]).
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Vehicle System Dynamics 1751

The track model considers the rail torsion, the rotation of the rail section and the lateral and
vertical deflections of the rail. The FASTSIM algorithm is adopted to compute the contact
forces and the local slip.

The program implements the wheelset model developed in [10]. This wheelset model takes
account of the inertial effects due to rotation, that is, it is a rotating wheelset model, in contrast
to those wheelset models that do not consider these effects, which are known as non-rotating
wheelset models. A new procedure for developing the wheelset model can be found in Section
2 of the present article. Section 3 presents the influence of the angular velocity of the wheelset
on its natural frequencies. Finally, in Section 4, results from simulation, namely contact forces
and wear, are shown.

2. Description of the simulation tool

The simulation tool developed in this work is intended to estimate the wear on the running
surface of the rails and to study the evolution of rail corrugation. To this aim, the simulation tool
implements a cyclic track model, a rotating flexible wheelset model, a wheel–rail contact model
and a wear theory. The modelling of the system dynamics is done through a substructuring
technique, in which the vehicle, the rails and each sleeper are considered in an isolated way.
The coupling between the substructures is carried out through the wheel–rail contact forces
and the forces transmitted through the railpads. The former forces are calculated by adopting a
theory of contact, FASTSIM in this case, and the latter forces are computed through the relative
displacements between the sleepers and the rails. Regarding the model of the vehicle, only a
wheelset is considered since the influence of the sprung masses of the vehicle is negligible in
the frequency range to study. Tables 1 and 2 contain the values of the significant parameters
of the different substructures constituting the model of the track and the parameters of the
wheelset model, respectively. Next, the models of the track and the wheelset are described.

2.1. Track model

In the literature, it can be found both track models representing a finite-length stretch of the
track and track models of infinite length. Most of the models of the former group are based on
the direct application of the finite element method, which, on the one hand, represent the track

Table 1. Parameters of the track model.

Rail
Density of the rail (kg/m3) 7850
Young’s modulus of the rail (N/m2) 2.1 × 1011

Shear modulus of the rail (N/m2) 0.81 × 1011

Cross-sectional area of the rail (m2) 7.69 × 10−3

Second moment of area of the rail cross-section (m4) 30.55 × 10−6

Shear coefficient of the rail cross-section 0.4
Railpad

Vertical railpad stiffness (N/m) 3.5 × 108

Railpad damping coefficient (N s/m) 50 × 103

Sleeper
Mass of the sleeper (kg) 324
Sleeper spacing (m) 0.6

Ballast
Vertical ballast stiffness (N/m) 100 × 106

Damping coefficient of ballast (N s/m) 200 × 103

Friction coefficient 0.3

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
t P

ol
itè

cn
ic

a 
de

 V
al

èn
ci

a]
 a

t 0
1:

06
 1

4 
Fe

br
ua

ry
 2

01
2 



1752 P. Vila et al.

Table 2. Parameters of the wheelset model.

Wheelset properties
Mass (kg) 2700
Static load (kN) 200
Rolling radius (m) 0.5
Moment in the vertical and lateral axes (kg m2) 493
Moment in the rolling axis (kg m2) 169

in a realistic way but, on the other hand, are inefficient from a computational viewpoint. All
the finite-length track models present a border effect, which causes the waves to reflect back
at the end of the model. Thus, the waves interact again with the vehicle, spoiling the results
from the simulation. This fact forces to adopt large lengths in order to minimise the border
effect, especially when the simulation time and the velocity of the vehicle are high.

Among the most mathematically sophisticated models are the infinite track models, in which
the rails are assumed to be discretely supported by the sleepers. There are two important groups
of infinite track models: the first group uses the Fourier transform in the frequency and time
domains [12] and the second group is based on the wave propagation models in periodic
structures [13]. Both groups of track models require the assumption of hypotheses of linearity
for the mechanical properties of the track.

An alternative that maintains the versatility of the finite track models and minimises the
border effect corresponds to [14]. In this work, a cyclic vehicle–track model is presented,
which consists in an infinite track on which an infinite number of identical vehicles circulate.
The distance between two consecutive vehicles is chosen to be the characteristic length L, as
can be seen in Figure 2. The modelling of the track is done only for a stretch of the track with
the characteristic length L. The adoption of a cyclic track model has the advantage, thanks
to the periodicity properties, that a finite track length can be considered to analyse an infinite
track without affecting the computing accuracy. Thus, the boundary conditions at both ends
of the finite track are the same, and the infinite track can be modelled through the modal
properties of the stretch by employing a substructuring technique. The track model consists of
several substructures: rails, railpads, sleepers and ballast. Each track substructure is related to
a set of modal equations. The rails and sleepers are modelled as flexible beams. The rails are
considered as cyclic Timoshenko beams, whose mode shapes can be calculated analytically.

2.2. Wheelset model

2.2.1. The Lagrangian method

The coordinate system adopted for the modelling of the rotating flexible wheelset model is
based on the formulation of floating frame of reference proposed in [14]. This method was
adopted in [15] in order to develop the equations of motion of a rotating solid. This method
obtains the global position of a flexible solid as a sum of two different displacement types.

TRENTREN TREN

LL

∞ ∞
L

Sample

V V V

Figure 2. Sketch of a cyclic vehicle–track model.
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Vehicle System Dynamics 1753

The former can be considered as a rigid body displacement, and the latter corresponds to the
displacements due to the deformation of the solid.

The floating frame method makes use of two reference frame systems: an inertial frame and
a mobile frame, which rotates at the angular velocity of the solid � and it is associated with
the undeformed configuration. Vectors referred to the fixed and the mobile frames are denoted
by a and ā, respectively. The vector position r of a material particle of the solid in relation to
the origin of the fixed frame can be expressed as follows:

r = A(ū + �(ū)p(t)), (2)

where ū is the vector position of the particle in the undeformed configuration in the mobile
frame. The product �(ū)p(t) corresponds to the displacement of the particle due to the elastic
deformation of the solid in the rotating frame, �(ū) being the matrix of functions of the mass-
normalised vibration modes of the non-rotating structure, and p(t) is the modal coordinate; A
is the following rotation matrix:

A =
⎛
⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎠ , (3)

with θ = �t being the angle of rotation.
The method presented in [15] develops the following equation of motion for rotating solids:

p̈ + 2Ω J̃ṗ + (K̃ − Ω2Ẽ)p = Qp + Ω2L̃. (4)

The components of the last equation are presented as follows. Matrix K̃ is the modal stiffness
matrix whose diagonal contains the square of the undamped natural frequencies of the solid.
Matrix J̃ is associated with the gyroscopic effect. It is computed as follows:

J̃ =
∫

Volume
ρ�TJ�dυ, (5)

where

J = AθAT = ATAθ , (6)

with Aθ being the derivative of the matrix A with respect to θ . The development of Equation
(6) shows that

J =
⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ . (7)

Some vibration modes produce deformed shapes which may cause centrifugal forces to
produce work. This effect is considered through the matrix Ẽ, which is calculated as follows:

Ẽ =
∫

Volume
ρ�TE�dυ, (8)

where

E = −AθθAT = −ATAθθ , (9)

with Aθθ being the second derivative of the matrix A with respect to θ . It can be easily obtained
that

E =
⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠ . (10)
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1754 P. Vila et al.

The centrifugal forces that do not depend on the solid deformation are implemented by means
of L̃. These forces are associated with modes of single multiplicity, and the entries of L̃ are
non-zero only associated with modes of single multiplicity. The column matrix L̃ is obtained
as follows:

L̃ =
∫

Volume
ρ�TEūdυ. (11)

If the external forces are applied in fixed material points, the generalised force term is computed
as follows:

Qp(t) =
∫

Volume
�(ū)TA(t)Tfv(ū, t)dυ, (12)

where fv(ū, t) is the volume external force. It can be pointed out that the integral kernel is a
function of time.

2.2.2. The Eulerian approach

The properties of the solids of revolution allow defining the deformed shape of the solid through
the modal functions in non-rotating coordinates as follows. Let v be the vector position of
a spatial point in relation to the origin of the fixed frame. The vector v is defined in the
undeformed domain or the volume occupied by the undeformed configuration. The vector
position of a particle that occupies the spatial position v in the undeformed configuration at
the instant t verifies

v = Aū. (13)

The position of the particle after deformation is

r = v + �(v)q(t), (14)

if the particle occupies the spatial position v in the undeformed configuration, with q(t) being
the Eulerian-modal coordinate vector. From Equations (2) and (14), it follows that

�(v)q(t) = A�(ū)p(t). (15)

Equation (15) is multiplied by ρ�(v)T, where ρ is the material density of the solid, and then
it is integrated over the volume of the solid, that is

q(t) =
(∫

Volume
ρ�(v)TA�(ATv)dν

)
p(t). (16)

The last equation provides the coordinate transformation, which can be written in the following
manner:

q(t) = B(t)p(t), (17)

in which B(t) is the transformation matrix that can be proved to be orthogonal (Appendix 3)
and quasi-diagonal (Appendix 4).

The coordinate change in Equation (17) is carried out in Equation (4), and then the resulting
equation is multiplied by B(t), resulting

q̈ + (2ΩBJ̃BT + 2BḂ
T
)q̇ + (BK̃BT − Ω2BẼBT + BB̈

T + 2ΩBJ̃Ḃ
T
)q = BQp + Ω2BL̃.

(18)
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Vehicle System Dynamics 1755

Taking into account the properties stated in Appendices 1, 2 and 5, the following equations
are found:

BJ̃BT = J̃, (19)

BẼBT = Ẽ, (20)

BK̃BT = K̃, (21)

BL̃ = L̃. (22)

The calculation of the term BJ̃Ḃ
T

is reduced to the resolution of BḂ
T
, because BJ̃ = BJ̃BTB =

J̃B. From Equation (A7),

B�(ū)T = �(v)TA. (23)

The last equation is derived with respect to time

Ḃ�(ū)T = �̇(v)TA + �(v)TȦ. (24)

In the last equation, the function �(ū) is constant since it is associated with a material point.
On the other hand, �̇(v) has to be computed as the convective term of the material derivative,
that is

�̇(v) =
3∑

i=1

∂�(v)

∂v•
i

dvi

dt
=

3∑
i=1

∂�(v)

∂vi

d(Aū)i

dt

=
3∑

i=1

∂�(v)

∂vi

(Ω Aθ ū)i = Ω

3∑
i=1

∂�(v)

∂vi

(Jv)i .

(25)

Equation (25) is now post-multiplied by �(ū)BT, resulting in

Ḃ�(ū)T�(ū)BT = Ω

(
3∑

i=1

∂�(v)T

∂vi

(Jv)i

)
A�(ū)BT + Ω�(v)TAθ�(ū)BT. (26)

Recalling the result in Equation (14), the last equation becomes

Ḃ�(ū)T�(ū)BT = Ω

(
3∑

i=1

∂�(v)T

∂vi

(Jv)i

)
�(v)BBT + Ω�(v)TAθAT�(v)BBT

= Ω

(
3∑

i=1

∂�(v)T

∂vi

(Jv)i

)
�(v) + Ω�(v)TJ�(v).

(27)

Now Equation (27) is multiplied by the density ρ and it is integrated over the volume of
the solid. By applying the property of orthogonality of the modes, it yields the following
expression:

ḂBT = Ω

∫
Volume

(
3∑

i=1

∂�(v)T

∂vi

(Jv)i

)
�(v)ρdv + Ω J̃. (28)
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1756 P. Vila et al.

Applying the first property in Appendix 3, the integral in Equation (28) does not depend on
time. It is associated with a new variable, that is

G̃ =
∫

Volume

(
3∑

i=1

∂�(ū)T

∂ui

(Jū)i

)
�(ū)ρdυ, (29)

ḂBT = Ω(G̃ + J̃). (30)

The calculation of BB̈
T

is performed as follows. The product ḂBT is constant and consequently

0 = d

dt
ḂBT = B̈BT + ḂḂ

T
. (31)

From Equations (30) and (31), it is deduced

B̈BT = −ḂḂ
T = −ḂBTBḂ

T = −�2(G̃ + J̃)(G̃ + J̃)T. (32)

Further analysis will show that G̃ is anti-symmetric, and the last expression can be written as
follows:

B̈BT = −ḂḂ
T = −ḂBTBḂ

T = �2(G̃ + J̃)(G̃ + J̃). (33)

The generalised force of Equation (18), from Equation (12), is

Qq(t) = B Qp(t) = B
∫

Volume
�(A(t)Tv)TA(t)Tfv(v, t)dν. (34)

By substituting Equation (A7) into the last result, it is found

Qq(t) = B
∫

Volume
BT�(v)Tfv(v, t)dν =

∫
Volume

�(v)Tfv(v, t)dν. (35)

In most of the cases, the vector of volume external forces can be written by means of a
separation of variables, where Fv(v) depends on the spatial variable v and γ (t) is a function
of time, as follows:

fv(v, t) = Fv(v)γ (t). (36)

Thus the generalised force can be written as

Qq(t) =
∫

Volume
�(v)TFv(v)dνγ (t) = F̃γ (t). (37)

Now Equations (19)–(22), (30), (33) and (37) are substituted into Equation (18), and it results

q̈ + (2Ω J̃ + 2Ω(G̃
T + J̃

T
))q̇ + (K̃ + �2(G̃G̃ + G̃J̃ − J̃G̃ − J̃J̃ − Ẽ))q = F̃γ (t) + Ω2L̃.

(38)
Simplifying the last expression, it results

q̈ − 2ΩG̃q̇ + (K̃ + Ω2C̃)q = F̃γ (t) + Ω2L̃ (39)

With the matrix C̃ being defined as

C̃ = G̃G̃ + G̃J̃ − J̃G̃ − J̃J̃ − Ẽ, (40)

it must be drawn attention to the fact that the matrices G̃, J̃, K̃, Ẽ, F̃ and L̃ are constant
matrices and they are computed at the beginning of the simulation. Equation (39) is linear and
it is expressed in a non-rotating reference frame.
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Vehicle System Dynamics 1757

2.3. Contact model

The simulation tool implements the model of Hertz for computing the distribution of nor-
mal pressure at the contact patch. The tangential contact problem is solved by adopting the
FASTSIM algorithm. FASTSIM provides a good precision when calculating the relationship
between the creepages and contact forces and, in addition, presents the advantage of a low
computational cost since it is based on a simplified elastic theory. However, when using FAST-
SIM, the accuracy of the calculation of the local slip at the contact patch may be affected by
the adoption of a simplified theory.

2.4. Wear model

In the present work, the model of wear adopted for modelling the sliding wear at the wheel–rail
contact is the Archard model. According to this theory, the wear rate ẇ (m/s) can be expressed
as follows:

ẇ = kw

H
pz‖s‖, (41)

where pz is the normal pressure applied to the surface, ‖s‖ the modulus of the local slip, kw

the wear coefficient, which depends on the normal load and on the slip velocity, and H the
material hardness. It is assumed that the wear coefficient is independent of the variations of
the normal contact tractions or local slips at the contact patch. In the present study, the value
of the relation kw/H is chosen to be 3.4 × 10−14 m2/N [16].

For each calculation instant, the wear rate is obtained at the centre of each element of the
discretisation used by FASTSIM, and it is transferred to a regular mesh of nodes on the running
surface of the rail. Finally, the wear rates in each node of the rail are integrated over time,
resulting, thus, in the wear depth at each rail node.

After each iteration loop of the simulation tool (Figure 1), the railhead profile is modified
according to the wear depth calculated in the last simulation.

3. The influence of the wheelset angular velocity

Table 3 shows the natural frequencies of the first seven modes of a free wheelset together
with the multiplicity of the vibration modes. These natural frequencies correspond to those
of the non-rotating wheelset. The effect of the angular velocity of the wheelset on the natural
frequencies of the free wheelset can be analysed through the frequency response function
(FRF). The expression that can be derived from Equation (39) for computing the FRF is

H(ω) = �T[−ω2I − i2ωΩG̃ + K̃ + Ω2C̃]−1�, (42)

in which I is the identity matrix and i is the imaginary unit. The direct receptance Hzz(ω)

represents the response of the contact point of the wheelset in the vertical direction when the
excitation is applied to the same point in the same direction. In Figure 3, the direct receptance
is plotted for two velocities of the vehicle: 0 and 100 km/h. This figure shows, when the
velocity of the vehicle is zero, the resonance peaks corresponding to the frequency range
from 0 Hz up to 400 Hz (Table 3). When the angular velocity of the wheelset is non-zero,
the resonance peaks related to the wheelset modes with multiplicity 2 (bending modes of the
wheelset and wheel modes) split into two different peaks, which can be associated with the
backward and forward modes [6]. However, the peaks related to the modes with multiplicity
1 remain unchanged.
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1758 P. Vila et al.

Table 3. Vibration modes of the wheelset.

Modes of the flexible wheelset Multiplicity Frequency (Hz) Mode shape

First torsional
mode

1 81.5

First horizontal
and vertical
bending modes

2 102

Second horizontal
and vertical
bending modes

2 179

First umbrella
mode

1 298

Third horizontal
and vertical
bending modes

2 357

Modes of the
wheel with two
nodal diameters
and no nodal
circle

4 383

Second umbrella
mode

1 436

Figure 4 shows the cross receptance Hxz(ω), that is, the response of the contact point of
the wheelset in the longitudinal direction (x-axis coincident with the track axis direction),
when the excitation is in the vertical direction. Considering the symmetry of revolution of the
wheelset, the level of this response should be zero. However, at the sight of Figure 4, this fact
does not happen when the angular velocity of the wheelset is different from zero. Again, it can
be appreciated in Figure 4 that when the velocity of the wheelset increases, the two resonance
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Figure 3. Direct receptance modulus Hzz as a function of the frequency when the velocity of the vehicle V is 0 and
100 km/h. The excitation is applied to the wheel at the contact point in the vertical direction, and the measure of the
response is taken at the same point and in the same direction.
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Figure 4. Cross receptance modulus Hxzas a function of the frequency when the velocity of the vehicle is 100 km/h.
The excitation is applied to the wheel at the contact point in the vertical direction, and the measure of the response is
taken at the same point in the longitudinal direction. Peak 1: first torsional mode; peaks 2 and 3: first bending mode
(backward and forward, respectively); peaks 4 and 5: second bending mode (backward and forward); peak 6: first
umbrella mode; peaks 7 and 8: third bending mode (backward and forward); peaks 9 and 10: wheel modes (backward
and forward).
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1760 P. Vila et al.

peaks derived from the modes with multiplicity 2 split into two different peaks. Peaks 2, 4,
7 and 9 correspond to the backward modes, while peaks 3, 5, 8 and 10 are associated with
the forward modes. Peaks 1 and 6 are related to the first torsional mode and the first umbrella
mode, which are of multiplicity 1.

In the Campbell diagram (Figure 5), the frequencies of the vibration modes of the mounted
wheelset are represented as a function of the velocity of the vehicle.

The modes with multiplicity 1 are, when ordered according to growing frequencies, the
first torsional and the symmetric and the anti-symmetric umbrella modes. The modes with
multiplicity 2 (the first three bending modes of the wheelset and the wheel modes) split into
two different modes, the backward and forward modes, when the vehicle velocity is different
from zero. For the forward modes, the frequency increases as the velocity rises, while for the
backward modes, the frequency decreases with the velocity. Thus, the difference between the
frequencies of the backward and forward modes increases as the vehicle speed rises.

Particularly interesting for this research work is the coincidence of two vibration modes
of the wheelset. It can be observed in Figure 5 that there are two intersection points of the
line of the backward wheel mode with the lines of the forward and backward third bending
modes of the wheelset. The left-hand intersection point corresponds to the coincidence of the
backward wheel mode with the forward third bending mode of the wheelset (B-F from now
on). It occurs at a frequency of 360.8 Hz and a vehicle velocity of 142 km/h. The right-hand
intersection point is due to the coincidence of the backward wheel mode with the backward
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Figure 5. Campbell diagram for the railway wheelset. Modes with multiplicity 1 (in continuous trace), forward
modes (in dashed trace), backward modes (in dotted trace). First torsional mode (triangle), first bending mode
(five-pointed star), second bending mode (cross), first umbrella mode (square), third bending mode (black circle),
wheel modes (white circle) and second umbrella mode (diamond).
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Vehicle System Dynamics 1761

third bending mode of the wheelset (B-B from now on), and it corresponds to a frequency of
352.5 Hz and a vehicle velocity of 198 km/h.

Figures 6 and 7 show the direct and cross receptances, respectively, in the frequency range
from approximately 342 Hz up to 375 Hz for the above-mentioned vehicle velocities. As can
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Figure 6. Direct receptance modulus Hzz as a function of the frequency when the velocity of the vehicle V is 0, 142
and 198 km/h. The excitation is applied to the wheel at the contact point in the vertical direction, and the measure of
the response is taken at the same point and in the same direction.
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Figure 7. Cross receptance modulus Hxz as a function of the frequency when the velocity of the vehicle is 142 and
198 km/h. The excitation is applied to the wheel at the contact point in the vertical direction, and the measure of the
response is taken at the same point in the longitudinal direction.
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1762 P. Vila et al.

be observed in both figures, the resonance peak corresponding to the forward third bending
mode of the wheelset occurs at a frequency of 360.8 Hz when the vehicle velocity is 142 km/h
and the resonance peak of the backward third bending mode of the wheelset appears at a
frequency of 352.5 Hz when the vehicle velocity is 198 km/h. It cannot be inferred from
the analysis of these wheelset receptances that the resulting wear depth will be higher at
a certain resonance frequency than that at the others, that is, the wheelset receptances do
not provide information about whether or not rail corrugation grows at certain resonance
frequencies.
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Figure 8. Contact forces computed through the rotating flexible wheelset model (dashed line) and the rigid wheelset
model (continuous line) for a vehicle velocity of 142 km/h: (a) longitudinal force, (b) lateral force and (c) vertical
force (the vertical dashed lines indicate the position of the sleepers). Electronic annex 1 shows the animation of the
flexible wheelset model for this case.
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4. Results from the wear simulation

In a previous work [10], it was concluded that the vibratory responses of the different models
of the mounted wheelset (the rigid wheelset model, the non-rotating and the rotating flexible
wheelset models) are virtually coincident, except when the vibration modes of the flexible
wheelset models are excited. A more recent study [17] analysed the wear computed through
three different modes at arbitrary velocities, and it showed similar results and very small wear.
Therefore, it was decided to study the rotating flexible wheelset model and to compare the
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Figure 9. Contact forces computed through the rotating flexible wheelset model (dashed line) and the rigid wheelset
model (continuous line) for a vehicle velocity of 198 km/h: (a) longitudinal force, (b) lateral force and (c) vertical
force (the vertical dashed lines indicate the position of the sleepers). Electronic annex 2 shows the animation of the
flexible wheelset model for this case.
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Figure 10. Depth of the railhead wear for a wheelset passage at a vehicle velocity of 142 km/h (continuous line)
and initial rail roughness (dashed line, without scale).

results with those from the rigid wheelset model when the wavelength of the rail roughness
excites the vibration modes of the wheelset determined by using the Campbell diagram.

Certain combinations of angular velocity of the wheelset and excitation frequency can
lead to the excitation of several vibration modes with the consequent generation of complex
dynamics. These cases occur for the configurations associated with the points in which two
lines in the Campbell diagram intersect. In this section, the effect of the excitation of the B-F
modes and the B-B modes on the evolution of rail corrugation is analysed.

To this aim, an initial sinusoidal roughness on the running surface of the rails is assumed.
For the first simulation, the wavelength of the roughness is set to be 11 cm, the amplitude
100 μm and the vehicle velocity 142 km/h. Thus, the excitation frequency is 360.8 Hz, at
which both the backward wheel mode and the forward third bending mode of the wheelset are
excited (B-F modes). In the second simulation, the wavelength of the roughness is assumed
to be 15.6 cm, the amplitude 100 μm and the vehicle velocity 198 km/h, with the objective
that the excitation frequency be 352.5 Hz. At this frequency, the backward wheel mode and
the backward third bending mode of the wheelset are excited (B-B modes).

Figure 8 shows the contact forces, namely longitudinal, lateral and vertical contact forces,
resulting from the first simulation. It must be highlighted that no force related to a motor
torque was implemented. Therefore, the resulting longitudinal and transversal forces are con-
sequences of the torsion vibrations, the rotation of the section of the rail and the proper
dynamics of the wheelset. It can be observed that the use of the rotating flexible wheelset
model leads to higher contact forces than when using the rigid wheelset model, especially in
the cases of the longitudinal and lateral contact forces. In Figure 9, the contact forces from
the second simulation are plotted. Again, the contact forces calculated through the rotating
flexible wheelset model are higher than those obtained through the rigid model, except for the
vertical force.

The animations of the flexible wheelset dynamics for the above-mentioned velocities can
be found in the electronic annexes of this article (Electronic annexes 1 and 2 correspond to
142 and 198 km/h, respectively).

Figures 10 and 11 show the wear depth on the running surface of the rails after a wheelset pas-
sage when the vehicle velocities are 142 and 198 km/h, respectively. In these figures, the wear
depth is plotted together with the initial roughness (without scale) for two sleeper bays. It can be
observed that the wear depth resulting when the B-F modes are excited (Figure 10) is approx-
imately five times higher than that produced when the B-B modes are excited (Figure 11). In
both simulations, the wear occurs at the crests and troughs with a frequency double that of the
initial roughness. There exist positions on the railhead where the wear depth is zero due to the
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Figure 11. Depth of the railhead wear for a wheelset passage at a vehicle velocity of 198 km/h (continuous line)
and initial rail roughness (dashed line, without scale).
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Figure 12. Railhead profile after 100,000 wheel passages for a vehicle velocity of 142 km/h (continuous line) and
initial profile (dashed line) (the vertical dashed lines indicate the position of the sleepers).
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Figure 13. Railhead profile after 100,000 wheel passages for a vehicle velocity of 198 km/h (continuous line) and
initial profile (dashed line) (the vertical dashed lines indicate the position of the sleepers).

low levels of the tangential force and, consequently, the local velocity in the contact patch is
zero or approximately zero.

Figures 12 and 13 show the evolution of the railhead profile after 100,000 wheelset passages.
The worn rail profile after 100,000 wheelset passages is obtained through 100 simulations.
After each simulation, the rail profile is updated with the wear depth multiplied by a factor
of 1000 since it was observed that 10 simulations in which the wear was multiplied by 100
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passages led to the same worn rail profile as one simulation in which the wear depth was
multiplied by 1000. While the effect of the excitation of the B-B modes on the change of the
railhead profile seems to be almost negligible at the sight of Figure 13, it appears that the
excitation of the B-F modes has a relevant role in the evolution of rail corrugation (Figure 12).
In Figure 12, it can be noted that the change in the railhead profile is localised on the crest and
trough of the initial profile, with wear being deeper at the troughs.

5. Conclusions

In this work, a simulation tool intended to study the evolution of the rail roughness has been
presented. The simulation tool consists of a cyclic vehicle–track system model, a rotating
flexible wheelset model, a wheel–rail contact model and a wear theory.

The model of the vehicle–track system assumes the hypotheses of periodicity and, con-
sequently, it is considered as cyclic. The adoption of hypotheses of periodicity permits to
eliminate the border effects and to perform integrations without time limitation since the
vehicle does not reach the border of the track, as happens in finite track models.

Regarding the wheelset model, its flexibility and the effects associated with the rotation are
taken into account, namely the gyroscopic effect and the effect of mobile force of the contact
point with respect to the wheelset. The formulation of the flexible wheelset model uses a set
of Eulerian modal coordinates, and it is based on the position of a spatial point in opposition
to the Lagrangian formulation commonly used in mechanical engineering. The Eulerian for-
mulation presents a series of advantages. Firstly, the wheel–rail contact force is applied on
the wheelset at spatial points, whose positions remain unchanged. Consequently, the term of
the generalised force becomes significantly simplified. Secondly, from another viewpoint, the
wheel–rail contact theories were developed through Eulerian coordinates and, therefore, the
formulation of the creep velocities is notably simplified, since the use of Lagrangian coordinate
forces to implement convective terms complicates significantly the calculation. Finally, the
Eulerian formulation enables the generation of coherent solid–air meshes in acoustic problems
since the rotation of the mesh is not required.

In this research, further insight into the mechanisms related to the dynamics of the wheel–
track system that promote the growth of rail corrugation has been gained. By using the
Campbell diagram, the wheelset vibration modes responsible for a complex dynamics have
been identified. This complex behaviour leads to high forces at the wheel–rail contact and
wear. Specifically, the coupled influence of the third bending mode of the wheelset and the
wheel modes on the growth of rail corrugation are analysed. The possible wavelength-fixing
mechanism that has been identified is not constant in frequency, but it depends on the velocity
of the vehicle.

From the results obtained through the simulations, it can be concluded that the dynamics
of the rotating flexible wheelset might give rise to generation mechanisms of rail corrugation.
This theoretical study is not definitive since further numerical simulations and comparisons
to experimental data are needed to confirm the influence of certain resonances of the rotating
flexible wheelset on the development of rail corrugation.
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Appendix 1

Any scalar field γ integrable on the domain of the solid of revolution has the following property:∫
Volume

γ (v)dν =
∫

Volume
γ (ū)dυ. (A1)

This is an evident result since the Jacobian determinant of the transformation (13) is 1.

Appendix 2

Let us consider the matrix M̃, which is defined as follows:

M̃ =
∫

Volume
�(ū)TM�(ū)dυ, (A2)

where M is a constant 3 × 3 matrix. Matrix M verifies that

M = ATMA. (A3)

The transformation matrix B(t) does not affect if it is applied on the matrix M̃, that is,

B(t)TM̃B(t) = M̃. (A4)
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The proof is the following:

B(t)TM̃B(t) = B(t)T
(∫

Volume
�(ū)TM�(ū)dυ

)
B(t),

=
∫

Volume
B(t)T�(ū)TM�(ū)B(t)dυ,

=
∫

Volume
B(t)T�(v)TM�(v)B(t)dν, (A5)

=
∫

Volume
�(ū)TATMA�(ū)dν,

=
∫

Volume
�(ū)TM�(ū)dν = M̃.

Appendix 3

The transformation matrix B(t) can be proved to be orthogonal. If Equation (8) is substituted into Equation (6), one
obtains:

�(v)B(t) = A�(ATv). (A6)

Each side of the last equation is multiplied by itself (transposed) and the density, giving

ρB(t)T�(v)T�(v)B(t) = ρ�(ATv)TATA�(ATv). (A7)

Equation (A7) is now integrated over the solid volume

B(t)T
(∫

Volume
ρ�(v)T�(v)dν

)
B(t) =

∫
Volume

ρ�(ATv)T�(ATv)dν. (A8)

Through Equation (A8),Appendix 1 and the property of orthogonality of the modal functions, the relation B(t)TB(t) =
I is found and consequently B(t) is an orthogonal matrix.

Appendix 4

Let us consider different modes nth and mth and the corresponding modal functions �<n> and �<m>. Equation (A6)
can be written for the nth mode as follows:

�(v)B<n> = A�(ATv)<n>. (A9)

Now, the last equation is pre-multiplied by ρ�<m> and then integrated over the solid volume, giving

Bmn =
∫

Volume
ρ(�<m>)TA�(ATv)<n>dν. (A10)

If the modes �<n> and �<m> are orthogonal due to the geometry of revolution, A�(ATv)<n> and �<m> are
orthogonal and, consequently, Bmn = 0.

The rows and columns of matrix B(t) associated with modes with multiplicity 1 have null entries except the
diagonal entry, which is 1. Due to the orthogonal property of B(t) (Appendix 3), the diagonal terms associated with
modes with multiplicity 2 contain rotation matrices, that is

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|
|
|
|
|
|
|
|
|
|
|
|
|

0 0 |
|
|
|
|
|
|
|
|
|
|
|
|

0 · · · 0
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · 0
− − − − − − − − − − − − − − − − − −
0 · · · 0 cos θ ± sin θ 0 · · · 0
0 · · · 0 ∓ sin θ cos θ 0 · · · 0
− − − − − − − − − − − − − − − − − −
0 · · · 0 0 0
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .

0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A11)
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Appendix 5

Let M̃ be a diagonal matrix of dimension N × N , where N is the number of degrees of freedom of the solid model.
The following relationship

B(t)TM̃B(t) = M̃ (A12)

is verified if the pair of entries associated with each mode with multiplicity 2 is equal. The proof is found through the
structure of the matrix B(t) shown in Appendix 4.

If M̃ is a column matrix of dimension N × 1, the following relation is fulfilled:

B(t)TM̃ = M̃, (A13)

only if the non-zero entries in M̃ are associated with modes of single multiplicity.
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