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For solving nonlinear systems of big size, such as those obtained by applying finite differences for approximating the solution of
diffusion problem and heat conduction equations, three-step iterative methods with eighth-order local convergence are presented.
The computational efficiency of the new methods is compared with those of some known ones, obtaining good conclusions, due
to the particular structure of the iterative expression of the proposed methods. Numerical comparisons are made with the same
existing methods, on standard nonlinear systems and a nonlinear one-dimensional heat conduction equation by transforming it
in a nonlinear system by using finite differences. From these numerical examples, we confirm the theoretical results and show the

performance of the presented schemes.

1. Introduction

The design of fixed point iterative methods for solving
equations and systems of nonlinear equations is an important
and challenging task in the field of numerical analysis.
Nonlinearity is ubiquitous in physical phenomena. Fluid
and plasma mechanics, gas dynamics, elasticity, relativity,
chemical reactions, combustion, ecology, biomechanics, eco-
nomics modeling problems, transport theory, and many
other phenomena are all governed inherently by nonlinear
equations. For this reason, an ever increasing proportion
of modern mathematical research is devoted to the analysis
of nonlinear systems and nonlinear phenomena. These and
other more examples allow us to affirm that finding the
solution X of a nonlinear system F(x) = 0 is a classical
and difficult problem with many applications in sciences and
engineering, wherein F : D ¢ R" — R" is a sufficiently
Fréchet differentiable function in an open convex set D. In
the last years, many iterative methods have been constructed
for solving nonlinear systems; see, for example, [1-6] and
the references therein. The best known method for finding
a solution X € D is Newton’s scheme:

x(k+1>:x<k>_[F'(x<k))]‘lp(x(k>), k=01,2,..., ()

where F'(x®) is the Jacobian matrix of function F evaluated
in the kth iteration.

Based on Newton’s or Newton-like iterations, some high-
order methods for computing a solution of nonlinear system
F(x) = 0 have been proposed in the literature. The aim
of these new schemes is to accelerate the convergence or to
improve the computational efficiency. For example, among
other authors, Soleymani et al. in [7] constructed a multistep
class of sixth-order iterative method for solving nonlinear
systems; Hueso et al. in [4] developed sixth-order iterative
methods requiring two evaluations of function F and two of
Jacobian F' per iteration; Sharma and Arora in [6] designed
a sixth-order method which requires three functional and
two Jacobian evaluations per iteration, and Xiao and Yin [8]
developed a three-step iterative scheme of order five. On the
other hand, Wang et al. in [9] constructed a seventh-order
derivative free iterative method by evaluating the first order
divided difference operator [x, y; F] three times per iteration.

Specifically, the sixth-order scheme designed by Soley-
mani et al. [7], that we denote by SLB, is a three-step Jarratt-
type method whose iterative expression is
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Hueso et al. in [4] developed several iterative schemes
of order six; we use one of them in the numerical section
for comparing it with our proposed schemes on different
test problems. In particular, in [4] the authors present the
following method that we denote by HMT:

S0 ) _ 2 [F (x(k))]_l F(x(k)),

[F ()] E (), G)

MR [_21 N 15 [F’ (y(k))]—l 7 (x(k))

S EOF O O] ),

where I denotes the identity matrix of size n x n.
On the other hand, Xiao and Yin in [8] described the
following three-step fifth-order scheme that we denote by XY:

(4)

([F OO —2[F ()7 F ().

In order to compare the different methods under the
point of view of the computational cost, Ostrowski in [10]
defined the efficiency index as I = p'/4, where p is the
order of convergence and d is the number of functional
evaluations per iteration. Let us remark that for evaluating
function F we need n scalar functional evaluations (the
coordinate functions of F), whilst for evaluating Jacobian
F' it is necessary to evaluate n* functions (all the entries
of matrix F'). On the other hand, all the iterative methods
for solving nonlinear systems require one or more matrix
inversion; that is, one or more linear systems must be solved.
So, the number of operations needed for solving a linear
system plays in this context an important role. For this reason,
the authors introduced in [2] the computational efficiency
index, CI, which combines the efficiency index defined by
Ostrowski and the number of products-quotients required
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per iteration. We define this index as CI = p"/“*°P) where

op is the number of products-quotients per iteration.

We recall that the number of products and quotients
required for solving a linear system by Gaussian elimination
is (1/3)n® + n* — (1/3)n, where n is the size of the system. In
addition, for solving g linear systems with the same matrix of
coeflicients, by using LU decomposition, we need (1/ 3’ +
gn* — (1/3)n products-quotients. By using this information,
in Section 3, we compare the computational efficiency indices
of the different methods used in this manuscript.

The main objective of this paper is to develop high-order
iterative methods in such a way that they involve as lower
computational cost as possible and they have good stability
properties on big-sized systems. From Newton’s method and
by using variation parameters procedure we present a two-
step iterative method of order five. This order can be increased
in three units by adding a new step with the same structure
as the second one. This idea is generalized for obtaining an
iterative method of arbitrary order increasing in three units
the order each time that we add a new step with the same
structure as the previous one. In each new step we only need
a new functional evaluation.

In order to analyze the convergence properties of the
different new schemes that will be introduced in this paper,
we need to recall several concepts and tools, some of them
introduced by the authors in [2].

1.1 Basic Definitions. Let {x*},., be a sequence in R" which
converges to x. Then, convergence is called of order p, p > 1,
if there exists M > 0 (0 < M < 1if p = 1) and k, such that

5D -5 < M -5, Vkzk,  ©)
or

e < M”e(k)"‘D, Vk > ko, (6)
where e® = x® _x.

The following notation was introduced in [2], but we
present it for completeness. Let F : D ¢ R" — R” be
sufficiently Fréchet differentiable in D. The gth derivative of
Fatu € R", g > 1, is the g-linear function F () : R" x
.- x R" — R" such that F(q)(u)(vl, ca V) € R". It is easy to
observe the following:

M) FP@) (v, v0,) € Z(R).

2) FPW) (o> Vo) = FO@y,...

, vq), for all
permutation o of {1,2,...,4}.

From the above properties we can use the following
notation:

@ FPu)(vy,...,v,) = FPw)v, ...v,

.
(b) FD )y FPvP = FD () P ()P,

On the other hand, for £ +h € R" lying in a neighborhood
of a solution X of F(x) = 0, we can apply Taylor’s expansion
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and, assuming that the Jacobian matrix F "(%) is nonsingular,
we have

p-1
F(x+h) =F (%) [h + ) C,h’

q=2

+0(h), ()

where Cy = (1/q!)[F'(E)]71F(q)(E), q > 2. We observe that

thq € R" since F9%) ¢ ZR" x --- x R",R") and
[F'®)] € Z(R").
In addition, we can express F "as
p-1
F'(x+h)=F (x)|I+ chqh‘“] +0(h71),  (8)
q=2

where I is the identity matrix. Therefore, quhq_1 e Z(R").
From (8), we obtain

[F&+m)]"

[T+ Xoh+ X+ X+ [F @] O)

+0(h),
where
X, = -2C,,
X, = 4C5 - 3Cs,
5 (10)
X, = =8C3 + 6C,C; + 6C,C, — 4C,,
The equation
1
D 2 190 (07, W

where L is a p-linear function L € Z(R" x --- x R",R"),
is called the error equation and p is the order of convergence.
Observe that e®” is (e®,e® . e,

We summarize the contents of this paper. In Section 2
we describe new iterative methods for solving nonlinear
systems and show a procedure for constructing schemes with
arbitrary order of convergence. The efliciency index and the
computational efficiency index of our methods and of other
known ones are analyzed in Section 3. Section 4 is devoted to
numerical tests for confirming the theoretical results and to
show the performance of the presented schemes. The exam-
ples used are a nonlinear one-dimensional heat conduction
equation by transforming it in a big-sized nonlinear system
by using finite differences and standard nonlinear systems.
The paper finishes with some conclusions and the references
used.

2. Development and Convergence
of the Method

By adding a new step to Newton’s method, we construct the
following two-step scheme with fifth-order of convergence:

yO = 0 _[F (x"‘))]fl F(x®),

x(k+1) — y(k) _ [“1[ +a, [FI (y(k))]—l FI (x(k))

ca ([P GO F )] 1F )

-F(y(k)),

where «;, «,, and «; are arbitrary parameters and I is the
identity matrix of size n x n.

The following result establishes the convergence of itera-
tive method (12).

(12)

Theorem1. LetF : D € R" — R" be sufficiently differentiable
at each point of an open neighborhood D of x € R", that is, a

solution of the system F(x) = 0, and the initial estimation x"*
is close enough to X. Let us suppose that F'(x) is continuous

and nonsingular in X. Then, sequence {x*},, obtained from
expression (12) converges to x with order 5 if the parameters
take values «; = 5/4, a, = —1/2, a; = 1/4, with the error
equation in this case being

1 3
R | AR Chl B
where C; = (1/i)[F'(®)] ' FV(%), j=2,3,...

Proof. By using Taylor expansion of F(x*) and F'(x)
around X,

F(x")=F (%)
2 3 4 5
. [e(k) + Cze(k) + C3e(k) + C4e(k) + Cse(k) ]
6
ro (),

F'(x®)=F ®

(14)

. [I + 2C2e(k) + 3C3e(k)2 + 4(?46(k)3 + 5C5e(k)4]
co(e?).
From the above expression, we have
[F' ()]
= [I + Xze(k) + X3e(k)2 + )(46(")3 + Xse(k)4] (15)

(P @]+ @(e(k)s),



where
X, = -2C,,
X, = 4C5 - 3Cs,
X, = —4C, + 6C,C; + 6C;C, — 8C3, (16)
X5 = =5C; + 8C,C, — 12C3C, + 9C: + 8C,C,
~12C,C,C, + 16C; — 12C;Ca.
Then,
-1 2
[F' ()] F(x®) =¥ = e +2(C3 - G
3 4
™7+ (4C,C4 +3C4C, - 4C; - 3C,) e
17)
+(—4C; + 6C,C, - 8C3C, + 6C; + 4C,C,
5 6
= 6C,C5C, +8C3 — 6C,C3) e + 0 (7).
So,
2 3
9 -x =G -2(C - C,) M - (4c,C,
4
+3C5C, —4C; - 3C,) e — (-4C; + 6C,C,
~8CIC; +6C: +4C,C, — 6C,C5C, + 8C)
2\ (k)® k)©
— 6C3C2) e( ) +0 (e( ) ), (18)
) _ =\ _ 2,00t 2\ ,(k)°
(Y9 -%) =C3e" +2¢,(C, - )™ +2(c,
5 6
~2C2) e 4 0 (o),
3 6
(5 -5 = 0 ().

On the other hand,

F(y¥)=F @[ -%)+C, (y¥ -7)]
+0((y%-%)") = F @ [Ce™ +2(C, - C2)
6™’ 1 (30, +5C3 - 3C,C, - 4C,C, ) e’
+(4C5 - 6C,C, + 10C3C5 - 6C5 — 4C,C,
+8C,C,C, - 12C3 +6C,C2) 9] + 6 (), "
F'(y®) = F @ [1+2C39" + 4(C,C, - 4C3) e’
+(6C,Cy + 8C; — 6C,C5C, - 8C5Cs + 3C5C3)

&4 0 (o).
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In a similar way as before, we obtain
-1
[ ()]
- ) *0? *)? ®*] B =y
=[I+Y,e” +Yse +Y,e”’ +Yee F (x) (20)

o (o),

2
Y, = -2C2,

1)
Y, = 4C; - 4C,C;,

Y5 = —6C,C, — 4C; + 6C,C5C, + 8C5C, — 3C,C3,

s0

[F' ()] F' (x®) = 1+2C,e® + (3¢, - 2C2)
¥4 4(C, - C,Cy) e + (5C, +2C2C,
—20,C4C, - 3C,C2 +4C% - 6C,C, ) e
+0 (%),

[[F ()] F (x9)] = 1+4C,e + 60,
+(8C, = 2C,C; + 6C,C, - 8C2) €™ + (10C, o
~10C3C; — 12C,C5C, - 12C;C3 + 12C;
~4C,C, +9C3 +8C,C,) ¥ + 6 (),

F O] FO™) e 2(6s- )

+ (3C, +3C - 3C,C, - 4C,C,) ¥ + (4C,
~6C,C, — 4C,C, + 6C2C; + 4C,C5C, + 6C;C3
~6C2 - 4C1) ™+ 0 ().

Therefore, we obtain

x(k+1) _ y(k) _ [“11 +a [FI (y(k))]—l FI (x(k))

ta ([Fr (y(k))]—l e (x(k)))z] [F' (y(k))]—l
.F(y(k)) =x+(1-a,—a, - oc3)Cze(k)2
+ [2(—1+(x1—oc3)C§+2(l—oc1—<x2—oc3)C3]

ey [4 (-1+a; —a;) C,C,4

+3(-1+a, —a;) C;C,



Complexity

+ (4 - 30, + 30, +505) C)
+3(1-0o; —ay — ) C4] e®*
+ [4(1 —a,—a,—a;)Cs
+6(-1+a; —a;)C,Cy+4 (-1 + ) — a3) C,C,
+(8 = 60, + 60, + 1003) C5C,y

+ (6 — 4a; + 6a, + 10a;3) C,C5C,

+6(1-a,)CCi+6(-1+a; —a;)Ch

+ (-8 +4a; — 6a,) C ] ®° 4 6 (e(k)6) .
(23)

If we replace, in the previous expression, the values of
parameters o; = 5/4, «, = —1/2, and a3 = 1/4, we obtain
the error equation:

kD) _

1
$CCCy - c3c] Ck +@(e<")6), (24)

and the proof is finished. O

If we add in expression (12) a third step with the same
structure as the second one, we have

y(k) —x® _ [F’ (x(k))]_l F(x(k)),

(25)
S [ﬁ11+/52 [F (5 )] F (x®)
+ By ([F, (y(k))]fl I (x(k)))z] [F’ (y(k))]fl
F(zW).

It can be proved that method (25) has eighth-order of
convergence if the parameters take the values 8, = 3/2, f3, =
-1, and B; = 1/2 and, for these values of parameters, the
method is denoted as CCGT1. This idea can be generalized
for obtaining an iterative method of arbitrary order of
convergence. With each new step the order of convergence
increases in three units, needing only one new functional
evaluation.

Theorem 2. Let t*) = ¢(x) be the iterative expression of
a method of order p > 5, with asymptotic error constant M,

where the two first steps are those of (12). By adding a new step
in the form

(k+1)

- [ [P 69)] F ()

B ([F OO P (O ] 17 )]

.F (t(k)) ,

(26)

then the order of the resulting method is p+3, if f; = 3/2, 3, =
-1, By = 1/2, with its error equation being

(k+1)

(Czcs 3C3C2) Me(k)p+3 +0 (e(k)p+4) > (27)

where C; = (1/j)[F' (0] 'FP(®), j=2,3,...

Proof. Let us suppose that

1
(® % = MW’ 4 0 (D7), (28)

where M # 0, p > 5.
Then,

F (%)
=F @ [P -5+, (1 -7)]
+0((1% -=)")
= F @) M’ + 0 (),
[F ()] F (i)

+2 +3
22 M 1+ 4C3 M

(29)

= Me®” -
~4C,CMeP 4 0 (),
Therefore,
k)P

/33) M] e
+[2(B, +28,) CuM] e“*’“
+ [2 (B +2B, +Bs) CgM -3(B, +285) C3M]
: e(k)p+2 + [_4 (B - 3B5) C;M

+2 (2B, +4B, +3B;) C,C;M

X =%y [(1-B, -

(30)

—4(B, +2B;) CyM - 6/33C3C2M] e(k)P+3

Lo (0



and, if we take 3, = 3/2, 5, = -1, f3; = 1/2, we have order
p + 3. In that case, the error equation is

3 4
5 = (C,C; - 3C,C,) MW + (P ) (31)

and the proof is finished. O

A small variation in the iterative expression of (12) allows
us to construct another new scheme:

Y9 = x® _[F (x(k))]—l F(x®),

x(k+1) _ y(k) _ |:(x11 +ay [F! (y(k))]*1 F! (x(k))

+ay ([F' (y(k)>]—1 F (x(k)))z] [F’ (x(k))]—l

-F(y(k)),

whose order of convergence is described in the following
result.

(32)

Theorem 3. Let F : D ¢ R" — R” be sufficiently Fréchet
differentiable at each point of an open neighborhood D of x €
R", that is, a solution of the system F(x) = 0, and the initial
© js close enough to X. Let us suppose that F'(x)
is continuous and nonsingular in x. Then, sequence {x(k)}k20
obtained from expression (32) converges to x with order 5 if the
parameters take the values o; = 1/4, o, = 1/2, and o3 = 1/4.
In this case, the error equation is

estimation x

e(k+1)

5
(4C5 - 3C4C; + C,C5C, )

1
2
+0 (e(k)é) .

(33)

In a similar way as before, this structure can be extended
in order to construct an iterative scheme of arbitrary order.

Theorem 4. Let t*) = ¢(x%)) be the iterative expression of
a method of order p > 5, with asymptotic error constant M,
where the two first steps are those of (32). By adding a new step
in the form

x(k+1) — t(k) _ [‘BII + Bz [FI (y(k))]*l FI (x(k))

B (PO F ) 6
F(i9),

then the order of the resulting method is p+3, if ; = 1/2, 3, =
0, B; = 1/2, with the error equation being

3
e = (4C3 + C,C; - 3C,C, ) Me®™

( (k)P+4) (35)
+0(e .
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TaBLE 1: Efficiency index for different schemes.

Method Order Functional evaluations 1

CCGTI1 8 2% + 3n gL/ +3m
CCGT2 8 2% + 3n gl/n’+3m
SLB 6 27 + 2 g/ @ +m
XY 5 27 + 3n 51/ +3m)
HMT 6 2+ 2 g/ @ +m

We will denote by CCGT2 the following three-step
eighth-order iterative method:

P = ) _ [F’ (x(k))]_l F(x(k)),

O y(k) _ [4_111 n % [F/ (y(k))]—l r (x(k))

([P OOTF GO | [F )
F(),

A= B S (P 0] P ()]
[F GO E ).

3. Computational Efficiency

(36)

We are going to use two indices for comparing the different
iterative schemes for solving nonlinear systems: the mul-
tidimensional extension of the efficiency index defined by
Ostrowski as I = p'/? and the computational efficiency
index CI defined in the Introduction as CI = p"/(@*P)
where p is the order of convergence, d is the number of
functional evaluations per iteration, and op is the number
of products-quotients per iteration. To compute F in any
iterative method we need to calculate n scalar functions. The
number of scalar functional evaluations is #n* for any new
evaluation of derivative F'.

In Table 1, the efficiency indices I of methods CCGT1,
CCGT2, SLB, XY, and HMT are presented. The number
of Jacobian evaluations is the same in all these schemes,
but the number of functional evaluations and the order of
convergence are different.

In Figure 1 we show the classical index defined by
Ostrowski for the mentioned methods and systems of sizes
from 2 to 50. We can observe that the index of CCGT1 and
CCGT2 is the same as well as the index of SLB and HMT. For
every size, except 2 x 2, the best index corresponds to method
CCGTL

On the other hand, in order to compute an inverse
linear operator we solve a n x n linear system where we
have to do (1/3)n® + n* — (1/3)n products-quotients for
obtaining LU decomposition and solving two triangular
linear systems. In addition, we need n? products for matrix-
vector multiplication.
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TABLE 2: Functional evaluations and products-quotients of the methods.

Method Order NFE NLS1 NLS2 MxV CI
CCGTI1 8 2 +3n 1 6 4 g/(@/3I 1307473
CCGT2 8 2+ 3n 3 4 2 gY@/ 11 +(7/3)m)
SLB 6 2n* +2n 2 3 3 L@ 1100 443
XY 5 21 + 3n 3 1 0 51/((2/3)n3+6n2+(7/3)n)
HMT 6 2 + 21 3 3 4 61/(@/3 120 (/3
Efficiency index Efficiency index

1.16 1.0022

114 1.002

Lk 1.0018

1.0016

L1}
1.0014
T 108}

1.0012

1.06 1.001

1.04 ¢ 1.0008

102} ] 1.0006

1} 1.0004

0 5 10 15 20 25 30 35 40 45 50

Size of the system

Bl CCGT1=CCGT2
= SLB

XY
B HMT

(a) Sizes from 2 to 20

Size of the system

Bl CCGT1=CCGT2
[ SLB

XY
Bl HMT

(b) Sizes from 21 to 50

FIGURE I: Efficiency index I for different sizes of the system.

Taking into account the previous considerations, we
calculate CI of method CCGTH1. For each iteration, we need to
evaluate function F three times and twice Jacobian F’, so 2n*+
3n functional evaluations are needed. In addition, we must
solve one linear system with F "(x®) as coefficients matrix
(e, (1/3)n° + n* — (1/3)n products-quotients), six linear
systems with F'(y(k)) as coefficients matrix (i.e., (1/3)n® +
6n* — (1/3)n products-quotients), and four matrix-vector
products (4n* products-quotients). Therefore, the value of
index CI for method CCGT1 on a nonlinear system of size
nxmnis

Clecar = 81/((2/3)n3+13n2+(7/3)n)‘ (37)

In Table 2, we show index CI of schemes CCGT1, CCGT?2,
SLB, XY, and HMT. In it, NFE is the number of functional
evaluations, NLSI denotes the number of linear systems with
the matrix of coefficients F'(x®) to be solved, NLS2 is the
number of linear systems with another matrix of coefficients
that are solved, and M x V denotes the number of products
matrix-vector.

Let us observe that, although the classical index is similar
in all these cases, it is not the case of the computational
efficiency index since the number of inverse linear operators
is different for each scheme. In Figure 2 the computational
efficiency index for several methods and systems of sizes from

2 to 50 is shown. We can observe that until n = 16 the best
index corresponds to method XY; meanwhile, for #n > 17 the
best index is the one corresponding to CCGT2.

4. Numerical Results

We check the numerical behavior of our method on a
nonlinear one-dimensional heat conduction equation. A
heat transfer problem is said to be one-dimensional if the
temperature in the medium varies in one direction only and
thus heat is transferred in one direction, and the variation
of temperature and thus heat transfer in other directions are
negligible or zero. For example, heat transfer through the
glass of a window can be considered to be one-dimensional
since heat transfer through the glass occurs predominantly in
one direction (the direction normal to the surface of the glass)
and heat transfer in other directions (from one side edge to
the other and from the top edge to the bottom) is negligible.

To describe a heat transfer problem completely, an initial
condition (f = 0) and two boundary conditions must be
given for each direction of the coordinate system along which
heat transfer is significant. Therefore, we need to specify two
boundary conditions for one-dimensional problems, four
boundary conditions for two-dimensional problems, and
six boundary conditions for three-dimensional problems.



Different authors have approximated the solution of these
problems by means of numerical techniques; see, for example,
(11, 12] and the references therein.

In our study a particular case is used, corresponding to
the following heat conduction equation:

U =t +u, —u+ f(xt), 0<x<1,t>0, (38)

where f(x,t) = e ' (=7 cos (mx)— (> =2) sin (7rx)). The initial
condition is u(x, 0) = sin (7mx) and the boundary conditions
are

u(0,t) =0,
39)
u(l,t) =0.

By applying an implicit method of finite differences we can
transform problem (38) in a family of nonlinear systems,
which provides the approximated solution in a time #;, from
the approximated solution in t;_;. We choose the spacial step
h = 1/nx and the temporal step k = T, /nt, where nx
and nt are the number of x-subintervals and t-subintervals,
respectively, and T, is the final instant of our study, so we
have selected a grid of domain [0, 1] x [0, T,,,] With points
(xia t ])a

x;=0+ih, i=0,1,...,nx,
L (40)
tj=0+jk, j=0,1,...,nt

We want to estimate the solution of (38) at these point,
by transforming it in many nonlinear systems, as much
as the number of ;. To do that, we use the following
approximations:

u(x+ht)—u(x-ht)

u, (x,t) = h

ut(x’t):u(x,t)—z(x,t—k)’ (41)
u(x+h,t) = 2u(x,t) +u(x—ht)

Uy, (X,1) = 2 .

Denoting by u; ; the estimation of the solution at (x;,t;)
and by replacing them in (38), we construct the following
nonlinear system:

u

i+1,j ~ 2Ui Y Uy Wi U N Ui1,j — Uioy,j
h? k 2h (42)
2
U+ f(xi, tj) s
fori = 1,2,...,nx —landt = 1,2,...,nt. Some algebraic

manipulations allow us to transform this system in

2k = kh) u;,y ; + (—4k = 21" ), ; + 2k + kh)u;_, ;

+2kh’u; ;= 2kk f (x;,t;) = 2h’u “
i,j prj

i,j-1>

Complexity

TABLE 3: Numerical results for CCGT1 and different values of T, ..

T nax nt iter Exact error CPU time
0.1 10 2 0.0108 0.0921
0.1 100 1 0.0111 0.3576
0.3 10 3.6 0.0285 0.1411
0.3 100 1 0.0254 0.4389
0.5 10 4.4 0.0285 0.2042
0.5 100 1 0.0306 0.3533
0.7 10 4.7 0.0288 0.2103
0.7 100 1.29 0.0311 0.5365
1 10 5 0.0257 0.1830
1 500 1.58 0.0280 0.6246
fori =1,2,...,nx—1land j = 1,2,...,nt. For a fixed j, we

have the following nonlinear system of size (nx—1) x (nx—1):

(2k — kh) u, ; — (4k +2h* ) uy
+ 2Kk = 2Kk f (xp,t;) = 2hPuy o,

(2k — k), ; — (4k + 207 )uy ; + 2k + kh) u,_y |

+2kW*u; ;= 2k* f (x;,t;) — 2h'u (44)

i,j-1>

i=2,3,...,nx—2,

- (4k + 2h2) Upey,j + 2k + kh) u,,, ;
F ORI UL, = 2K f (o)) = 2Rt

The unknowns of this system are vy ;, u, j,. .., Uy, > that is,
the approximations of the solution in t;. We observe that for
solving this system we need the solutionin ¢;_,;.

We are going to solve this system for different values of
T, Using in each case nt = 10 or higher, nx = 200, and
methods CCGT1 and CCGT2. As initial guess, we use the
solution at ¢; ;. We compare the obtained values with the

exact solution u(x,t) = e’ sin (7x), in order to analyze the
stability and consistence of the new method.

All computations are performed in the programming
package MATLAB R2014b using variable precision arith-
metic with 50 digits of mantissa. For every value of T,
we analyze the mean number of iterations (iter) needed to
converge to the solution such that |F N < 107 s
satisfied, where | - | denotes the Euclidean norm. Let us
recall that the iterative methods are applied for solving the
nonlinear system that involves each column of the solution
matrix; the mean of the number of iterations needed when
all the columns have been calculated is shown in the tables.
The processor of the machine used is Intel(R) Xeon(R) CPU
E5-2420 v2 @ 2.20 GHz, with 64 GB of RAM. The results are
presented in Tables 3 and 4, where the good performance
of both methods in terms of exact error and CPU time (in
seconds) is observed, even for nt = 10.
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Computational efficiency index
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FIGURE 2: Index CI for different sizes of the system.

070

(a) Approximated

(b) Exact

FIGURE 3: Graphics of the approximated and exact solutions for ¢ € [0, 0.1].

In Figure 3(a) we show the approximated solution of the
problem when T, = 0.1, by taking nt = 100 and nx = 200
and using method CCGT1. It is a good approximation if we
compare it with the exact solution (Figure 3(b)). In Figure 4
the absolute value of the exact error is presented.

In the rest of the section, the new method CCGTI is
compared with methods SLB, HMT, and XY for solving some
academical nonlinear systems. The numerical results are
shown in Tables 5, 6, and 7. All experiments have been carried
out on MATLAB R2014b using variable precision arithmetic
with 2000 digits of mantissa. To verify the theoretical order of
convergence p, we calculate the approximated computational
order of convergence (ACOC) introduced in [13] as

(4] <)

. (45)
In (| =] /0 =02

p ~ACOC =

Example 1. 'The first nonlinear system is defined by (see [9])

n
xi—c0s<2xi—2xj>=0, i=12,...,n (46)
=1

In this test example we use n = 4 and the initial esti-
mation x'” = (0.75,0.75,0.75,0.75)", with the solution being
X ~ (0.5149, 0.5149, 0.5149, 0.5149)” . In Table 5 we show the
values of [x® — x*V| and |[F(x"®)| for k = 1,2, 3 as well as
the value of ACOC.

Example 2. The second nonlinear system is also defined in
[9]:

X1 —1=0, 12i2n-1,

(47)
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FIGURE 4: Graphic of the exact error for t € [0, 0.1].

TABLE 4: Numerical results for CCGT2 and different values of T, ..

T nax nt iter Exact error CPU time
0.1 10 2 0.0108 0.0955
0.1 100 1 0.0111 0.3578
0.3 10 3.6 0.0238 0.1675
0.3 100 1 0.0254 0.4075
0.5 10 43 0.0285 0.1951
0.5 100 1 0.0306 0.3808
0.7 10 4.7 0.0288 0.1790
0.7 100 1.29 0.0311 0.5092
1 10 5 0.0257 0.2198
1 100 1.58 0.0280 0.5280

The numerical results are displayed in Table 6. The initial
estimation is x® = (1.5,1.5,...,1.5) and the size of the
system is n = 199, with the solution being % = (1,1,...,1)".
We show the same information as in the previous example.

Example 3. Finally, the third example is

XyX3 + x4 (%3 +%3) =0,

X1%5 + x4 (%) +%3) =0,
(48)
X%, + x4 (%) + %) =0,

X1Xy + X1 X3+ X,x3 —1=0.

The solution of this system is x = (0.577350,0.577350,
0.577350,-0.284675)" . The numerical results of this example
by using the initial estimation x© = (1,1,1,-1)" and ¥ =
(1,1,1, O)T are displayed in Tables 7 and 8, respectively.
For the first initial guess, the results are very bad, and
only method CCGT1 is convergent. For the second one, the
numerical solutions are standard and confirm the theoretical
results.

Complexity

TABLE 5: Numerical results for Example 1.

CCGTI1 SLB HMT XY
I = x| 0.4701 0.4701 0.4701 0.4672
[x? —xV| 1.84e-8  1.10e-5 1.13¢e-5  2.96e-3
1x® = xP| 1.99¢e—66 6.24e—33 7.34e—-33 6.3le—14
ACOC 7.8255 5.8832 5.8837 4.8546
IFGD)) 500e—8  298¢—-5  3.06e—5 8.04e—3
IF(x®)  540e-66 1.6%—32 199 -32 1.7le—13
IF*)  1.0le-529 5.67¢e-196 1.52e—195 7.6le—67

TABLE 6: Numerical results for Example 2.

CCGTI1 SLB HMT XY
x® = xO 7.05 7.03 7.01 6.75
[x® - x®|  146e-3  279% -2 46le—2  3.06e—1
[x® - x®| 4.18e-32 3.76e—15 1.06e—14 6.16e—7
ACOC 7.7499 5.7777 5.7935 4.2401
IFGM)| 439 -3  83% -2 13%-1 938 -1
IEG)] 125¢-31 1.13¢—-15 3.18¢—-14 1.85¢—6
IFG®)|  5.54¢—260 6.71e-99 5.07e—90 7.18e - 35

TABLE 7: Numerical results for Example 3 and initial guess x© =

(1,1,1,-D".

CCGTI1 SLB HMT XY
x® = x@ 1.04 — — —
[x® - x| 5.12¢ -2 — — —
[x® = x@| 1.76e — 9 — — —
ACOC 5.7069 — — —
IEGM)] 7.59¢ — 2 — — —
IF(x®)] 1.16e — 9 — — —
IF(x®)] 2.03¢ - 55 — — —

TaBLE 8: Numerical results for Example 3 and initial guess x© =

(1,1,1,0)7.

CCGTI1 SLB HMT XY

% = xQ  7.87e-1 785e—1  7.84e—1 7.6de—1
[x® - x®| 152e—-4  282e-3 399 -3  3.00e—2
[x® - x®| 2.03¢-45 454e—19 4.98¢—-20 8.55¢—9
ACOC 11.008 6.4608 7.3703 4.6578

IFGD)| 324e—4  6.18¢-3  873¢e—-3  6.86e—2
IFG®)  4.09—-45 923¢-19 1.0le—19 1.76e—8
IFGx®)|  53le-463 1.8le—117 3.43¢—143 6.66e — 44

5. Conclusions

We have designed two three-step iterative methods of order
eight for solving nonlinear systems with a competitive
efficiency index. Moreover, higher order methods can be
constructed by adding new steps with the same structure
involving one new functional evaluation (per step) and
increasing the order of convergence in three units per step.
These methods are specially useful in nonlinear systems with
a big size. Their performance has been checked by means
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of a heat transfer problem showing excellent results and
also has been compared with recent high-order methods on
academical examples.
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