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A mean square chain rule and its application
in solving the random Chebyshev differential
equation

J.-C. Cortés, L. Villafuerte and C. Burgos

Abstract. In this paper a new version of the chain rule for calculat-
ing the mean square derivative of a second-order stochastic process is
proven. This random operational calculus rule is applied to construct
a rigorous mean square solution of the random Chebyshev differential
equation (r.C.d.e.) assuming mild moment hypotheses on the random
variables that appear as coefficients and initial conditions of the cor-
responding initial value problem. Such solution is represented through
a mean square random power series. Moreover, reliable approximations
for the mean and standard deviation functions to the solution stochastic
process of the r.C.d.e. are given. Several examples, that illustrate the
theoretical results, are included.
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1. Introduction and Preliminaries

Several studies of random differential equations with random coefficients have
been undertaken lately, [1–7]. A rigorous treatment of the mean square solu-
tions of random differential equations requires some operational tools. In [8]
a chain rule for the composition of a C1-function with a stochastic process
was provided. In the present paper a new version of the chain rule is proven.
While this chain rule can be applied in different scenarios, a single application
is presented in this paper, namely, the rigorous solution, in the mean square
sense, of the random Chebyshev differential equation (r.C.d.e.).

For the sake of clarity, in the following we summarize the main defi-
nitions and results that will be used throughout this paper. Further details
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about them can be found in [8–11]. Let p ≥ 1 be a real number. A real
random variable (r.v.) X : Ω −→ R defined on a complete probability space
(Ω,F ,P) is called of order p (in short, p-r.v.), if

E[|X|p] < +∞ ,

where E[ ] denotes the expectation operator. The set Lp(Ω) of all the p-r.v.’s
endowed with the norm

‖X‖p = (E[|X|p])1/p
,

is a Banach space, [12, p.9]. In the particular case that X ∈ L2(Ω), it is
termed a second-order random variable (2-r.v.). Let T ⊂ R be an interval
of the real line, if E[|X(t)|p] < +∞ for all t ∈ T , then {X(t) : t ∈ T } is
termed a stochastic process of order p (in short, p-s.p.). In the particular
case that X(t) ∈ L2(Ω) for every t, it is termed a second-order stochastic
process (2-s.p.).

Let {Xn : n ≥ 0} be a sequence in Lp(Ω). We say that it is convergent
in the p-th mean to X ∈ Lp(Ω), if

lim
n→∞

‖Xn −X‖p = 0.

The so-called mean square (m.s.) convergence corresponds to p = 2. The p-
continuity and p-differentiability in (Lp(Ω, ‖·‖p) Banach spaces are inferred,
as usually, from the p-norm. For instance, for the particular case p = 2, the
s.p. {X(t) : t ∈ T } in L2(Ω) is said to be mean square (m.s.) continuous at
t ∈ T if

‖X(t+ h)−X(t)‖2 −−−→
h→0

0 , t, t+ h ∈ T . (1.1)

If there exists a s.p. dX(t)
dt ∈ L2(Ω) such that∥∥∥∥X(t+ h)−X(t)

h
− dX(t)

dt

∥∥∥∥
2

−−−→
h→0

0 , t, t+ h ∈ T , (1.2)

then we say that the s.p. X(t) is m.s. differentiable at t ∈ T and its m.s.

derivative at t is given by dX(t)
dt . This calculus defined in L2(Ω) is called

mean square calculus, while mean fourth (m.f.) calculus is the one associated
to p = 4, [8]. In the general case that p ≥ 1, it is usually referred to as Lp(Ω)
stochastic calculus.

In this paper we firstly establish a chain rule for calculating, in the
m.s. sense, the derivative of a s.p., say X(t), that is defined through the
composition of another s.p., Y (s), and a deterministic function, g(t), i.e.,
X(t) = Y (g(t)). Afterwards, we apply such stochastic chain rule for solving
the random Chebyshev differential equation. Both contributions constitute
extensions of previous works by the authors and other coauthors.

On the one hand in [8] a random chain rule for differentiating, in the m.s.
sense, a s.p. X(t) = g(Y (t)) resulting from the composition of a deterministic
function, g(s), and a s.p., Y (t), is established. As shown in [8], the rigorous
proof of this counterpart of the mean square stochastic chain rule needs to
assume hypotheses involving mean fourth information on s.p. Y (t). While
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only assuming m.s. conditions of the s.p. Y (s), a random chain rule will be
established later. Therefore, a part of this paper complements the previous
contribution [8].

On the other hand, in previous contributions important second-order
differential equations have been randomized and studied taking advantage
of the Lp(Ω) stochastic calculus with p = 2, 4. In this regard, random Airy,
Hermite, Legendre, Laguerre and Bessel differential equations have been stud-
ied in [13–17], respectively. Other second-order random differential equations
that have also been studied using the mean square calculus together with
other interesting techniques such as homotopy analysis, homotopy-perturbation
techniques, Adomian method, are [18–20], respectively. In this paper, we en-
large this list studying the randomized Chebyshev differential equation using
a completely different approach based on a new m.s. chain rule.

This paper is organized as follows. In Section 2 a version of the classical
chain rule is extended to compute the derivative, in the mean square sense, of
a stochastic process resulting from the composition of a stochastic process and
a deterministic function. In Section 3, the new stochastic chain rule is applied
to solve, rigorously, the random Chebyshev differential equation by assuming
quite mild assumptions on input data. Section 4 is addressed to compute the
main statistical properties of the solution stochastic process to the random
Chebyshev differential equation, namely, the mean and the standard devia-
tion functions, as well as providing some illustrative examples where these
statistical functions are computed. The numerical results are compared with
the ones obtained by Monte Carlo sampling. Our approach demonstrates its
superiority against Monte Carlo simulations regarding computational timing.
Finally, conclusions are drawn in Section 5.

2. A mean square chain rule

Now we prove a m.s. chain rule for the composition of a deterministic dif-
ferentiable function with a s.p. This result complements the one established
in [8].

Theorem 2.1. Let g be a deterministic continuous function on [a, b] such that
dg(t)

dt exists and is finite at some point t ∈ [a, b]. If {Y (s) : s ∈ I} is a 2-s.p.
such that

i) The interval I contains the range of g, g([a, b]) ⊂ I.
ii) Y (s) is m.s. differentiable at the point g(t).
iii) The m.s. derivative of Y (s), dY

ds , is m.s. continuous on I.

Then, the 2-s.p. Y (g(t)) is m.s. differentiable at t and the m.s. derivative is
given by

dY (g(t))

dt
=

dY

ds

∣∣∣
s=g(t)

dg(t)

dt
.
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Proof. Let us denote dY
ds

∣∣∣
s=g(t)

= dY
ds (g(t)). Setting

G(t,∆t) :=
g(t+ ∆t)− g(t)

∆t
− dg(t)

dt
, (2.1)

it follows, by hypothesis, that

G(t,∆t) −−−−→
∆t→0

0.

Isolating g(t+ ∆t) from (2.1), one obtains

g(t+ ∆t) = g(t) + ∆t

(
G(t,∆t) +

dg(t)

dt

)
.

Let us write

K = K(t,∆t) = g(t+ ∆t)− g(t), (2.2)

and

S(t,∆t) =


Y (g(t+ ∆t))− Y (g(t))

K
− dY

ds
(g(t)) if K 6= 0,

0 if K = 0.

(2.3)

Then, defining T (t,∆t) = K(t,∆t)
∆t , ∆t 6= 0 and observing from (2.2) that

Y (g(t+ ∆t)) = Y (g(t) +K), expression (2.3) leads to

Y (g(t+ ∆t))− Y (g(t))

∆t
= T (t,∆t)

(
S(t,∆t) +

dY

ds
(g(t))

)
. (2.4)

In view of (2.4), we must prove

lim
∆t→0

∥∥∥∥T (t,∆t)

(
S(t,∆t) +

dY

ds
(g(t))

)
− dY

ds
(g(t))

dg(t)

dt

∥∥∥∥
2

= 0. (2.5)

From (2.1), it follows that T (t,∆t) can be written as T (t,∆t) = G(t,∆t) +
dg(t)

dt . Thus, by the triangle inequality one gets∥∥∥T (t,∆t)
(
S(t,∆t) + dY

ds (g(t))
)
− dY

ds (g(t)) dg(t)
dt

∥∥∥
2

=
∥∥∥G(t,∆t)S(t,∆t) + dg(t)

dt S(t,∆t) +G(t,∆t)dY
ds (g(t))

∥∥∥
2

≤ ‖G(t,∆t)S(t,∆t)‖2 +
∥∥∥dg(t)

dt S(t,∆t)
∥∥∥

2
+
∥∥G(t,∆t)dY

ds (g(t))
∥∥

2

= |G(t,∆t)| ‖S(t,∆t)‖2 +
∣∣∣dg(t)dt

∣∣∣ ‖S(t,∆t)‖2 + |G(t,∆t)|
∥∥dY

ds (g(t))
∥∥

2
,

(2.6)

where in the last step we have used that g(t), and hence dg(t)
dt and G(t,∆t),

are deterministic.
As dY

ds is m.s. continuous on I, it is m.s. Riemann integrable too, hence
by the fundamental theorem of the m.s. calculus (see [10, p. 104]), it follows
that

Y (g(t+ ∆t) ∨ g(t))− Y (g(t+ ∆t) ∧ g(t)) =

∫ g(t+∆t)∨g(t)

g(t+∆t)∧g(t)

dY (s)

ds
ds, (2.7)
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where ∨ and ∧ stand for minimum and maximum operators, respectively.
Using (2.7) and the definition of S(t,∆t), given in (2.3), one gets

‖S(t,∆t)‖2 =


∥∥∥∥∥
∫ g(t+∆t)∨g(t)

g(t+∆t)∧g(t)

[
dY (s)

ds
− dY

ds
(g(t))

]
ds

∥∥∥∥∥
2

|K|
if K 6= 0,

0 if K = 0,
(2.8)

Moreover, as dY
ds is m.s. continuous on I, then by property (3) of [10, p. 102]

we have ∥∥∥∥∥
∫ g(t+∆t)∨g(t)

g(t+∆t)∧g(t)

[
dY (s)

ds
− dY

ds
(g(t))

]
ds

∥∥∥∥∥
2

≤ |K| max
s∈[g(t+∆t)∧g(t),g(t+∆t)∨g(t)]

∥∥∥∥dY (s)

ds
− dY

ds
(g(t))

∥∥∥∥
2

.

(2.9)

Taking into account the continuity of g on [a, b] and the m.s. continuity of
dY
ds on I, from (2.8)–(2.9) one concludes that

lim
∆t→0

‖S(t,∆t)‖2 = 0. (2.10)

As
∥∥dY

ds (g(t))
∥∥

2
< +∞,

∣∣∣dg(t)dt

∣∣∣ < +∞,G(t,∆t) −−−−→
∆t→0

0 and lim∆t→0 ‖S(t,∆t)‖2 =

0, from (2.6) it follows (2.5). Thus, the proof is complete. �

Example 1. Let Y (s) be a 2-s.p. twice m.s. differentiable such that its second

m.s. derivative, d2Y
ds2 , exists and is m.s. continuous on the interval I = (−1, 1).

Let g(t) = cos(t), t ∈ (0, π). As dY
ds is m.s. differentiable on I, by Property (1)

of [10, p. 95], dY
ds is m.s. continuous on I. Moreover, for all t ∈ (0, π), g(t) ∈ I

and Y (s) is m.s. differentiable at g(t). Therefore, Theorem 2.1 asserts that,
for every t ∈ (0, π) the m.s. derivative of Y (g(t)) exists and is given by

dY (g(t))

dt
=

dY

ds

∣∣∣
s=g(t)

dg(t)

dt
=

dY

ds
(cos(t)) [− sin(t)] . (2.11)

Now, taking into account that d2Y
ds2 is m.s. continuous on I, with the aid of

Property (4) of [10, p.96] and Theorem 2.1, it follows that for every t ∈ (0, π),
the second m.s. derivative of Y (g(t)) is

d2Y (g(t))

dt2
=

d
(

dY
ds (cos(t)) [− sin(t)]

)
dt

= sin2(t)
d2Y

ds2
(cos(t))−cos(t)

dY

ds
(cos(t)).

Using (2.11), d2Y (g(t))
dt2 can be written as

d2Y (g(t))

dt2
= sin2(t)

d2Y

ds2
(cos(t)) +

cos(t)

sin(t)

dY (g(t))

dt
. (2.12)
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3. Solving the random Chebyshev differential equation
(r.C.d.e.)

Let A, Y0 and Y1 be r.v.’s and I = (−1, 1). Consider the r.C.d.e. with two
initial conditions:

(1− s2)
d2Y (s)

ds2
− sdY (s)

ds
+A2Y (s) = 0, s ∈ I, (3.1)

Y (0) = Y0,
dY

ds
(0) = Y1. (3.2)

In the following, the chain rule that has been established in Theorem 2.1,
will be applied to find a 2-s.p., {Y (s) : s ∈ I}, satisfying the initial value
problem (3.1)–(3.2). As usually, the 2-s.p. Y (s) is called the m.s. solution of

(3.1)–(3.2). Let us assume that the second m.s. derivative of Y (s), d2Y
ds2 , exists

and is m.s. continuous on I. Setting s = cos(t) := g(t), t ∈ (0, π), Theorem
2.1 (chain rule) and Example 1 (see expressions (2.11)–(2.12)) yield

dY

ds
(s) =

dY

ds
(cos(t)) = − 1

sin(t)

dY (cos(t))

dt
, (3.3)

and

d2Y

ds2
(s) =

d2Y

ds2
(cos(t)) =

1

sin2(t)

(
d2Y (cos(t))

dt2
− cos(t)

sin(t)

dY (cos(t))

dt

)
.

(3.4)
Defining

X(t) = Y (cos(t)), s = cos(t), (3.5)

and inserting (3.3) and (3.4) in expression (3.1) we have

(1− cos2(t))
1

sin2(t)

[
d2X(t)

dt2
− cos(t)

sin(t)

dX(t)

dt

]

− cos(t)

[
− 1

sin(t)

dX(t)

dt

]
+A2X(t) = 0.

Hence, using the well-known identity cos2(t) + sin2(t) = 1, one gets

d2X(t)

dt2
+A2X(t) = 0, t ∈ (0, π).

Now, if cos(t) = 0, t ∈ (0, π) then t = π
2 . Therefore, by (3.5), one gets

Y0 := Y (0) = Y (cos(π/2)) = X(π/2).

Also, by (3.3) and (3.5) one obtains

Y1 :=
dY

ds
(0) =

dY

ds
(cos(π/2)) = − 1

sin(π/2)

dX

dt

∣∣∣
t=π/2

= −dX

dt
(π/2).
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Therefore, the change of variable s = cos(t) transforms the problem
(3.1)–(3.2) into the random initial value problem

d2X(t)

dt2
+A2X(t) = 0, t ∈ (0, π), (3.6)

X(π/2) = Y0,
dX

dt
(π/2) = −Y1. (3.7)

Moreover, letting r = t − π/2 and defining Z(r) := X(r + π/2) = X(t) it
follows

dZ(r)

dr
=

dX(t)

dt
,

d2Z(r)

dr2
=

d2X(t)

dt2
,

and, according to (3.7) one gets

Z(0) = X(π/2) = Y0,
dZ

dr
(0) =

dX

dt
(π/2) = −Y1.

Finally, the problem (3.1)–(3.2) has been transformed into

d2Z(r)

dr2
+A2Z(r) = 0, r ∈ (−π/2, π/2), (3.8)

Z(0) = Y0,
dZ

dr
(0) = −Y1. (3.9)

In the following result a m.s. solution of the r.C.d.e. is provided. Its proof is
a direct application of Theorem 3.1 of [1].

Theorem 3.1. Let A2 be a r.v. such that there exist constants M > 0 and κ
such that 0 ≤ κ < 2, satisfying the following property∥∥(A2)n

∥∥
4

= O(Mn−1((n− 1)!)κ), ∀n ≥ 1. (3.10)

If Y0 and Y1 are 4-r.v.’s both independent of r.v. A2. Then, a m.s. solution
of (3.1)–(3.2) is given by:

Y (s) =
∑
k≥0

(−1)k(A2)kY0

(2k)!
(cos−1(s)− π/2)2k

+
∑
k≥0

(−1)k(A2)k(−Y1)

(2k + 1)!
(cos−1(s)− π/2)2k+1, s ∈ (−1, 1).

(3.11)

Proof. From Theorem 3.1 of [1] it follows that

Z(r) =
∑
k≥0

(−1)k(A2)kY0

(2k)!
r2k+

∑
k≥0

(−1)k(A2)k(−Y1)

(2k + 1)!
r2k+1, r ∈ (−π/2, π/2)

is a m.s. solution of problem (3.8)–(3.9). As X(t) = X(r+ π/2) = Z(r) then

X(t) =
∑
k≥0

(−1)k(A2)kY0

(2k)!
(t− π/2)2k +

∑
k≥0

(−1)k(A2)k(−Y1)

(2k + 1)!
(t− π/2)2k+1

(3.12)
is a m.s. solution of (3.6)–(3.7) for t ∈ (0, π). Finally, the result follows by
considering relation (3.5). �
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Remark 3.2. If A is a r.v. such that there exists 0 ≤ κ < 2 satisfying the
property ∥∥(A2)n+1

∥∥
4

= O(nκ)
∥∥(A2)n

∥∥
4
, ∀n ≥ 0. (3.13)

Then A2 also satisfies property (3.10), see Lemma 2.2 of [1]. Sometimes,
verifying property (3.13) might be easier than checking property (3.10).

Remark 3.3. In Example 2.3. of [1] it is shown that any beta r.v. satisfies
property (3.10). In the following, we add some further important families
of r.v.’s that also satisfy such property, thus enlarging and enriching the
applicability of our theoretical results. Firstly, an important class of r.v.’s that
satisfies property (3.10) is the centered gaussian family. Indeed, a gaussian
r.v. A with zero-mean and arbitrary standard deviation, σ > 0, satisfies
condition (3.13) with κ = 1:∥∥(A2)n+1

∥∥
4

‖(A2)n‖4
=
σ2

2

(∏8
i=1(8n+ i)∏4
i=1(4n+ i)

)1/4

= O(n), A ∼ N(0;σ2). (3.14)

Thus, by Remark 3.2, A2 satisfies property (3.10). Notice that in (3.14), we
have used the following property

E
[
X2m

]
=

(2m)!

2mm!
σ2m, m = 0, 1, 2, . . . , X ∼ N(0;σ2),

for X = A and m = 4n and m = 4(n + 1). Another important class of
r.v.’s satisfying (3.10) are bounded r.v.’s. In fact, let us consider that A is
an absolutely continuous r.v. with probability density function (p.d.f.) fA(a)
such that a1 ≤ A(ω) ≤ a2 for every ω ∈ Ω. Then, |A2(ω)| ≤ H being
H = max{1, (a1)2, (a2)2}, and

∥∥(A2)n
∥∥

4
=
(
E
[
A8n

]) 1
4 =

(∫ ∞
−∞

a8nfA(a)da

) 1
4

≤ H2n

(∫ ∞
−∞

fA(a)da

)
= H2n,

(3.15)
where in the last step we have used that the integral is the unit since fA(a) is
a p.d.f. Notice that (3.15) can equivalently be written in the following form∥∥(A2)n

∥∥
4
≤ L× Ln−1, L = H2.

Therefore, property (3.10) holds for κ = 0 and M = L > 0. The previous
reasoning is also valid for discrete r.v.’s simply by substituting the integral
and the corresponding series. We finally point out that this family of r.v.’s is
particularly useful in applications because apart from embracing important
classes of bounded standard r.v.’s, like binomial, uniform, beta, etc., any un-
bounded r.v. can be fairly approximated by truncating its domain adequately.
For instance, according to the probabilistic Chebyshev’s inequality, for every
2-r.v. X with mean µX and variance σ2

X > 0, one gets

P [|X − µX | > kσ] ≤ 1

k2
, k > 0.
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Hence taking k = 10, the 99% of the probability mass of any 2-r.v. is con-
tained in the truncated domain [µX − 10σX , µX + 10σX ]. Naturally, the di-
ameter of this interval can considerably be reduced if the distribution of X
is known.

Remark 3.4. If A2 is a r.v. satisfying property (3.10), then the trigonometric
processes

sin(At) =
∑
k≥0

(−1)k(A2)k+ 1
2

(2k + 1)!
t2k+1, cos(At) =

∑
k≥0

(−1)k(A2)k

(2k)!
t2k,

are well defined in L2(Ω). Thus, the solution s.p. Y (s) of the r.C.d.e. defined
by (3.11), can be written as

Y (s) = Y0 cos
(
A
[
cos−1(s)− π

2

])
− Y1

A
sin
(
A
[
cos−1(s)− π

2

])
. (3.16)

Moreover, from Remark 3.3 of [1], it follows

cos
(
A
[
cos−1(s)− π

2

])
= cos

(
A cos−1(s)

)
cos
(
A
π

2

)
+sin

(
A cos−1(s)

)
sin
(
A
π

2

)
,

and

sin
(
A
[
cos−1(s)− π

2

])
= sin

(
A cos−1(s)

)
cos
(
A
π

2

)
−sin

(
A
π

2

)
cos
(
A cos−1(s)

)
.

4. Statistical properties of the solution. Examples

A natural application of previous results is the extension to the random
framework of classical Chebyshev polynomials. If A is a bounded r.v. that
only takes positive integers values, then the random Chebyshev polynomials
of the first kind, denoted by TA, are defined by

TA(s) = cos(A cos−1(s)), s ∈ (−1, 1).

Also the random Chebyshev polynomials of the second kind, denoted by
UA−1, are defined by the expression

sin(A cos−1(s)) = UA−1(s) sin(cos−1(s)), s ∈ (−1, 1).

The deterministic Chebyshev polinomials of the first and the second kind
can be found in a number of references, for example in [21, pp. 57, 61]. By
Remark 3.4, if A is a r.v. taking only positive integer values, then the solution
Y (s) of the r.C.d.e. can be written as

Y (s) = cos
(
A
π

2

)[
Y0TA(s)− Y1

A
UA−1(s) sin(cos−1(s))

]
+ sin

(
A
π

2

)[
Y0UA−1 sin(cos−1(s)) +

Y1

A
TA(s)

]
.

(4.1)

Example 2. Suppose that A is a r.v. such that P[A = 2] = P[A = 4] = P[A =
6] = 1/3. If Y1 = 0 w.p. 1 (with probability 1) and Y0 is a r.v. with E[Y0] = 1
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and E[(Y0)2] = 3/2, then according to (4.3) the solution of the r.C.d.e. is
given by

Y (s) = cos
(
A
π

2

)
Y0TA(s) + sin

(
A
π

2

)
Y0 sin(A cos−1(s)).

Assuming that Y0 is independent of A and taking into account that E [Y0] = 1
and that only takes the following even values A ∈ {2, 4, 6}, one gets

E
[
sin
(
A
π

2

)
Y0 sin(A cos−1(s))

]
= E

[
sin
(
A
π

2

)
sin(A cos−1(s))

]
= 0,

and

E
[
cos
(
A
π

2

)
Y0TA(s)

]
=

3∑
k=1

cos
(

2k
π

2

)
T2k(s)P(A = 2k).

Further, in view of T2(s) = 2s2 − 1, T4(s) = 8s4 − 8s2 + 1, T6(s) = 32s6 −
48s4 + 18s2 − 1, it follows that

E [Y (s)] =
1

3
(−T2(s) + T4(s)− T6(s))

=
1

3

(
−32s6 + 56s4 − 28s2 + 3

)
,

(4.2)

and

E
[
(Y (s))2

]
= E

[
(Y0)2

]
E
[(

cos
(
A
π

2

))2

(TA(s))2

]
=

3

2

3∑
k=1

(
cos
(

2k
π

2

))2

(T2k(s))
2 P(A = 2k)

=
1

2

(
T2(s))2 + (T4(s))2 + (T6(s))2

)
= −512s12 + 1536s10 − 1696s8 + 832s6 − 168s4 + 8s2 +

1

2
.

(4.3)

Now, if A does not take integer values w.p. 1, but it satisfies property
(3.10), then we compute approximations of the mean and standard deviation
by truncating the infinite series given by (3.11):

YN (s) = Y0F (s;A,N) + Y1G(s;A,N), s ∈ (−1, 1). (4.4)

where

F (s;A,N) =

N∑
k=0

(−1)k(A2)k

(2k)!
(cos−1(s)− π/2)2k,

G(s;A,N) =

N∑
k=0

(−1)k+1(A2)k

(2k + 1)!
(cos−1(s)− π/2)2k+1.

(4.5)

Under the hypothesis that r.v. A is independent of both r.v.’s Y0 and Y1, one
obtains

E [YN (s)] = E [Y0]E [F (s;A,N)] + E [Y1]E [G(s;N,A)] (4.6)
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and

E
[
(YN )2

]
= E

[
(Y0)2

]
E
[
(F (s;N,A))2

]
+ E

[
(Y 2

1 )
]
E
[
(G(s;N,A))2

]
+ 2E [Y1]E [Y0]E [F (s;N,A)G(s;N,A)] .

(4.7)

The usefulness of expressions (4.4)–(4.5) to compute the approximations of
the mean and the variance functions of the solution s.p., Y (s), according to
(4.6) and (4.7), resorts in the following key property: If {YN : N ≥ 0} is a
sequence of r.v.’s in L2(Ω) that m.s. converges to the r.v. Y ∈ L2(Ω), then

E[YN ] −−−−→
N→∞

E[Y ], E[(YN )2] −−−−→
N→∞

E[Y 2], (4.8)

and as a consequence, an analogous property for the variance

σ2
YN
−−−−→
N→∞

σ2
Y (4.9)

holds (see Theorem 4.3.1 in [10, p. 88])).

Example 3. In this second example, we consider A with normal distribu-
tion, A ∼ N(0, 1/4), Y0 with Beta distribution, Y0 ∼ Be(1, 3) and Y1 with
uniform distribution on [0, 2], Y1 ∼ U(0, 2). Expressions (4.6) and (4.7) are
used to compute the mean E[YN (s)] and the standard deviation σN (s) =√
E[YN (s)2]− (E[YN (s)])2. We refer to this method as the truncated series

method (T.S.M.). Numerical results obtained by this approach are compared
with those reached from the Monte Carlo Method (M.C.M.). In this lat-
ter case we use the notations µ̃mY (s) and σ̃mY (t) for the mean and standard
deviation, respectively, being m the number of simulations. From (4.3) the
exact values of the mean, E[Y (s)], and standard deviation, σ[Y (s)], can be
computed. In the following, this method is termed the theoretical method.
According to Remark 3.3, A satisfies condition (3.10), therefore YN (s) is
m.s. convergent in L2(Ω). Then, using (4.8)–(4.9), it follows that sequences
of E[YN (s)] and σYN

(s) are convergent to the corresponding exact values.
The results collected in Tables 1-2 illustrate this assertion. A comparison of
the CPU time used in Mathematica R© 10.3 to compute the numerical re-
sults shown in Tables 1-2 is given in Table 3. Data shows that the proposed
truncated series method is faster than both Monte Carlo and the Theoretical
methods.

Table 1. Approximations of the mean by the proposed
truncated series method (E[YN (s)]) and Monte Carlo sam-
pling (µ̃mY (s)) using N = 10 as truncation order, different
number of simulations, m, at some selected time points s in
the context of Example 3. Last column contains the values
of the exact expectation E[Y (s)].

s E[YN (s)]; N = 10 µ̃m
Y (s); m = 50000 µ̃m

Y (s); m = 100000 E[Y (s)]
0.1 0.349812 0.349456 0.350778 0.349812
0.3 0.550634 0.550906 0.551887 0.550634
0.5 0.759256 0.760167 0.760765 0.759256
0.7 0.988303 0.989880 0.990006 0.988303
0.9 1.277650 1.279990 1.279390 1.277650
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Table 2. Approximations of the standard deviation by the
proposed truncated series method (σN (s)) and Monte Carlo
sampling (σ̃mY (s)) using N = 10 as truncation order and
different number m of simulations, at some selected time
points s in the context of Example 3. Last column contains
the values of the exact standard deviation σ[Y (s)].

s σN (s); N = 10 σ̃m
Y (s); m = 50000 σ̃m

Y (s); m = 100000 σ[Y (s)]
0.1 0.201862 0.202049 0.202471 0.201862
0.3 0.259597 0.259382 0.259939 0.259597
0.5 0.353343 0.352766 0.353362 0.353343
0.7 0.475575 0.474643 0.475218 0.475575
0.9 0.650469 0.640920 0.649552 0.649552

Table 3. Execution time for computing the mean and vari-
ance for Example 3 implemented on Intel R© Core

TM
2 Duo,

4GB, 2.4GHz using the software Mathematica 10.3.

Methods Time CPU (seconds) % Increase
Truncated series method (T.S.M.)

truncation order N = 10 0.185919
Monte Carlo (M.C.) From T.S.M. to M.C.
10× 104 simulations 103.014 55408.3

Theoretical method (T.M.) From T.S.M. to T.M.
1.53099 822.393

5. Conclusions

The most important result established in this paper is a chain rule for differen-
tiating stochastic processes, in the mean square sense. This chain rule applies
to stochastic processes, say X(t) = Y (g(t)), where Y (s) is a mean square dif-
ferentiable stochastic process and g(t) is a deterministic mapping. This result
complements the stochastic chain rule for differentiating X(t) = g(Y (t)) in
the mean square sense, that has been established in [8]. It is remarkable that
in this latter contribution Lp-random calculus with p = 2 (mean square calcu-
lus) and p = 4 (mean fourth calculus) are required, whereas here mean square
calculus is only used. As a significant application of this new stochastic chain
rule, we have solved the Chebyshev random differential equation. Finally, it
is important to point out that the availability of this novel stochastic chain
rule opens up numerous potential applications including the rigorous solution
of other random differential equations.
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