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Abstract 

Oxygen permeability, diffusion coefficient of the sodium ions and water flux and 

permeability in different conventional hydrogel (Hy) and silicone-hydrogel (Si-Hy) 

contact lenses have been measured experimentally. The results showed that oxygen 

permeability and transmissibility requirements of the lens have been addressed through 

the use of siloxane containing hydrogels. In general, oxygen and sodium chloride 

permeability values increased with the water content of the lens but there was a 

percolation phenomenon from a given value of water uptake mainly in the Si-Hy lenses 

which appeared to be related with the differences between free water and bound water 

contents. The increase of ion permeability with water content did not follow a unique 

trend indicating a possible dependence of the chemical structure of the polymer and 

character ionic and non-ionic of the lens. Indeed, the salt permeability values for 

silicone hydrogel contact lenses were one order of magnitude below those of 

conventional hydrogel contact lenses, which can be explained by a diffusion of sodium 

ions occurring only through the hydrophilic channels. The increase of the ionic 

permeability in Si-Hy materials may be due to the confinement of ions in nanoscale 

water channels involving possible decreased degrees of freedom for diffusion of both 

water and ions. In general, ionic lenses presented values of ionic permeability and 

diffusivity higher than most non-ionic lenses. The tortuosity of the ionic lenses was 

lower than the non-ionic Si-Hy lenses. Frequency 55 and PureVision exhibited the 

highest water permeability and flux values and, these parameters were greater for ionic 

Si-Hy lenses than for ionic conventional hydrogel lenses. 
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1. Introduction 

Raw materials used in the preparation of soft contact lenses should give optically 

transparent films, with good chemical and thermal stability, suitable mechanical 

properties and low modulus of elasticity. Moreover, the lenses should be highly 

permeable to oxygen with enough water content to guarantee the wettability and 

delivery of ophthalmic drugs for an extended period of time ranging from weeks to 

months maintaining always the ocular health1-5. Hydrogel lenses are oxygen permeable 

since they contain certain quantities of water. Oxygen dissolves in the tear film within 

the lens and diffuses from the face of the lens in contact with the atmosphere to the 

other face in contact with the corneal surface. In this kind of lenses the oxygen 

permeability increase with the water content of the lens6. The incorporation of more 

hydrophilic monomers in order to increase the water content of the lens gives as result 

an increment of oxygen permeability but a decline of mechanical properties. In this 

sense, it is generally accepted that the conventional hydrogel contact lenses are not 

suitable for extended wear fundamentally due to limited oxygen transmissibility1,2,7. To 

meet these requirements, Silicone hydrogel (Si-Hy) materials have been introduced to 

design and synthesize new and improved contact lenses alternative to conventional 

hydrogel lenses (Hy) which can be worn continuously for large time periods even 

during sleeping 8-11. Maximising the silicone component makes it possible to obtain 

lenses with high oxygen supply; however, the surface of the Si-Hy lenses is very 

hydrophobic generating a poor compatibility with the surface of the cornea and may 

even disrupt lens movement over the cornea (i.e. non-binding contact lenses)12.  

The transport of water and ions through contact lenses is crucial for the 

provision of essential nutrients and removal of waste products and debris. The water 

flow through the lens is also necessary for adequate on-eye lens movement, comfort and 

mailto:vicommo@ter.upv.es
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wettability13-16. The diffusion of water through hydrogels, such as those constituting 

contact lenses, is a bidirectional process, where water diffuses from the corneal surface 

to the anterior contact lens surface where it evaporates into the open air and from the 

anterior surface to the post-lens space by osmotic pressure or lid stress. While the first 

process (permeation out) is undesirable, inducing lens dehydration, potential corneal 

desiccation and lens adherence, the water permeation in through hydrophilic soft contact 

lenses (SCL) is generally accepted to be a fundamental process needed to ensure an 

adequate post-lens tear film, lens movement and debris removal1,12,17. Changes in 

contact lens fitting parameters do not always demonstrate effectiveness on increasing 

post-lens tear mixing. To do so, it would be necessary to increase lens movement 

beyond a clinically acceptable level, increasing the risk of contact lens discomfort18. 

Accordingly, some authors have proposed the use of micro-channels and fenestrations 

to improve tear mixing. In fact these strategies have been already used with significant 

success by Weidemann et al19 and Miller et al20, respectively, in the research context, 

but they have not been clinically implemented yet.  

Water or salts can move across a hydrogel lens through two mechanisms called 

bulk flow and diffusion. Bulk flow consists on the movement of water molecules 

through pores in the lens when a difference in hydrostatic pressure is present across the 

contact lens. Conversely, in the diffusion mechanism, water or salt molecules move by 

diffusive permeability which depends on the solubility of the permeating substance in 

the bulk of the lens and its diffusion coefficient. This process is governed by 

thermodynamic activity which depends on the difference in water activity (relative 

humidity) at both sides of the membrane. Under this condition, the water pervaporates 

through the lens, and it is the main mechanism responsible for water permeation through 

silicone rubbers materials. Pervaporation is a phenomenon of high clinical significance 

in contact lens wear. During pervaporation through contact lenses, the water contained 

behind the contact lens, permeates and evaporates at the front lens surface where the 

water activity in the surrounding air is below 100%21. In such cases the lens produce 

adherence to the corneal surface, but this is not the general case for hydrogel lenses 

based in p-HEMA22 . In biphasic co-continuous silicone hydrogel materials used for 

extended-wear contact lenses, the oxygen and fluid permeability are “uncoupled” 

allowing a much greater level of hydraulic and ionic permeability than that available 

through a poly-HEMA with an equivalent water content23,24. As a result, lenses made 
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from this material display adequate lens movement while still benefiting from the 

additional oxygen permeability afforded with a water content of about 24%. In the case 

of the Balafilcon A material, a water content of 36% provides a hydraulic permeability 

which actually corresponds with that normally offered by a lens with 40% water 

content. This suggests that there might also be some degree of phase separation of the 

material15,25.  

Austin et al.11 have stated that conventional non-silicone polymers would require 

a equilibrium water content (EWC) of about 38% to maintain on-eye movement. 

Nevertheless is still under study to determine just how water and ion permeability affect 

the ability of a lens to move on the eye. However, there are reports of silicon hydrogel 

lenses with lower EWC (from 24-38%) for overnight wear, which have shown 

satisfactory on-eye movement and on-eye performance, only when produced in 

controlled conditions. In addition, sodium ion permeability coupled with continuous 

aqueous pathways across the contact lens has been indicated as a prerequisite for on-eye 

movement (avoid binding)1, 9, 12, 17. 

There are different techniques to measure the salt and water transport through 

hydrogels membranes. Most of them are based on Fick’s law and the solution-diffusion 

model, where the diffusion coefficient of the solute in a membrane can be determined 

from the pseudo-steady state permeation rate, time-lag method, and concentration 

profiles within the membrane in the transient and pseudo-steady states2,13,26-29.  

The present study was conducted to determine the oxygen permeability and 

diffusion coefficients following the electrochemical technique previously used10. The 

NaCl permeability, diffusivity and partition coefficient was determined using an 

experimental set-up that involved the use of a cell containing the lens under study 

separated by two chambers, the donor chamber and the receiving chamber.  On the other 

hand, water flux and permeability, of two different series of commercially available 

hydrogel contact lenses (seven conventional hydrogel lenses and seven siloxane-

hydrogel contact lenses (Si-Hy)). The results have been interpreted by means of the free 

volume theory, using the equilibrium water content (EWC) to estimate the free volume, 

as suggested by Yasuda et al.12,30,31 The second objective of this study was to correlate 

the water flux with the ionic permeability and EWC to check whether this parameter 
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meets the levels that potentially promote the formation of a post-lens tear film and 

maintain lens motion. 

2. Experimental 

Commercial contact lenses (silicone hydrogel lenses and conventional hydrogel 

lenses) with the same optical power of 3.00 Diopters, all of them used in the 

international market, were studied in this work. Their names, material type, equilibrium 

water content (EWC), dimensions and oxygen mass transport properties are detailed in 

table 1. As can be seen, the equilibrium water content (EWC) varied from 24 to 48% for 

silicone hydrogel materials and from 55 to 69% for conventional hydrogel materials.  

As some materials experienced dimensional changes when transferred from 

saline to ultrapure water (particularly significant in ionic materials), lens thickness was 

measured immediately after extraction from the original containers where they were 

stored in saline solution (0.9% NaCl) and after removal of the salt. To do this, after 

removal from the packaging, lenses underwent repeated washing processes to remove 

solutes from the material by being stored in ultrapure water (conductivity below 1 µS) 

for 20 minutes each time until the solution where the lens was stored showed a 

conductivity inferior to 0.01 mS. Three repeated processes were usually enough to fulfil 

this condition. The thickness of the lenses was measured with a Redher ET10 gauge 

(Rehder Developments, CA), where the average value of 5 measurements obtained 

across the central 8 mm of the lens (harmonic central thickness or Tav) has been 

calculated with a precision of ±2µm. The actual harmonic thickness of the lens over the 

central 8 mm was measured also right after their extraction from the original containers 

(in saline solution). These data are collected in the two last columns of table 1. 

 

TABLE 1 

 

2.1. Differential Scanning Calorimetry measurements (DSC)  

 

DSC measurements were obtained from -60 to 10ºC at 10K·min-1 under a 

nitrogen atmosphere (Mettler Toledo DSC). Two heating and cooling runs were 

performed, the first heating and cooling to remove the thermal history of the samples, 

and the second heating and cooling runs to characterize freezing of sorbed water. In 

each measurement, the lens was previously equilibrated with a saline solution of 0.9% 



 6 

during 24 hours. Then, the lens was lightly blotted with filter paper to remove surface 

water, placed into aluminium containers, quickly weighed, encapsulated and 

immediately placed in the DSC equipment.  

 

2.2. Oxygen permeability measurements 

 

Oxygen transport in some of the conventional and silicon hydrogel contact 

lenses selected in this study (Acuvue Oasys, Biofinity, PureVision, Avaira, Proclear, 

Acuvue2) was analysed previously10,32-38. For the other lenses ( Air Optix N&D, Air 

Optix, Acuvue Advance, Focus Daylies, Proclear One-day, Soflens One-day and 

Frequency 55) the oxygen permeability and diffusion coefficients were obtained 

following the electrochemical technique described previously by Aiba et al.31 for 

polymeric membranes, utilizing a permeometer model 201T (Rherder Development 

Co.). In brief, the apparent oxygen permeability of the lenses materials is determined 

from the measurement of the electric current generated at the electrode as consequence 

of the reduction process of oxygen that has passed through the lens. In the steady state 

conditions, the apparent permeability (P) can be obtained from equation36 

pFAn
TIP av

∆⋅⋅⋅
= ∞     (1) 

Where I∞ represent the current intensity at the steady state conditions (t→∞), Tav is the 

harmonic thickness of the lens, n is the number of electrons exchanged in the cathodic 

reaction (n=4), F, the Faraday constant, A, the area of the cathode and ∆p is the oxygen 

partial pressure difference across the lens at sea level (∼155 mmHg).  

The apparent oxygen diffusion can be obtained as 

))((6

2

tQtI
TID av

−⋅
⋅

=
∞

∞     (2) 

Where Q(t) is the total charge transferred to the cathode as consequence of the oxygen 

reduction process from t=0 until the system reaches the stationary state and t the total 

elapsed time. 

 
2.3. Ion permeability measurements 
 

The ionic permeability of the lenses has been determined following the 

experimental procedure described elsewhere39. In brief, the lens was fixed to the inferior 
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end of the lens holder cell and a cover lid locked the lens in position leaving a circular 

aperture of 8 mm in diameter that was immersed in the receptor chamber containing 60 

mL of ultrapure water (milli-Q). The inner part of the lens holder cell acted as donor 

chamber (A) filled with 16 ml of 1M NaCl solution (cL,0). The receiving chamber was 

situated on a heating plate to maintain the temperature of the system at 35 ± 1 ºC. The 

receiving chamber is also well stirred to distribute homogenously the salt concentration 

(cR(t)) and the chamber temperature. The conductivity of the solution in the receiving 

chamber (B) was monitored at regular intervals and until steady state conditions by a 

Crison CM-35 conductivity-meter with temperature sensor. Previously, a calibration 

curve was obtained by measuring in successive steps the conductivity of deionised 

water and solutions of 10-5, 5x10-5, 10-4, 5x10-4, 10-3, 10-2 and 10-1 M NaCl. The 

conductivity of each solution was measured with the electrode and its values were 

plotted for each concentration to obtain the calibration curve with a correlation 

coefficient of 0.9999. A value of 0.00065 mS corresponding to the background 

conductivity of our Milli-Q water was subtracted from all the conductivity values 

obtained. From the calibration curve, the concentration of sodium ions in the 

measurement cell can be obtained and considering that cL(t)>>cR(t) and therefore cL(t)≈ 

cL,0, as it happens in these experiments, apparent permeability of ions,(Ps), can be 

obtained as39 

 

 m
cA
TVP
L

avR
s

0,⋅
⋅

=     (3) 

 
being cL,0 the initial concentration of salt in the donor chamber (A) and m the slope of 

the concentration rate (
dt

dcR ) in the receiving chamber at steady state. A complete 

description showing the obtaining of eq. (3) is well developed in reference39.  
 
2.4. Water vapor permeability (WVP) .test 
 
WVP tests were carried out by exposing the lenses to several humidity gradients with a 

procedure based on the ISO 2528 standard. 125 mL thermoformed PP/EVOH/PP cups 

(RPC Envases, Madrid, Spain) with a circular open top of 82 mm and a 6 mm wide 

thermo sealing annulus were filled with 90 mL of distilled water to maintain a constant 

100% RH inside the cup.  
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The lenses were removed from the original container, water excess drained with filter 

paper and immediately sandwiched between two self-adhesive aluminum masks 

(Miarco, Valencia, Spain) with a central 4 mm perforation (12,57 mm2 permeation 

area). This mask was then used as cup cover to constitute the permeation cell. Samples 

were stored at 23ºC and constant humidity in desiccators containing salt solutions: 

potassium acetate (23 % RH), magnesium nitrate (53 % RH), or sodium chloride (75 % 

RH). The cups were weighed daily, and the plot of the weight increment vs. time 

provided the water vapor transmission rate. 

 
3. Results 

 
3.1. DSC results 

 
Figures 1 and 2 show second heating and cooling DSC thermograms for four Si-

Hy and four conventional hydrogels contact lenses used in this study, respectively. For 

Si-Hy contact lenses, an endothermic peak centred at about -2ºC that complete the 

fusion above 1ºC and an exothermic peak centred at about -25ºC corresponding to water 

freezing were observed, with the exception of: Acuvue Advance lens whose 

thermogram presented  two endothermic features at about -2ºC and -10ºC, whilst the 

freezing feature is broader; and PureVision lens whose thermogram apparently 

presented no first-order transition assigned to water freezing at low temperatures, so that 

the solidification is nearly continuous. This behavior might be associated both, to the 

presence of pores which are larger than in the other lens and the character ionic of this 

lens in comparison with the others non-ionic Si-Hy lenses.  

 

     FIGURE 1 
 
     FIGURE 2 
 

In the case of conventional hydrogel lenses, a single and broad freezing 

exothermic peak centred at about -22ºC and two peaks from the heating cycle, one sharp 

peak (peak 1) that complete the fusion above 2ºC and another broad peak (peak 2) at 

about -10ºC were observed. This behavior might be related to the interaction of the 

hydrogel polymer with water. According to Tassaka et al.40, in endothermic DSC 

curves, the acute peak 1 corresponds to the free water and wide peak 2 corresponds to 

water molecules with partially restricted movement due to the presence of fixed 

charges, that is, loosely bound water. 
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From figures 1 and 2, the area of each peak was estimated from the difference between 

the endotherm curve and the straight baseline drawn in each figure, using the DSC 

computer program. Assuming that the heat of fusion for pure water is 340.6 J/g (79.72 

cal/g), the concentration of water assigned to peaks 1 and 2 have been estimated by 

mean of the expression41,42  

6101
⋅

∆
∆

=
f

tr

Hm
H

C      (4) 

Where C is the concentration of water (µg/g), ∆Htr is the heat of transition (mJ), m is the 

sample weight (mg), ∆Hf is the heat fusion of water (340.6J/g). To determine the heat of 

transition, we have taking into account that ∆Htr=.A.B.E.∆qs; being A the peak area 

(cm2), B the time base (min/cm), E is the cell calibration coefficient (mW/mV) and ∆qs 

the sensitivity in Y-axis (mV/cm).  The results calculated from figures 1 and 2 are 

shown in table 2, where the corresponding values for free and confined water are 

tabulated.  

     TABLE 2 

 

From the results shown in table 2, it can be observed that the transition time interval 

∆Tm is wider for the Si-Hy lenses than for the conventional hydrogel. This is indicative 

that the pore size was greater in the Si-Hy than in Hy lenses. As an extreme case, the 

DSC analysis of PureVision lens appears to reveal that the first-order transition 

corresponding to water melting/freezing was nearly continuous and this may be 

explained by the presence of pores larger than those present in other lenses as 

previously reported by A. Lopez-Alemany et al.25. 

A comparison between conventional hydrogel and silicone hydrogel lenses shows that 

the water content occluded in the pores is quite similar for all hydrogel lenses. On the 

contrary, the Si-Hy lenses presented greater diversity of values and the average content 

is lower than that for the hydrogels. Indeed, we have observed that the percentage of 

non-bulk water in Acuvue2 lenses is 1.6-fold that of PureVision lenses and 2.4-fold that 

of Air Optix. One explanation for this phenomenon may be that not all hydrophobic 

pores contain water, reducing the percentage of confined water. Another possible 

justification is that water solidifies co-continuously within the hydrophobic pore as free 

water does, this possibility being more plausible in lenses such as PureVision or Air 

Optix which contain large pores. This fact is compatible with the theory of gas diffusion 
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through non-aqueous porous structures that increases the oxygen diffusion performance 

of these materials compared to conventional hydrogels where oxygen only flows 

through the aqueous phases25. 

As can be seen from the last column of table 2, the confined water or bound water 

largely varies between samples, from 10% to 46%. The lenses Proclear1–day, Soflens 

One-day, Frequency 55 and Acuvue2 (the conventional hydrogel lenses) have higher 

confined water or bound water percentages than Air Optix N&D, Air Optix and 

PureVision, between 3 to 4 times higher. This water portion is related to the amount of 

water which strongly interacts with the polymer and, therefore, it does not presumably 

participate in the transport of ions, solutes or gases. As can be seen, low-ECW 

hydrogels have as well low confined water ratios. A comparison between the hydrogel 

lenses shows that ionic lenses such as Frequency 55 and Acuvue2 have higher free 

water content than non-ionic hydrogel lenses. However, the opposite happens for the 

confined water, where the ionic lens has around 10% less than non-ionic lenses. 

 

3.2.Oxygen permeability 

The values of both permeability and diffusion coefficients can be readily 

determined from the time evolution of current intensity monitored in the permeometer 

by means of equations (1) and (2), respectively. In this study, the diffusion resistance of 

the solution layer separating the membrane from the electrode has not been considered, 

for that reason the permeation measurements includes the contribution of the membrane 

(lens) and this just commented thin solution layer. Since eq. (1) does not take into 

account the resistance to oxygen transmission of the liquid boundary layers between the 

lens and the cathode and over the lens, the results obtained for P and D with this 

experimental device are apparent values. To obtain the true permeability it is necessary 

to carried out alternative experimental procedures35,36. In this study, the uncertainty 

involved in the diffusive parameters due to the resistance of the layer is negligible 

compared to the resistance of the lens, and so it is its contribution to mass transport.  

Studies carried out on hydrogels used as contact lenses have shown that the 

absorption-diffusion mechanism is basically controlled by the hydrogel38. The results 

found for the apparent oxygen permeability and diffusion coefficient measured in this 

study for the Air Optix N&D, Air Optix, Acuvue Advance, Focus dailies, Proclear One-

day, Soflens One-day and Frequency 55, are presented in Table 1, together with those 

previously measured and reported elsewhere26.  
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The values obtained for the oxygen permeability of conventional hydrogel and siloxane 

hydrogel lenses are in good agreement with those claimed by lens manufacturers (within 

10% to 20% range) and with those measured by others researchers (within 3% to 15% 

range) 26,34-38,43. This accordance with other procedures and experimental setups 

corroborates the validity of the method used in this work to measure P and D. As 

expected, the oxygen permeabilities for Hy lenses increased with increasing water 

content, because the water phase is the main responsible for the oxygen transmissibility. 

However, this correlation between oxygen permeability and water content was not 

observed for Si-Hy lenses. For example, a comparison between Biofinity (48% of 

EWC) and Acuvue Advance (47% of EWC) shows that the permeability of Biofinity is 

more than double that Acuvue Advance lens. The transmissibilities of Si-Hy lenses 

were practically five times higher than Hy lenses, with the exception of Avaira and 

Acuvue Advance where the differences were only 2-3 folds. It is known that the 

incorporation of bulky polysiloxane containing monomers to replace the poly-dimethyl 

siloxane (PDMS) macromers has been the strategy to maintain or increase the oxygen 

permeability and to reduce the crosslinking density44. From the values of the apparent 

permeability and taking into account the thicknesses of lenses, the transmissibilities of 

the lenses can be estimated. These calculations showed that only Acuvue Oasys (122±6) 

barrer/cm, Air Optix N&D (116±5) barrer/cm, Air Optix (114±5) barrer/cm, Biofinity 

(139±6) barrer/cm and  PureVision (101±4) barrer/cm have values above the critical 

value for the oxygen transmissibility (87.0±3.3 barrer/cm) and equivalent oxygen 

percentage (EOP ) of 17.9% established by Holden and Mertz for extended wear contact 

lenses45. The other lenses have lower values than this criterion and, therefore, they 

cannot be recommended for sleeping overnight because the low oxygen tension at the 

interface cornea-tears-lens (below 74 mmHg, the minimum pressure necessary to 

prevent corneal swelling) 46 could cause corneal swelling.  

 
3.3. Ionic conductivity results 

 
Though ionic diffusion in polymeric membranes is not a well understood phenomenon, 

this process presumably involves: 1) dissociation of the ions from the salt; 2) 

transference of the anion and cation to the aqueous medium, and finally, 3) diffusion of 

the ions in the confined water within the polymer matrix. Therefore, ionic mobility 
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depends on water flux which is a critical parameter together with the water uptake by 

the lens.  

Prior to determine the ionic conductivity of lenses at 35ºC, a calibration curve of 

conductivity vs. NaCl concentration was prepared. A linear correlation was obtained 

with a slope of 107.1±0.7 mS. Making use of this calibration, the behaviour of the Na+ 

concentration as a function of time was monitored. The results are shown in figures 3 

and 4 for conventional hydrogels and Si-Hy lenses, respectively. From the slopes 

obtained for each lens, the NaCl apparent permeability coefficient values, Ps, were 

calculated by means of eq. (3) and the results are listed in table 3, where Ps (Ps=Dmkm) 

represent the product of NaCl diffusivity (Dm) obtained by time-lag method and salt 

partition coefficient (km) of the lens. Both coefficients are also included in table 3 for all 

studied lenses.  

 

     FIGURE 3 

 

     FIGURE 4 

 

TABLE 3 

 

The values shown in table 3 for conventional hydrogel lenses, are in reasonable 

agreement with previously reported data on methacrylate hydrogels by Yasuda et al.30,31 

and with the values obtained by Hao Ju et al. for poly(ethylene oxide) hydrogels12. A 

close inspection of table 3 shows that the salt apparent permeability varies almost one 

order of magnitude among conventional hydrogel contact lenses and Si-Hy lenses. 

Considering the value of Na+ self-diffusion coefficient in pure water47 (ca. 2.089x10-5 

cm2/s), the tortuosity of the material composing the lens can be estimated according to 

the relation6  

D
D0=τ      (5) 

The estimated τ-values are collected in table 3. In general, the expected tortuosity 

decrease with increasing water content was observed for conventional hydrogels. These 

values are indicative that Acuvue Oasys, Air Optix N&D and Air Optix lenses have 

greater tortuosity in their channels than the other lenses, Acuvue Advance and 
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Purevision lenses presenting the lowest values. In studies of ion permeability for 

different contact lenses as a function of Vitamin E concentration, Cheng-Chun Peng et 

al.48 found a similar behaviour. Indeed,  the decrease in ion permeability was related to 

the increase of the loading of Vitamin E in all the lenses. The present study shows that 

the tortuosity is much greater for Acuvue Oasys than for other lenses such as Air Optix 

and Optix Night&Day and, therefore, the decrease in ion permeability by the addition of 

Vitamin E would be even more significant. Hence, our hypothesis is that lenses such as 

Acuvue Advance and PureVision that provide also the highest values of Vitamin E and 

ion permeability than the other lenses because of their lesser tortuosity. Therefore these 

lenses would satisfy the critical parameter for the lens motion on the eye (according to 

Domscheke et al.16 criterium) better than the others silicon hydrogel lenses. On the other 

hand, conventional hydrogel lenses would present similar response to the behaviour of 

the ion permeability of Vitamin E loaded in the lenses48.  

 
3.4. Water permeability results 

 
Water permeability has been analyzed to check for the correlation between water 

flux and water content and its relationship with the ionic transport through the lens, and 

this with the mobility of the lens on the cornea. The typical weight-loss evolution 

registered for the eight selected lenses at 23, 53 and 75% RH are shown in figures 5, 6 

and 7. As can be seen from figures 5, 6 and 7, the mass loss and flow rate data presented 

linear corralations at the three RH tested. From their slopes, the steady state water flux 

(Flux), 
dtA

dmFlux
⋅

= were estimated, being dm/dt the slope of the plot of sample mass 

vs. time of storage and A, the surface area of the lens exposed to the permeation 

experiment.  

 

FIGURE 5 

 

FIGURE 6 

 

FIGURE7 
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On the other hand, water permeability values were estimated for all the lenses 

and relative humidity gradients by dividing the Flux values by the experimental water 

pressure difference of the experiment, following the expression 

)
100

( 00 RHRHp

TFluxP
i

w

av
−
⋅

=     (6) 

where, pw
o is the water pressure at saturation at the temperature of the experiment, and 

(RHi-RHo) is the difference in relative humidity between the internal and external 

atmospheres. The obtained values for the water Permeability and Flux are gathered in 

table 4. On the other hand, in figures 8 and 9, the water permeability values (P) and the 

experimental steady state water flux (Flux) are plotted for all samples and relative 

humidity gradients from 100% RH to 23, 53 and 75 %RH, respectively. 

 

FIGURE 8 

 

FIGURE 9 

 

TABLE 4 

 

A close inspection of figure 8 shows the same permeability patterns for all studied 

lenses. The permeability decreases as the RH of the test decreases. The plot of water 

flux values (Figure 9) shows the oposite profile, that is, the flow increases as the RH of 

the test decreases (and the humidity gradient decreases). This trend could be expected 

considering that the lower the RH at which the sample is exposed, the greater the 

humidity gradient across the lens which, at the end, is the driving force of the water 

transmission. From these two figures, it can be observed that Air Optix and PureVision 

presented the highest values of water flux and transmissibility despite these two lenses 

contained the lowest amounts of equilibrium water content of the Si-Hy lenses. On the 

other hand, water flux and permeability values of conventional hydrogel lenses are 

strongly correlated with water uptakes. These trends are reasonable since the materials 

of those lenses with high equilibrium water contents and high fluxes can have lower 

crosslinking densities, possibly due to longer chains of hydrophylic comonomers 

constituing the lenses.  

 



 15 

4. Discussion 
 

Table 3 shows the results of salt apparent permeability, diffusion coefficient, partition 

coefficient (i.e. solubility coefficient) and tortuosity for some of the lenses considered in 

this study, together with the equilibrium water content to better show parameters trends. 

As it can be seen, the apparent permeability and diffusion coefficient values for 

conventional hydrogel lenses are in general about one order of magnitude higher than 

those for Si-Hy lenses. Also, the diffusion coefficient values increased significantly 

with increasing lenses equilibrium water content (EWC). Sodium-chloride diffusive 

permeability is well above 2x10-7 cm2/s for all lenses, value representing the critical 

limit to prevent lens adhesion to the epithelium and to enable lens movement during 

blinking14. These high values may be due to the confinement of water and ions in nano-

scale channels involving decreased degrees of freedom for diffusion in comparison with 

Si-Hy lenses. The presence of this type of water molecules has also been observed from 

DSC studies, which results has been plotted in figures 1 and 2 and the values of free and 

confined water collected in table 2. On the other hand, the pores in the hydrophobic 

phase present tortuosity values between 3-5 times higher than in hydrogel conventional 

lenses. Similar behaviour was observed for water confined in narrow cylindrical pores 

in carbon nanotubes (2-10 nm diameter), where a one-dimensionally ordered water layer 

is somewhat self-aligned to give an almost all-transzigzag arrangement49. Under this 

highly constricted condition, and taking into account that the water confined does not 

interact, or interact quite weakly with the surface, water diffusion is slower in 

hydrophobic channels than in bulk water, at least when lens is exposed to low HR% 

environments. This might be relevant in the behaviour of hydrogel and silicone 

hydrogel contact lenses as they are subjected to dehydration at the ocular surface50-53, 

and particularly when the environmental conditions change54,55.  

A recent work published by Martín-Montañez et al54 showed that among diverse 

conventional hydrogel and silicone hydrogel lenses, Comfilcon A was the lens with 

faster evaporation rates after exposure to extreme environmental conditions of low RH 

and high temperature. However, a comparison between Si-Hy lenses demonstrates that 

water flux and transmissibility values decrease when the EWC decreases. On the other 

hand, water confined within hydrophilic channels becomes more restricted than in 

hydrophobic ones due to stronger interactions between water molecules and pore walls, 

and thus, water diffusion decreases compared to its transport as bulk water. Therefore, 
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the nature and dimensions of the pores are important parameters for water and ion 

diffusion49. In this sense, water permeability values are lower for Si-Hy lenses than for 

Hy lenses, probably due to the tortuosity factor which is higher in the Si-Hy lenses than 

in conventional hydrogel lenses.  

Pozuelo et al.26 reported that, in general, the diffusion coefficients of water, Na+ 

and Cl- ions in conventional hydrogels were higher than in Si-Hy lenses and when the 

water content was above 25% and particularly above 35% where a percolation 

phenomenon was observed, presumably because of the critical balance of the 

hydrophilic and hydrophobic phases. In this way, when the diffusion of water through 

the lens is high, the diffusion of ions will also be high and therefore, a better 

physiological behaviour of the lens should be expected, in agreement with the present 

results.  

Therefore, the ion diffusion has been shown to be critical for the metabolism of 

the cornea but also to warrant the on-eye movement of the lens and to improve the 

comfort. Besides greater comfort, it is expected that Si-Hy lenses with such content of 

water, as occurs with conventional hydrogels with these water contents (25-35%), may 

move in the eye and avoid the adherence to the cornea that had this type of lenses. In a 

clinical paper comparing the movement of five different soft contact lenses including 

two silicone hydrogel materials (Balafilcon A and Galyfilcon A) and three conventional 

hydrogels (Etafilcon A, Nelfilcon A and Hilafilcon B), Wolffsohn et al. showed that 

their ability to move on the eye with blinking was very similar irrespective of their 

different water content and the observed asymmetries in ion and water transmissibility 

obtained in our work56. This finding is in agreement with the fact that over a percolation 

point that is met by all the lenses evaluated, the lenses will allow the formation of a 

hydrodynamic post-lens tear film over which the lens can move pushed by the external 

forces of the eye such as blinking. Furthermore, this value needs to be maintained after 

the lenses are worn for several hours, days or months. This seems to be the case as 

shown in a recent paper published by our group that predicts a 30% reduction in the 

ionic permeability after one month of daily lens wear39.  

In principle, the salt permeability data should be correlated with water uptake 

measured in the presence of the same concentration of salt (0.1M). In figure 10 we plot 

the variation of the apparent permeability of NaCl as a function of the reciprocal of 

hydration (1/H), (H=(EWC)/100). However, in most of the samples, the equilibrium 

uptake was not affected by the presence of salt, as observed in table 1. Only Frequency 
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55 (Methafilcon) and Acuvue 2 (Ethafilcon A) lenses significantly modified their 

thicknesses with 114.8 and 116.6 µm in the presence of water whereas these values 

were about 106 and 104µm, respectively, in the presence of salt solution. These results 

can be related with the character ionic of Frequency 55 and Acuvue2 lenses in 

comparison with non-ionic hydrogel lenses. 

 

FIGURE 10 

 

 As figure 10 shows, salt diffusivity (i.e. the Na+ conductivity) increases with 

equilibrium water content of the polymer but this behavior is not linear or exponential. 

There are certain phenomena of percolation around 55% hydration with remarkable 

increase of conductivity with a hydration increase of only 5-10%. Finally, we can 

observe in figure 10, the asymptotic tendency from the 60% water in the sodium 

diffusivity, where the apparent diffusivity of the sodium ions was in the 40-66x10-7 

cm2/s range. This is the case of the lenses Focus Dailies (Nelfilcon A) and Proclear 

One-day (Omafilcon A), Soflens One-day and Proclear, respectively. These values may 

possibly be related with the solubility of sodium in the polymer matrix of the lenses. 

Apparently, from a EWC of 70%, the value of the diffusivity tends to a constant value 

that may be related to the solubility of the salt in the polymer. Also this trend is pointing 

out that most of the hydrogel lenses show some selectivity for water over salt. Similar 

results has been presented by Sagle et al.57 in their study of hydrogels copolymer 

synthesized using co-monomers of poly(ethylene glycol) diacrylate (PEGDA) as 

crosslinker and acrylic acid (AA), 2-hydroxyethyl acrylate (HEA) and poly(ethylene 

glycol) acrylate (PEGA).  

Yasuda et al. 30,31 using the concept on the free volume theory, have proposed that water 

and salt diffusion coefficients through hydrogels can be interpreted as an exponential 

function of the reciprocal free volume function. Assuming that the free volume in 

hydrogels materials is proportional to their equilibrium water content (i.e. EWC), that 

water or salt diffusion is hindered by its polymeric network, and that the water 

molecules “bound” to it do not efficiently participate in diffusion, they reported that the 

salt apparent diffusion coefficient may be expressed as  

)11(lnln 0 −−=
H

KDDm     (7) 
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where D0 is the salt diffusion coefficient outside the membrane (i.e. in bulk solution). In 

this equation the salt is considered to be completely dissociated so that the salt apparent 

permeability Ps, is constant and independent of NaCl concentration. It is accepted that 

Na+ and Cl- ions diffuse with identical diffusion coefficient (D+=D-=Dm), where Dm 

represent the binary salt diffusivity, H is the hydration of the hydrogel which represents 

the volume fraction of water absorbed by the contact lens at equilibrium and K is a 

proportionality constant related to the characteristic volume required (vf) for a molecule 

diffusing though the lens. 

In conventional hydrogels we can express that vf= Hvf,water,, but in Si-Hy since 

the siloxane phase is very porous the relation should be function of the available volume 

in the Si-Hy phase. Then, the average free volume available in the polymer will be 

vf=Hvf,water+(1-H)vf,polym,).  

As can be seen in figure 10, the plotted results present significant deviations from the 

theory of Yasuda et al. 30,31. The results do not show a clear linear relationship between 

the apparent diffusion coefficient and the reciprocal of the hydration. In solid line, the 

extrapolation for hydrogels membranes (HEMA 32.6%) and pure water have also been 

plotted. The intercept represents the diffusion coefficient of NaCl in pure water, about 

D0=2.089.10-5 cm2/s at 35ºC47. This result confirms that salt diffusion occurs through the 

water phase of the lens. However, in the case of Si-Hy lenses, the transport through the 

free volume available in the polymer matrix (siloxane phase) can be relevant due to the 

chemical structure of the lens, as it is observed for the Acuvue Advance, PureVision and 

Biofinity lenses in which the diffusivity is 4 or 5 times higher than in Acuvue Oasys, 

Air Optix N&D, Air Optix and Avaira. 

In the solution-diffusion model, the salt apparent permeability coefficient, Papp, 

depends on the product of the solubility of a penetrant in a polymer, km, times the 

effective diffusivity, Dm, of that penetrant through the polymer. Then, the eq(6) can be 

written as 

)11(lnlnln 0 −−+=
H

KDkP mapp    (8) 

The experimental natural logarithm of sodium chloride permeability data for these 

contact lenses is presented in figure 11 as a function of [(1-H)/H] where H is the 

equilibrium water content. A close inspection of this figure shows that the apparent 

permeability coefficient of Hydrogels and Si-Hy contact lenses is function not only of 

water content but also of the polymer chemical structure, because the free volume cavity 
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size determines the diffusion coefficient of penetrates, and controls the diffusion 

selectivity of one penetrant over another. Similar results have been obtained by other 

researchers46. From our experimental results, the value of apparent permeability in pure 

water from the extrapolation of permeabilities for all the lenses (P0= D0km) is 5.1x10-6 

cm2/s, and the value of parameter K of eq(7) is K=1.4±0.3. This parameter is sensitive 

to the characteristic volume required for water or salt molecules to diffuse through the 

lens. From our studies we can conclude that Si-Hy lenses (which equilibrium water 

content was smaller than conventional Hydrogels) can present diffusion possibly due to 

water confined into the porous of the polymer matrix. 

 

FIGURE 11 

 

Salt partition coefficient, km, was also determined from experiments of 

permeation and time-lag method by mean of the relation (Ps=Dmkm). Figure 12 plots the 

equilibrium partition coefficients versus the equilibrium water content at 35ºC for all the 

studied lenses. In general, the partition coefficients measured for conventional Hy and 

Si-Hy lenses were below the ideal partitioning line. Only, the Soflens One-day, Acuvue 

Oasys, PureVision and Avaira lenses have values of partition coefficient above this line 

or just in the line. This result is in good agreement with the data obtained through 

different experimental techniques by others researchers in similar contact lenses 

materials5,9. In general, Hydrogel contact lenses exhibited higher km values than Si-Hy 

contact lenses in accordance with their higher water content. This result is reasonable 

since the amount of salt sorbed by the material polymer network configuring the lens 

can, in some cases, be proportional to the equilibrium water content (EWC). If neither 

salt ions nor water interact with the polymer matrix, the partition coefficient tends to the 

value of the equilibrium water content, i.e. the saturated-water volume fraction in the 

lens47. In such situation, the parameter km and ECW present the same values, (km= 

EWC%). Figure 12 shows that Air Optix N&D, PureVision, Avaira and Focus Dailies 

lenses, have km values practically identical to their EWC values, and are situated 

practically in the ideal line.  

 

FIGURE 12 

 



 20 

Exceptionally, Acuvue Oasys and Biofinity lenses showed km values closed to 

those for hydrogels lenses. On the other hand, the Soflens One-day lens presented a 

much higher km value (0.78) than the others conventional hydrogel lenses (in the 0.52-

0.55 range). The Frequency 55 lens showed the opposite behaviour, with a low km value 

of 0.44. Surprisingly, the behaviour exhibited by Frequency 55 could be related with the 

character ionic of this lens. This observation suggests that soft contact lenses with 

polymeric chemicals structures accompanied of ionic substituents should have lower km 

values, such as Guan et al.5 confirmed applying Flory-Rehner-Donnan (FRD) theory.  

Water transport through the lenses was measured at three humidity gradients 

considering that in the eye contact surface the humidity is near 100% and the external 

surface might be in contact with a humid (75%), an intermediate (53%) or a dry 

atmospheric environment (23% RH). The results collected in table 4 and plotted in 

figures 8 and 9 showed that the water transport was affected by humidity and by the lens 

tested. As figure 8 shows, the water flux through the lenses increases with the humidity 

gradient established across lens thickness, effect expected from the observation of 

Fick’s first law at stationary state. These flux increased about 10% when air humidity 

decreases from 75 to 53%, and another 10% from 53 to 23%. Nevertheless, when mass 

transport was compared considering the humidity gradient, this is, when the parameter 

inspected is the water permeability (instead of the water flux) as it is plotted in Figure 9, 

the data profile changes dramatically. The water permeability values of all lenses 

measured with a 75%-100% gradient are much higher than those with a 53-100% 

gradient and these than the ones obtained with a 23-100% RH gradient. This 

observation has been often reported for hydrophilic polymer membranes and is a 

consequence of water swelling and polymer plasticization. The higher the humidity at 

which a hydrophilic polymer is exposed the higher the water sorbed in the polymeric 

matrix. This water swells polymer chains increasing the void volume through which 

water diffusion takes place and reducing the polymer intersegment interactions 

providing higher flexibility to polymer chains. When lenses are compared, the water 

permeability values are higher for conventional hydrogel lenses than for Si-hy ones at 

the three humidity gradients studied. However, water fluxes are within the same range 

due to differences in lens thickness which tend to compensate for differences in 

permeability. Considering the applicability of the solution-diffusion model, the water 

solubility values in the conventional lenses were higher (nearly double according to the 

EWC) than in silicone lenses. Since their water permeabilities did not double those of 
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silicone lenses, the water diffusivities in conventional lenses should be slower. This 

characteristic could be explained by the already mentioned stronger interaction of water 

molecules with the polymeric matrix on the conventional hydrogel lenses. 

Finally, a close inspection of Table 3 shows that ionic hydrogels lenses such as 

Frequency 55 and Acuvue2, exhibited lower ionic permeability, diffusivity and  km 

values than non-ionic conventional hydrogel lenses. If the values of Ps and Dm of Si-Hy 

lenses are compared, ionic lenses such as PureVision displayed higher values of 

permeability and diffusivity than most non-ionic lenses. Also, the tortuosity is lower 

than in non-ionic Si-Hy lenses, which could be related with the ionic character of the 

lens material. Similar results were observed when water flux and water permeability 

values are compared for all the humidity gradients (see table 4). Indeed, ionic lenses 

such as Frequency 55 and PureVision showed higher values of water permeability and 

flux than the others lenses and values were generally higher for ionic Si-Hy lenses than 

for ionic conventional hydrogel lenses. Therefore, it can be concluded that, in general, 

the ionic character of the lens material enhance the properties of salt permeability and 

diffusivity, as well as water permeability and flux through hydrogels materials. 

Moreover, the ionic lenses may provide higher stability, as measured by salt and water 

transport, producing an ideal balance ratio that could be especially relevant in eyes 

exposed to dry environmental conditions. 

 
 
Conclusions 

 

Conventional hydrogel and Si-Hy contact lenses were studied respect to oxygen, 

NaCl and water transport with the aim of analyzing the influence of water content and 

chemical structure of polymer on the apparent permeability of salt and water flux. From 

the observed results we can conclude that the ionic permeability, diffusivity and 

partition coefficient increases with the water content.  

The increase of ion permeability with water content does not follow a clear trend 

indicating a possible dependence of the chemical structure of the polymer. This may be 

related to the diffusion of sodium ions occurs, not only through the hydrophilic 

channels, but also through hydrophobic channels where a ionic diffusivity is observed 

even in case of equilibrium water content below 5%. There seems to be that from a 
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EWC of 70% the value of the permeability tends to a constant value that may be related 

to the solubility of the salt in the polymer.  

The partition coefficients are smaller in Si-Hy than conventional hydrogel lenses 

and only in Acuvue Oasys and Soflens One-day are higher than equilibrium water 

content that could be related with the tortuosity the highest in case that Acuvue Oasys 

lens and the smallest for Soflens One-day.  

The water permeability of Si-Hy lenses is lower than Hy lenses probably 

because of higher water content of the conventional lenses. However, since a large 

portion of the sorbed water has a restricted mobility because of interaction with the 

polymeric matrix, the final permeability of all lenses is fairly similar. Moreover, the 

final water flux values are within the same range thanks to differences in lens thickness 

and tortuosity. Also, it has been shown that the water flux in all lenses increase with the 

water gradient across the lens thickness, although the exposure to drier conditions 

reduces the permeability of the lenses.  

Our results showed that the ionic character of the lens material enhance the 

properties of salt and water permeability, diffusivity, and flux through soft contact 

lenses. 
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Table 1. Technical parameters of the lenses used in this study. Values of oxygen 
permeability, diffusion coefficient and thicknesses measured in water and saline 
solution. The values with asterisk has been obtained from a previous reference30. 

Lens 
 

Material 
USAN  

EWC 
(%) 

Base curve Diameter P 
Barrer 

Dx106 
cm2/s 

Tav 
(water) 

Tav 
(saline) 

Silicone hydrogel 
Acuvue Oasys Senofilcon A 38 8,4 14 102,6* 13,5* 90,3 89 
Air Optix N&D Lotrafilcon A 24 8,6 13,8 109,2 15,1 94,4 93,8 
Air Optix Lotrafilcon B 33 8,6 14,2 106,8 14,7 97.0 95,2 
Acuvue Advance Galyfilcon A 47 8,3 14 58,5 7,8 99,6 99,1 
Biofinity Confilcon A 48 8,6 14 138,6* 17,8* 99.0 100,1 
PureVision  Balafilcon A 36 8,6 14 100,5* 15,2* 94,0 93,6 
Avaira Enfilcon A 46 8,5 14,2 54,5* 10,1* 119,6 119,7 

Conventional hydrogel 
Focus Dailies Nelfilcon A 69 8,7 14 24,5 2,5 122,3 118,8 
Proclear One-day Omafilcon A 60 8,7 14,2 23,2 1,8 129,3 127,1 
Soflens One-day Hilafilcon A 59 8,6 14,2 25,3 2,0 116,5 119 
Proclear Omafilcon A 62 8,6 14,2 13,8* 1,1* 93,2 92,3 
Frequency 55 Methafilcon 55 8,7 14,4 18,9 1,4 114,8 105,8 
Acuvue 2 Ethafilcon A 58 8,7 14 22,3* 0,9* 116,6 103,5 
 

 

Table 2. Properties of several lenses measured by DSC: Tf (freezing point of the water 
confined in the pores), Tm1 (initial melting temperature), Tm2 (final melting 
temperature), ∆Tm (Tm2 - Tm1), and percentage of confined water (water in pores/total 
water).The values and the uncertainties in the column of free water represent the mean 
values and SD of three lenses measured by DSC. 

Lens comercial 
name 

EWC 
(%) 

Tf  
(ºC) 

Tm1  
(ºC) 

Tm2  
(ºC) 

∆Tm  
(ºC) 

Free 
WC 
(%) 

Confined 
water  
(%) 

Air Optix N&D 24 -22.0 -26.8 1.2 28.0 13.1±0.6 10.9±0,6 
Air Optix 33 -21.0 -28.0 1.2 29.2 22.2±2.1 10.8±0,4 

Acuvue Advance 47 -21.4 -27.8 1.2 29.0 13.0±0.5 34.0±1,1 
PureVision 36 -27.7 -42.5 0.2 42.7 19.4±1.8 16.6±1,6 

Proclear One-day 60 -18.2 -17.5 2.5 20.0 13.7±0.6 46.3±1,7 
Soflens One-day 59 -13.6 -18.5 2.0 20.5 12.3±0.8 46.7±1,8 

Frequency 55 58 -20.6 -13.8 3.0 16.8 16.1±0.7 41.9±1,5 
Acuvue2 58 -21.0 -15.5 2.9 18.4 16.0±0.8 42.0±1,2 

 

 

 

 

 

Table 3. Values obtained for the ionic apparent coefficient permeability, Ps, determined 

from the conductivity measurements. The errors shown in the columns of apparent 
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permeability and diffusion coefficients have been calculated from the parameters of the 

straight line that fits the experimental values taking into account that each measurement 

was repeated three times. The character ionic(I) or non-ionic(NI) of the lens are 

indicated together with the material name in column  material USAN. 

Lens commercial 
name 

Material 
USAN  

EWC 
(%) 

Psx10-7 

(cm2/s) 

Dmx10-7 

(cm2/s) 
km τ 

Acuvue Oasys Senofilcon A/NI 38 0,97±0,12 2.3±0,5 0.42 9.5 
Air Optix N&D Lotrafilcon A/NI 24 1,3±0,15 4.1±0,5 0.23 7.1 
Air Optix Lotrafilcon B/NI 33 3,4±0,3 3.9±0,8 0.29 7.3 
Acuvue Advance Galyfilcon A/NI 47 8.2±0,5 23.4±1,4 0.35 3.0 
Biofinity Confilcon A/NI 48 10.5±0,4 14.0±1,7 0.42 3.9 
PureVision  Balafilcon A/I 36 6.7±0,3 18.0±1,5 0.37 3.4 
Avaira Enfilcon A/NI 46 6.0±0,5 7.2±1,0 0.35 5.4 
Freshlook Phemfilcon A/I 55 5.5±0,18 8.3±1,2 0.52 5.0 
Focus Dailies Nelfilcon A/NI 69 44,1±0,5 66±2 0.53 1,8 
Proclear One-day Omafilcon A/NI 60 37,7±0,6 60±2 0.55 1.7 
Soflens One-day Hilafilcon A/NI 59 31,1±0, 5 42±3 0.78 1.4 
Proclear Omafilcon A/NI 62 32.8±0,8 60±4 0,55 1.9 
Frequency 55 Methafilcon /I 55 18.5±0,5 41±5 0.44 2.2 
Acuvue 2 Ethafilcon A/I 58 28.9±0,7 55±5 0.53 1.9 
 

 

Table 4. Water flux (in g/[h·m2]) and permeability (P in g·m/[m2·dia·atm]) values of soft 

contact lenses. The SD shown in the columns of permeability and flux have been 

calculated from the parameters of the straight line that fits the experimental data of 

weight-loss taking into account that each measurement was repeated three times. 

Humidity gradient 75%-100% 53%-100% 23%-100% 

Lens commercial 
name 

Material 
USAN  

P 
 
 

Flux 
 

P 
 

Flux P 
 

Flux 
 

Acuvue Oasys Senofilcon A 1.38±0.05 106±4 0.80±0.04 115±5 0.60±0.02 141±5 
Air Optix Lotrafilcon B 1.40±0.06 99±4 0.93±0.04 125±5 0.63±0.02 140±4 
Acuvue Advance Galyfilcon A 1.76±0.07 122±5 1.04±0.04 136±5 0.62±0.02 134±5 
Biofinity Confilcon A 1.46±0.06 101±4 0.99±0.04 131±5 0.69±0.03 150±6 
PureVision  Balafilcon A 2.32±0.10 161±7 1.14±0.05 149±7 0.75±0.03 162±6 
Avaira Enfilcon A 2.07±0.10 120±6 1.28±0.04 139±4 0.82±0.03 146±5 
Soflens One-day Hilafilcon A 1.72±0.14 102±8 1.03±0.02 116±3 0.67±0.02 123±4 
Frequency 55 Methafilcon  2.19±0.09 132±6 1.25±0.03 142±4 0.86±0.03 161±6 
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FIGURE CAPTIONS 
 
Figure 1. DSC curves for different silicone-hydrogel (Si-Hy) contact lenses. 

Figure 2. DSC curves for different conventional hydrogel contact lenses. 

Figure 3. Sodium ion concentration versus time for each of one of the Si-Hy contact 
lenses used in this study.  

Figure 4. Sodium ion concentration versus time for each of one of the conventional 
hydrogel contact lenses used in this study. 

Figure 5. Weight loss of the lenses as a function of time observed in the evaporation 
cell for 75%HR and 23ºC in conditions of saturated saline solution.  

Figure 6. Weight loss of the lenses as a function of time observed in the evaporation 
cell for 53%HR and 23ºC in conditions of saturated saline solution.  

Figure 7. Weight loss of the lenses as a function of time observed in the evaporation 
cell for 23%HR and 23ºC in conditions of saturated saline solution.  

Figure 8. Experimental values calculated for the steady state water flux obtained from 
the water-transport rates for different Hy and Si-Hy contact lenses.  

Figure 9. Experimental values of water permeability calculated from the water-
transport rates for different Hy and Si-Hy contact lenses. 

Figure 10. Relationship between the apparent diffusion coefficient of NaCl and the 
reciprocal of EWC(%) in pure water for the lenses studied. The line represents the fit 
between the limit values corresponding to NaCl diffusion in water and HEMA of 32.6% 
of water content for comparison. 

Figure 11. NaCl permeability obtained from conductivity measurements as a function 
of (1/H)-1. Open symbols conventional hydrogel lenses. Filled symbols Si-Hy lenses.  

Figure 12. Equilibrium partition coefficients, km, of NaCl in hydrogels and Si-Hy 
contact lenses as a function of equilibrium water content at 35ºC. Squares indicate the 
hydrogel lenses and rombs the Si-Hy contact lenses. 
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Figure 3. 
 

 
Figure 4 
 

0 500 1000 1500 2000 2500

0,0

2,0x10-4

4,0x10-4

6,0x10-4

8,0x10-4

1,0x10-3

 Focus Daylies
 Proclear One-day
 Soflens One-day
 Proclear
 Frequency 55
 Acuvue 2

Na
Cl

 c
on

ce
nt

ra
tio

n 
(M

)

Time (s)



 31 

 
Figure 5 
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Figure 6 

 

 

 
Figure 7 
 



 33 

 
Figure 8. 
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Figure 9.  
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Figure 10 
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Figure 11 
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Figure 12 
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