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Abstract

In the literature exist many iterative methods with memory for solving nonlinear equations, the most of them designed in
the last years. As they use the information of (at least) the two previous iterates to generate the new one, usual techniques
of complex dynamics are not useful in this case. In this paper, we present some real multidimensional dynamical tools to
undertake this task, applied on a very well-known family of iterative schemes; King’s class. It is showed that the most of
elements of this class present a very stable behavior, visualized in different dynamical planes. However, pathological cases as
attracting strange fixed points or periodic orbits can also be found.
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1. Introduction

In the last decades, iterative methods for solving nonlinear equations have proved their usefulness in many branches of
Science and Technology. Many of them are designed almost ad-hoc, for solving specific types of problems, like derivative-
free schemes, for those problems that do not allow to calculate the derivative of the nonlinear equation to be solved, usually
because it does not have an explicit expression, or it is too expensive (in the computational sense of the term) to calculate it.

In this work, we use the dynamical tools presented in [1] on iterative schemes with memory for solving nonlinear equations.
The design of this kind of methods has experimented an important growth in the last years, the early works of Traub [2], later
developed by Petković et al. [3, 4, 5] and used by other authors (see [6, 7, 8, 9] and references inside), but the understanding
of their stability has not been developed. Nevertheless, as the fixed point iteration functions have more than one variable, it
is necessary to use some specific dynamical elements joint with some auxiliary functions to facilitate the calculations. Also
some dynamical concepts have been adapted to achieve the appropriate numerical sense.

Let us consider the problem of finding a simple zero of a function f : D ⊆ R −→ R, that is, a solution α ∈ D of
the nonlinear equation f(x) = 0. If an iterative method with memory is employed (specifically, one that uses two previous
iterations to calculate the following estimation), whose iterative expression is

xk+1 = g(xk−1, xk), k ≥ 1,

where x0 and x1 are the initial estimations, a fixed point will be obtained when xk+1 = xk, that is, g(xk−1, xk) = xk. Now,
this solution can be obtained as a fixed point of the function G : R2 −→ R2 by means of the fixed-point iteration method

G (xk−1, xk) = (xk, xk+1),

= (xk, g(xk−1, xk)), k = 1, 2, . . . ,

being x0 and x1 the initial estimations. So, we will state that (xk−1, xk) is a fixed point of G if

G (xk−1, xk) = (xk−1, xk).

So, not only xk+1 = xk, but also xk−1 = xk by definition of G. Besides, x∗ ∈ R2 is a k-periodic point if Gk (x∗) = x∗ and
Gp (x∗) ̸= x∗, for p = 1, 2, . . . , k − 1.
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We will analyze the local convergence of each one of the methods with memory under study. To get this aim, we will use
the following result, that can be found in [10], where ek denotes the error at the k-th iteration, ek = xk − α.

Theorem 1. Let ψ be an iterative method with memory that generates a sequence {xk} of approximations to the root α, and
let this sequence converge to α. If there exist a nonzero constant η and nonnegative numbers ti, i = 0, 1, . . . ,m, such that the
inequality

|ek+1| ≤ η

m∏
i=0

|ek−i|ti

holds, then the R-order of convergence of the iterative method ψ satisfies the inequality

OR(ψ, α) ≥ s∗,

where s∗ is the unique positive root of the equation

sm+1 −
m∑
i=0

tis
m−i = 0.

In order to analyze the dynamical behavior of a fixed-point iterative method with memory for nonlinear equations on a
polynomial p(z), it is necessary to recall some basic dynamical concepts.

Let us denote by G(z) the vector-valued fixed-point function associated to an iterative method with memory on the scalar
polynomial p(z). Let us note that the following concepts and results are also valid when the iterative method is applied on a
general function f(z).

Definition 1. Let G : R2 → R2 be a vector function. The orbit of a point x∗ ∈ R2 is defined as the set of successive images
of x∗ by the vector function G, {x∗, G(x∗), . . . , Gm(x∗), . . .}.

The dynamical behavior of the orbit of a point of R2 can be classified depending on its asymptotic behavior. In this way,
we will consider that a point (z, x) ∈ R2 is a fixed point of G if G(z, x) = (z, x).

Moreover, as the concept of critical point corresponds to any that makes singular the Jacobian matrix associated to fixed
point operator, we will state that a point xc ∈ R2 is a critical point of G if det(G′(xc)) = 0. Indeed, if a critical point is not
(ri, ri), i = 1, . . . , n where ri, i = 1, . . . , n are the roots of p(z), it will be called free critical point. On the other hand, if a
fixed point (z, x) is different from (ri, ri), i = 1 . . . , n where ri, i = 1 . . . , n are the roots of p(z), it is called strange fixed
point and its character can be analyzed in the same manner.

We recall a known result in Discrete Dynamics that gives the stability of fixed points for multivariable nonlinear operators.

Theorem 2 ([11], page 558). Let G from Rn to Rn be C2. Assume x∗ is a k-periodic point. Let λ1, λ2, . . . , λn be the
eigenvalues of G′(x∗).

a) If all the eigenvalues λj have |λj | < 1, then x∗ is attracting.

b) If one eigenvalue λj0 has |λj0 | > 1, then x∗ is unstable, that is, repelling or saddle.

c) If all the eigenvalues λj have |λj | > 1, then x∗ is repelling.

In addition, a fixed point is called hyperbolic if all the eigenvalues λj of G′(x∗) have |λj | ̸= 1. In particular, if there exist
an eigenvalue λi such that |λi| < 1 and an eigenvalue λj such that |λj | > 1, the hyperbolic point is called a saddle point.

Then, if x∗ is an attracting fixed point of the rational function G, its basin of attraction A(x∗) is defined as the set of
pre-images of any order such that

A(x∗) = {x0 ∈ Rn : Gm(x0) → x∗,m→ ∞} .

The rest of the paper is organized as follows: Section 2 is devoted to the construction of a low-order variant with memory
of King’s family of iterative methods. The real multidimensional discrete dynamics on this class of schemes is made in
Section 3 and some dynamical planes, covering the stable and unstable behavior showed in the previous section, are presented
in Section 4. Finally, some conclusions and future works are stated.
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2. Design of a modified King’s family with memory

It is well known that King’s family [12] of iterative methods has fourth-order of convergence, with iterative expression

yk = xk − f(xk)

f ′(xk)
, (1)

xk+1 = yk − f(xk) + βf(yk)

f(xk) + (β − 2)f(yk)

f(yk)

f ′(xk)
, k ≥ 0,

where β is a real parameter. For β = 0, the well-known Ostrowski’s method is obtained.
Let us now modify this class of methods introducing some accelerating parameters, one per step. Usually, two kinds of

accelerating parameters are used: a damping parameter in the divided difference used for eliminating the derivatives involved
in the iterative expression, or factors of the nonlinear function evaluated at one previous point, that are added to the derivatives
of each step, as it is the case:

yk = xk − f(xk)

f ′(xk) + af(xk)
,

xk+1 = yk − f(xk) + βf(yk)

f(xk) + (β − 2)f(yk)

f(yk)

f ′(xk) + bf(xk)
, k ≥ 0, (2)

where a and b are real parameters. Then, it is necessary to analyze if this modified King’s class holds the order of convergence
or if, on the contrary, some conditions are needed on parameters a and b to hold it. As this family is a particular case of that
analyzed in [13], the following result can be stated.

Theorem 3. Let α be a simple zero of a sufficiently differentiable function f : D ⊂ R → R in an open interval D. If x0 and
x1 are sufficiently close to α, then the order of convergence of class (2) is at least 4 if b = 2a, being its error equation

ek+1 = (a+ c2)
(
2(−1 + β)a2 + (−1 + 4β)ac2 + (1 + 2β)c22 − c3

)
e4k +O

(
e5k
)
,

where ek = xk − α and ck =
f (k)(α)

k!f ′(α)
, k ≥ 2.

This expression of the error equation is a key fact for transforming the iterative family into the one with memory: if we

consider a = −c2 = −1

2

f ′′(α)

f ′(α)
, the order of the family would be at least five. As it has no sense to use the root of function

f , we can estimate it by using the two previous iterations, ak = −1

2

f ′[xk, xk−1]

f [xk, xk−1]
, where h[·, ·] is the usual first order divided

difference. The final iterative expression of the family, that will be called MKM is: given x0, x1 initial estimations,

ak = −1

2

f ′[xk, xk−1]

f [xk, xk−1]
,

yk = xk − f(xk)

f ′(xk) + akf(xk)
, (3)

xk+1 = yk − f(xk) + βf(yk)

f(xk) + (β − 2)f(yk)

f(yk)

f ′(xk) + 2akf(xk)
, k = 1, 2, . . .

being β a real parameter. The local convergence of this class is analyzed in the following result by using the notation introduced
in [14].

Theorem 4. Let α be a simple zero of a sufficiently differentiable function f : D ⊂ R → R in an open interval D. Let x0
and x1 be initial guesses sufficiently close to α. Then, for any value of parameter β, the order of convergence of the family of
iterative methods with memory (3) is at least 2 +

√
5, with error equation

ek+1 =

(
−c22c3 +

3

2
c23

)
ek−1e

4
k +O6(ek−1ek),

where ek−1 = xk−1−α, ek = xk −α, ck =
f (k)(α)

k!f ′(α)
, k ≥ 2 and O6(ek−1ek) indicates that the sum of the exponents of ek−1

and ek in the rejected terms of the development is at least 6.

3



Proof: By using Taylor series expansions, f(xk) and f(xk−1) can be expressed as

f(xk−1) = f ′(α)
[
ek−1 + c2e

2
k−1 + c3e

3
k−1 + c4e

4
k−1 + c5e

5
k−1

]
+O(e6k−1),

f(xk) = f ′(α)
[
ek + c2e

2
k + c3e

3
k + c4e

4
k + c5e

5
k

]
+O(e6k).

Then, the Taylor development for f ′(xk) and f ′(xk−1) are

f ′(xk−1) = f ′(α)
[
1 + 2c2ek−1 + 3c3e

2
k−1 + 4c4e

3
k−1 + 5c5e

4
k−1

]
+O(e5k−1),

f ′(xk) = f ′(α)
[
1 + 2c2ek + 3c3e

2
k + 4c4e

3
k + 5c5e

4
k

]
+O(e5k).

So, algebraic manipulations give

ak = −1

2

f ′(xk−1)− f ′(xk)

f(xk−1)− f(xk)

=

(
−c2 +

(
c22 −

3

2
c3

)
ek−1 +

(
−c32 +

5c2c3
2

− 2c4

)
e2k−1 +

(
c42 −

7

2
c22c3 +

3c23
2

+ 3c2c4 −
5c5
2

)
e3k−1

)
+

((
c22 −

3c3
2

)
− 2

(
c32 − 2c2c3 + c4

)
ek−1 +

(
3c42 −

17

2
c22c3 + 3c23 + 5c2c4 −

5c5
2

)
e2k−1

)
ek

+

((
−c32 +

5c2c3
2

− 2c4

)
+

(
3c42 −

17

2
c22c3 + 3c23 + 5c2c4 −

5c5
2

)
ek−1

)
e2k

+

((
c42 −

7

2
c22c3 +

3c23
2

+ 3c2c4 −
5c5
2

))
e3k +O4(ek−1ek)

and

yk − α =

((
c22 −

3c3
2

)
ek−1 +

(
−c32 +

5c2c3
2

− 2c4

)
e2k−1 +

(
c42 −

7

2
c22c3 +

3c23
2

+ 3c2c4 −
5c5
2

)
e3k−1

)
e2k

+

(
c3
2

− 2
(
c32 − 2c2c3 + c4

)
ek−1 +

1

4

(
8c42 − 22c22c3 + 3c23 + 20c2c4 − 10c5

)
e2k−1

)
e3k

+

((
−1

2
c2c3 + c4

)
+

1

2

(
6c42 − 19c22c3 + 9c23 + 10c2c4 − 5c5

)
ek−1

)
e4k

+

(
1

4

(
2c22c3 − 3c23 − 4c2c4 + 6c5

))
e5k +O6(ek−1ek).

So, by using the previous developments, it can be stated that

f(yk) = f ′(α)

[((
c22 −

3c3
2

)
ek−1 +

(
−c32 +

5c2c3
2

− 2c4

)
e2k−1 +

1

2

(
2c42 − 7c22c3 + 3c23 + 6c2c4 − 5c5

)
e3k−1

)
e2k

+

(
c3
2

− 2
(
c32 − 2c2c3 + c4

)
ek−1 +

1

4

(
8c42 − 22c22c3 + 3c23 + 20c2c4 − 10c5

)
e2k−1

)
e3k

+

((
−1

2
c2c3 + c4

)
+

1

2

(
6c42 − 19c22c3 + 9c23 + 10c2c4 − 5c5

)
ek−1

)
e4k

+

(
1

4

(
2c22c3 − 3c23 − 4c2c4 + 6c5

))
e5k

]
+O6(ek−1ek).

By replacing all the obtained developments in (3), we have

ek+1 =

(
−c22c3 +

3

2
c23

)
ek−1e

4
k − c23

2
e5k +O6(ek−1ek).

As the lower term of the error equation is
(
−c22c3 + 3

2c
2
3

)
ek−1e

4
k, by using Theorem 1 the unique positive root of polynomial

p2 − 4p− 1 gives us the R-order of the method, being in this case p = 2 +
√
5. 2
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3. Multidimensional dynamical analysis

As our aim is to analyze the dynamical behavior of MKM on real quadratic polynomials, we will study the fixed point
operator associated to the family on p1(t) = t2 − 1, p2(t) = t2 + 1 and p3(t) = t2, that will be denoted by K1,β(z, x),
K2,β(z, x) and K3,β(z, x), respectively. We choose these polynomials since it is known (see [15]) that any quadratic poly-
nomial, by an affine change of variables reduces to one of them. The dynamics of operators associated to affine conjugate
functions are equivalent. Let us observe that each one of the previous operator is a function of two variables: the last iteration,
xk (denoted by x), the previous one xk−1 denoted by z and one parameter, β.

3.1. Analysis of operator K1,β(z, x)

The fixed point operator resulting from applying this class on p1(t) = t2 − 1 is:

K1,β(z, x) =

x,
z + x(2 + xz)

1 + x2 + 2xz
−

(
−1 + x2

)2
(x+ z)

(
−1 + z2

) ((
1 + x2 + 2xz

)2
+ β

(
−1 + x2

) (
−1 + z2

))
2(1 + xz) (1 + x2 + 2xz)2 (−1 + 4x2 + x4 + 4x (1 + x2) z + 2 (1 + x2) z2 + β (−1 + x2) (−1 + z2))

 .

To study the stability of the family we will analyze the asymptotic behavior of the fixed points of K1,β(z, x).

Theorem 5. The fixed points of the operator associated to MKM on quadratic polynomial p1(t) are:

a) Points (1, 1) and (−1,−1) associated to the roots, being both attractive.

b) The origin (z, x) = (0, 0), which is an attractive fixed point for 1
3 < β ≤ 1

49

(
31− 8

√
2
)
; it is repulsive for

1
49

(
31 + 8

√
2
)
≤ β < 1 and it is a saddle point for the rest of real values of β.

c) Points (ri(β), ri(β)) where ri(β) i ∈ {1, 2, . . . , 8} are the real roots of polynomial r(t) = −1 + 3β + 16t2 + (86 −
2β)t4 + (104− 8β)t6 + (51 + 7β)t8, whose number varies depending on the range of parameter β:

– if β < −51
7 , there are four real roots of r(t) such that two of them (r1(β) and r4(β)) are repulsive and the other

ones (r2(β) and r3(β)) are saddle points;

– two if − 51
7 ≤ β < 1

3 , that are saddle points in [− 51
7 , 0.0645[ and attractors in [0.0645, 13 [;

– none if β ≥ 1
3 .

Proof: The fixed points are obtained by solving the equation

K1,β (z, x) = (z, x) ,

that is, z = x and
x
(
−1 + x2

)
r(x) = 0.

It is clear that the points (1, 1) and (−1,−1) satisfy the previous equation and both eigenvalues of the associate Jacobian
matrix on them are null, so they are attractive. Obviously, (0, 0) is also a fixed point and the eigenvalues of the Jacobian

matrix on it are λ1 =
−3+5β−

√
17−62β+49β2

4(−1+β) and λ2 =
−3+5β+

√
17−62β+49β2

4(−1+β) . It can be checked that, being β real, |λ1| < 1

if and only if 1/3 < β ≤ 1
49 (31 − 8

√
2) or β > 1, meanwhile |λ2| < 1 if and only if 1/3 < β ≤ 1

49 (31 − 8
√
2). So, when

parameter β is taken in this interval, the origin is an attracting strange fixed point. By using a similar reasoning, the interval
in which (0, 0) is repulsive can be found.

So, the rest of strange fixed points will be the roots of the eighth-degree polynomial r(x), denoted by ri, i = 1, 2, . . . , 8.
We will analyze now their stability by studying the absolute value of the eigenvalues of the Jacobian matrix associated to the
fixed point operator of the method on these fixed points. It can be checked that, when β < − 51

7 , only four roots of r(x), r1
to r4, are real and the absolute value of the eigenvalues of the Jacobian matrix associated to the fixed point operator on them
coincide and they can be seen in Figure 1. It can be observed that for r1(β) and r4(β) both eigenvalues are always greater
than one in absolute value. Moreover, for r2(β) and r3(β), one of the eigenvalues is always lower than one (in absolute value)
and the other one remains higher than one; so, by applying Theorem 1, r1(β) and r4(β) are repulsive points meanwhile r2(β)
and r3(β) are saddle points.

On the other hand, when −51
7 ≤ β < 1

3 , only two of the roots of r(x) are real, r1(β) and r2(β). Both of them have the
same stability, as it can be observed in Figure 2. Numerically, it can be checked that, for β ∈ [− 51

7 , 0.0645[ two roots are
saddle points, meanwhile for β ∈ [0.0645, 13 [, both are attractive points. Let us remark that in the interval where both points
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Figure 1: Stability of some strange fixed points of K1,β (z, x) for β < − 51
7
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1,β(ri, ri), i = 1, 4, − 51

7
≤ β < 1
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(b) Eigenvalues of K′
1,β(ri, ri), i = 2, 3, 0.0645 ≤ β < 1

3

Figure 2: Stability of some strange fixed points of K1,β (z, x) for − 51
7 ≤ β < 1

3

are attracting, λ1(β) = λ2(β) until β ≈ 0.29, but they are different in the rest of the interval.
Finally, for β ≥ 1

3 , all the roots of r(x) are complex numbers. 2

By summarizing, any element of the family MKM (corresponding to a value of β) selected in ] −∞, 0.0645[∪] 1
49 (31 −

8
√
2),+∞[ will be free of attractive strange fixed points, although it does not means that it is free of any other anomalies, as

it will be seen in Section 4.

3.2. Study of operator K2,β(z, x)

By applying MKM family on p2(t) = t2 + 1 a fixed point operator is obtained, whose expression is

K2,β(z, x) =

x,
−2x− z + x2z

−1 + x2 + 2xz
−

(
1 + x2

)2
(x+ z)

(
1 + z2

) ((
−1 + x2 + 2xz

)2
+ b

(
1 + x2

) (
1 + z2

))
2(−1 + xz) (−1 + x2 + 2xz)2 (−1 + x4 − 4xz + 4x3z − 2z2 + 2x2 (−2 + z2) + b (1 + x2) (1 + z2))

 .

We will calculate the real fixed points of this operator and study their asymptotic behavior to analyze the stability of the
family.

Theorem 6. The real fixed points of the operator associated to MKM on quadratic polynomial p2(t) are:

a) The origin (z, x) = (0, 0), which is an attractive fixed point for 1
3 < β ≤ 31−8

√
2

49 , it is repulsive if 31−8
√
2

49 < β < 1
and saddle otherwise;

6



b) Points (mi(β),mi(β)), where mi(β) i ∈ {1, 2, . . . , 8} are the real roots of polynomial m(t) = −1 + 3β − 16t2 +
(86− 2β)t4 + (−104 + 8β)t6 + (51 + 7β)t8,

m1(β) =
√
s1(β), m2(β) = −

√
s1(β), m3(β) =

√
s2(β), m4(β) = −

√
s2(β),

m5(β) =
√
s3(β), m6(β) = −

√
s3(β), m7(β) =

√
s4(β), m8(β) = −

√
s4(β),

where

s1(β) =
26− 2β

51 + 7β
− 1√

3
r2(β)−

√
2

3

√
A(β),

s2(β) =
26− 2β

51 + 7β
− 1√

3
r2(β) +

√
2

3

√
A(β),

s3(β) =
26− 2β

51 + 7β
+

1√
3
r2(β)−

√
2

3

√
A(β),

s4(β) =
26− 2β

51 + 7β
+

1√
3
r2(β) +

√
2

3

√
A(β),

being

A(β) =
12(−13 + β)2

(51 + 7β)2
+

−43 + β

51 + 7β
−

2(51 + 7β)
(
7 + 7β + β2

)
(51 + 7β)2r1(β)

− 2r1(β)

51 + 7β

+
3
√
3
(
5731 + 3685β − 751β2 + 15β3

)
(51 + 7β)3r2(β)

,

r1(β) =
(
44 + 12β − 30β2 + β3 + 3

√
3
√

59 + β − 136β2 − 47β3 + 28β4 − 3β5
)1/3

and

r2(β) =

√
12(−13 + β)2

(51 + 7β)2
+

−43 + β

51 + 7β
+

4(51 + 7β) (7 + 7β + β2)

(51 + 7β)2r1
+

4r1(β)

51 + 7β
.

The number of real roots varies depending on the range of parameter β:

– If β < −51

7
, there are no real roots of r(t).

– m2(β) and m4(β) are real roots if −51

7
≤ β < −1.02409, and they are saddle points.

– If β = −1.02409, m1(β), m2(β), m4(β) and m6(β) are real, being m6(β) repulsive and the rest of fixed points,
saddle.

– When −1.02409 ≤ β < −1, six strange fixed points are real, m1(β), m4(β), m6(β) and m8(β) being saddle
points; m2(β) and m3(β) are repulsive fixed points.

– If β = −1, ±0.824188 are the only real roots of m(t), and they are saddle points.

– For −1 ≤ β < 0 the only real fixed point (among the roots of m(t)) is m4(β), being a saddle point.

– If β = 0, none of the roots of m(t) is real.

– If 0 ≤ β <
1

3
, m2(β) and m4(β) are the unique real zeros of m(t), and they are saddle.

– When β =
1

3
, the only real roots of m(t) are ±0.503737, which are saddle points.

– For
1

3
< β < 0.620014, the following behavior is observed on the only real zeros of m(t):

∗ m4(β) and m6(β) are saddle points for
1

3
< β < 0.52, repulsive in

1

3
≤ β < 0.619818 and attractive in the

rest of the interval.
∗ m2(β) and m8(β) are saddle points.
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– If β = 0.620014, then m4(β) and m8(β) are saddle points and are the only real roots of m(t).
– If β > 0.620014, there not exist real roots of m(t).

To prove this result, it is needed to solve the equation

K2,β (z, x) = (z, x) ,

that is, z = x and
x
(
1 + x2

)
m(x) = 0.

In this case, points (1, 1) and (−1,−1) satisfy the previous equation and both eigenvalues of the associate Jacobian matrix on
them are null, proving that they are attracting. Again, (0, 0) is also a strange fixed point (if β ̸= 1); its associated eigenvalues

are λ1 =
−3+5β−

√
17−62β+49β2

4(−1+β) and λ2 =
−3+5β+

√
17−62β+49β2

4(−1+β) . It can be checked that, being β real, |λ1| < 1 if and only

if 1/3 < β ≤ 1
49 (31− 8

√
2) or β > 1, meanwhile |λ2| < 1 if and only if 1/3 < β ≤ 1

49 (31− 8
√
2). So, when β is taken in

this interval, (0, 0) is attracting.
Then, other strange fixed points will be the real roots of the eighth-degree polynomial m(x), denoted by mi(β), i =

1, 2, . . . , 8. Their stability is analyzed by calculating the absolute value of the eigenvalues of the Jacobian matrix associated
to the fixed point operator of the method on them. Firstly, we calculate the ranges in which the number of real roots changes;
after this, the eigenvalues of the Jacobian matrix at this points are calculated and analyzed in order to classify the strange fixed
points. In this terms, the thesis of this Theorem are stated. In Figure 3, some of these studies are shown.

-7 -6 -5 -4 -3 -2 -1
0

5

10

15

(a) (mi(β),mi(β)), i = 2, 4 on −
51

7
< β < −1.02409

-1.020 -1.015 -1.010 -1.005 -1.000

2

4

6

8

(b) (mi(β),mi(β)), i = 2, 3 on −1.02409 < β < −1

Figure 3: Absolute value of the eigenvalues of K2,β (z, x) for some strange fixed points

Let us remark that, from information stated in Theorem 6, there exist attractive strange fixed points only in the interval
1
3 < β ≤ 1

49 (31− 8
√
2) (where (0, 0) is attractive) and 0.619818 < β < 0.620014, where m4(β) and m6(β) are attractive.

3.3. Analysis of operator K3,β(z, x)

Finally, let us apply MKM family to p3(t) = t2. Then, a fixed point operator is obtained depending on the last iteration x
and the previous one z. Then,

K3,β(z, x) =

(
x,

xz
(
x3 + 7x2z + (12 + β)xz2 + (4 + 3β)z3

)
2(x+ 2z)2 (x2 + 4xz + (2 + β)z2)

)
.

In a similar way as in previous sections, we calculate the fixed points of this operator and analyze their stability in the
following result.

Theorem 7. The only fixed point of the operator associated to MKM on quadratic polynomial p3(t) is (z, x) = (0, 0), that
is attractive.

Proof: By solving the equation K3,β(z, x) = x, the only fixed point is obtained to be (0, 0). Due to the multiplicity of the
root, the Jacobian matrix at this point is not defined. 2
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4. Dynamical planes

In this section we will represent the real bidimensional dynamics of the fixed point operator associated to each polynomial
with simple roots, p1(t) and p2(t). To get this, we will use some routines in Matlab that are a slight modification of those
presented in [16].

In general, we have used a mesh of 800 × 800 points that represent the pair (x, z) (that is, (xk, xk−1)) used as initial
estimation for the particular member of family MKM under study. This point is plotted in different colors depending on the
fixed point it tends to, after 80 iterations. If this maximum number of iterates is reached without converging to any fixed point
or periodic orbit, with a tolerance of 10−3, it is drawn in black color.

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

z
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-1.5
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0

0.5
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(a) β = 2
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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(b) β = −9
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(c) β = 9
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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-1.5
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-0.5

0

0.5

1
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(d) β = −15

Figure 4: Some stable dynamical planes of K1,β (z, x)

By choosing values of the parameter in the different regions appeared in the previous section, we will show as stable
as unstable behavior with different kind of pathologies of the family. In case of p1(t), it has been proved that there are no

9



attracting strange fixed points for β ∈]−∞, 0.0645[∪] 1
49 (31−8

√
2),+∞[. So, taking values of the parameter is this domain,

the resulting dynamical planes will show the basins of attraction of fixed points (−1,−1) and (1, 1), although other attracting
elements, such as periodic orbits, could appear. This is not the case of the dynamical planes corresponding to the values of
parameter β = 2 and β = −9 that are near the bounds of this region and also β = 9 and β = −15, showed in Figure 4.

However, undesired behaviors can also appear for selected values of parameter β in the intervals where any of the strange
fixed points described in Theorem 5 is attracting. In Figure 5 some of them are shown, starting with the variant of Ostrowski’s
method with memory that does not have attractive strange fixed points shows two different periodic orbits of period 4 (see

Figure 5a); in Figure 5b two attracting roots of r(t) an their respective basins of attraction appear for β = 0.2; if β =
1

3
, both

attractive points collapse at zero, holding the attractive behavior (see Figure 5c) although this convergence is slower; finally,

we show for β =
1

49
(31 − 8

√
2) (Figure 5d) the dynamical plane that corresponds to the biggest value of the parameter that

makes the origin attractive.

p=[0.15588,0.028171]
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(a) β = 0
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(b) β = 0.2
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(c) β =
1

3
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(d) β =
1

49
(31− 8

√
2)

Figure 5: Some unstable dynamical planes of K1,β (z, x)
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Respect to the stability of the family when the polynomial is p2(t), without real roots, it has been stated in Theorem 6
that there exist attractive strange fixed points only in the small region described by 1

3 < β ≤ 1
49 (31 − 8

√
2) (where (0, 0)

is attractive) and 0.619818 < β < 0.620014, where m4(β) and m6(β) are attractive. In Figure 6, two dynamical planes
showing unstable behavior are presented: when β = 0.4, (0, 0) is the only attracting fixed point and if β = 0.6199, the
basins of attraction of m4(β) and m6(β) are showed in orange and green but the greatest basin (pink color) corresponds to an
attracting periodic orbit of period 4, whose trajectory is marked with yellow lines in Figure 6b.

x

z

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8
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0.4

0.6
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(a) β = 0.4

p=[0.028212,0.11931]
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(b) β = 0.6199

Figure 6: Some unstable dynamical planes of K2,β (z, x)

5. Conclusions

In this paper, we have introduced some tools of the dynamical analysis of multivariate real discrete problems to analyze the
stability of the fixed points of iterative methods with memory on quadratic polynomials. We have designed a variant of King’s
family with memory with lower order of convergence than other existing in the literature but with possibilities of establishing
a bidimensional dynamical analysis. Our statements, based on consistent real multidimensional discrete dynamics results,
allow us to select the most stable elements of the class and to find those that present convergence to other points different from
the solution of our problem. Further works in this area will lead us in the future to extend this kind of analysis to higher-order
methods with memory, although this will imply to work with higher dimension also in the dynamical study.
Acknowledgments: The authors thank to the anonymous referees for their valuable comments and for the suggestions to
improve the final version of the paper.
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