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Abstract

This paper extends both the deterministic fractional Riemann-Liouville integral and the Caputo
fractional derivative to the random framework using the mean square random calculus. Char-
acterizations and sufficient conditions to guarantee the existence of both fractional random op-
erators are given. Assuming mild conditions on the random input parameters (initial condition,
forcing term and diffusion coefficient), the solution of the general random fractional linear differ-
ential equation, whose fractional order of the derivative is α ∈]0, 1], is constructed. The approach
is based on a mean square chain rule, recently established, together with the random Fröbenius
method. Closed formulae to construct reliable approximations for the mean and the covariance
of the solution stochastic process are also given. Several examples illustrating the theoretical
results are included.

Keywords: Random mean square Riemann-Liouville integral, random mean square Caputo
derivative, random fractional linear differential equation, random Fröbenius method.

1. Introduction1

The goal of this paper is twofold. Firstly, to extend some important concepts and results that2

belong to the deterministic fractional calculus to the random framework using the so-called mean3

square approach. Secondly, to show some applications of the mean square random fractional4

calculus to solve fractional differential equations with uncertainties. To start with, we will give5

a motivation of our study in connection with the different available approaches to deal with6

differential equations with randomness.7

Nowadays, it is widely accepted that the behaviour of many physical phenomena is governed8

by chance. Thus, it is not appropriate to describe them just using deterministic physical laws9
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but considering the randomness into the physical formulations. In this regard, it is well-known10

that the trajectory of a rocket is determined by the randomness of the initial speed; the electric11

power exhibits visible irregular changes that behave irregularly; the value of assets in financial12

markets is often very volatile, just as a few examples where it is reasonable to consider uncer-13

tainty. From this point of view, it is natural to take advantage of the powerful effectiveness of14

deterministic differential equations for describing physical phenomena and consider uncertainty15

in their formulation. This leads to two different approaches, namely, stochastic differential equa-16

tions (SDEs) and random differential equations (RDEs). While there is still in the scientific17

community a wrong tendency to treat these two terms as synonymous, it is important to point out18

that they are distinctly different and they require completely different techniques for analysis and19

treatment [1]. The main difference between SDEs and RDEs comes from the kind of the uncer-20

tainty that is considered in the formulation of both equations. On the one hand, SDEs are forced21

by an irregular stochastic process such as a Wiener process (also termed brownian motion). This22

is a gaussian stochastic process whose sampled trajectories are nowhere differentiable. Solving23

SDEs requires of a special stochastic calculus, usually referred to as Itô Calculus, whose corner-24

stone is the Itô lemma [2]. On the other hand, RDEs are those in which the random effects are25

manifested directly via the input parameters (coefficients, source terms and initial and boundary26

conditions). Under this approach it is assumed that input parameters possess milder or regular27

sample behaviour (e.g., sample continuity or sample differentiability, etc). Apart from gaussian28

distribution, many other important probability distributions are allowed to have the input param-29

eters (binomial, Poisson, beta, gamma, etc). This latter feature makes RDEs very attractive when30

modelling physical phenomena since they permit the consideration of uncertainty in their formu-31

lation. Both SDEs and RDEs have demonstrated to be powerful tools in dealing with important32

theoretical and practical mathematical problems (see [3, 4] for SDEs, and [5, 6, 7, 8] for RDEs,33

for instance).34

Throughout this paper will be considered RDEs only. Some recent contributions about RDEs35

are [9, 10, 11, 12]. It is important to point out that there are different approaches to deal with36

RDEs, but in these pages we will follow the so-called mean square approach [8]. This approach37

is based upon a strong stochastic type-convergence, termed mean square convergence, whose38

main advantage is that the results established in mean square are also valid in other important39

types of stochastic convergences, namely, convergence in probability and convergence in distri-40

bution. Additionally, the mean square convergence possesses a distinctive property, which will41

be used in this paper (see Proposition 10), that makes it especially suitable to construct reliable42

approximations of the mean and variance of the solution stochastic process of RDEs. Some re-43

cent papers where RDEs are studied using the mean square calculus are [13, 14, 15, 16], for44

instance.45

Over the last few decades deterministic fractional differential equations are having an impor-46

tant impact on both the theory and applications of mathematics. Despite their physical meaning47

of the fractional derivative is not still clear, fractional differential equations are gaining influ-48

ence in mathematical modelling because their success in modelling phenomena having a micro-49

scopic complex behaviour whose macroscopic dynamics can not be properly described using the50

classical deterministic derivative. Some areas where deterministic fractional differential equa-51

tions have demonstrated to be useful tools include Viscoelasticity Materials, Fluid Flows, Solute52

Transport, etc., [17]. Many author attribute the success of fractional differential equations to the53

fact that many of the physical processes related to complex systems possess non-local dynamics54

involving long-memory in time, and the fractional integral and fractional derivative operators do55

have some of those characteristics [17, 18, 19]. So, it is natural to introduce randomness into the56
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mathematical formulation of fractional differential equations. While a number of contributions57

have dealt with fractional SDEs [20, 21], for example, to the best of our knowledge there is a58

lack of study regarding fractional RDEs. Some noteworthy exceptions have been recently pre-59

sented in [22, 23]. In these two contributions interesting existence and uniqueness results, based60

on the so-called sample path and Lp-approaches, for initial value problems formulated through61

fractional RDEs have been presented.62

Finally, it is important to point out that there is a number of fractional derivatives such as63

Caputo, Riemann-Liouville, Grünwald-Letnikov [24, 25]. In this paper we will only consider64

the Caputo derivative since we are interested in constructing a mean square solution to the gen-65

eral fractional linear first-order differential equation with random coefficients and random initial66

condition. The Caputo fractional derivative has the key property of allowing to express initial67

conditions in terms of the classical derivatives.68

This paper is organized as follows. Section 2 contains the main results related to the so-69

called L2-random calculus, also termed mean square calculus that will be required throughout70

this paper. In Section 3, we extend the concept of the fractional Riemann-Liouville integral71

and fractional Caputo derivative to the mean square random calculus. Characterizations of these72

two important random fractional operators, in terms of the correlation function of the involved73

second-order stochastic process, are explicitly given. Section 4 is addressed to show how the74

random Fröbenius power series method can be applied to successfully solve the complete random75

linear fractional differential equation under very general hypotheses and assuming randomness76

in all its input parameters (initial condition, forcing term and diffusion coefficient). General77

explicit formulaes for computing accurate approximations of the mean, variance and covariance78

functions of the solution stochastic process to the complete random linear fractional differential79

equation are given in Section 5. Section 6 is devoted to exhibit several illustrative examples.80

Conclusions are drawn in Section 7.81

2. Preliminaries about mean square random calculus82

For the sake of completeness, henceforth we will summarize the main definitions and results83

that will be used throughout this paper. A comprehensive survey of them can be found in [2,84

ch.1], [26, ch.XI], [8, ch.4] and [27]. A complex random variable (RV), X : Ω → C, defined85

on a complete probability space (Ω,F,P) is said to be of order p ≥ 1 (p-RV, for short), if86

E
[
|X|p

]
< +∞, where E [·] denotes the expectation operator. The space Lp(Ω) of all p-RVs87

endowed with the norm88

‖X‖p =
(
E

[
|X|p

])1/p , (1)

is a Banach space [2, p.9]. The convergence in Lp(Ω), usually called convergence in p-th mean,
it is naturally inferred by the p-norm (1), i.e., a sequence of RVs {Xn : n ≥ 0} in Lp(Ω) is said to
be p-th mean convergent to X ∈ Lp(Ω) if, and only if, ‖Xn − X‖p −−−−−→

n→+∞
0. Given ∅ , U ⊂ R,

a family of RVs indexed by u ∈ U, X(u) ≡ {X(u) : u ∈ U} is called a stochastic process (SP).
Throughout this paper, we will take U = [0,+∞[. If E

[
|X(u)|p

]
< +∞ for each u ∈ U, then

X(u) is said to be a p-stochastic process (p-SP, for short). The definitions of p-continuity, p-
differentiability and p-integrability of p-SPs in Lp(Ω)-spaces are the usual ones derived from the
p-norm (1) in Banach spaces. A significant case corresponds to p = 2. In fact, it can be seen that
(L2(Ω), ‖·‖2) is a Hilbert space with the inner product

〈X,Y〉 = E [|XY |] , X,Y ∈ L2(Ω),
3



being89

‖X‖2 = +

√
E

[
|X|2

]
. (2)

The convergence associated to this ‖·‖2-norm is usually referred to as mean square convergence.90

Hereinafter, Xn
m.s.
−−−−−→
n→+∞

X will denote a sequence, {Xn : n ≥ 0}, of RVs in L2(Ω) such that is mean91

square convergent to X as n→ +∞. As it shall see later, the Schwarz’s inequality92

E [|XY |] ≤ ‖X‖2 ‖Y‖2 , X,Y ∈ L2(Ω), (3)

will be used extensively throughout the paper. Another important inequality that will be subse-93

quently applied is the Jensen’s inequality. If f : R −→ R is a convex mapping and X is a RV,94

then95

f (E [X]) ≤ E
[
f (X)

]
, (4)

provided all the above involved moments exist.96

Although mean square convergence is an important type of stochastic convergence, some97

basic operational rules do not fulfil unless additional hypotheses are assumed. Now, we prove a98

result in this respect that will be required later.99

Proposition 1. Let X be a bounded RV in L2(Ω), i.e., there exist constants x1 and x2 such that100

x1 ≤ X(ω) ≤ x2, for all ω ∈ Ω, and let us assume that Zn converges in the mean square sense to101

Z. Then, XZn
m.s.
−−−−→
n→∞

XZ.102

Proof. Let x̂ = max{|x1|, |x2|} < +∞, and observe that103

0 ≤ (‖XZn − XZ‖2)2 = E
[
|X|2|Zn − Z|2

]
≤ |x̂|2E

[
|Zn − Z|2

]
= |x̂|2 (‖Zn − Z‖2)2 −→

n→+∞
0,

since {Zn} converges in the mean square sense to Z as n→ +∞. Then, the result is proved. �104

Another property that will be used throughout the paper is the following105

Proposition 2. [28, p.92] Let f , g : R −→ R be measurable mappings and X,Y : Ω −→ R106

independent RVs. Then, f (X) and g(Y) are independent RVs and107

E
[
f (X)g(Y)

]
= E

[
f (X)

]
E

[
g(Y)

]
,

provided the above expectations exist.108

As we shall see below, the concept of mean square differentiable 2-SP will be required for intro-109

ducing the random mean square fractional Caputo derivative. We recall that a 2-SP {X(u) : u ∈110

U} has a mean square derivative dX(u)
du at u ∈ U if111

lim
τ→0

∥∥∥∥∥X(u + τ) − X(u)
τ

−
dX(u)

du

∥∥∥∥∥
2

= 0, u, u + τ ∈ U.

Higher order mean square derivatives, denoted by dnX(u)
dun ≡ X(n)(u), n ≥ 1, are defined analo-112

gously.113

When two o more RVs are involved, statistical dependence is an important matter. To deal with114

statistical dependence it is convenient to introduce the definition of correlation function. If X(u)115

is a 2-SP, then for each u1, u2 > 0, the two-dimensional deterministic function ΓX(u1, u2) =116
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E [X(u1)X(u2)] is called the correlation function associated to X(u). The correlation function117

ΓX(u1, u2) of a 2-SP X(u) always exists since118

|ΓX(u1, u2)| = |E [X(u1)X(u2)]| ≤ E [|X(u1)X(u2)|] ≤ ‖X(u1)‖2 ‖X(u2)‖2 < +∞. (5)

Notice that in the latter expression, we have applied first the Jensen inequality (4) with f (x) =119

|x|, which is a convex function, and secondly, the Schwarz’s inequality (3). Finally, since120

X(u1), X(u2) ∈ L2(Ω), hence the norms ‖X(u1)‖2 and ‖X(u2)‖2 are finite.121

We point out that many mean square properties, such as ‖·‖2-continuity, ‖·‖2-differentiability122

and ‖·‖2-integrability of a 2-SP, say X(u), can be directly characterized through its correlation123

function ΓX(u1, u2) [8, ch.4].124

Apart from the correlation function, other important functions that will be used in the subse-125

quent sections to study the statistical dependence of the involved RVs are the covariance function,126

CX(u1, u2) of 2-S.P. X(u), and the cross-covariance function, CX,Y (u1, u2), of two second-order127

SPs X(u) and Y(u). These functions are defined by128

CX(u1, u2) = ΓX(u1, u2) − E[X(u1)]E[X(u2)],
CX,Y (u1, u2) = E[X(u1)Y(u2)] − E[X(u1)]E[Y(u2)],

respectively.129

We have seen that the mean square derivative of a 2-SP, say X(u), and its higher order ones, if130

they exist are also 2-SPs. It can be shown that their correlation functions are determined simply131

in terms of the correlation function of X(u) [8, p.97]. Specifically, if X(u) is n-times mean square132

differentiable, then133

ΓX(n) (u1, u2) =
∂2nΓX(u1, u2)
∂un

1 ∂un
2

. (6)

The following result gives a characterization of the existence of the mean square Riemann134

integral of a 2-SP, in terms of the existence of a two-dimensional integral involving the correlation135

function of the 2-SP.136

Proposition 3. ([8, Th. 4.5.1]) Let g(u,w) be a deterministic Riemann integrable function on137

the real interval u ∈ [c, d], for every w ∈ W ⊂ R, and let X(u) be a 2-SP. Then, the 2-SP defined138

by139

Y(w) =

∫ d

c
g(u,w)X(u) du, w ∈ W,

exists if and only if, the deterministic double Riemann integral140 ∫ d

c

∫ d

c
g(u1,w)g(u2,w)ΓX(u1, u2) du1du2,

exists and is finite.141

The following consequence of the previous proposition will be used later.142

Remark 1. In the particular case that w = d ∈ W ⊂ R in Proposition 3, the RV143

Y ≡ Y(d) =

∫ d

c
g(u, d)X(u)du
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is well-defined as a 2-RV, if and only if, the deterministic double Riemann integral144 ∫ d

c

∫ d

c
g(u1, d)g(u2, d)ΓX(u1, u2) du1du2,

exists and is finite.145

A key result, that will be used in this paper to construct a random generalized power series146

solution to the random fractional linear differential equation with a random initial condition, is147

the following chain rule [29]. This rule allows us to compute the mean square derivative of a148

2-SP resulting from the composition of a differentiable deterministic function and a mean square149

differentiable 2-SP.150

Theorem 1. Let g be a deterministic continuous function on [a1, a2] such that g′(t) exists and is151

finite at some point t ∈ [a1, a2]. If {X(v) : v ∈ V} is a 2-SP such that152

i) The intervalV contains the range of g, g([a1, a2]) ⊂ V.153

ii) X(v) is mean square differentiable at the point g(t).154

iii) The mean square derivative of X(v), dX(v)
dv , is mean square continuous onV.155

Then, the 2-SP, X(g(t)), is mean square differentiable at t and the mean square derivative is given156

by157

dX(g(t))
dt

=
dX(v)

dv

∣∣∣∣
v=g(t)

g′(t).

Also connected with the previous result and, as it shall be seen later, we will require to apply158

the mean square derivative of a random power series in order to formally construct the solution159

of the random fractional linear differential equation with a random initial condition. For this160

purpose we will use the following result:161

Proposition 4. [30, p.1260] LetV ⊂ R be an interval, m ≥ m0 ≥ 0 a non-negative integer and162

{Um(v) : v ∈ V, m ≥ m0} be a sequence of 2-SPs such that163

i) Um(v) is mean square differentiable onV.164

ii) The mean square derivative, U′m(v), is mean square continuous onV.165

iii) U(v) =
∑

m≥m0
Um(v) is mean square convergent onV.166

iv)
∑

m≥m0
U′m(v) is mean square uniformly convergent onV.167

Then, the 2-SP, U(v), is mean square differentiable at every v ∈ V and168

U′(v) =
∑

m≥m0

U′m(v).

Throughout this paper, Γ(α) and B(α1, α2) will denote the deterministic Euler gamma and169

beta functions, defined as170

Γ(α) :=
∫ ∞

0+

e−v vα−1 dv, α > 0, (7)
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171

B(α1, α2) :=
∫ 1

0
vα1−1(1 − v)α2−1 dv, α1, α2 > 0, (8)

respectively. These special functions are related by the following well-known relationship172

B(α1, α2) =
Γ(α1)Γ(α2)
Γ(α1 + α2)

, α1, α2 > 0. (9)

The so-called duplication formula of the deterministic gamma function173

Γ(α + 1) = αΓ(α), α > 0, (10)

will also be required later. Although these functions and relationships can be extended for α,174

α1 and α2 lying in the whole complex plane except the negative integers, here they will only be175

applied when α > 0, α1 > 0 and α2 > 0. Also, the following asymptotic approximation to the176

gamma function will be need later [31, pp. 227]177

Γ(x + 1) ≈ xx e−x
√

2πx, x→ +∞. (11)

Notice that this approximation is just a generalization of the celebrated Stirling’s formula.178

We conclude this section by stating a technical result related to the convergence of double179

series that will be applied to develop the numerical examples exhibited in Section 6.180

Proposition 5. [32, Lemma 9.1, ch.9] A double series
∑

m≥m0

∑
n≥n0

amn is absolutely convergent181

if and only if the following conditions hold182

(i) There are (m0, n0) ∈ N × N and α0 > 0 such that183

M∑
m=m0

N∑
n=n0

|amn| ≤ α0 for all M ≥ m0, N ≥ n0.

(ii) Each row-series and each column-series are absolutely convergent.184

3. Mean square random fractional differential and integral operators185

This section is addressed to introduce the random Riemann-Liouville fractional integral and186

the random Caputo fractional derivative in the mean square sense. As it shall see later, both187

random fractional operators extend their deterministic counterparts. Their definitions are based188

on the random mean square calculus. Firstly, we give the definition of the mean square random189

Riemann-Liouville fractional integral.190

Definition 1. Let D = [a, b], −∞ < a < b < +∞, be a finite interval of the real line, R.191

Let {X(t) : t ∈ D} be a 2-SP. The random mean square (left-sided) Riemann-Liouville fractional192

integral of X(t), Jαa+ X, of order α > 0 is defined by193

(
Jαa+ X

)
(t) :=

1
Γ(α)

∫ t

a
(t − u)α−1X(u) du, t ∈ D = [a, b] , (12)

where Γ(α) denotes the deterministic gamma function given in (7).194
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Notice that the integral that appears in the right-hand side of (12) is understood in the mean195

square Riemann integral sense introduced in Section 1.196

Remark 2. Analogously to Definition 1, we can define the random mean square (right-sided)197

Riemann-Liouville fractional integral of a 2-SP, X(t), as198 (
Jαb− X

)
(t) :=

1
Γ(α)

∫ b

t
(u − t)α−1X(u) du.

Throughout this paper, the random mean square (left-sided) Riemann-Liouville fractional inte-199

gral will be used only.200

Keeping the notation of Definition 1, and applying Remark 1 with the following identification201

d = t ∈ D an arbitrary but fixed number and g(u, d) = (d − u)α−1/Γ(α), one deduces the follow-202

ing characterization of the existence of the random mean square (left-sided) Riemann-Liouville203

fractional integral of a 2-SP {X(t) : t ∈ D}.204

Proposition 6. Let {X(t) : t ∈ D} be a 2-SP with correlation function ΓX(·, ·). Then, its random205

mean square (left-sided) Riemann-Liouville fractional integral, denoted by (Jαa+ X)(t), α > 0,206

exists in the mean square sense if, and only if the following deterministic double Riemann integral207 ∫ t

a

∫ t

a
(t − u1)α−1(t − u2)α−1ΓX(u1, u2) du1du2 (13)

exists and is finite for each t ∈ D.208

Now we give a sufficient condition in order to guarantee the existence of random mean square209

(left-sided) Riemann-Liouville fractional integral,
(
Jαa+ X

)
(t).210

Proposition 7. Let α > 0 and {X(t) : t ∈ D} be a 2-SP such as211 ∫ t

a
(t − u)α−1 ‖X(u)‖2 du < +∞. (14)

Then, the random mean square (left-sided) Riemann-Liouville fractional integral (Jαa+ X)(t) exists.212

Proof. By Proposition 6, it is enough showing that the double deterministic integral (13) is213

absolutely convergent. This follows by applying inequality (5) and Fubini’s theorem214 ∫ t

a

∫ t

a

∣∣∣(t − u1)α−1(t − u2)α−1ΓX(u1, u2)
∣∣∣ du1du2

≤

∫ t

a

∫ t

a
(t − u1)α−1(t − u2)α−1 ‖X(u1)‖2 ‖X(u2)‖2 du1du2

=

(∫ t

a
(t − u1)α−1 ‖X(u1)‖2 ds

) (∫ t

a
(t − u2)α−1 ‖X(u2)‖2 du2

)
=

(∫ t

a
(t − u)α−1 ‖X(u)‖2 du

)2

< +∞.

Notice that in the last step we have used hypothesis (14). �215

Apart from the fractional Riemann-Liouville integral, in the deterministic scenario it is also216

useful the concept of fractional derivative. In the subsequent development we introduce the217

definition of the random (left-sided) fractional Caputo derivative, in the mean square sense. Thus,218

we firstly give a characterization of its existence, and secondly, a sufficient condition in order to219

guarantee its existence, in the mean square sense.220
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Definition 2. Let D = [a, b], −∞ < a < b < ∞, be a finite interval of the real line R. Let221

{X(t) : t ∈ D} be a 2-SP. The random mean square (left-sided) Caputo fractional derivative of222

X(t), (C Dα
a+X)(t), of order α > 0 is defined by223

(
C Dα

a+X
)

(t) :=
(
Jn−α

a+ X(n)
)

(t) =
1

Γ(n − α)

∫ t

a
(t − u)n−α−1X(n)(u) du, (15)

where n = −[−α], being [·] the integer part function and, X(n)(t) denotes the n-th mean square224

derivative of the 2-SP X(t).225

Naturally, the integral that appears in the right-hand side of (15) is a mean square Riemann226

integral.227

Remark 3. Analogously to Definition 2, the random mean square (right-sided) Caputo fractional228

derivative of a 2-SP {X(t) : t ∈ D = [a, b]}, −∞ < a < b < ∞, is defined as229

(
C Dα

b−X
)

(t) :=
(
Jn−α

b− X(n)
)

(t) =
1

Γ(n − α)

∫ b

t
(u − t)n−α−1X(n)(u) du.

Applying Proposition 6 to the 2-SP X(n)(t) and using the relationship (6), one straightforwardly230

gets the following characterization on the existence of the random mean square Caputo fractional231

derivative of a 2-SP, X(t), that is n-times mean square differentiable.232

Proposition 8. Let {X(t) : t ∈ D}, −∞ < a < b < ∞, be a 2-SP n-times differentiable with233

correlation function ΓX(·, ·). Then, its (left-sided) Caputo fractional derivative,
(
C Dα

a+X
)

(t), α >234

0, exists in the mean square sense if, and only if, the following deterministic double Riemann235

integral236 ∫ t

a

∫ t

a
(t − u1)n−α−1(t − u2)n−α−1 ∂

2nΓX(u1, u2)
∂un

1 ∂un
2

du1du2

exists and is finite.237

On the one hand, if we assume that the 2-SP {X(t) : t ∈ D} is n-times mean square differentiable,238

then applying (5) to its n-th mean square derivative, X(n)(t), which is also a 2-SP, one gets239

ΓX(n) (u1, u2) ≤
∥∥∥X(n)(u1)

∥∥∥
2

∥∥∥X(n)(u2)
∥∥∥

2 .

On the other hand, using an analogous reasoning that was exhibited in the proof of Proposition 7240

yields241 ∫ t

a

∫ t

a

∣∣∣(t − u1)n−α−1(t − u2)n−α−1ΓX(n) (u1, u2)
∣∣∣ du1du2

≤

∫ t

a

∫ t

a
(t − u1)n−α−1(t − u2)n−α−1

∥∥∥X(n)(u1)
∥∥∥

2

∥∥∥X(n)(u2)
∥∥∥

2 du1du2

=

(∫ t

a
(t − u)n−α−1

∥∥∥X(n)(u)
∥∥∥

2 du
)2

.

Then, the following result has been established:242
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Proposition 9. Let α > 0 and {X(t) : t ∈ D} be a 2-SP n-times mean square differentiable such243

that244 ∫ t

a
(t − u)n−α−1

∥∥∥X(n)(u)
∥∥∥

2 du < +∞.

Then, the random (left-sided) Caputo fractional derivative,
(
C Dα

a+X
)

(t), exists.245

Example 1. Let X(t) = Atαm, t ∈ [0,T ], T > 0, 0 < α < 1, m > 0, and assume that A is a246

bounded RV (hence A ∈ L2(Ω)). Then, X(t) is a 2-SP247

(‖X(t)‖2)2 = E
[
A2t2αm

]
= t2αmE

[
A2

]
< +∞,

since E
[
A2

]
= (‖A‖2)2 < +∞. Moreover, X(t) is mean square differentiable and its mean square248

derivative is given by X′(t) = αmAtαm−1
249 (∥∥∥∥∥X(t + h) − X(t)

h
− X′(t)

∥∥∥∥∥
2

)2

= E
(A(t + h)αm − Atαm

h
− αmAtαm−1

)2
= E

[
A2

] ( (t + h)αm − tαm

h
− αmtαm−1

)
h→0
−−−→ 0,

since E
[
A2

]
< +∞ and g(t) = tαm is a deterministic differentiable function whose derivative is250

αmtαm−1. Finally, according to Proposition 9 with n = 1, a = 0, we need to check the following251

deterministic integral252 ∫ t

0
(t − u)−α

∥∥∥αmAuαm−1
∥∥∥

2 du = αm ‖A‖2

∫ t

0
(t − u)−αuαm−1 du

is convergent. Since ‖A‖2 < +∞, it is enough to show that the last integral is finite. To this end,253

let us make the change of variable: u = vt, then using the definition of the beta function (see (8))254

and its relationship with the gamma function (see (9)), one gets255 ∫ t

0
(t − u)−αuαm−1 du = tα(m−1)

∫ 1

0
vαm−1(1 − v)−αdv

= tα(m−1)B(αm, 1 − α)

= tα(m−1) Γ(αm)Γ(1 − α)
Γ(α(m − 1) + 1)

< +∞.

(16)

Moreover the value of the random mean square Caputo fractional derivative of X(t) = Atαm is256

given by257 (
C Dα

0+ X
)

(t) =
1

Γ(1 − α)

∫ t

0
(t − u)−ααmAuαm−1 du =

αmA
Γ(1 − α)

∫ t

0
(t − u)−αuαm−1 du. (17)

Observe that the commutation between the mean square integral and the RV A that we have done258

in the last step is legitimated because A is a bounded RV (see Proposition 1). Finally, substituting259

expression (16) into (17) and using property (10), one gets the following closed expression for260

the random (left-sided) Caputo fractional derivative of X(t)261 (
C Dα

0+ X
)

(t) =
αmA

Γ(1 − α)
tα(m−1)

∫ 1

0
vαm−1(1 − v)−αdv = A

Γ(αm + 1)
Γ(α(m − 1) + 1)

tα(m−1).
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4. Solving the random linear fractional differential equation by the mean square general-262

ized Fröbenius method263

This section is devoted to construct a solution SP to the random fractional linear differential264

initial value problem (IVP)265 { (
C Dα

0+ Y
)

(t) − λY(t) = γ, t > 0, 0 < α ≤ 1,
Y(0) = β0,

(18)

where β0, λ and γ are RVs defined in a common complete probability space (Ω,F ,P) satisfying266

certain conditions to be specified later (see hypotheses H1–H2). The solution SP will be con-267

structed by extending the Fröbenius method to random fractional differential equations using the268

random Caputo fractional derivative, that we have previously introduced. The aforementioned269

extension will be done using the mean square random calculus.270

We will seek a solution SP to the random IVP (18) of the form271

Y(t) =
∑
m≥0

Xmtαm, 0 ≤ t ≤ T, T > 0, (19)

imposing that it satisfies the random fractional differential equation. Notice that coefficients of272

series Y(t) have been denoted by Xm instead of Ym. This fact will be apparent later. As expression273

(19) is a generalized random power series, in order to take advantage of the mean square random274

calculus for standard random power series275

X(v) =
∑
m≥0

Xmvm, 0 ≤ v ≤ Tα, T > 0, (20)

let us consider the following expression for the random fractional derivative of the generalized276

random power series (19), in terms of the standard random power series (20),277 (
C Dα

0+ Y
)

(t) =
(
C Dα

0+ X
)

(tα) =
(
J1−α

0+ Z
)

(t), (21)

where Z ≡ Z(t) = (X(tα))′ denotes the mean square derivative of the SP X(t) compounded with278

the deterministic function tα. Observe that in agreement with (15), the notation
(
J1−α

0+ Z
)

(t) in279

(21) stands for the the Caputo fractional derivative of Z(t) with a = 0 and n = 1.280

Let us assume that for t fixed in [0,T ] the following conditions C1–C2 fulfill:281

C1 : X(v), given by (20), is a mean square differentiable at v = tα. Moreover,282

X′(tα) =
∑
m≥1

mXmtα(m−1). (22)

C2 :
dX(v)

dv
is mean square continuous on v ∈ [0,Tα].283

As 0 < α ≤ 1, it follows that V = [0,Tα] contains the range of g(t) = tα, i.e., g([a1, a2]) =284

g([0,T ]) = [0,Tα] ⊆ [0,Tα]. Then, by Theorem 1 X(g(t)) is mean square differentiable at t and285

its mean square derivative is given by286

Z(t) := Y ′(t) = (X(tα))′ = αtα−1X′(tα). (23)
11



Therefore, substituting (23) into (21) and taking into account (15), one gets287

(
C Dα

0+ Y
)

(t) =
(
J1−α

0+ Z
)

(t)

=
1

Γ(1 − α)

∫ t

0+

(t − u)−α
(
αuα−1X′(uα)

)
du

=
1

Γ(1 − α)

∫ t

0+

(t − u)−α
αuα−1

∑
m≥1

mXmuα(m−1)

 du

=
1

Γ(1 − α)

∫ t

0+

(t − u)−α
∑

m≥1

αmXmuαm−1

 du.

(24)

We will further assume that the following condition is satisfied288

C3 : The random generalized power series
∑

m≥1 mXmtαm−1 is mean square uniformly conver-289

gent on the domain 0 ≤ t ≤ T .290

Then, the integral and the infinite sum that appear in (24) can be commuted, and applying the291

results shown in Example 1, expression (24) can be written as292 (
C Dα

0+ Y
)

(t) =
1

Γ(1 − α)

∑
m≥1

(
αmXm

∫ t

0+

(t − u)−αuαm−1du
)

=
∑
m≥1

(
Xm

Γ(αm + 1)
Γ(α(m − 1) + 1)

tα(m−1)
)

=
∑
m≥0

(
Xm+1

Γ(α(m + 1) + 1)
Γ(αm + 1)

tαm
)
.

(25)

It is important to point out that conditions C1-C3 will be checked once the RVs Xm, that293

define the random power series (20), are determined for the random IVP (18). With this goal294

and using the Fröbenius method, we impose that the random generalized power series solution295

(19) satisfies the random fractional differential equation given in (18). Substituting formally296

expressions (19) and (25) into (18), one gets297 ∑
m≥0

(
Xm+1

Γ(α(m + 1) + 1)
Γ(αm + 1)

tαm
)
− λ

∑
m≥0

Xmtαm = γ,

298 ∑
m≥0

(
Xm+1

Γ(α(m + 1) + 1)
Γ(αm + 1)

− λXm

)
tαm − γ = 0,

299

X1Γ(α + 1) − λX0 − γ +
∑
m≥1

(
Xm+1

Γ(α(m + 1) + 1)
Γ(αm + 1)

− λXm

)
tαm = 0.

Therefore, a candidate solution SP of the form (19) to the random IVP (18) can be constructed if300

the coefficients Xm are chosen so that they satisfy the following recurrence301

X1 =
λβ0 + γ

Γ(α + 1)
, Xm+1 =

λΓ(αm + 1)
Γ(α(m + 1) + 1)

Xm, m ≥ 1,

12



where, we have used that the initial condition is Y(0) = X0 = β0. The recursive application of302

this relationship yields303

Xm =
λmβ0 + λm−1γ

Γ(αm + 1)
, m ≥ 1, X0 = β0.

Summarizing, a candidate random generalized power series solution to the IVP (18) is given by304

Y(t) = X(tα), X(v) =
∑
m≥0

Xm,1vm +
∑
m≥1

Xm,2vm, where


Xm,1 =

λmβ0

Γ(αm + 1)
,

Xm,2 =
λm−1γ

Γ(αm + 1)
,

(26)

that is,305

Y(t) =
∑
m≥0

λmβ0

Γ(αm + 1)
tαm +

∑
m≥1

λm−1γ

Γ(αm + 1)
tαm. (27)

Remark 4. The so-called Mittag-Leffler function306

Eα,ν(z) =
∑
m≥0

zm

Γ(αm + ν)
, z ∈ R, α, ν ≥ 0, (28)

plays a key role in the investigation of deterministic fractional differential equations. Looking307

at the expression (27), which is a random generalized power series, it is suggested a strong308

connection with the Mittag-Leffler function and the solution found using the random generalized309

Fröbenius technique, namely,310

Y(t) = β0Eα,1(λtα) + γtαEα,α+1(λtα).

Notice that the study previously performed provides sufficient conditions on the RV λ in order311

to extend the Mittag-Leffler function to the random framework since it is well-defined in the312

Banach space (L2(Ω), ‖·‖2) introduced in (2).313

So far, we have formally constructed a random generalized power series solution to the random314

IVP (18), which is given by (27). Henceforth, we will prove that it is really a rigorous solution by315

checking that conditions C1–C3 hold. This will be done for a rich enough class of RVs, denoted316

by C, that contains significant RVs and that enables us to construct accurate approximations for317

another important RVs that do not belong to the class C. These issues will be discussed later.318

Definition 3. A RV, X, is said to belong to the class C if, and only if, there exist positive constants319

L > 0 and H > 0 such that320

E
[
|X|m

]
≤ LHm < +∞, ∀m ≥ 0. (29)

Remark 5. Notice that condition (29) is equivalent to321

E
[
|X|m

]
= O(Hm), H > 0,m ≥ 0, (30)

where O(·) stands for the Landau symbol. Observe that every RV of class C is a 2-RV.322
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Remark 6. It is important to point out that this class of RVs has already been used successfully323

to deal with the analysis of some classical (non-fractional) random differential equations [33, 34].324

As it is shown in [33], bounded RVs belong to the class C. Hence, relevant RVs such as binomial,325

hypergeometric, uniform, trapezoidal, beta, λ-distributed, etc., are of class C. While important326

unbounded RVs like Poisson, exponential, gaussian, etc. can be approximated by truncating327

appropriately their domain, that is, using bounded RVs.328

Now, we are going to legitimate the conditions C1–C3 we have imposed to formally con-329

struct the random generalized power solution (27). Hereinafter, we will assume the following330

hypotheses:331

H1 : The input data β0, γ and λ are independent 2-RVs.332

H2 : λ belongs to the class C introduced in Definition 3.333

Observe that hypothesis H2 entails that334

‖β0‖2 < +∞, ‖γ‖2 < +∞, ‖λm‖2 <
√

LHm < +∞, ∀m ≥ 0,

being L and H the positive constants introduced in Definition 3. The above bound for λm follows335

from the definition of the ‖·‖2-norm given in (2) and (30)336

‖λm‖2 =

√
E

[
|λ|2m]

≤
√

LH2m =
√

LHm < +∞, ∀m ≥ 0. (31)

To check condition C1 we will apply Proposition 4 to the two series defined in (26). Specif-337

ically, for the first series in (26) we apply Proposition 4 with the following identification: m0 = 0,338

Um(v) = Xm,1vm. Firstly, we prove that, for each m ≥ 0 fixed, Xm,1(v) := Xm,1vm = (λmβ0)/(Γ(αm+339

1))vm is mean square differentiable at v = tα, being X′m,1(tα) = mλmβ0vα(m−1)/Γ(αm+1) its is mean340

square derivative. Indeed, observe that for every v such that 0 < v ≤ T , T > 0, one gets341

0 <
∥∥∥∥∥Xm,1(tα + h) − Xm,1(tα)

h
− X′m,1(tα)

∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥
λmβ0

Γ(αm + 1)
(tα + h)m −

λmβ0

Γ(αm + 1)
tαm

h
−

mλmβ0

Γ(αm + 1)
tα(m−1)

∥∥∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ λmβ0

Γ(αm + 1)

(
(tα + h)m − tαm

h
− mtα(m−1)

)∥∥∥∥∥∥
2

= ‖λmβ0‖2
1

Γ(αm + 1)

∣∣∣∣∣ (tα + h)m − tαm

h
− mtα(m−1)

∣∣∣∣∣
(I)
= ‖λm‖2 ‖β0‖2

1
Γ(αm + 1)

∣∣∣∣∣ (tα + h)m − tαm

h
− mtα(m−1)

∣∣∣∣∣
(II)
≤
√

LHm ‖β0‖2
1

Γ(αm + 1)

∣∣∣∣∣ (tα + h)m − tαm

h
− mtα(m−1)

∣∣∣∣∣ −−−→h→0
0,

(32)

where in the step (I) we have applied the hypothesis H1 of statistical independence of RVs β0342

and λ together with Proposition 2 using the definition of the ‖·‖2-norm in terms of the expectation343

operator; in step (II) we have directly used (31) and, finally for the last limit we have used that344
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the deterministic function h(v) = vm is differentiable at v = tα and that β0 is a 2-RV, hence345

‖β0‖2 < +∞.346

Secondly, we need to prove that for each m ≥ 1 fixed, X′m,1(v) = mλmβ0vm−1/Γ(αm + 1) is347

mean square continuous at v = tα. This can be checked by following an analogous reasoning to348

the one exhibited in (32)349

0 <
∥∥∥X′m,1(tα + h) − X′m,1(tα)

∥∥∥
2

=

∥∥∥∥∥∥mλmβ0(tα + h)m−1

Γ(αm + 1)
−

mλmβ0tα(m−1)

Γ(αm + 1)

∥∥∥∥∥∥
2

=

∥∥∥∥∥ mλmβ0

Γ(αm + 1)

(
(tα + h)m−1 − tα(m−1)

)∥∥∥∥∥
2

= ‖λmβ0‖2
m

Γ(αm + 1)

∣∣∣(tα + h)m−1 − tα(m−1)
∣∣∣

= ‖λm‖2 ‖β0‖2
m

Γ(αm + 1)

∣∣∣(tα + h)m−1 − tα(m−1)
∣∣∣

≤
√

LHm ‖β0‖2
αm

Γ(αm + 1)

∣∣∣(tα + h)m−1 − tα(m−1)
∣∣∣ −−−→

h→0
0, t ≤ T, T > 0,

where in the last step we have applied that the deterministic function vm−1 is continuous at tα.350

Thirdly, we shall check that the random power series
∑

m≥0 Xm,1(v) =
∑

m≥0 Xm,1vm is mean square351

convergent for every v : 0 < v ≤ Tα. To do that we will majorize the deterministic series352 ∑
m≥0

∥∥∥Xm,1(v)
∥∥∥

2 =
∑

m≥0

∥∥∥Xm,1
∥∥∥

2 vm by a convergent series. With this goal, let us observe that353

∥∥∥Xm,1
∥∥∥

2 vm =

∥∥∥∥∥ λmβ0

Γ(αm + 1)

∥∥∥∥∥
2

vm ≤
√

LHm ‖β0‖2
vm

Γ(αm + 1)
:= δm(v), 0 < v ≤ Tα, T > 0.

(33)
Then, using the test ratio for numerical series together with the asymptotic approximation of the354

gamma function given in (11), one gets355

lim
m→+∞

δm+1(v)
δm(v)

= H
(

lim
m→+∞

Γ(αm + 1)
Γ(α(m + 1) + 1)

)
v

= H
 lim

m→+∞

(αm)αm e−αm
√

2παm
(α(m + 1))α(m+1) e−α(m+1)

√
2πα(m + 1)

 v

= H
(

lim
m→+∞

( m
m + 1

)αm 1
(α(m + 1))α

√
m

m + 1

)
eα v = 0

= H
(

lim
m→+∞

1
(α(m + 1))α

√
m

m + 1

)
v = 0,

(34)

where we have used that356

lim
m→+∞

( m
m + 1

)αm
= lim

m→+∞

 1
1 + 1

m

αm

= lim
m→+∞

(
1 +

1
m

)−αm

= e−α .

This proves the mean square convergence of the random power series
∑

m≥0 Xm,1vm defined in357

(26) for every v in 0 < v ≤ Tα. Fourthly, we shall prove the mean square uniform convergence358

of the random power series
∑

m≥0 X′m,1(v) =
∑

m≥1 mXm,1vm−1, being Xm,1 = λmβ0/Γ(αm + 1) on359
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the domain 0 < v ≤ Tα, T > 0. As the reasoning is analogous to the one exhibited in (33)–(34),360

we just show it directly361 ∥∥∥mXm,1
∥∥∥

2 vm−1 = m
∥∥∥∥∥ λmβ0

Γ(αm + 1)

∥∥∥∥∥
2

vm−1 ≤ m
√

LHm ‖β0‖2
T m−1

Γ(αm + 1)
:= δ̂m,

and362

lim
m→+∞

δ̂m+1

δ̂m
= H

 lim
m→+∞

1
(α(m + 1))α

√
m + 1

m

 T = 0.

All this justifies that the random power series
∑

m≥0 Xm,1vm is mean square differentiable at v = tα.363

By using similar arguments, one can prove that the second power series
∑

m≥1 Xm,2tm in (26) is364

mean square differentiable at v = tα. Both conclusions allows us to affirm that the random power365

series X(v), defined in (26), satisfies condition C1. As a consequence, by applying Proposition 4366

the mean square derivative (22) assumed in C1 is legitimated. Based upon similar arguments, it367

can be shown that X(v) also satisfies conditions C2 and C3.368

Summarizing, the following result has been proved369

Theorem 2. Let us consider the random fractional linear differential initial value problem (IVP)370 { (
C Dα

0+ Y
)

(t) − λY(t) = γ, t > 0, 0 < α ≤ 1,
Y(0) = β0,

where the input data satisfy the following hypotheses:371

H1 : The input data β0, γ and λ are independent RVs.372

H2 : The input data β0, γ and λ are 2-RVs, and there exist positive constants L > 0 and H > 0373

such that374

E
[
|λ|m

]
≤ LHm < +∞, ∀m ≥ 0.

Then,375

Y(t) =
∑
m≥0

λmβ0

Γ(αm + 1)
tαm +

∑
m≥1

λm−1γ

Γ(αm + 1)
tαm,

is a mean square solution to the IVP that converges for all t > 0.376

5. Computing approximations of the mean, the variance, the covariance and the cross-377

covariance functions of the solution stochastic process378

So far we have provided sufficient conditions in order to guarantee the mean square conver-379

gence of the solution SP defined by the random generalized power series (27). However, from a380

practical point of view this infinite series needs to be truncated to keep computationally feasible.381

This motivates the consideration of following finite sum (see (26)–(27))382

YM(t) =

M∑
m=0

Xm,1tαm +

M∑
m=1

Xm,2tαm =

M∑
m=0

λmβ0

Γ(αm + 1)
tαm +

M∑
m=1

λm−1γ

Γ(αm + 1)
tαm. (35)

From this expression we will compute approximations of both the mean and variance/standard383

deviation functions of the solution SP given in (27). The following property of the mean square384

convergence will play a key role to legitimate the computation of approximations.385
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Proposition 10. [8, p.] Let {XM : M ≥ 0} and {ZN : N ≥ 0} be two sequences of 2-RVs such that386

XM
m.s.
−→

M→+∞
X and ZN

m.s.
−→

N→+∞
Z. Then387

E[XMZN] −→
M,N→+∞

E[XZ].

Firstly, let us observe that taking t ∈ R arbitrary but fixed, and using the following identification388

XM ≡ YM(t) for all M ≥ 0, being YM(t) the partial sum defined in (35) and ZN ≡ 1 for all N ≥ 0389

in Proposition 10, then one deduces390

E[YM(t)] −→
M→+∞

E[Y(t)], (36)

since we have proved the mean square convergence of YM(t) for every t ∈ R. Likewise, applying391

Proposition 10 with M ≡ N and XM = ZN ≡ YM(t) for all M,N ≥ 0, being YM(t) the partial sum392

defined in (35), and taking into account that V[YM(t)] = E[(YM(t))2] − (E[YM(t)])2 together with393

(36), one gets394

V[YM(t)] −→
M→+∞

V[Y(t)]. (37)

Expressions (36) and (37) legitimize that the approximations E[YM(t)] and V[YM(t)] of the mean395

and the variance, respectively, constructed by YM(t) given in (35) will converge to the corre-396

sponding exact values. At this point, we want to emphasize that this distinctive property of mean397

square convergence is what has really justified the use of this strong type of convergence in our398

study against alternative stochastic convergences like almost surely convergence, convergence in399

probability and convergence in distribution, which do not have such key property. Below, we400

shall provide expressions for E[YM(t)] and V[YM(t)]. With this goal, let us take the expectation401

operator and using its linearity property together with the hypothesis H1 of independence for the402

input RVs β0, γ and λ and Proposition 2, one gets403

E[YM(t)] = E[β0]
M∑

m=0

E[λm]
Γ(αm + 1)

tαm + E[γ]
M∑

m=1

E[λm−1]
Γ(αm + 1)

tαm. (38)

As404

V[YM(t)] = E[(YM(t))2] − (E[YM(t)])2 ,

in order to compute the variance of (35) it is enough to determine an expression of E[(YM(t))2] in405

terms of the statistical moments of the input RVs β0, γ and λ. To achieve this goal, let us consider406
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the following development407

E
[
(YM(t))2

]
= E


 M∑

m=0

λmβ0

Γ(αm + 1)
tαm +

M∑
m=1

λm−1γ

Γ(αm + 1)
tαm

2
= E


 M∑

m=0

λmβ0

Γ(αm + 1)
tαm

2 + E


 M∑

m=1

λm−1γ

Γ(αm + 1)
tαm

2
+ 2E

 M∑
m=0

λmβ0

Γ(αm + 1)
tαm

  M∑
m=1

λm−1γ

Γ(αm + 1)
tαm


= E

[
(β0)2

]  M∑
m=0

E
[
λ2m

]
Γ2(αm + 1)

t2αm + 2
M∑

m=1

m−1∑
n=0

E
[
λm+n]

Γ(αm + 1)Γ(αn + 1)
tα(m+n)


+ E

[
γ2

]  M∑
m=1

E
[
λ2(m−1)

]
Γ2(αm + 1)

t2αm + 2
M∑

m=2

m−1∑
n=1

E
[
λm+n−2

]
Γ(αm + 1)Γ(αn + 1)

tα(m+n)


+ 2E[β0]E[γ]

M∑
m=0

M∑
n=1

E
[
λm+n−1

]
Γ(αm + 1)Γ(αn + 1)

tα(m+n),

(39)

where the hypothesis H1 has been applied.408

If we choose the input RVs β0, γ and λ satisfying the hypotheses H1–H2, then since we409

have proved the unconditional mean square convergence over the whole real line of the random410

generalized power series SP (27), it is guaranteed that the approximations of the mean and the411

variance of the solution SP, Y(t), to the random IVP (18), given by (38)–(39), will converge to412

the corresponding exact values for every t ∈ R.413

We finish this section by giving further probabilistic properties of the solution SP, Y(t). These414

properties will also be constructed from the truncated series (35). First, we will calculate an415

approximation of the cross-covariance function of the solution SP. With this aim let us consider416

M,N ≥ 1, t, s ∈ R and the following development based on the properties of the cross-covariance417

operator together with the expression (35)418

CYM ,YN (t, s) = Cov [YM(t),YN(s)]

= Cov

 M∑
m=0

Xm,1tαm +

M∑
m=1

Xm,2tαm,

N∑
n=0

Xn,1sαn +

N∑
n=1

Xn,2sαn


=

M∑
m=0

N∑
n=0

Cov
[
Xm,1, Xn,1

]
tαmsαn +

M∑
m=0

N∑
n=1

Cov
[
Xm,1, Xn,2

]
tαmsαn

+

M∑
m=1

N∑
n=0

Cov
[
Xm,2, Xn,1

]
tαmsαn +

M∑
m=1

N∑
n=1

Cov
[
Xm,2, Xn,2

]
tαmsαn,

where each one of the four covariances that appear in the last double sum can be computed in419

terms of the input data. For example, taking into account (26), the hypothesis H1 of indepen-420

dence of RVs β0, γ, and λ, one gets421
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Cov
[
Xm,1, Xn,1

]
= E

[
Xm,1Xn,1

]
− E

[
Xm,1

]
E

[
Xn,1

]
=

E
[
λm+n(β0)2

]
Γ(αm + 1)Γ(αn + 1)

−
E

[
λmβ0

]
Γ(αm + 1)

E
[
λnβ0

]
Γ(αn + 1)

=
E

[
λm+n]E [

(β0)2
]
− E [λm]E [λn]

(
E

[
β0

])2

Γ(αm + 1)Γ(αn + 1)
.

In an analogous manner, it can be seen that422

Cov
[
Xm,1, Xn,2

]
=

(
E

[
λm+n−1

]
− E [λm]E

[
λn−1

])
E

[
β0

]
E

[
γ
]

Γ(αm + 1)Γ(αn + 1)
,

423

Cov
[
Xm,2, Xn,1

]
=

(
E

[
λm+n−1

]
− E

[
λm−1

]
E [λn]

)
E

[
β0

]
E

[
γ
]

Γ(αm + 1)Γ(αn + 1)
,

and424

Cov
[
Xm,2, Xn,2

]
=

E
[
λm+n−2

]
E

[
γ2

]
− E

[
λm−1

]
E

[
λn−1

] (
E

[
γ
])2

Γ(αm + 1)Γ(αn + 1)
.

Particularizing the expression CYM ,YN (t, s) when425

• s = t, one obtains the covariance of the random approximations of order M and N at the426

time instant t of the solution SP.427

• M = N, one obtains the covariance of the random approximation of order M at the two428

time instants t and s of the solution SP.429

• M = N and s = t, one obtains the variance of the random approximation of order M at the430

time instant t of the solution SP. This expression is equivalent to the one determined by431
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(38)–(39). Specifically,432

V [YM(t)] = CYM ,YM (t, t)

=

M∑
m=0

M∑
n=0

E
[
λm+n]E [

(β0)2
]
− E [λm]E [λn]

(
E

[
β0

])2

Γ(αm + 1)Γ(αn + 1)
tα(m+n)

+

M∑
m=0

M∑
n=1

(
E

[
λm+n−1

]
− E [λm]E

[
λn−1

])
E

[
β0

]
E

[
γ
]

Γ(αm + 1)Γ(αn + 1)
tα(m+n)

+

M∑
m=1

M∑
n=0

(
E

[
λm+n−1

]
− E

[
λm−1

]
E [λn]

)
E

[
β0

]
E

[
γ
]

Γ(αm + 1)Γ(αn + 1)
tα(m+n)

+

M∑
m=1

M∑
n=1

E
[
λm+n−2

]
E

[
γ2

]
− E

[
λm−1

]
E

[
λn−1

] (
E

[
γ
])2

Γ(αm + 1)Γ(αn + 1)
tα(m+n)

= E
[
(β0)2

] M∑
m=0

M∑
n=0

E
[
λm+n]

Γ(αm + 1)Γ(αn + 1)
tα(m+n)

−
(
E

[
β0

])2

 M∑
m=0

E [λm]
Γ(αm + 1)

tαm

  M∑
n=0

E [λn]
Γ(αn + 1)

tαn


+ E

[
β0

]
E

[
γ
] M∑

m=0

M∑
n=1

(
E

[
λm+n−1

])
Γ(αm + 1)Γ(αn + 1)

tα(m+n)

− E
[
β0

]
E

[
γ
]  M∑

m=0

E [λm]
Γ(αm + 1)

tαm


 M∑

n=1

E
[
λn−1

]
Γ(αn + 1)

tαn


+ E

[
β0

]
E

[
γ
] M∑

m=1

M∑
n=0

E
[
λm+n−1

]
Γ(αm + 1)Γ(αn + 1)

tα(m+n)

− E
[
β0

]
E

[
γ
]  M∑

m=1

E
[
λm−1

]
Γ(αm + 1)

tαm


 M∑

n=0

E [λn]
Γ(αn + 1)

tαn


+ E

[
γ2

] M∑
m=1

M∑
n=1

E
[
λm+n−2

]
Γ(αm + 1)Γ(αn + 1)

tα(m+n)

−
(
E

[
γ
])2

 M∑
m=1

E
[
λm−1

]
Γ(αm + 1)

tαm


 M∑

n=1

E
[
λn−1

]
Γ(αn + 1)tn tαn

 .

(40)

6. Some illustrative examples433

This section is devoted to show two examples in order to illustrate all the theoretical results434

previously established. In particular, through the subsequent examples we want to highlight two435

key features of our study. Firstly, the method works successfully when λ is a RV that belongs436

to the class C introduced in Definition 3. Specifically, in the first example (Example 2) we will437

consider that λ is a bounded RV, thus it belongs to the class C (see Remark 6). Secondly, the438

technique can also be applied to obtain reliable approximations when λ is an unbounded RV439
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and it is approximated by an appropriate truncated (thus bounded) RV. This approach is very440

useful from a practical standpoint since explicit closed expressions for the statistical absolute441

moments of many RVs are not available. In such cases, checking condition (29) is either very442

difficult or simply impossible. This issue will be illustrated in the second example (Example 3).443

Additionally, in the Example 2 we will further check that the convergence of the mean and the444

variance (equivalently, the standard deviation) take place over the whole real line, i.e., for every445

t ∈ R. Although this fact is already known from the theoretical results previously established,446

we think that the analysis is very instructive.447

Example 2. Let us consider the random fractional IVP (18) where β0 and γ are 2-RVs such that448

E[β0] = E[γ] =
1
2
, V[β0] = V[γ] =

1
2
. (41)

Observe that, for the sake of generality instead of fixing specific probability distributions for449

the RVs β0 and γ, we have only specified values of their mean and variance. Hence, bounded450

and unbounded RVs like a uniform RV on the interval
[

1−
√

6
2 , 1+

√
6

2

]
; a gamma RV of parameters451

(r1; r2) = (1/2; 1), and a gaussian RV of parameters (µ;σ2) = (1/2; 1/2), are allowed to play452

the role of both RVs, for example. Furthermore, we will assume that λ has a beta distribution of453

parameters (b1; b2) = (3/4; 1), i.e., λ ∼ Be(3/4; 1), hence λ is a bounded RV on the interval [0, 1]454

and, as a consequence, it belongs to the class C introduced in Definition 3 (see Remark 6). We455

will assume that all the input data β0, γ and λ are statistically independent RVs. Therefore, hy-456

potheses H1–H2 hold and it is then guaranteed that the approximation YM(t), defined in (35) via457

a random generalized power series, will converge in the mean square sense to the exact solution458

SP, Y(t). Accordingly, both the mean and the variance (or equivalently, the standard deviation)459

of the solution SP, Y(t), to the random IVP (18) can be approximated using the expressions given460

in (38)–(39).461

In Fig. 1, we have plotted the approximations of the mean and the standard deviation of462

the solution SP to the random IVP (18) with α = 0.7 using different orders of truncations M ∈463

{6, 7, 8, 9, 10, 12, 15, 17, 20}. For the sake of clarity in the graphical representation, we have464

shown the results over two different time intervals [0, 5] and [0, 10]. From these plots, we observe465

that in order to get better approximations over larger intervals the order of truncation M must466

be higher.467

It is known from our previous theoretical development (see Section 5) that these approxima-468

tions of order M for the mean and the standard deviation will converge all over the whole real469

line as M → +∞. Nevertheless, it is instructive to check this general result in the context of this470

example. With this aim, below we shall check this fact. Firstly, let us recall that the explicit value471

of higher moments of the beta distribution of parameters (b1; b2)472

E
[
λm]

=

m−1∏
n=0

b1 + n
b1 + b2 + n

, λ ∼ Be(b1; b2),

satisfies the following first-order recurrence relationship473

E
[
λm+1

]
=

b1 + m
b1 + b2 + m

E
[
λm]

. (42)

Let us denote by474

e1
m(t) :=

E[λm]
Γ(αm + 1)

tαm (43)
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the general term of the first deterministic series that defines the approximation of order M for475

the expectation of the solution SP (see (38)). Then, applying the ratio test for numerical series476

and using (42) and (34), one gets477

lim
m→+∞

e1
m+1(t)
e1

m(t)
= lim

m→+∞

E[λm+1]
E[λm]

Γ(αm + 1)
Γ(α(m + 1) + 1)

tα

= lim
m→+∞

(
b1 + m

b1 + b2 + m

)
lim

m→+∞

(
1

(α(m + 1))α

√
m

m + 1

)
tα = 0,

(44)

for every t ∈ R arbitrary but fixed. Following an analogous calculation, it can be seen the478

second sum in (38) converges over the whole real line as M → +∞. Observe that the above479

reasoning proves the convergence of the approximation for the mean given in (38) not only for480

the particular choice λ ∼ Be(3/4; 1) but for any values b1 and b2 of the parameters to the beta481

distribution.482

In order to check the convergence of the approximation of the variance over the whole real483

line in the context of this example, we will use the representation given in (40). Therefore, we484

must justify the convergence, of the several series that appear in (40), for all t ∈ R. However,485

essentially there are two different types of such series, namely, single and double series. We shall486

prove the convergence of the double series by applying Proposition 5. Let us define the general487

term488

amn =
E

[
λm+n]

Γ(αm + 1)Γ(αn + 1)
tα(m+n), m ≥ 0 = m0, n ≥ 0 = n0, t ∈ R fixed.

Since λ has a beta distribution, observe that489

E
[
λm+n] =

∫ 1

0
λm+n fλ(λ) dλ ≤

∫ 1

0
fλ(λ) dλ = 1,

being fλ(λ) the PDF of λ. Then, for t ∈ R fixed one gets490

M∑
m=0

N∑
n=0

|amn| =

M∑
m=0

N∑
n=0

E
[
λm+n]

Γ(αm + 1)Γ(αn + 1)
|t|α(m+n)

≤

M∑
m=0

N∑
n=0

|t|αm

Γ(αm + 1)
|t|αn

Γ(αn + 1)

=

 M∑
m=0

|t|αm

Γ(αm + 1)

  N∑
n=0

|t|αn

Γ(αn + 1)


≤

∑
m≥0

|t|αm

Γ(αm + 1)


∑

n≥0

|t|αn

Γ(αn + 1)


=

(
Eα,1(|t|α)

)2 := α0 > 0, ∀M ≥ m0 = 0, ∀n ≥ n0 = 0,

where in the last step we have used (28). Therefore, condition (i) of Proposition 5 holds. For491

the symmetry of the general term amn, it is sufficient to check condition (ii) of Proposition 5 for492

the rows, for instance. Let us take n = n̂ ≥ 0 arbitrary but fixed, and let us consider the infinite493

series494 ∑
m≥0

âm(t), âm(t) :=
E

[
λm+n̂

]
Γ(αm + 1)Γ(αn̂ + 1)

|t|α(m+n̂).
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Figure 1: Approximations of the mean (top) and the standard deviation (bottom) of the solution SP to the random IVP
(18) with α = 0.7 using different orders of truncations M over the time intervals [0, 5] and [0, 10] in the context of
Example 2.
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Since495

lim
m→+∞

âm+1(t)
âm(t)

= lim
m→+∞

E
[
λm+n̂+1

]
E

[
λm+n̂] Γ(αm + 1)Γ(αn̂ + 1)

Γ(αm + α + 1)Γ(αn̂ + 1)
|t|α(m+n̂+1)

|t|α(m+n̂)

=

(
lim

m→+∞

b1 + m + n̂
b1 + b2 + m + n̂

) (
lim

m→+∞

1
(α(m + 1))α

√
m

m + 1

)
|t|α = 0, ∀t ∈ R,

where we have used (34) and (42). The convergence of the second kind of infinite series can be496

checked directly taking advantage of the previous reasoning. Indeed, let us directly observe that497 ∑
m≥0

E [λm]
Γ(αm + 1)

tαm,

and the convergence of this series follows using the same argument showed in (43)–(44).498

In order to complete the probabilistic description of the solution SP to the fractional IVP499

(18), in Fig. 2 we have represented the correlation coefficient function of the approximation of500

order M501

ρYM (t, s) =
CYM ,YM (t, s)

√
V [YM(t)] ×

√
V [YM(s)]

.

s

0.2
5

0.4

4 5

0.6

3 4

t

0.8

32

1

2
1 1

0 0

Figure 2: Correlation coefficient function ρYM (t, s) of the approximation YM(t) of order M = 20 of the solution SP Y(t)
to the random IVP (18) with α = 0.7 over the time domain (t, s) ∈ [0, 5] × [0, 5] in the context of Example 2.
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In Fig. 3, we have represented the approximations of the mean and standard deviation of the502

solution SP for different values of the differentiation parameters α = {0.1, 0.2, . . . , 0.9, 1} taking503

as order of truncation M = 20 over the time interval [0, 5]. The plot of the mean provides a nice504

picture of the manner the solution SP varies as the fractional differentiation parameter changes505

from 0.1 to 1. It is interesting to observe that the value of α = 1 corresponds to the classical first506

derivative. Thus, in that case the plot shows the mean of solution SP to the classical random IVP507

associated to (18), i.e.,508 {
Y ′(t) − λY(t) = γ, t > 0,

Y(0) = β0.

We finish this example exhibiting a critical analysis about the computation of the order of509

truncation M required so that, given an admissible error ε > 0, the finite numerical series510

approximation of the mean, given in (36), is uniformly bounded by ε in a bounded domain. Our511

next critical reflection can also be extended to the standard deviation. Let b0 = |E[β0]| and512

c = |E[γ]| and assume that513

∃ q ∈ (0, 1) : H|t|α < q, (45)

being H the positive constant associated to the RV λ, that is assumed to satisfy condition (29).514

Observe that applying (36), (29) and (45), one gets515

|E[Y(t)] − E[YM(t)]| =

∣∣∣∣∣∣∣E[β0]
∞∑

m=M+1

E[λm]
Γ(αm + 1)

tαm + E[γ]
∞∑

m=M+1

E[λm−1]
Γ(αm + 1)

tαm

∣∣∣∣∣∣∣
≤

∞∑
m=M+1

b0 E[|λ|m] + cE[|λ|m−1]
Γ(αm + 1)

|t|αm

≤

∞∑
m=M+1

b0 L Hm + c L Hm−1

Γ(αm + 1)
|t|αm

=

∞∑
m=M+1

(
b0 + c

H

)
L Hm

Γ(αm + 1)
|t|αm

=

(
b0 +

c
H

)
L

∞∑
m=M+1

(H|t|α)m

Γ(αm + 1)

=

(
b0 +

c
H

)
L

∞∑
m=M+1

qm

Γ(αm + 1)

=

(
b0 +

c
H

)
L

∞∑
m=M+1

qm

=

(
b0 +

c
H

)
L

qM+1

1 − q
.

(46)

Therefore, given an admissible error ε > 0, if we take the order of truncation so that516

M ≥


ln

(
ε(1 − q)H

(b0 H + c)L

)
ln(q)

− 1

 + 1, (47)
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Figure 3: Approximations of the mean (top) and the standard deviation (bottom) of the solution SP to the random IVP
(18) varying the fractional differentiation parameter α = {0.1, 0.2, . . . , 0.9, 1} taking as order of truncation M = 20 over
the time interval [0, 5] in the context of Example 2.
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where [·] stands for the ceiling function, then it is guaranteed that517

|E[Y(t)] − E[YM(t)]| < ε, ∀ |t| <
( q

H

)1/α
.

In Table 1, we show the theoretical values for the order of truncation M computed by (47) taking518

the same numerical data used to construct the approximations of the mean that we have plotted519

in Figure 1, i.e., α = 0.7, b0 = c = 1/2. Besides, observe that the values L = H = 1 and H satisfy520

condition (29). Indeed, they can be easily deduced since for the beta RV λ, E[|λ|m] ≤ 1 for all521

m ≥ 0. The figures collected in Table 1 have been determined over the domain (45) with q = 0.9,522

i.e.,523

0 < |t| <
(

0.9
1

)1/0.7

= 0.8602648, (48)

for different admissible errors ε > 0. In Table 1 we also compare the theoretical values of M with524

those, denoted by M̂, obtained from directed computations. Specifically, M̂ has been computed525

as the first value so that526 ∣∣∣E[YM̂(t)] − E[YM̂−1(t)]
∣∣∣ < ε, ∀ 0 < |t| < 0.8602648,

for a given value of ε > 0. We can observe that the values of M are very conservative estimates.527

The determination of the order of truncation M given in (47) has been based on majorizing the528

error by a geometric series (see (46)). This restricts the analysis to the domain (45) (or equiva-529

lently to (48)), which is contained within the unit interval (0, 1). Using appropriate bounds for530

the remainder of Mittag-Lefller type-series (see (28)),
∑

m≥M+1 zm/Γ(αm + ν), the above analysis531

can be carried out for the complementary domain of (45). Such appropriate bounds can be found532

from the results shown in [31, ch.4]. Although, interesting from a theoretical standpoint, these533

results have a limited value in practice, as it has already been pointed out.534

ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7

M 87 109 131 152 174
M̂ 8 10 11 12 14

Table 1: Theoretical values for the order of truncation M using different values of the admissible error ε > in the context
of Example 2. These theoretical values are compared with those, denoted by M̂, obtained directly from our numerical
computations.

Example 3. In Remark 6 it has been pointed out that the truncation method is a useful technique535

to approximate unbounded RVs [35, ch.V]. In practice, this approach is preferable that checking536

condition (29) for particular probability distributions assigned to the RV λ. Indeed, this latter537

idea could be even unaffordable since there are RVs, such as binomial RVs, for which a closed538

expression for their statistical moments are not available. Motivated by fact, this example has539

been devised to illustrate the capability of the proposed method to compute reliable approxima-540

tions of the mean and the standard deviations of the solution SP to the random IVP (18), in the541

case that the RV λ is unbounded but it is approximated by means of appropriate truncation. With542

this aim, let us assume that λ is an exponential RV of mean 1/λ0, i.e., λ ∼ Exp(λ0) and let us543

consider its probabilistic approximation using the truncation method. We thus approximate the544

27



exponential RV λ by means of another exponential RV, say λ̂ ∼ Exp(λ̂0), defined on the finite545

interval [0, a], a > 0, so that both RVs, λ and λ̂, have the same mean546

1
λ0

= E[λ] = E[λ̂]. (49)

The PDF of RV λ̂ is547

fλ̂(λ̂) =
λ̂0 exp(−λ̂0λ̂)∫ a

0 λ̂0 exp(−λ̂0λ̂) dλ̂
, 0 ≤ λ̂ ≤ a. (50)

Now, we determine the value of the parameter λ̂0 satisfying condition (49)548

1
λ0

=

∫ a
0 λ̂λ̂0 exp(−λ̂0λ̂) dλ̂∫ a
0 λ̂0 exp(−λ̂0λ̂) dλ̂

. (51)

In our numerical experiments we have taken a = 10 and λ0 = 2. Thus, according to (51) λ0 is549

the root of the following nonlinear equation550

1 − exp(−10λ̂0) =
(
1 − exp(−10λ̂0)(1 + 10λ̂0)

)
λ̂0. (52)

Using a numerical iterative method it can be checked that λ̂0 = 1.9999999175537901 is the551

solution of (52). In order to demonstrate the reliability of the approximations obtained for the552

mean and the standard deviation using the approach previously described, we have computed the553

relative error for the mean, RE(Mean), and for the standard deviation, RE(SD). These relative554

errors have been calculated using the following expressions555

RE(Mean) = RE(Mean)(t; M) =

∣∣∣E[ŶM(t)] − E[Y(t)]
∣∣∣

E[Y(t)]
, (53)

556

RE(SD) = RE(SD)(t; M) =

∣∣∣∣ √V[ŶM(t)] −
√
V[Y(t)]

∣∣∣∣
√
V[Y(t)]

(54)

where E[ŶM(t)] and V[ŶM(t)] are the approximation of the mean and the variance, respectively,557

of the solution s.p. Y(t) at the time point t using the expression (38) and (40), respectively,558

with α = 0.7, E[β0] = E[γ] = 0.5, as in the Example 1 (see (41)), and using the bounded RV,559

λ̂ ∼ Exp(λ̂0 = 1.9999999175537901 defined on the finite interval [0, 6]. Therefore, the higher560

moments of λ̂, that appear in (38), have been computed by561

E[λ̂m] =

∫ 6

0
λ̂m fλ̂(λ̂) dλ̂,

being fλ̂(λ̂) defined in (50). While the exact mean and variance of Y(t) in (53) and (54), denoted562

by E[Y(t)] and V[Y(t)], respectively, have been computed using (38) and (40) by taking λ ∼563

Exp(λ̂ = 2) and M = 20, for which the numerical stabilization of approximations has been564

checked to be exact up to the nine first decimals digits.565

In Tables 2 and 3 we show the numerical results for both relative errors. From the figures566

collected in these tables we can see that the approximations for the mean and standard devia-567

tions obtained using the proposed truncated method are very accurate. As it is expected, these568

approximations improve as M increases for t fixed, while the accuracy decreases as t departs569

from the origin for M fixed.570
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RE(Mean)(t;M) t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
M=5 2.7235 · 10−5 2.9732 · 10−3 3.6638 · 10−2 3.1118 · 10−1 8.4798 · 10−1

M=7 1.3773 · 10−6 7.4927 · 10−4 2.0926 · 10−2 2.7211 · 10−1 8.2723 · 10−1

M=10 1.6241 · 10−8 1.2648 · 10−4 1.077 · 10−2 2.2707 · 10−1 7.8983 · 10−1

M=12 3.6711 · 10−9 4.4072 · 10−5 7.2343 · 10−3 1.9819 · 10−1 7.5255 · 10−1

M=15 5.1902 · 10−9 9.9181 · 10−6 3.7974 · 10−3 1.4757 · 10−1 6.4953 · 10−1

Table 2: Relative error for the mean RE(Mean)(t; M) computed by (53) for different values of t and M in the context of
Example 3.

RE(SD)(t;M) t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
M=5 8.2462 · 10−5 4.3389 · 10−1 9.9813 · 10−1 9.9960 · 10−1 9.9999 · 10−1

M=7 6.4702 · 10−6 3.9683 · 10−1 9.9741 · 10−1 9.9991 · 10−1 9.9999 · 10−1

M=10 1.8467 · 10−7 6.3619 · 10−1 9.9424 · 10−1 9.9953 · 10−1 9.9992 · 10−1

M=12 1.4535 · 10−8 3.8055 · 10−1 9.8742 · 10−1 9.9826 · 10−1 9.9959 · 10−1

M=15 6.0470 · 10−9 3.3668 · 10−1 9.4612 · 10−1 9.8411 · 10−1 9.9352 · 10−1

Table 3: Relative error for the standard deviation RE(SD)(t; M) computed by (54) for different values of t and M in the
context of Example 3.

7. Conclusions571

In the first part of this paper we have extended to the random framework the deterministic572

Riemann-Liouville integral and Caputo derivative. This extension has been done in the Banach573

space (L2(Ω), ‖·‖2) of the random variables and stochastic process of second-order, i.e., having574

finite variance. This condition is often met for the majority of physical phenomena. An impor-575

tant advantage of the aforementioned extension is that it remains valid for other Banach spaces576

(Lp(Ω), ‖·‖p), p ≥ 2. Furthermore, an additional benefit of our approach is that our results have577

been established using a strong stochastic convergence, namely the mean square convergence.578

Therefore, our results are also valid when using another type of weaker stochastic convergences,579

such that the convergence in probability and in distribution, which are used in many contexts. In580

the second part of the paper, we have taken advantage of the results established in the first part581

together with a mean square chain rule for differentiating second-order stochastic processes, to582

construct a solution stochastic process of the general random linear fractional differential equa-583

tion assuming mild conditions of the random inputs (initial condition, forcing term and diffusion584

coefficient). Furthermore, we have given general explicit expressions for constructing reliable585

approximations of the mean, variance and covariance of the solution stochastic process. Finally,586

we have illustrated our main theoretical findings and the potentiality of our approach through587

two examples. We expect the results and ideas provided in this contribution can be useful in588

forthcoming extension of random fractional differential equations using the mean square random589

calculus.590
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