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Abstract

The role of the derivatives at the iterative expression of methods with memory for solving nonlinear equations
is analyzed in this manuscript. To get this aim, a known class of methods without memory is transformed into
different families involving or not derivatives with an only accelerating parameter, then they are defined as discrete
dynamical systems and the stability of the fixed points of their rational operators on quadratic polynomials are
studied by means of real multidimensional dynamical tools, showing in all cases similar results. Finally, a different
approach holding the derivatives, and by using different accelerating parameters, in the iterative methods involved
present the most stable results, showing that the role of the appropriated accelerating factors is the most relevant
fact in the design of this kind of iterative methods.

Keywords: Nonlinear equations, iterative method with memory, stability, bifurcation, basin of attraction,
dynamical plane.

1. Introduction

The design of iterative methods for solving nonlinear equations or systems, f(x) = 0, is a challenging task
that has proved to be bountiful in the last decades. From the Kung-Traub’s conjecture [10], many authors have
devoted their efforts in designing efficient optimal methods of increasing order of convergence. Kung and Traub
also worked on iterative methods with memory, but it has been very recently when this kind of schemes have been
re-discovered and many authors have dedicated their efforts in constructing new schemes with better convergence
properties than their known partners. In this terms, the early works of Traub [17], Neta [12] and recent ones by
Petković et al. [14, 15], Lotfi et al. [4, 11], Wang et al. [18], among others, give a close idea of the general
interest on these methods. However, all of these researches focused their works on the design of the methods
trying to improve their numerical aspects (convergence, number of functional evaluations, accelerators, etc.); only
some recent works [1] approach this problem by means of the stability analysis, trying to find the anomalies and
advantages of methods with memory. To get this aim, previous results in real discrete dynamics have been used
(see, for example, [5, 7, 9, 16]).

Our goal in this paper is to carry out a dynamical study of some methods with memory with and without
derivatives with a common without-memory partner. As the fixed point iteration functions have more than one
variable, some auxiliary functions are introduced to facilitate the calculations. So, specific dynamical concepts are
adapted to achieve the appropriate numerical sense.

On the other hand, we also analyze the local convergence of each method with memory under study. For it, we
use the following result, that can be found in [13].

Theorem 1. Let ψ be an iterative method with memory that generates a sequence {xk} of approximations to the
root α, and let this sequence converges to α. If there exist a nonzero constant η and nonnegative numbers ti,
i = 0, 1, . . . ,m, such that the inequality

|ek+1| ≤ η
m∏
i=0

|ek−i|ti
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holds, then the R-order of convergence of the iterative method ψ satisfies the inequality

OR(ψ, α) ≥ s∗,

where s∗ is the unique positive root of the equation

sm+1 −
m∑
i=0

tis
m−i = 0.

Once the order of convergence is stated, we focus our efforts in the main results of this manuscript, that is,
the stability analysis and the study of the role of accelerators and the decision of holding the derivatives in their
performance, or substituting them by divided differences.

1.1. Discrete dynamical systems

As it has been previously stated, the dynamical behavior of the operators associated to numerical methods is an
efficient tool for analyzing the stability of the methods. In the following, we build the discrete dynamical system
associated to an iterative method with memory in order to carry out its dynamical study.

The expression of an iterative method with memory, which uses two previous iterations to calculate the follow-
ing estimation, is

xk+1 = g(xk−1, xk), k ≥ 1,

where x0 and x1 are the initial estimations. In order to obtain the fixed points of this method, we define [1] the
fixed point function G : R2 −→ R2 by means of:

G (xk−1, xk) = (xk, xk+1),

= (xk, g(xk−1, xk)), k = 1, 2, . . . ,

being x0 and x1 the initial estimations. This definition can be extended in a natural way to adapt it to iterative
schemes with memory that use more than two previous iterations per step.

As (xk−1, xk) is a fixed point of G if

G (xk−1, xk) = (xk−1, xk),

then, xk+1 = xk and xk−1 = xk.
We have defined a discrete dynamical system in the real plane from function G : R2 → R2 given by

G(z, x) = (x, g(z, x))

where g is the operator of the iterative method with memory. Fixed points (z, x) of G satisfy z = x and x =
g(z, x).

In the following, we recall some basic real dynamical concepts. If a fixed point (z, x) of operator G is different
from (r, r), where r is a zero of f , it is called strange fixed point. On the other hand, the orbit of a point x̄ ∈ R2 is
defined as the set of successive images of x̄ by the vector function, {x̄, G(x̄), . . . , Gm(x̄), . . .}.

The dynamical behavior of the orbit of a point of R2 is classified depending on its asymptotical behavior. So,
a point x∗ ∈ R2 is a k-periodic point if Gk (x∗) = x∗ and Gp (x∗) ̸= x∗, for p = 1, 2, . . . , k − 1. The stability of
fixed points for multivariable nonlinear operators, see for example [16], satisfies the following statements:

Theorem 2. Let G from Rn to Rn be C2. Assume x∗ is a k-periodic point. Let λ1, λ2, . . . , λn be the eigenvalues
of G′(x∗).

a) If all the eigenvalues λj have |λj | < 1, then x∗ is attracting.

b) If one eigenvalue λj0 has |λj0 | > 1, then x∗ is unstable, that is, repelling or saddle.

c) If all the eigenvalues λj have |λj | > 1, then x∗ is repelling.
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In addition, a fixed point is called hyperbolic if all the eigenvalues λj of G′(x∗) have |λj | ̸= 1. In particular,
if there exist an eigenvalue λi such that |λi| < 1 and an eigenvalue λj such that |λj | > 1, the hyperbolic point is
called saddle point.

Moreover, a point x is a critical point of G if the associate Jacobian matrix G′(x) satisfies det(G′(x)) = 0.
One particular case of critical points, for iterative methods of convergence order higher than two, are those fixed
points withassociated null eigenvalues λj = 0, ∀j. These points are called superattracting.

Then, if x∗ is an attracting fixed point of function G, its basin of attraction A(x∗) is defined as the set of
pre-images of any order such that

A(x∗) =
{
x(0) ∈ Rn : Gm(x(0)) → x∗,m→ ∞

}
.

The set of the different basins of attraction define the dynamical plane of the system. The dynamical plane of a
method is built by iterating a mesh of points and painting them in different colors depending on the attractor they
converge to. The algorithms used appear in [2]; in this manuscript we have used a maximum number of iterations
of 40, a mesh of 400× 400 points and a tolerance of 10−3.

The rest of this paper is summarized as follows: in Section 2, the design and convergence of some classes of
iterative schemes with memory are presented; these families differ in the use (or not) of derivatives in their iterative
expression and also on the number of accelerators used. Sections 3 and 4 are devoted to the real multidimensional
analysis of these classes by using the stability of fixed points of the rational functions obtained when applying the
methods on low-degree polynomials and also by means of bifurcation diagrams. Finally, some conclusions are
stated.

2. Modified parametric family with memory

The family of fourth-order parametric methods under study was presented in [8] as an efficient class to estimate
the solution of nonlinear systems of equations. Its iterative expression in the scalar case is

yk = xk − θ
f(xk)

f ′(xk)
,

tk = xk − f(yk) + θf(xk)

f ′(xk)
,

xk+1 = xk − f(tk) + f(yk) + θf(xk)

f ′(xk)
, k = 1, 2, . . .

and its local order of convergence is three, being fourth-order for θ = ±1, under standard conditions. We denote
this family by HMT.

In [1] this class was modified, by substituting the derivative f ′(xk) appearing in all the steps by f [xk, wk]
(where wk = xk + γkf(xk)), where γk is the acceleration parameter, to obtain a class of methods with memory
denoted by MHMT. Its iterative expression is

γk = − 2

f [xk, xk−1]
,

wk = xk + γkf(xk),

yk = xk − θ
f(xk)

f [xk, wk]
, (1)

tk = xk − f(yk) + θf(xk)

f [xk, wk]
,

xk+1 = xk − f(tk) + f(yk) + θf(xk)

f [xk, wk]
, k = 1, 2, . . .

and its order of convergence was proved to be at least
1

2

(
3 +

√
13
)

if θ ̸= 0, and 2 +
√
6 if θ = 1. Its stability

properties were studied on x2 − 1, by using the tools of multidimensional real dynamics, and although it was
showed to be stable in general, some unstable elements were found; in particular, two strange attractors were
detected.
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2.1. Design and local convergence
It is possible to design other classes with memory from HMT family, avoiding the use of divided differences

(that is, preserving the derivatives). In this paper, we get two different ways to get this aim. In the first case, we
add to the derivative appearing in each step the term γf(xk). The iterative expression of the resulting class is

yk = xk − θ
f(xk)

f ′(xk) + γf(xk)
,

tk = xk − f(yk) + θf(xk)

f ′(xk) + γf(xk)
,

xk+1 = xk − f(tk) + f(yk) + θf(xk)

f ′(xk) + γf(xk)
, k = 1, 2, . . .

It is easy to prove that the third-order of convergence is held and the error equation is ek+1 = (1 − θ)(γ +

2c2)(γ + (1+ θ)c2)e
3
k +O(e4k), where c2 =

f ′′(α)

2f ′(α)
. Moreover, we get fourth-order of convergence for θ = 1 (as

in the original method), but not for θ = −1.
To transform the iterative family in other one with memory increasing the order of convergence we need that

γ = −2c2 or γ = −(1 + θ)c2. It can be done combining derivatives and divided differences,

γak = −f
′[xk, xk−1]

f ′(xk)
and γbk = −1 + θ

2

f ′[xk, xk−1]

f ′(xk)
,

or by using only divided differences,

γak = −f
′[xk, xk−1]

f [xk, xk−1]
and γbk = −1 + θ

2

f ′[xk, xk−1]

f [xk, xk−1]
.

The first estimations are simpler and use a lower number of operations but, when they are applied on quadratic
polynomials, the resulting rational functions no longer depend on the previous iterate, xk−1, so they cannot be con-
sidered an iterative methods with memory. So, the second way to estimate the accelerating parameter is considered.
Therefore, we get

γak = −f
′(xk)− f ′(xk−1)

f(xk)− f(xk−1)
,

yk = xk − θ
f(xk)

f ′(xk) + γakf(xk)
, (2)

tk = xk − f(yk) + θf(xk)

f ′(xk) + γakf(xk)
,

xk+1 = xk − f(tk) + f(yk) + θf(xk)

f ′(xk) + γakf(xk)
, k = 1, 2, . . .

denoted by MF1a, or

γbk = −1 + θ

2

f ′(xk)− f ′(xk−1)

f(xk)− f(xk−1)
,

yk = xk − θ
f(xk)

f ′(xk) + γbkf(xk)
, (3)

tk = xk − f(yk) + θf(xk)

f ′(xk) + γbkf(xk)
,

xk+1 = xk − f(tk) + f(yk) + θf(xk)

f ′(xk) + γbkf(xk)
, k = 1, 2, . . .

denoted by MF1b. The local convergence of these schemes is analyzed in the following result. As MF1a has been
studied in [3], we analyze the second option with derivatives, MF1b, but giving information about the coincidences
and differences between them. In this case, both families have the same order of convergence, except for θ = −1.

4



Theorem 3. Let α be a simple zero of a sufficiently differentiable function f : D ⊂ R → R in an open interval
D. If x0 and x1 are sufficiently close to α, then the order of convergence of methods with memory (3) is at least
1

2

(
3 +

√
13
)
. The error equation is,

ek+1 =
1

2
(θ − 1)2(θ + 1)c2(2c

2
2 − 3c3)ek−1e

3
k +O4(ek−1ek),

where cj =
1

j!

f (j)(α)

f ′(α)
, j = 2, 3, . . . and O4(ek−1ek) indicates that the sum of exponents of ek−1 and ek in the

rejected terms of the development is at least 4. However, if θ = 1, the error equation is

ek+1 =
1

2
(−8c52 + 24c32c3 − 18c2c

2
3)e

2
k−1e

4
k +O6(ek−1ek),

being the local order 2 +
√
6. Finally, taking θ = −1 in (3), the resulting error equation is of fourth-order of

convergence,
ek+1 = 2c2(2c

2
2 − 2c3)e

4
k +O4(ek−1ek).

Proof: By using Taylor series expansions, we obtain

yk − α = ek − θ
f(xk)

f ′(xk) + γbkf(xk)

= (1− θ)ek − θ2c2e
2
k +

1

2
θ(1 + θ)

(
2c22 − 3c3

)
ek−1e

2
k +O3(ek−1ek),

then, the Taylor development of the second step is

tk − α = ek − f(yk) + θf(xk)

f ′(xk) + γbkf(xk)

= −1

2

((
−1 + θ2

) (
2c22 − 3c3

))
ek−1e

2
k +

1

2

(
−1 + θ2

) (
2c32 − 5c2c3 + 4c4

)
e2k−1e

2
k +O4(ek−1ek)

and finally the error equation yields

ek+1 = −(θ − 1)2(θ + 1)c2(2c
2
2 − 3c3)ek−1e

3
k +O4(ek−1ek).

By using Theorem 1, the unique positive root of polynomial p2 − 3p− 1 gives us the R-order of the method, being
in this case p = 1

2

(
3 +

√
13
)
. In the particular case θ = 1, it can be checked that the polynomial whose positive

root gives us the local order is p2 − 4p− 2, that yields p = 2 +
√
6. 2

On the other hand, returning to the initial class (2), it is not necessary to hold the same accelerating parameter
at the denominator of all the steps in the process; if different accelerating parameters, γ1, γ2 and γ3, are used in
the iterative expression, then the analysis of the convergence of the resulting family without memory shows that,
fixing γ2 = γ3 = θγ1, the fourth order of convergence is held for both original values, θ = ±1, being the error
equation in this case

ek+1 = −(θ2 − 1)(θγ1 + 2c2)c2e
3
k +O(e4k).

By estimating γ1 = −2

θ
c2, we get

γ1k = −1

θ

f ′[xk, xk−1]

f [xk, xk−1]

yk = xk − θ
f(xk)

f ′(xk) + γ1kf(xk)
, (4)

tk = xk − f(yk) + θf(xk)

f ′(xk) + θγ1kf(xk)
,

xk+1 = xk − f(tk) + f(yk) + θf(xk)

f ′(xk) + θγ1kf(xk)
, k = 1, 2, . . .

that is another class of iterative schemes with memory, denoted by MF2. The local convergence of this scheme is
analyzed in the following result, whose proof is similar to that of Theorem 3.
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Theorem 4. Let α be a simple zero of a sufficiently differentiable function f : D ⊂ R → R in an open interval
D. If x0 and x1 are sufficiently close to α, then the order of convergence of methods with memory (4) is at least
1

2

(
3 +

√
13
)
. The error equation is

ek+1 = −2(θ2 − 1)c2(2c
2
2 − 3c3)ek−1e

3
k +O4(ek−1ek),

where cj =
1

j!

f (j)(α)

f ′(α)
, j = 2, 3, . . . However, if θ = 1, the error equation is

ek+1 = −(4c52 + 12c32c3 − 9c2c
2
3)e

2
k−1e

4
k +O6(ek−1ek),

being the local order 2 +
√
6 in this case and if θ = −1, the resulting error equation is

ek+1 = 2(−2c22c3 + 3c23)e
2
k−1e

4
k +O6(ek−1ek),

and the local order is in this case 2 +
√
5.

In the following sections, the rational functions obtained when the proposed families with memory are applied
on a set of real quadratic polynomials are analyzed by using the dynamical tools described in the Introduction.

As our aim is to analyze the dynamical behavior of the proposed families on real quadratic polynomials, we
will study the fixed point operator associated to the presented families on p1(x) = x2 − 1, p2(x) = x2 + 1 and
p3(x) = x2, that will be denoted by M j

1 (z, x, θ), M
j
2 (z, x, θ) and M j

3 (z, x, θ), respectively, where j = 1a, 1b, 2
depending on the analyzed family is (2), (3), or (4). We choose these polynomials since it is known (see [6]) that
any quadratic polynomial, by an affine change of variables reduces to one of them. The dynamics of operators
associated to affine conjugate functions are equivalent. Let us observe that each one of the previous operator is
a function of two variables: the last iteration, xk (denoted by x), the previous one xk−1 denoted by z and one
parameter, θ.

In order to analyze the stability of the members of the class MF (including MF1a, MF1b and MF2), we study
the asymptotic behavior of the fixed points of the respective rational functions obtained by applying the fixed
point operator MF on each one of the polynomials, pi(x) i = 1, 2, 3. In previous analysis, it was found that
the only attracting strange fixed point of method MHMT on quadratic polynomials was (0, 0), in the interval
−4 < θ < −2 (see [1]) and strange attractors were found. A similar behavior is found in [3] for MF1a on
quadratic polynomials, where period-doubling bifurcations appear for some values of parameter θ, including an
area of chaotic performance. In the following, we complete the analysis with MF1b and MF2.

3. Multidimensional dynamical analysis of family MF1b

Now, we study the behavior of the operator associated to family MF1b on quadratic polynomials. Firstly, we
study the associate fixed point operator on p1(x) = x2 − 1,

M1b
1 (z, x, θ) =

(
x, x− C −D − (x+ z)((x− C −D)2 − 1)

−θx2 + θ + x2 + 2xz + 1

)
,

where

C =
θ
(
x2 − 1

)
(x+ z)

−θx2 + θ + x2 + 2xz + 1

and

D =

(
x2 − 1

)
(x+ z)

(
θ(x+ 1)(2x+ z − 1)− x2 − 2xz − 1

) (
θ(x− 1)(2x+ z + 1)− x2 − 2xz − 1

)
(−θx2 + θ + x2 + 2xz + 1)

3 .

In an analogous way as in the Introduction, all the fixed points have two equal components.

Proposition 1. The fixed points (and their stability) of the operator associated to MF1b on quadratic polynomial
p1(x) are:

a) Points (1, 1) and (−1,−1) associated to the roots of p1(x), being both superattracting.
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b) The origin (z, x) = (0, 0), which is an attracting fixed point for −2 < θ < −3

2
, it is repulsive if −3

2
< θ <

−1 and it is a saddle point in other cases.

c) The real roots of polynomial s(x) = 2+13θ+36θ2+55θ3+50θ4+27θ5+8θ6+θ7+(28+134θ+240θ2+
174θ3−4θ4−78θ5−40θ6−6θ7)x2+(166+543θ+516θ2−15θ3−186θ4+33θ5+80θ6+15θ7)x4+(552+
1092θ+192θ2 − 604θ3 − 152θ4 +108θ5 − 80θ6 − 20θ7)x6 +(1134+891θ− 1236θ2 − 663θ3 +862θ4 −
147θ5 + 40θ6 + 15θ7)x8 + (1404− 810θ− 1584θ2 + 1998θ3 − 804θ4 + 66θ5 − 8θ6 − 6θ7)x10 + (810−
1863θ+1836θ2−945θ3+234θ4−9θ5+θ7)x12, whose number varies depending on the range of parameter
θ: there are four real saddle points if θ < −7.72447, two saddle points if −7.72447 ≤ θ < −2, two saddle
points if θ = −2, four saddle points if −2 ≤ θ < −1, two saddle points if θ = −1, four saddle points when
−1 < θ < −0.846682 four, two saddle points if θ = −0.846682, none if −0.846682 < θ < 9.70662, two
non-hyperbolic points if θ = 9.70662 and four (two saddle and two attracting points) if θ > 9.70662.

Proof: In order to obtain the fixed points of MF1b on p1(x) it is necessary to solve the equation

M1b
1 (z, x, θ) = (z, x) ,

that is, z = x and
2x
(
x2 − 1

)
s(x)

(θ (x2 − 1)− 3x2 − 1)
7 = 0.

Obviously, points (1, 1) and (−1,−1) satisfy the previous equation and their associate eigenvalues are null;
so, they are superattracting. It is clear that (0, 0) is also a fixed point whose associate eigenvalues are λ1 =

2θ + 3−
√
8θ2 + 24θ + 17

2(θ + 1)
and λ2 =

2θ + 3 +
√
8θ2 + 24θ + 17

2(θ + 1)
. It can be checked that, for −2 < θ < −3

2
,

both eigenvalues are lower than one in absolute value (see Figure 1), are higher than one (repulsive) if −3

2
< θ <

−1 and are saddle points in the rest of real values of θ.

(a) |λ1| (b) |λ2|

Figure 1: Absolute value of the eigenvalues of M1b
1

′
(0, 0, θ)

The rest of strange fixed points are the roots of polynomial s(x), denoted by si, i = 1, 2, . . . , 12. By analyzing
the number of real roots of s(x), we remark a clear dependence of the value of parameter θ. If θ < −7.72447,
the first four roots of s(x) are real and are saddle points. When −7.72447 ≤ θ < −2, s1 and s2 are real saddle
points and θ = −2 yields x = ±0.639037 as saddle fixed points. For −2 < θ < −1, si i = 1, 2, 3, 4 are real
and saddle fixed points. In the limit value θ = −1 there are only two real saddle points, x = ±0.353123. This
situation is repeated in the range −1 < θ < −0.846682 where si i = 1, 2, 3, 4 are saddle points, but s2 and s4
become complex for θ = −0.846682. There are no strange fixed points different from (0, 0) for values of θ in
] − 0.846682, 9.70662[. For θ = 9.70662, only s1 and s3 are real and the eigenvalues of both points coincide,
λ1 = 1, λ2 = 0.116417, so they are not hyperbolic. If θ > 9.70662, s2 and s3 are real saddle points, meanwhile
s1 and s4 are simultaneously attractive in ]9.7066, 9.72[

∪
]9.9, 9.98[, approximately; for other values of θ both are

simultaneously saddle points (they can be seen in Figure 2). 2
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(a) |λ1| and |λ2| of ri, i = 1, 4 (b) |λ1| and |λ2| of r2

Figure 2: Absolute value of the eigenvalues ofM1b
1

′
(ri, ri, θ),i = 1, 2

An example of the behavior stated at Proposition 1 is presented at Figure 3, where the basins of attraction for
θ = 9.71 are showed. As can be observed at Figure 3a, the basins of the roots of polynomial p1(x) are much
bigger than the ones of the strange fixed points, that can only be seen at its detail (Figure 3b).

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

z

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) θ = 9.71

x
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

z

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

(b) θ = 9.71, a detail

Figure 3: Dynamical plane of MF1b method on p1(x) = x2 − 1

The corresponding results on polynomials p2(x) and p3(x) are shown below, whose proofs are similar to the
previous ones; for this reason, they will be omitted. The associate fixed point operator on p2(x) = x2 + 1 is
expressed as

M1b
2 (z, x, θ) =

x,− F 2 + 1

2x− (θ+1)(x2+1)
x+z

−

(
F − F 2+1

2x− (θ+1)(x2+1)
x+z

)2

+ 1

2x− (θ+1)(x2+1)
x+z

+ F

 ,

where

F =
θ
(
x2 + 1

)
(x+ z)

θ (x2 + 1)− x(x+ 2z) + 1
+ x.

Proposition 2. The fixed points (and their stability) of the operator associated to MF1b on quadratic polynomial
p2(x) are:

a) The origin (z, x) = (0, 0), with undetermined stability if θ ̸= −1 (for θ = −1, there no exist real strange
fixed points).
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b) If −7.72447 < θ < −2, there exist two real roots of r(x) = 2+ 13θ+36θ2 +55θ3 +50θ4 +27θ5 +8θ6 +
θ7− (28+134θ+240θ2+174θ3−4θ4−78θ5−40θ6−6θ7)x2+(166+543θ+516θ2−15θ3−186θ4+
33θ5 + 80θ6 + 15θ7)x4 − (552 + 1092θ+ 192θ2 − 604θ3 − 152θ4 + 108θ5 − 80θ6 − 20θ7)x6 + (1134 +
891θ−1236θ2−663θ3+862θ4−147θ5+40θ6+15θ7)x8− (1404−810θ−1584θ2+1998θ3−804θ4+
66θ5 − 8θ6 − 6θ7)x10 + (810− 1863θ+1836θ2 − 945θ3 +234θ4 − 9θ5 + θ7)x12 that are attracting fixed
points. For any other value of parameter θ, there are no strange fixed points different from (0, 0).

Some of the results in Proposition 2 can be visualized at Figure 4, where the origin is seen as an attracting fixed
point when θ = −1.8 (Figure 4a), but it is a saddle point if θ = −5, when other two fixed points are attracting, as
can be seen at Figure 4b.
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(a) θ = −1.8
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(b) θ = −5

Figure 4: Dynamical planes of MF1b method on p2(x) = x2 + 1

Finally, the associate fixed point operator to MF1b on p3(x) = x2 is expressed as

M1b
3 (z, x, θ) =

x, (Gx)
(

G(x+z)
(θ−1)x−2z + ((θ − 1)x− 2z)3

)
(−θx+ x+ 2z)6

 ,

being
G = ((2θ − 1)x+ (θ − 2)z)

(
θ2x2 + θz(z − x) + z(x+ 2z)

)
.

Let us remark that the only fixed point of the operator associated to MF1b on quadratic polynomial p3(x) is
(z, x) = (0, 0), except for θ = 3, where the rational operator is not defined. Moreover, an indetermination appears
again when its stability is analyzed, so the stability of (0, 0) it cannot be determined by using Robinson’s Theorem.
In Figure 5, the origin has a wide basin of convergence, but it is located at its boundary (being repulsive in this
direction), so it is a saddle point.

Let us remark that, although the dynamics of the family is quite stable, for particular values of the parameter
there exist attracting fixed points different from the solutions of the problem. Now we analyze how this stability
varies in terms of the parameter and if there exist some other bifurcations, leading not only to attracting points
from repulsive ones, but also to periodic orbits or other kind of attractors.

3.1. Bifurcation diagrams
To study the bifurcation phenomena, we use Feigenbaum diagrams of the map associated to the family MF1b

on quadratic polynomials pi(x), i = 1, 2, 3 by using as a starting point each one of the strange fixed points of the
map and observing the ranges of the parameter θ where changes of stability or other behaviors happen.

By using the strange fixed point (0, 0) as initial estimation, a Feigenbaum diagram can be seen in Figure 6a. As
in this case the stability cannot be determined by using the Theorem 2, (see Proposition 2), the bifurcation diagram
gives us clear information, that is, (0, 0) is an attracting fixed point for θ ∈] − 2,−1.5[. Out of this interval,
periodic orbits bifurcations and two chaotic regions appear for values of parameter slightly higher than −1.5, see
a detail in Figure 6. Moreover, convergence to the roots of p1(x) is observed. When the roots of r(x) are used as
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(a) θ = −2
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(b) θ = 1

Figure 5: Dynamical plane of MF1b method on p3(x) = x2

initial estimations, the obtained bifurcation diagrams show convergence to zero or to the roots (even divergence,
for values of θ ∈]− 8,−7.4]), and also convergence to two attracting strange points close to 1 and −1, for values
of θ in a small interval around 9.7.

(a) (0, 0) (b) (0, 0), a detail (c) r1

−10 −5 0 5 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) r3 (e) r3, a detail (f) r3, a detail

Figure 6: Bifurcation diagrams of family MF1b on p1(x) for different strange fixed points as initial estimations

Respect to the period-doubling bifurcations observed in the bifurcation diagram obtained for (0, 0) as initial
estimation, convergence to periodic orbits and strange attractors can be observed in Figure 7. For increasing
values of parameter θ, it is observed how the fixed point bifurcates into periodic points, that later become strange
attractors.

As it has been stated in Proposition 2, only two strange fixed points are stable in the interval −7.72447 < θ <
−2, when MF1b is applied on p2(x) (see Figure 8c). Moreover, the strange point (0, 0) can behave as an attracting
point (see for example Figure 8b), but it also is immerse in a chaotic region where orbits are dense, see Figure 8a.

In order to better understand the behavior of family MF1b with memory, we plot in (z, x)-space the iteration of
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Figure 7: Periodic points and strange attractors of family MF1b on p1(x)

(a) (0, 0) (b) r1 (c) r2

Figure 8: Bifurcation diagrams of family MF1b on p2(x) for different strange fixed points as initial estimations

Figure 9: Bifurcation diagrams of family MF1b on p3(x) from (0, 0)

operator M2
2 (z, x, θ), for values of parameter θ in the blue region of Figure 6b close to θ = −1.4. So, symmetric

strange attractors have been found, (see Figure 7). The way these pictures have been obtained is the following:
fixing the value of parameter θ, 10000 different initial estimations have been taken in a small rectangle close to
the origin. The method has been used on each of them, plotting one point per iteration. The code color used is as
follows: the first 2000 iterations appear in blue color, the following 2000 in green and the rest of them in magenta
color. The resulting images show how the four attracting strange fixed points appearing in the bifurcation diagrams
change into attracting regions, being disjoint or not depending of the value of the parameter. However, the set of
initial estimations that belong to their respective basins of attraction is very reduced, as well as the interval of real

11



values of θ that induces this behavior.

4. Dynamical analysis of family MF2

Finally, we analyze the rational function corresponding to family MF2 on quadratic polynomials, starting from
p1(x) = x2 − 1. The fixed point operator is, in this case,

M2
1 (z, x, θ) =

(
x, x−M − (x+ z)(−1 + x−M)(1 + x−M)

2 + 2xz

)
,

where

M =
KL

(
−1 + x2

)
(x+ z)

8(1 + xz) (1 + (−1 + θ)x2 + θxz)
2 +

θ2
(
−1 + x2

)
(x+ z)

2 (1 + (−1 + θ)x2 + θxz)
,

K =
(
−2 + 2x2 + θ2(−1 + x)(x+ z)− 2θx(x+ z)

)
and

L =
(
−2 + 2x2 − 2θx(x+ z) + θ2(1 + x)(x+ z)

)
.

As in previous analysis, due to the construction of the multidimensional operator, all the fixed points ofM2
1 (z, x, θ)

have two equal components.

Proposition 3. The fixed points (and their stability) of the operator associated to MF2 on quadratic polynomial
p1(x) are:

a) Points (1, 1) and (−1,−1) associated to the roots, being both superattracting.

b) The origin (z, x) = (0, 0), which is a saddle point for any value of θ.

c) The real roots of polynomial q(x) = 2+ θ2+(−7+16θ−6θ2+6θ3− 2θ4)x2+(9− 40θ+63θ2−30θ3+
22θ4 − 8θ5 + 2θ6)x4 + (−6 + 32θ − 92θ2 + 124θ3 − 68θ4 + 40θ5 − 16θ6 + 4θ7 − θ8)x6 + (4 − 16θ +
39θ2− 92θ3+124θ4− 72θ5+36θ6− 12θ7+3θ8)x8+(−3+16θ− 30θ2+30θ3− 42θ4+56θ5− 32θ6+
12θ7 − 3θ8)x10 + (1 − 8θ + 25θ2 − 38θ3 + 30θ4 − 16θ5 + 10θ6 − 4θ7 + θ8)x12, whose number varies
depending on the range of parameter θ: there are four real saddle points if θ < 0 or θ > 4.12098 and two
saddle points if θ = 4.12098.

When MF2 is applied on polynomial p2(x) = x2 + 1, the resulting rational function is

M2
2 (z, x, θ) =

x,N −
(x+ z)

(
1 +N2

)
2(−1 + xz)

− (x+ z)

1 +

(
N − (x+z)(1+N2)

2(−1+xz)

)2

2(−1 + xz)

 ,

whereN = x− θ(1+x2)

2x− 2(1+x2)
θ(x+z)

. As the fixed points must satisfy z = x, the analysis of the rational function yields that

the only real fixed point is (0, 0), whose stability depends of the values of the eigenvalues of its associate Jacobian
matrix, λ1 = 1

4

(
4 + θ2 −

√
32 + 16θ2 + θ4

)
and λ2 = 1

4

(
4 + θ2 +

√
32 + 16θ2 + θ4

)
. It can be shown that

|λ1| < 1 for all real θ and simultaneously |λ2| > 1. So, the origin is a saddle point. This result is summarized in
the following proposition.

Proposition 4. The only real fixed point of the operator associated to MF2 on quadratic polynomial p2(x) is (0, 0)
and it is a saddle point.

In the same manner, the following result can be stated, where the stability of the only fixed point for the
fixed point operator associated to MF2 on quadratic polynomial p3(x) = x2 can not be determined by means of
Robinson’s Theorem.

12



Proposition 5. The fixed point operator associated to MF2 on quadratic polynomial p3(x) = x2 is

M2
3 (z, x, θ) =

(
x,

(Px+ (−2 + θ)θz)
(
Px2 + 2

(
−1 + θ2

)
xz + θ(2 + θ)z2

)
x

64z2((−1 + θ)x+ θz)4(
−8z((−1 + θ)x+ θz)2 −

(x+ z) (Px+ (−2 + θ)θz)
(
Px2 + 2

(
−1 + θ2

)
xz + θ(2 + θ)z2

)
2z

))
,

where P = 2− 2θ + θ2, being (0, 0) the only fixed point if θ ̸= 1
2 .
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Figure 10: Bifurcation diagrams of family MF2 on p1(x) from strange fixed points

Plotting again the bifurcation diagrams by using the strange fixed points of each operator (corresponding to the
method MF2 acting on each of the polynomials pi(x), i = 1, 2, 3, have shown only convergence to the roots. In
Figure 10 some bifurcation diagrams are showed for p1(x). The conclusions about the stability of method MF2
are clear: there are not stable strange fixed points and strange attractors do not appear in the bifurcation diagrams
(see some dynamical planes in Figure 11). As the only fixed point of the rational operator M2

2 (z, x, θ) is (0, 0),
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(b) θ = −1
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(c) θ = −3

Figure 11: Dynamical planes of M2
1 (z, x, θ) for different values of θ

there is only one bifurcation diagram to draw. In this case, no convergent behavior is observed, as well as for
M2

3 (z, x, θ). Neither chaotic behavior nor period-doubling bifurcation are showed. In Figure 12, some dynamical
planes of M2

3 (z, x, θ) for θ = 1, by using different tolerances are presented, showing that the stability of fixed
point appearing in the dynamical plane does not depend of the tolerance used in the calculations. In fact, the
orange lines z = x and z = −x are pre-images of the stable manifold x = 0, that is the quicker way to converge
to the fixed point.

5. Conclusions

In this paper, some classes of iterative methods with memory have been obtained from the same without
memory partner and their qualitative behavior have been analyzed by using real multidimensional dynamical tools.
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Figure 12: Dynamical planes of M2
3 (z, x, θ) for different tolerances

The aim of this comparative is to analyze the effect of derivatives in the respective iterative expressions on the
stability of the methods. Our statements, based on consistent discrete dynamics results and also on Feigenbaum
diagrams of the families, allow us to affirm that, in this case, the role of the accelerators (in number and in the way
they are defined) is greater than that the use or not of derivatives.
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