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Abstract 

In this work, the capability of imaging biomarkers obtained from multivariate curve 

resolution-alternating least squares (MCR-ALS), in combination with those obtained 

from first and second-generation pharmacokinetic models, have been studied for 

improving prostate cancer tumor depiction using partial least squares-discriminant 

analysis (PLS-DA). The main goal of this work is to improve tissue classification 

properties selecting the best biomarkers in terms of prediction. A wrapped double cross-

validation method has been applied for the variable selection process. Using the best 

PLS-DA model, prostate tissues can be classified obtaining 13.4% of false negatives 

and 7.4% of false positives. Using MCR-ALS biomarkers yields the best models in 

terms of parsimony and classification performance. 

 

1. Introduction 

 

Angiogenesis and neovascularization are biological processes associated to tissues with 

increased oxygen and nutrient demand. These processes seldom occur in healthy 

subjects, but they are strongly present in pathological conditions such as tumors. The 

formation of these new and tortuous vessels produces an increase in the blood 

perfusion, which can be studied with dynamic contrast-enhanced Magnetic Resonance 
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imaging (DCE-MRI) [1]. In DCE-MRI studies, an exogenous contrast media is 

administered intravenously and diffuses from the capillary network into the 

extravascular extracellular space (EES) and return, establishing a dynamic relationship 

between the image signal intensity changes and the amount of contrast media that 

passes and diffuses into a certain tissue. The capability to analyse tumor angiogenesis in 

a quantitative and reproducible way from DCE-MR images has important applications 

to depict and gradate tumors, and also to evaluate the therapeutic response early after 

treatment onset [2, 3]. To obtain quantitative measurements, it is necessary to fit and 

characterize the intensity versus time curves associated to each voxel of the image. Out 

of the different approaches proposed to achieve this characterization, mathematical 

pharmacokinetic models have become the most popular way due to their ability to 

provide clinically-oriented biomarkers in tumor analysis. Nevertheless, new biomarkers 

obtained from multivariate curve resolution (MCR) models have recently been also 

proposed [4-6]. 

The aim of this work is to make a model comparison between different imaging 

perfusion related biomarkers, selecting the more relevant ones in terms of tumor 

prediction in order to reduce the false negatives and false positives rates (the negatives 

and positives corresponds to healthy and tumoral defined tissue respectively), thus 

improving the tissue classification. The paper is organised as follows. In Section 2 the 

type of images used and the pharmacokinetic and MCR models analysed are introduced. 

Section 3 presents the results of the statistical comparison performed with classification 

methods such as PLS-DA and discusses the pros and cons of using the different types of 

biomarkers studied. Finally, Section 4 provides the conclusions. 

2. Material and Methods 

 

The database consists of 30 histologically-confirmed cases of peripheral prostate 

tumors. DCE-MRI sequences are acquired in all cases, ensuring full prostate coverage 

(12 slices) by using an in-plane resolution of 192  192 voxels, each one measuring 

1.5625  1.5625  4 mm3, and 47 time points (acquisition time 5 minutes). Data are 

arranged in a 3D matrix (192  192  47) for each slice. Also, reference tumor and 

control normal region of interest (ROIs) have been manually segmented for the 

peripheral zone of the prostate, considering biopsy location and image findings, using a 
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structured reporting scheme for evaluating prostate cancer known as Prostate Imaging – 

Reporting and Data System (PI-RADS) version 2 [7]. This scale ranges from 1 to 5, 

based on increased tumor aggressiveness, and allows defining two different types of 

ROIs: 

 

 DL: Dominant Lesion, related to carcinogen tissue at the peripheral prostate 

zone (PI-RADS ≥ 4). 

 HP: Healthy Peripheral, related to healthy tissue at the peripheral prostate zone 

(PI-RADS=1). 

These ROIs are manually defined by radiologists, considering the PI-RADS score and 

the biopsy result, and are used as the gold reference for tissue classification.  

It is assumed that the behaviour of the healthy regions on the peripheral zone of the 

gland has no significant differences between cancer and healthy patients [8]. Therefore, 

it could be used safely as the healthy tissue reference. 

All patients gave consent for using their medical images, which were anonymized 

before post-processing. 

2.1. Pharmacokinetic models calculation 

 

In radiology, pharmacokinetic models try to characterize the absorption, distribution 

and excretion dynamics followed by some tissue when injecting a contrast agent. In this 

work, compartmental models have been used to describe tissue dynamics, considering 

the intravascular and the extracellular extravascular (EES) spaces as main 

compartments. Four different models are considered, divided into two groups according 

to its complexity. On the one hand, “classical” or “first-generation” models, considering 

the Tofts model, and on the other hand “second-generation” models, 2CXM (2-

compartment exchange model), AATH (adiabatic approximation to tissue homogeneity) 

and DP (distributed parameter) [9]. 

 

Tofts et al. [9] firstly introduced a one-compartment model as a generalization of the 

Kety model. The mass balance equation can be defined as follows. 
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dCt(t)

dt
= Ktrans · CAIF(t) − kep · Ct(t)  EES mass balance (eq.1) 

 

Where Ktrans (min-1) is the volume transfer constant; kep (min-1) is the washout constant; 

CAIF (mg/ml) is the contrast concentration of the arterial input function (AIF), which 

describes the contrast agent input to the tissue of interest; and Ct (mg/ml) is the contrast 

concentration in the EES. 

 

This model assumes that the effect of the vascular tracer can be ignored. Ktrans 

represents the total contrast transference from the plasma space to the EES, whereas kep 

is associated with the washout of the contrast from the EES to the plasma. In this case, 

the tracer transport is modelled through the EES compartment with normalized volume 

(ve=Ktrans/kep). This model is known as “first-generation” pharmacokinetic model and 

have been widely applied in oncology for perfusion analysis till the present days. 

However, the development and evolution of MRI hardware has provided an 

improvement in image quality and pixel resolution that exposes the limitations of the 

classical models. This allows developing new approaches designed to overcome the 

limitations of ‘classical’ models to obtain additional and more accurate information 

about the tissue. The most important models are the 2CXM, AATH and the DP model 

[9]. These new approaches are known as “second-generation” models and a scheme is 

shown in Figure 1. 

[INSERT FIG. 1 ABOUT HERE] 

 

The main advantage of second-generation models is the possibility of measuring the 

plasma flow (Fp) separately from the capillary permeability-surface area product (PS) 

rather than a single parameter (Ktrans), whose physiological meaning represents a 

combination of Fp and PS. The separation of both phenomena allows a better 

understanding of perfusion behaviours in tumors. 

Second-generation models are bicompartmental. In this way, the EES (ve) and plasma 

space (vp) can be used undivided or be further divided into infinitesimal 

subcompartments according to the model scheme (Figure 1). The notation is defined as 

follows: vp (ml/ml) is the normalized volume of the plasma space; ve (ml/ml) is the 

normalized volume of the EES; Cp (mg/ml) is the contrast concentration in the plasma 

space; Ce (mg/ml) is the contrast concentration in the EES; Fp (min-1) is the plasma flow; 
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PS (min-1) is the permeability-surface area product; E (%) is the extraction fraction; and 

L (mm) is the distance between the first and last subspace. 

 

In the same way as the Tofts model, mass balances can be applied to the different 

compartments for tissue modelling, depending on the corresponding complexity. 2CXM 

is the simplest of the second-generation models, where both spaces are undivided.  

 

vp
dCp

dt
(t) = Fp · CAIF(t) − Fp · Cp(t) + PS · Ce(t) − PS · Cp(t) Plasma space balance (eq.2) 

ve
dCe

dt
(t) = PS · Cp(t) − PS · Ce(t)  EES balance (eq.3) 

 

The next one is the AATH model, where the plasma space is divided in infinitesimal 

subcompartments and it is assumed that the permeability contrast transference is 

produced at the end of the vessels (last plasmatic compartment). 

 

vp

L

∂Cp

∂t
(x, t) = −Fp

∂Cp

∂x
(x, t)  Plasma subspace balance (eq. 4) 

ve
dCe

dt
(t) = E · Fp · Cp(L, t) − E · Fp · Ce(t)  EES balance (eq. 5) 

 

Finally, in the DP model both compartments are divided into infinitesimal spaces and 

the contrast transference due to permeability (PS) is assumed constant along the vessel. 

 

vp

L

∂Cp

∂t
(x, t) = −Fp

∂Cp

∂x
(x, t) +

PS

L
Ce(x, t) −

PS

L
Cp(x, t) Plasma subspace balance (eq. 6) 

ve

L

∂Ce

∂t
(x, t) =

PS

L
Cp(x, t) −

PS

L
Ce(x, t)  EES subspace balance (eq. 7) 

 

These systems of partial differential equations have been already solved and the contrast 

concentration C(t) can be expressed as a convolution product of the CAIF and the R(t) 

function, which is the solution of the mass balances. These contrast concentrations are 

directly related with the DCE-MRI signal intensity. In this work, C(t) has been obtained 

from I(t) using a direct conversion based on relaxivity and field strength, being I(t) the 

signal intensity of each pixel at each time point. 

 

C(t) = (CAIF ∗ R)(t)     (eq. 8) 
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In this expression, R(t) only depends on the first (Ktrans, kep, ve) or second (Fp, PS, ve, 

vp) generation perfusion biomarkers at each time instant (t). In order to obtain these 

biomarkers, the models need as input the reference arterial input function (CAIF), which 

has been calculated in this work using a PCA model [10], selecting the voxels related to 

the arterial dynamic pattern [11]. Once the CAIF is calculated for each patient 

individually, the perfusion sequence is analysed voxel-by-voxel applying the different 

pharmacokinetic approximations. 

 

The biomarkers are calculated using non-linear optimization algorithms. For this 

purpose, the values of these biomarkers are evaluated in order to minimize, for each 

model at each voxel, the difference between the contrast measured concentration and 

the convolution product function: (CAIF * R) (t). Note that non-linear optimization can 

only provide local optimums. In order to obtain reliable results, the optimization method 

defines different starting points and selects the best result minimizing the Residual Sum 

of Squares (RSS) evaluated as the sum of the squared differences at each time point. 

Using this technique, the probability of obtaining the global optimum is higher as the 

number of starting points increases, testing a relatively high number of “starting points” 

in the variable space. 

 

Following the previous method, 3 biomarkers are obtained in the case of the Tofts 

model (Ktrans, kep, ve) and 4 when considering second-generation models (Fp, PS, ve, vp). 

It must be strengthened, however, that these pharmacokinetic models assume some a 

priori knowledge about the dynamics followed by the tissues. Nevertheless, it is 

possible that, when the tissue starts producing new vessels and tissue structures in a 

chaotic way, the dynamics do not behave as expected. Therefore, this work proposes to 

use, not only these biomarkers, but also the RSS as a complementary biomarker, which 

would provide information about how well the voxel is fitted by the assumed model. 

Figure 2 shows the biomarker images obtained from an example of the AATH model 

calculated for a specific slice of a tumoral affected patient. 

 

[INSERT FIG. 2 ABOUT HERE] 
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2.2. MCR-ALS models calculation 

 

One characteristic of the pharmacokinetic models is the lack of a priori knowledge 

about the tissue vascular environment, which leads to a series of assumptions 

conditioning the use of different approaches [12]. Accordingly, and depending on the 

tissue dynamics patterns, the pharmacokinetic models may provide biased 

measurements, which may not properly reflect the true physiology of the tissue [13]. 

Therefore, a priori knowledge about the tissue dynamics might help interpreting the 

information provided by the pharmacokinetic parameters. 

One possible way to look for physiological meaningful dynamics is by applying 

multivariate statistical projection models to the DCE-MRI data. When dealing with 

images, the application of these models is known as Multivariate Image Analysis (MIA) 

[14, 15], usually based on the principal component analysis (PCA) [10]. Its application 

to oncology [16] allows extracting the sources of variation from a relevant number of 

time-sequenced images from different individuals, providing new statistical models that 

help explaining the perfusion differences between healthy tissues and tumors. 

Nevertheless, a relevant drawback of the application of PCA in DCE-MR image 

analysis is that the estimated dynamics patterns are orthogonal by design. The 

orthogonality of the principal components is a limitation to model different perfusion 

behaviors that are not necessarily orthogonal. In order to overcome these drawbacks, it 

is possible to use more flexible models as Multivariate Curve Resolution-Alternating 

Least Squares (MCR-ALS) [17, 18], which do not impose this restriction. MCR is 

preferred to PCA because of its ability to provide physiologically more interpretable 

behaviors by imposing a priori knowledge on the model. MCR-ALS is an iterative 

method that performs a bilinear decomposition of an S matrix by means of an 

alternating least squares optimization algorithm,  

𝐒 = 𝐂𝐃𝐓 + 𝐄     (eq. 9) 

 

Where S contains the signal intensity registered for each voxel in rows; DT is a matrix 

containing in its rows each of the dynamic habits modelled (figure 4); C gathers in its 

rows the relative contribution of each modelled for each voxel of the image; and E is a 

residual matrix [4-6].  
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As commented in Section 2, for each slice of the studied tissue in each patient, DCE-

MR images are arranged as a 3D data volume constituted by 2D images obtained at 

each time point t. The S matrix is constructed by reshaping the slices one-by-one (i.e. 47 

images per slice) in a bidimensional matrix where the rows are the voxels and the 

columns are the time points. Thus, in this case the S dimensions are ((n1  n2) x 47) 

where n1  n2 is the image resolution. Then, the global S matrix (per patient) is built 

stacking all the slices column-wise. A schema about the dimensions of the matrices in 

equation 9 is shown in figure 3. 

[INSERT FIG. 3 ABOUT HERE] 

 

By refolding the C matrix into the original spatial dimensions, new biomarker images 

are obtained (figure 5), which allow locating those voxels more related to each one of 

the corresponding modelled dynamic behaviors. In this case, equal length normalization 

is applied for DT matrix during the MCR-ALS iterative process in order to obtain 

concentration C that can be directly compared between them. 

 

The process of obtaining the number of components and the initial estimation of DT 

matrix is described in previous works [4,6]. According to these works, two components 

are considered in MCR models regarding to the dynamic patterns related to perfusion 

studies that can be expected using the a priori knowledge about the process. (i.e. normal 

tissue (type NT) and vascular tissue (type VT) (figure 4). Also, a third component is 

obtained because of the appearance of an artefact introduced by the equipment defined 

as CMA [4,6]]. However, this component is not included on this work because it is a 

non-informative parameter for tumor classification. The NT and VT are the dynamic 

behaviors that we should expect when studying perfusion. They correspond to how a 

non-affected and vascularized tissue should behave respectively. When MCR is applied 

on different patients we found few variations among them, but they are essentially the 

same dynamic behaviors in terms of interpretation. Moreover, also in this case, it is 

possible to include the RSS of the MCR model as an additional potential biomarker 

measuring the lack of fit in each voxel location (Figure 5). 

 

[INSERT FIG. 4 ABOUT HERE] 
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[INSERT FIG. 5 ABOUT HERE] 

 

MCR-ALS is based on an iterative process that can provide infinite solutions for the 

same data matrix causing a problem known as ambiguity in the solution. This problem 

can be solved by imposing constraints commonly related to prior knowledge about the 

problem faced, so that it is possible to obtain easier-to-interpret solutions, which also 

tend to be unique when constraints introduced under the hypothesized assumptions are 

sensible. 

For this, two additional constraints were imposed:  

 Non-negativity on the pixel concentration C values, because the intensity in a 

pixel has to be nonnegative. 

 

 Non-negativity on the dynamics profiles DT.   

Besides, equal length normalization is applied to DT matrix during the MCR-ALS 

iterative process in order to obtain concentrations C that can be directly compared 

between them. 

The ambiguity in the solution problem has been checked in previous works through 

MCR-bands [4]. In this paper the tuned bands were very close to the proposed solution 

and the dynamic habits found can be considered unambiguous. 

2.3. Variable selection using double cross-validation (2CV) with 

PLS-DA 

 

In this work, the capability of imaging biomarkers obtained from multivariate statistic 

methods in combination with biomarkers from second-generation pharmacokinetic 

models have been studied and compared for improving prostate tissue classification 

using statistical classification methods based on latent structures, such as partial least 

squares-discriminant analysis (PLS-DA) [19, 20].  

Firstly, the input matrices (X, Y) for the PLS-DA model have been built using the 

biomarker images obtained from the different approximations, i.e. pharmacokinetic or 

MCR models. The X matrix is constructed by stacking all the selected voxels in rows 

with the value of the different considered biomarkers in columns. The selected voxels 

are the ones defined by the radiologists as DL (lesion) or HP (healthy) ROI’s for each 
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patient. These ROI’s are logical images associated to one specific slice of the prostate. 

Thus, the X matrix is constructed by stacking all the voxels assigned at the 

corresponding local image for all the patients. For the same voxels, a 2-column Y 

matrix is defined with two dummy variables (0-1). The first column defined the “DL” 

variable (value 1 if the voxel belonged to the “DL” region and value 0 if otherwise). 

The second column defined the “HP” variable and is built complementary to the first 

one. From this model, the class showing higher value is assigned to the corresponding 

voxel. Using the PLS-DA model predictions, the assigned category of the voxels has 

been compared with the original classification. Therefore, if the voxel belongs to HP, it 

can be evaluated as a TN (True Negative) or FP (False Positive) depending on the 

prediction, and as a TP (True Positive) or FN (False Negative) if it is DL. Then, two 

different parameters, precision and recall, are calculated from the percentage of TP, FN 

and FP: 

 

precision =
TP

TP+FP
 recall =

TP

TP+FN
    (eq .10) 

 

Both indexes are combined in a new performance index, f-score, chosen to evaluate the 

classification model performance. The f-score [19] is defined as the weighted harmonic 

mean of these two parameters: 

 

f-score =
2·precision·recall

precision+recall
    (eq. 11) 

 

This parameter determines the goodness of prediction for a classification model. It 

ranges between 0 and 1, and takes the maximum when the precision and recall are one 

(the number of FP and FN are zero). The closer the f-score is to one, the better the 

model is in terms of prediction. 

 

The variable selection method proposed in this work (Figure 6) is a wrapped double 

cross-validation (2CV) with variable selection, showing high similarities with other 

2CV methods [21, 22]. This methodology is applied in order to determine which 

parameters supply relevant information for classification. In this work, the variable 

selection method allows us to remove all non-informative variables improving the 

classification performance (misclassifications rate based on the f-score).  
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The method consists of dividing the voxels from the cases of the data set (30 patients in 

this work) in three randomized groups of cases (i.e. 10 patients), defined as training, 

validation and test. All the voxels from each case have their own class identification 

(DL or HP) and are located in their corresponding group. This way, the voxels from a 

specific case are always included in the same group in order to avoid any type of 

overfitting. Moreover, the number of voxels in each category has been balanced as 

much as possible in order to avoid any bias of the model. 

 

The method performs as follows: starting from a number of latent variables (NLV) 

equal to one, the training set is used for PLS-DA model building, using all the variables 

(biomarkers) of the considered pharmacokinetic or MCR model. Then, projecting the 

validation set onto the model fitted with the training set, an initial f-score (0) is 

calculated evaluating the performance in the model classification. 

 

The f-score (0) is stored and then, the values of the BPLS coefficients for each variable or 

biomarker are compared with their “null” distribution obtained after breaking the 

correlation structure between X and Y of the training set. This breakage process consists 

of randomizing the order of the Y matrix rows keeping the same X and building a PLS-

DA model to obtain the “null” model coefficients. This is internally repeated 500 times 

in order to obtain the null distribution [21, 22] of these coefficients. This way, the 

variable (biomarker) is removed from the X matrix if the coefficient of a certain 

variable is not statistically significant. It is considered statistically significant if the real 

coefficient is out of the central 95% range for the random null distribution values (i.e. 

=0.05).  

 

Once all the non-statistically significant variables are removed, a new PLS-DA model is 

built with the remaining significant variables from the training set X matrix, obtaining a 

new value of f-score (1) after projecting again the same validation set (only using the 

remaining significant variables) onto the new PLS-DA model. If the new f-score (1) is 

higher than f-score (0), the model is improved and the new value of f-score (1) is 

updated. In this case, the iterative process continues with a new variable selection 

comparing the new BPLS coefficients after breaking again the correlation structure 

between X and Y. However, if f-score (1) is lower than f-score (0), the best model is the 
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one considered in the previous step. This iterative process is repeated until the f-score 

(n) is lower than the one obtained in the previous step, f-score (n-1); keeping this “best” 

model with its associated f-score (n-1) and its own variable selection. From the best 

model selected, a final external set (test) is projected onto this model obtaining the 

“final f-score”. This value is stored for further comparisons.  

 

Afterwards, the NLV is increased in one repeating the same process explained for one 

NLV. This way, at the end we obtain N-1 (where N is the initial number of variables 

considered in the X matrix) improved models (with its own variable selection) and with 

their associated value of NLV and final f-score. After this, the final f-score of these N-1 

models are compared and the highest final f-score determines the best model with the 

best variable selection. Note that if different models provide the same value of final f-

score, the most parsimonious model is preferred for simplicity. 

 

Once this process is completed, the initial groups (training, validation and set) are 

permuted (P) in the three possible different combinations (i.e. training to validation, 

validation to test and test to training) ensuring that every case belonged, at least, one 

time to each group. Then the iterative process is repeated again with the new groups, 

obtaining, at the end, three different improved models. Finally, the initial group 

randomization is repeated 500 times obtaining (500 x 3 = 1500) different data 

organizations. This scheme is shown in Figure 6. 

 

[INSERT FIG. 6 ABOUT HERE] 

 

At the end of the process, the value of the final f-score, the variable selection 

(biomarkers that remain in the model), the percentage of TN, TP, FN, FP and the related 

NLV for this “best” model obtained for each distribution of the groups (1500) are 

stored.  

 

Once the process is finished, the variable relative inclusion rate (percentage of times a 

variable is included from a pharmacokinetic, MCR or combined model) is evaluated as 

an additional indicator. 

In order to show summarized and consistent results, the analysis is simplified selecting 

the highest 5% final f-score models. Also, as an additional constraint for this “5% 
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selection”, the percentage of FN is limited to 20%, considering a higher percentage 

excessive for tumor detection. 

 

All calculations are performed in Matlab R2014b (The Mathworks Inc., Natick, MA, 

USA). 

 

3. Results and Discussion 

 

The pharmacokinetic and MCR models have been evaluated, individually and in 

combination, in order to improve the results with different types of biomarkers. This 

way, the number of columns of the X matrix may vary depending on the number of 

biomarkers of the selected models. Table 1 shows the results: 

 

[INSERT TABLE 1 ABOUT HERE] 

 

Three one-way ANOVAs have been proposed to study the statistical effect of the model 

on f-score, %FP and %FN by means of the Least Significant Difference (LSD) Intervals 

(Figures 7, 8 and 9), respectively. 

 

[INSERT FIG. 7 ABOUT HERE] 

 

[INSERT FIG. 8 ABOUT HERE] 

 

[INSERT FIG. 9 ABOUT HERE] 

 

As can be seen in the figures, statistical significant differences are observed between the 

proposed models for the mean f-score and %FP (Figures 7 and 8). However, no 

statistically significant differences appear between FN rates, as can be seen in Figure 9. 

Therefore, the ANOVA analyses show that the differences between the f-score are due 

to the differences in the %FP. Regarding the f-score and %FP, Toft’s model (mean f-

score of 0.73 and mean %FP of 20.7) performs significantly worse than two of the 

second-generation models (AATH and 2CXM) because their LSD intervals do not 

overlap obtaining, a mean f-score of 0.755 and a mean %FP of 15.4 . Furthermore, 

second-generation 2CXM or AATH models are preferred over DP models due to the 

excessive computational time required to obtain the DP biomarkers, much higher than 
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the other two second-generation models (6 times longer per voxel). Nevertheless, MCR 

alone or in combination with the best pharmacokinetic models obtained the best results 

for prediction, significantly better than any other types of model. This way, the mean f-

score raised up to 0.7857 with 0.8145 as its maximum value, heavily reducing the rate 

of false positives (from 15.4% to 7.4%), which corresponds with 0.74 of sensitivity and 

0.85 of specificity. These results are better than other studies including only first 

generation pharmacokinetic models [8, 23-26]. Additionally, no statistically significant 

differences were observed between the MCR and combined models. This suggests that 

using just MCR can be considered the best option for improving the f-score, since it is 

the most parsimonious model (i.e. adding the second-generation biomarkers do not 

improve statistically the classification results). 

 

Regarding the variable inclusion rate in the combined models, the MCR-ALS and the 

pharmacokinetic RSS variables have been included in more than 90% of the times, a 

much higher percentage in comparison with the 70% inclusion rate of the 

pharmacokinetic biomarkers. This result suggests that voxels that do not fit the models 

properly (high RSS) should be considered as potential locations for abnormal vascular 

behaviors. They could be related to the presence of a tumor, and could be used as a 

surrogate indicator in order to locate lesions (i.e. a new biomarker). This finding needs 

further validation. Additionaly, the RSS parameter can be used as an indicator of how 

reliable the provided pharmacokinetic biomarkers are. This way, voxels that are not 

well fitted by the model could be re-estimated by using imputation methods [27]. 

 

This study has some limitations. The classification index (f-score) parameter was 

selected because it is a balanced combination of the parameters that need to be 

minimized for improving the classification goodness (rates of FN and FP), but other 

indexes can be used instead (e.g. AUROC, area under the receiver operating 

characteristic curve, a common quality index in medicine). Both parameters are used in 

the field [28-30] and provide equivalent information. However, f-score is preferred in 

this work due to its simplicity and independence from the number of TN (the 

comparison of both figures-of-merit is out of the scope of this work). Also, the method 

proposed in this work is a combination of 2CV with variable selection, and could be 

tested by comparing the results with other variable selection methods (e.g. VIP’s, 

LASSO or selectivity ratio) [31-33]. Therefore, this work can be complemented making 
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a comparison between different methods and indexes for selecting the one that provides 

the best results. 

 

4. Conclusions 

 

Out of the pharmacokinetic models proposed, AATH has showed up as the best one, 

whereas the DP model is discarded due to the high computational time, and 2CXM is 

less consistent in comparison with AATH. These second-generation models have 

performed better for tumor detection than classical Tofts models, as demonstrated by 

the higher values of f-score. Also, RSS has risen as a potential biomarker in terms of 

inclusion rate. 

 

Nevertheless, the use of imaging biomarkers from MCR-ALS methods has provided 

better results than the DCE-MRI pharmacokinetic approximations for voxelwise 

classification. The MCR dynamic behaviours (NT and VT) and the RSS were most of 

the times statistically significant, being the best biomarkers for lesion detection and 

tissue. 
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Table citations 

 

 

Table 1. Results summary for each considered model or models combinations using the 

5% best models according to the final f-score. The best biomarkers were selected in 

terms of inclusion rate.  

Model 
Max f-

score 

Mean f-

score 

Mean 

%FP 

Mean 

%FN 

Best Biomarkers 

(Inclusion rate) 

TOFTS 0.7871 0.7302 20.7 14.6 

RSS, ve (80%) 

Others (<60%) 

AATH 0.8125 0.7530 16.8 13.2 

RSS (95%) 

Others (80%) 

2CXM 0.8187 0.7556 15.4 13.6 

Fp RSS (90%) 

Others (50-60%) 

DP 0.8318 0.7455 16.1 14.7 

RSS (100%) 

Others (<60%) 

MCR 0.8145 0.7857 7.5 13.5 

Type VT (95%) 

Type NT (100%) 

MCR 

 + 

2CXM 

0.8162 0.7789 9.2 13.9 

MCR (>90%) 

2CXM (50-70%) 

MCR + 

AATH 
0.8388 0.7804 9.6 12.6 

MCR (>90%) 

AATH (60-70%) 

MCR +  

DP 

0.8659 0.7725 10.1 13.8 

MCR (>90%) 

DP (60-70%) 

RSS DP (90%) 
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Figure Captions 

 

Figure 1. Second-generation models scheme, (left to right: two-compartment exchange 

model, 2CXM; adiabatic approximation of tissue-homogeneity, AATH; distributed-

parameter, DP) sorted in terms of complexity attending to the number of compartmental 

divisions. 

Figure 2. AATH model biomarker images representing the value of FP, PS, ve and vp, 

calculated voxel-by-voxel. The residual sum of squares (RSS) biomarker image is 

included as a new biomarker type, showing the lack of fit in each voxel. 

Figure 3. MCR model schema containing the dimensions of the matrices for the DCE-

MRI perfusion analysis. The 3 components considered in this model are the ones related 

to NT (normal tissue), VT (vascularized tissue) and CMA (contrast media arrival). 

Figure 4. Dynamic behaviors obtained from MCR-ALS model, representing VT 

(vascularized tissue) and NT (normal tissue). 

 

Figure 5. MCR-ALS biomarker images representing the relative contribution of each 

dynamic behavior (vascularized tissue VT and normal tissue NT) to a specific voxel. 

The residual sum of squares (RSS) distribution map shows the voxels that are not well 

fitted by the model. 

Figure 6. Variable selection process scheme, repeated 500 times to obtain the results for 

each proposed model. P represents the number of the three different group permutations 

proposed and NLV is the number of latent variables for PLS-DA. 

Figure 7. LSD ANOVA intervals for the f-score mean of the different individual and 

combined models (=0.05) separated by the black dotted line. 

Figure 8. LSD ANOVA intervals for the %FP mean of the different individual and 

combined models (=0.05) separated by the black dotted line. 

Figure 9. LSD ANOVA intervals for the %FN mean of the different individual and 

combined models (=0.05) separated by the black dotted line. 


