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Abstract

This paper deals with the study of a Bessel-type differential equation where input parameters
(coefficient and initial conditions) are assumed to be random variables. Using the so-called Lp-
random calculus and assuming moment conditions on the random variables in the equation, a
mean square convergent generalized power series solution is constructed. As a result of this
convergence, the sequences of the mean and standard deviation obtained from the truncated
power series solution are convergent as well. The results obtained in the random framework
extend their deterministic counterpart. The theory is illustrated in two examples in which several
distributions on the random inputs are assumed. Finally, we show through examples that the
proposed method is computationally faster than Monte Carlo method.
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1. Introduction1

Deterministic differential equations have demonstrated to be powerful tools to model a num-2

ber of problems in physics, chemistry, epidemiology, engineering, etc. When they are put in3

practice, their inputs (coefficients, forcing term, initial/boundary conditions) need to be set from4

sampled data, which usually contain uncertainty. The main source of randomness come from5

measurement errors and complexity of the phenomenon under analysis. This leads to two main6

approaches in dealing with differential equations with randomness, namely, stochastic differential7

equations and random differential equations. On the one hand, stochastic differential equations8

consider uncertainty through an irregular Gaussian stochastic process termed as white noise, i.e.,9

the derivative of the Wiener process. Their analytic and numerical study requires the so-called10

Itô calculus [1, 2]. On the other hand, random differential equations constitute natural extensions11

of their deterministic counterpart since the involved input parameters are considered directly12
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random variables and/or stochastic process having a more regular behaviour. The advantage of13

considering random differential equations against stochastic differential equations is the wide14

range of well-known probability distributions that can be assigned to their input parameters such15

as beta, gamma, lognormal, gaussian, etc [3, 4, 5, 6, 7]. The analysis of random differential equa-16

tions is based on the so-called Lp-random calculus, being mean square and mean fourth calculus17

specializations corresponding to p = 2 and p = 4, respectively, that have demonstrated to be18

very useful for this purpose [8, 9].19

The goal of this paper is to construct a mean square solution for the Bessel random differential20

equation (r.d.e.)21

t2Ẍ(t) + tẊ(t) + (t2 − A2)X(t) = 0, t > 0, (1)

where A is assumed to be a random variable defined on a complete probability space (Ω,F ,P).22

Throughout the paper, we will assume that A is a non-negative random variable with probability23

1 (w.p. 1), i.e.,24

P [{ω ∈ Ω : A(ω) ≥ 0}] = 1. (2)

The construction of such solution will be performed by random generalized power series whose25

mean square convergence will be justified taking advantage of Lp-random calculus. From an ap-26

plied point of view, it is important to point out that the computation of the rigorous solution of (1)27

in the mean square sense guarantees that the approximations generated by truncating the exact28

random power series solution of (1) will converge to the corresponding exact mean and variance.29

These two statistical moments are often the most relevant information required in applications.30

This advantage makes Lp-random calculus, and hence mean square convergence, the convenient31

framework to study random differential equation (1) instead of using alternative stochastic con-32

vergences such as almost surely, in probability and distribution. Furthermore we shall show later,33

through several numerical examples, that random generalized power series solution approach is34

faster than Monte Carlo sampling. This latter approach is the most widely used method to deal35

with random differential equations in applications.36

The consideration of randomness in the A parameter that appears in the Bessel differential37

equation (1) can be motivated from physical considerations. The wave propagation generated38

by a electric field and its variations in the medium can be considered as being randomly varying39

due to unhomogeneous physical properties of the medium. As it is shown in [10], the governing40

equation for the electric field in a specific direction is given by a Bessel equation of the form41

(1), where A coefficient depends upon random medium parameters. From a mathematical point42

of view the Bessel differential equation is encountered when solving boundary value problems,43

such as separable solutions to Helmholtz equation in cylindrical or spherical coordinates. The44

A parameter determines the order of the Bessel functions found in the solution of equation (1).45

In the deterministic framework A parameter can take any real value. A natural generalization46

of this equation to the random context consists of assuming that A parameter together with the47

corresponding initial conditions are random variables rather than deterministic numbers. The48

extension to the random scenario of another classical second-order linear differential equations49

that appear in physics can be found in [11] and in the references therein. In [11], the study is50

conducted taking advantage of Lp-calculus. Another contributions solving random differential51

equations in the mean square sense include [12, 13, 14].52

The paper is organized as follows. In Section 2 the main results regarding the so-called Lp-53

random calculus that will be required throughout the paper are summarized and/or established.54

Section 3 is devoted to construct two mean square convergent random generalized power series55

of the Bessel differential equation under mild conditions. Section 4 is addressed to apply the56
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theoretical results established in Section 3 to construct a mean square solution of the random57

Bessel differential equation with two random initial conditions. Several illustrative examples as58

well as conclusions are presented in Section 5.59

2. Preliminaries on Lp–random calculus60

Hereinafter, the triplet (Ω,F ,P) will denote a complete probability space. For the sake of61

clarity, first we will summarize the main definitions and results that will be used throughout this62

paper. Further details about them can be found in [1, 8, 9, 15]. We will also establish new63

technical results related to the so-called Lp–random calculus that will be required later.64

Let p ≥ 1 be a real number. A real random variable X defined on (Ω,F ,P) is called of order65

p (in short, p-r.v.), if66

E
[
|X|p

]
< ∞ ,

where E[ ] denotes the expectation operator. The set Lp(Ω) of all the p-r.v.’s endowed with the67

norm68

‖X‖p =
(
E
[
|X|p

])1/p ,

is a Banach space, [16, p.9]. Let {Xn : n ≥ 0} be a sequence in Lp(Ω). We say that it is convergent69

in the p-th mean to X ∈ Lp(Ω), if70

lim
n→∞
‖Xn − X‖p = 0.

This convergence is denoted by Xn
p−th mean
−−−−−−−→

n→+∞
X . For p = 2, this 2-th mean convergence is usually71

referred to as mean square convergence.72

If q > p ≥ 1, and {Xn : n ≥ 0} is a convergent sequence in Lq(Ω), that is, q-th mean convergent to73

X ∈ Lq(Ω), then {Xn : n ≥ 0} is in Lp(Ω) and it is p-th mean convergent to X ∈ Lp(Ω). In general,74

Lq(Ω) ⊂ Lp(Ω) for q > p ≥ 1, [16, p.13]. Moreover, using the Cauchy-Schwarz inequality one75

can demonstrate that [17, p. 415]76

||XY ||q ≤ ||X||2q||Y ||2q, X,Y ∈ L2q(Ω), q ≥ 1. (3)

From these facts it is easy to establish the following77

Proposition 1. Let {Xn : n ≥ 0} be a sequence in L2q(Ω), q ≥ 1. If Y ∈ L2q(Ω) and Xn
2q−th mean
−−−−−−−−→

n→+∞
78

X then, YXn
q−th mean
−−−−−−−→

n→+∞
YX.79

Let T ⊂ R be an interval. If E
[
|X(t)|p

]
< +∞ for all t ∈ T , then {X(t) : t ∈ T } is called a80

stochastic process of order p (in short, p-s.p.). The stochastic process {X(t) : t ∈ T } in Lp(Ω) is81

said to be p-th mean continuous at t ∈ T if82

‖X(t + h) − X(t)‖p −−−→
h→0

0 , t, t + h ∈ T . (4)

If there exists a stochastic process dX(t)
dt ∈ Lp(Ω) such that83 ∥∥∥∥∥X(t + h) − X(t)

h
−

dX(t)
dt

∥∥∥∥∥
p
−−−→
h→0

0 , t, t + h ∈ T , (5)

then we say that the stochastic process X(t) is p-th mean differentiable at t ∈ T and its p-th mean84

derivative at t is given by dX(t)
dt . The notation Ẋ(t) is also used for the p-th mean derivative of the85

stochastic process X(t) at the point t.86
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Example 1. Let Z ∈ L2q(Ω), q ≥ 1. Clearly the stochastic process {X(t) = Z ln t : t > 0} ∈87

L2q(Ω) and its 2 q-th mean derivative is given by {Ẋ(t) = Z
t : t > 0}:88

lim
h→0

∥∥∥∥∥Z ln(t + h) − Z ln(t)
h

−
Z
t

∥∥∥∥∥
2q

= ‖Z‖2q lim
h→0

∣∣∣∣∣ ln(t + h) − ln(t)
h

−
1
t

∣∣∣∣∣ = 0,

since the deterministic function ln(t) is differentiable for each t > 0 and ‖Z‖2q < ∞ because89

Z ∈ L2q(Ω).90

The proof of the two following propositions are easily adapted for p ≥ 2 with the correspond-91

ing results for the case of p = 4 given in [9].92

Proposition 2. Let {X(t) : t ∈ T ⊂ R} be a stochastic process in Lp(Ω). If it is p-th mean93

differentiable at t, then it is p-th mean continuous at t.94

Remark 1. Since q-th mean convergence entails p-th mean convergence when q ≥ p ≥ 1,95

then if a stochastic process is q-th mean differentiable (continuous) then it is also p-th mean96

differentiable (continuous).97

Example 2. In the context of Example 1 by Proposition 2, the stochastic process X(t) is 2q-th98

mean continuos. Moreover, it is also p-th mean differentiable, and hence p-th mean continuous99

for 1 ≤ p ≤ 2q.100

Proposition 3 (product q-th mean derivative rule). Let {W(t) : t ∈ T } and {X(t) : t ∈ T },101

T ⊂ R be 2q-th mean differentiable stochastic processes in L2q(Ω). Let dW(t)
dt and dX(t)

dt denote102

their 2q-th mean derivatives, respectively. Then W(t)X(t) is q-th mean differentiable at t and its103

q-th mean derivative is given by104

d (W(t)X(t))
dt

=
dW(t)

dt
X(t) + W(t)

dX(t)
dt

.

Next, we state a result to legitimate the 4-th mean differentiation of 4-th mean convergent105

series. Its proof can be found in [18].106

Proposition 4. Assume that for n ≥ 1, the process {Xn(t) : t ∈ T ⊂ R}, satisfies107

1. Xn(t) is 4-th mean differentiable and Ẋn(t) is 4-th mean continuous,108

2. X(t) =
∑

n≥1 Xn(t) is 4-th mean convergent,109

3.
∑

n≥1 Ẋn(t) is uniform 4-th mean convergent in a neighborhood of each t ∈ T .110

Then, for each t ∈ T , X(t) is 4-th mean differentiable and Ẋ(t) =
∑

n≥1 Ẋn(t).111

X(t) =

∞∑
n=0

X(n)(0)
n!

tn, (6)

where X(n)(0) denotes the derivative of order n of the s.p. X(t) evaluated at the point t = 0, in the112

p-th mean sense. The p-th mean derivative for the composition of two stochastic processes will113

be needed later. Some conditions under which the random chain rule can be applied were given114

in [14]. In order to state that result, we first remember the concept of almost surely sample path115

continuous stochastic process.116
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Definition 1. ([15, p.55]) We say that a stochastic process {X(t) : t ∈ T } defined on an interval117

T is almost surely sample path continuous or that {X(t) : t ∈ T } has continuous paths with118

probability one (w.p. 1) if119

P
⋃

t∈T

{
ω ∈ Ω : lim

h→0
|X(t + h)(ω) − X(t)(ω)| , 0

}  = 0 .

A very useful result to check that a stochastic process is almost surely continuous is the Kol-120

mogorov’s criterion.121

Theorem 1. ([1, p. 12]) Assume that the stochastic process {X(t) : t ∈ [0,T ]} satisfies that, for122

all T > 0, there exist positive constants α, β,D such that123

E
[
|X(t) − X(s)|α

]
≤ D|t − s|1+β 0 ≤ s, t ≤ T.

Then the s.p. {X(t) : t ∈ [0,T ]} is almost surely sample path continuous.124

Example 3. Let Z ∈ Lp(Ω) with p ≥ 2. Then the stochastic process {X(t) = Z ln t : t ∈125

[r1, r2], 0 < r1 < r2}, that belongs to Lp(Ω), is almost surely path continuous (w.p. 1). In126

fact, using the mean value theorem for the deterministic function ln y on y ∈ [t, s] one gets127

E
[
|X(t) − X(s)|p

]
= E

[
|Z|p

]
| ln(t) − ln(s)|p = E

[
|Z|p

] 1
ξ
|t − s|p, ξ ∈ (t, s).

Since Z ∈ Lp(Ω), then E [|Z|p] < ∞. Thus, taking α = p > 0, D = 1
ξ
E[|Z|p] > 0 and β = p−1 > 0128

in Theorem 1, it follows that X(t) is almost surely path continuous on [r1, r2].129

Theorem 2 (chain rule). ([14]) Let f (x) be a deterministic real function with continuous deriva-130

tive f ′(x) and the stochastic process {X(t) : t > 0} ∈ L2q(Ω), with q ≥ 1, satisfying131

1. X(t) is 2 q-th mean differentiable.132

2. X(t) is almost surely path continuous w.p. 1.133

3. There exist r > 2 q and δ > 0 such that sup
s∈[−δ,δ]

E
[∣∣∣ f ′(x)|x=X(t+s)

∣∣∣r] < +∞.134

Then, the stochastic process f (X(t)) ∈ Lq(Ω) is q-th mean differentiable and its q-th mean deriva-135

tive is given by136

d f (X(t))
dt

= f ′(x)
∣∣∣∣
x=X(t)

dX(t)
dt

.

The following result is a consequence of Theorem 2.137

Proposition 5. If Z ∈ L2q(Ω), q ≥ 1, and there exist positive numbers r > 2q and δ > 0 such that138

sup
s∈[−δ,δ]

E
[
eZr ln(t+s)

]
< ∞, (7)

then eZ ln t is q-th mean differentiable at t and139

d
dt

(
eZ ln t

)
=

d
dt

(
tZ

)
=

Z
t

eZ ln t. (8)
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Remark 2. The condition (7) guarantees that tZ ∈ Lr(Ω) for r > 2q.140

Proof 1. Let us take f (x) = ex, X(t) = Z ln t, then from Example 1, Example 3 (with p = 2q ≥ 2)141

and Theorem 2, it follows that f (X(t)) = eZ ln t is q-th mean differentiable at t and its q-th mean142

derivative is given by (8). �143

Next, we show that the set of random variables which satisfy the conditions of Proposition 5144

is not empty.145

Example 4. Let Z be a random variable with Beta distribution: Z ∼ Be(α, β), α > 0, β > 0. By146

taking t > 0, δ = δ(t) = t
2 , r > 2q, q ≥ 1 in Proposition 5, it follows that t+s ∈ [t−δ, t+δ] ⊂]0,∞[147

and148

E
[
eZr ln(t+s)

]
=

∫ 1

0
(t + s)zr fZ(z) dz ≤ K(t, s),

where fZ(z) is the probability density function of r.v. Z and149

K(t, s) =

1 if (t + s) ≤ 1,
(t + s)r if (t + s) > 1.

Therefore sups∈[−δ,δ] E
[
eZr ln(t+s)

]
< ∞. Moreover,150

E
[
Z2q

]
=

Γ(β)Γ(α + β)Γ(α + 2q)
Γ(α + β + 2q)

.

Thus, by Proposition 5 the q-th mean derivative of the s.p. tZ is given by ZtZ−1.151

3. Constructing a solution of the Bessel random differential equation152

This section is devoted to construct a 2-th mean convergent solution for the Bessel random153

differential equation (1). Inspirated by the classical Fröbenius method, we seek solutions in form154

of generalized series155

X(t) = tZ
∞∑

n=0

Xntn, (9)

where Z and Xn, n ≥ 0, are random variables and tZ is a stochastic process defined as tZ := eZ ln t.156

In order to impose that series (9) satisfies random differential equation (1), its two first 2-th mean157

derivatives must be computed. The following results provides sufficient conditions to this end.158

Lemma 3. Let {Xn, n ≥ 0} be a sequence in L4(Ω) and let
∑∞

n=0 Xntn be 4-th mean convergent159

for 0 < r1 ≤ t ≤ r2. If Z satisfies the following conditions160

i) Z ∈ L16(Ω).161

ii) There exist r > 16 and δ > 0 such that sup
s∈[−δ,δ]

E
[
eZr ln(t+s)

]
< ∞,162

then X(t) := tZ ∑∞
n=0 Xntn belongs to L2(Ω) and the first and second 2-th mean derivatives, Ẋ(t)163

and Ẍ(t), are given by164

Ẋ(t) =

∞∑
n=0

(n + Z)Xntn+Z−1, Ẍ(t) =

∞∑
n=0

Xn(n + Z)(n + Z − 1)tn+Z−2. (10)
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Proof 2. By hypothesis ii) and Remark 2 it follows165

tZ ∈ Lr(Ω) with r > 16. (11)

Therefore tZ ∈ L4(Ω). In addition, we also have
∑∞

n=0 Xntn ∈ L4(Ω). Then X(t) := tZ ∑∞
n=0 Xntn ∈166

L2(Ω).167

Since
∑∞

n=0 Xntn is 4-th mean convergent on 0 < r1 ≤ t ≤ r2, Proposition 4 implies that for each168

t ∈ [r1, r2], the stochastic process Y(t) :=
∑∞

n=0 Xntn is 4-th mean differentiable and its 4-th mean169

derivative is given by Ẏ(t) =
∑∞

n=1 nXntn−1.170

By Proposition 5, assumptions i) and ii) guarantee that tZ = eZ ln t has 8-th mean derivative and171

its 8-th mean derivative is given by ZtZ−1, which coincides with the 4-th mean derivative. Thus172

applying the product q-th mean derivative rule (Proposition 3) to tZ and Y(t) with q = 2, we have173

the 2-th mean derivative of X(t):174

Ẋ(t) = tZ
∞∑

n=0

nXntn−1 + ZtZ−1
∞∑

n=0

Xntn =

∞∑
n=0

(n + Z)Xntn+Z−1.

Let us justify the commutation of the terms tZ and ZtZ−1 with the infinite sums implicitly used in175

the last step above to compute Ẋ(t). By (11), tZ−1 ∈ L16(Ω). Moreover by i), Z ∈ L16(Ω) and176

hence, by applying inequality (3) for q = 8, one gets ZtZ−1 ∈ L8(Ω) ⊂ L4(Ω). Therefore, the177

commutation is justified by Proposition 1.178

By similar reasoning to the one used to justify the existence and computation of the 2-th mean179

derivative Ẋ(t), one can legitimate the following representation for the second order 2-th mean180

derivative of X(t)181

Ẍ(t) = tZ
∞∑

n=0

n(n − 1)Xntn−2 + ZtZ−1
∞∑

n=0

nXntn−1

+ ZtZ−1
∞∑

n=0

nXntn−1 + Z(Z − 1)tZ−2
∞∑

n=0

Xntn

=

∞∑
n=0

(n + Z)(n + Z − 1)Xntn+Z−2.

(12)

Here the hypothesis made on Z also justify the commutations implicitly used in (12). �182

Remark 3. Regarding our goal, which is to construct a rigorous solution random series, X(t),183

of the form X(t) = tZY(t) to the Bessel r.d.e. given by (1). Lemma 3 tell us knowledge of the184

4-th mean convergence of Y(t) =
∑∞

n=0 Xntn guarantees X(t) is a 2-th mean solution if Z satisfies185

hypotheses i) and ii) of Lemma 3.186

Keeping this in mind, we continue by inserting expressions (9) and (10) into the random187

Bessel differential equation (1)188

0 = t2Ẍ(t) + tẊ(t) + (t2 − A2)X(t)

=

∞∑
n=0

Xn(n + Z)(n + Z − 1)tn+Z +

∞∑
n=0

(n + Z)Xntn+Z + (t2 − A2)
∞∑

n=0

Xntn+Z

= tZ

(Z2− A2)X0+
[
(1 + Z)2 − A2

]
X1t +

∞∑
n=2

[{
(n + Z)2 − A2

}
Xn+Xn−2

]
tn

 .
7



Since tZ(ω) = eZ(ω) ln t , 0, ∀ω ∈ Ω, w.p. 1, above relation yields189

(Z2 − A2)X0 +
[
(1 + Z)2 − A2

]
X1t +

∞∑
n=2

[{
(n + Z)2 − A2

}
Xn +Xn−2

]
tn = 0. (13)

In order for this relation to be satisfied for all t, let us take Z = A and assume190

P [{ω ∈ Ω : X0(ω) , 0}] = 1, (14)

i.e., X0 is a non-zero random variable w.p. 1. Since A satisfies hypothesis (2), if191

X1 = 0, w.p. 1, (15)

and192

Xn = −
Xn−2

(n + A)2 − A2 = −
Xn−2

n(n + 2A)
, n ≥ 2, w.p. 1, (16)

then relation (13) holds for all t.193

From (15) and (16), one deduces194

X2n+1 = 0, n ≥ 0, w.p. 1, (17)
195

X2n =
(−1)nX0

4nn!
∏n

i=1(A + i)
, n ≥ 1, w.p. 1. (18)

Therefore, taking into account Lemma 3 with Z = A and Remark 3, a rigorous solution to (1) is196

given by197

X1(t) = tAY1(t), where Y1(t) = X0 +

∞∑
n=1

(−1)nX0

4nn!
∏n

i=1(A + i)
t2n, (19)

provided that the 4-th mean convergence of Y1(t) can be justified. Under the assumption that198

X0 ∈ L4(Ω), if we show that199
∞∑

n=1

(−1)nX0

4nn!
∏n

i=1(A + i)
t2n (20)

is 4-th mean convergent, then the series defining the s.p. Y1(t) will be also 4-th mean convergent.200

By hypothesis (2) one gets201

A(ω) + i ≥ i ≥ 1, i = 1, . . . , n, w.p. 1,

which implies202

0 <
1

A(ω) + i
≤ 1, i = 1, . . . , n, w.p. 1.

Hence, one obtains203 (
1∏n

i=1(A(ω) + i)

)4

≤ 1, w.p. 1.

By multiplying both sides of the above inequality by (X0(ω))4, which is non-negative w.p. 1, and204

taking the expectation operator, then by definition of the ‖ ‖4–norm, one gets205 ∥∥∥∥∥∥ X0∏n
i=1(A + i)

∥∥∥∥∥∥
4
≤ ‖X0‖4.
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As a consequence,206

∞∑
n=1

∥∥∥∥∥∥ (−1)nX0

4nn!
∏n

i=1(A + i)
t2n

∥∥∥∥∥∥
4
≤

∞∑
n=1

∥∥∥∥∥∥ X0∏n
i=1(A + i)

∥∥∥∥∥∥
4

|t|2n

4nn!
≤

∞∑
n=1

‖X0‖4

4nn!
|t|2n . (21)

Therefore, the random series (20) has been majorized, in ‖ ‖4–norm, by the following scalar207

power series208
∞∑

n=1

αn(t), αn(t) =
‖X0‖4

4nn!
|t|2n , n ≥ 1. (22)

Now, we check by the ratio or D’Alembert test, that this series is convergent on the whole real209

line210

lim
n→∞

αn+1(t)
αn(t)

= lim
n→∞

|t|2

4(n + 1)
= 0, ∀t ∈ R. (23)

Summarizing, taking into account Lemma 3, the following result has been established:211

Theorem 4. Let A and X0 be random variables such that212

i) A ∈ L16(Ω) satisfies condition (2).213

ii) There exist positive numbers r > 16 and δ > 0 such that214

sup
s∈[−δ,δ]

E
[
eAr ln(t+s)

]
< ∞.

iii) X0 ∈ L4(Ω) satisfies condition (14).215

Then, the stochastic process X1(t) defined by (19) is a mean square solution of the Bessel random216

differential equation (1) on the interval 0 < r1 ≤ t ≤ r2 < ∞.217

Remark 4. Assuming that A satisfies hypotheses i) and ii) of Theorem 4. From (21), if X0 ∈218

L16(Ω), then Y1(t) ∈ L16(Ω). Moreover, as X1(t) = tAY1(t) and tA ∈ Lr(Ω) with r > 16 (see219

Remark 2), if X0 ∈ L16(Ω), then X1(t) ∈ L8(Ω) ⊂ L2(Ω).220

Now, we seek a second mean square solution to the Bessel random differential equation (1). For221

this end, we keep the assumption (14), take Z = −A in (13) and assume that Z satisfies hypotheses222

of Lemma 3. Then, assuming223

A(ω) ∈
∞⋃

m=0

[am, bm], m < am < bm < m + 1, m ≥ 0 integer, w.p. 1, (24)

one obtains a second rigorous solution to (1) on [r1, r2] given by224

X2(t) = t−AY2(t), where Y2(t) = X0 +

∞∑
n=1

(−1)nX0

4nn!
∏n

i=1(−A + i)
t2n, (25)

if Y2(t) is 4-th mean convergent on [r1, r2]. Indeed, if225

di := min{i − bi−1, |i − ai|} for each i = 1, 2, . . .

Then,226

0 < di < |i − A(ω)|, ∀i = 1, 2, . . . , w.p. 1,
9



which implies that227

0 <
(

X0(ω)∏n
i=1 |i − A(ω)|

)4

<

(
X0(ω)∏n

i=1 di

)4

, ∀n ≥ 1, integer, w.p. 1.

Therefore, by definition of ‖ ‖4–norm one gets228 ∥∥∥∥∥∥ X0∏n
i=1(i − A)

∥∥∥∥∥∥
4
<

1∏n
i=1 di

‖X0‖4, ∀n ≥ 1 integer.

Let ε > 0 such that 0 < ε < dn for all n = 1, 2, . . ., then229 ∥∥∥∥∥∥ X0∏n
i=1(i − A)

∥∥∥∥∥∥
4
<

1∏n
i=1 di

‖X0‖4 <
1
εk ‖X0‖4.

Therefore, the random series given in (25) has been majorized in ‖ ‖4-norm as follows230

∞∑
n=1

∥∥∥∥∥∥ (−1)nX0

4nn!
∏n

i=1(−A + i)
t2n

∥∥∥∥∥∥
4
<

∞∑
n=1

‖X0‖4

4nn!εn |t|
2n. (26)

Using the ratio or D’Alembert test we check that the majorant series is convergent on the whole231

real line232
∞∑

n=1

βn(t), βn(t) =
‖X0‖4

4nn!εn |t|
2n, n ≥ 1 ;

233

lim
n→∞

βn+1(t)
βn(t)

= lim
n→∞

|t|2

4(n + 1)ε
= 0, ∀t ∈ R.

This proves the random series Y2(t) is 4-th mean convergent for t > 0. Summarizing, the follow-234

ing result has been established:235

Theorem 5. Let A and X0 be random variables satisfying236

i) A ∈ L16(Ω).237

ii) A(ω) ∈
⋃∞

n=0[an, bn] w.p. 1, where n < an < bn < n + 1 for all n = 0, 1, 2, . . .238

iii) There exist positive numbers r > 16 and δ > 0 such that239

sup
s∈[−δ,δ]

E
[
e−Ar ln(t+s)

]
< ∞,

iv) X0 ∈ L4(Ω) satisfies condition (14).240

If dn = min{n− bn−1, |n− an|} and there exists ε > 0 such that 0 < ε < dn for all n = 1, 2, . . ., then241

the stochastic process X2(t) given by (25) is a second mean square solution of the Bessel random242

differential equation (1) on the interval [r1, r2], 0 < r1 < r2.243

Remark 5. From (26), if X0 ∈ L16(Ω), then Y2(t) ∈ L16(Ω). As t−A ∈ L16(Ω) (see Remark 2),244

X2(t) = t−AY2(t) ∈ L8(Ω) if X0 ∈ L16(Ω).245
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4. Computing the mean square solution of the initial value problem of Bessel random dif-246

ferential equation247

Now, we search a solution stochastic process to the Bessel random differential equation (1)248

satisfying the following initial conditions249

X(t0) = η1, Ẋ(t0) = η2, (27)

being η1, η2 random variables. Let us consider250

X(t) = α1X1(t) + α2X2(t), (28)

where X1(t) and X2(t) are the solutions of (1) defined by (19) and (25), respectively, and αi,251

i = 1, 2, are random variables to be determined in such a way that (28) satisfies initial conditions252

(27). In order to assure that X(t) is a mean square solution to the initial value problem (1) and253

(27), we must prove that X(t) ∈ L2(Ω). For that it is sufficient to show that αi, Xi(t) ∈ L4(Ω),254

i = 1, 2, for each t ∈ [r1, r2], 0 < r1 < r2.255

An algebraic computation shows that256

α1 =
η1Ẋ2(t0) − η2X2(t0)

W(X1, X2)(t0)
, α2 =

η2X1(t0) − η1Ẋ1(t0)
W(X1, X2)(t0)

, (29)

being W(X1, X2)(t0) = X1(t0)Ẋ2(t0) − Ẋ1(t0)X2(t0) the wronskian of the solutions {X1(t), X2(t)} at257

t = t0 ∈ [r1, r2].258

Let us take X0 = 1 in (19) and (25). If A satisfies condition ii) of Theorem 5 and K := {ω ∈259

Ω : A(ω) ∈
⋃∞

n=1[an, bn], n < an < bn < n + 1, n = 0, 1, 2, . . .} then P(K) = 1 and for each260

ω ∈ K the wronskian of the following functions261

JA(t)(ω) = D1
0(ω)X1(t)(ω), D1

0(ω) : =
1

2A(ω)Γ(A(ω) + 1)
,

J−A(t)(ω) = D2
0(ω)X2(t)(ω), D2

0(ω) : =
1

2−A(ω)Γ(−A(ω) + 1)
,

(30)

is given by262

W(JA, J−A)(t)(ω) = −
2 sin(A(ω)π)

πt
, t > 0.

Taking into account the reflection formula Γ(A(ω))Γ(1 − A(ω)) = π
sin(πA(ω)) and263

W(JA, J−A)(t)(ω) = D1
0(ω)D2

0(ω)W(X1, X2)(t)(ω), t > 0, ω ∈ K ,

it follows that

W(X1(t), X2(t))(ω) = −
2 sin(A(ω)π)Γ(A(ω) + 1)Γ(−A(ω) + 1)

πt

= −
2 sin(A(ω)π)A(ω)Γ(A(ω))Γ(1 − A(ω))

πt
(31)

= −
2 sin(A(ω)π)A(ω)

(
π

sin(πA(ω))

)
πt

= −
2A(ω)

t
.
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These properties used of the Bessel functions as well as Gamma function can be found in [19].264

265

Let us prove that Xi(t) ∈ L4(Ω), i = 1, 2, for each t in [r1, r2], 0 < r1 < r2. As Xi(t) has the266

general form (9) is sufficient to prove that tZ ∈ L8(Ω) and
∑∞

n=0 Xntn ∈ L8(Ω). Since X0 = 1 w.p.267

1, by Theorems 4 and 5, and Remarks 4 and 5 it follows that Xi(t) ∈ L8(Ω) ⊂ L4(Ω), i = 1, 2. We268

shall now prove that, αi ∈ L4(Ω), i = 1, 2. For that, first notice that, by hypothesis (24), for each269

ω ∈ K , 0 < a0 < A(ω). Then applying (31) for t = t0 and (29), one follows270

|α1(ω)|4 =

∣∣∣∣∣∣η1(ω)Ẋ2(t0)(ω) − η2(ω)X2(t0)(ω)
W(X1, X2)(t0)(ω)

∣∣∣∣∣∣4
<

∣∣∣∣∣ t0
2a0

∣∣∣∣∣4 ∣∣∣η1(ω)Ẋ2(t0)(ω) − η2(ω)X2(t0)(ω)
∣∣∣4 .

Now, we prove that Ẋ2(t0) ∈ L4(Ω). Indeed, in the proof of Lemma 3 we showed that271

Ẋ2(t0) = (t0)−AẎ2(t0) + (−A)(t0)−A−1Y2(t0).

Moreover, from (25) one gets272

Ẏ2(t0) = 2
∞∑

n=1

(−1)nX0

4n(n − 1)!
∏n

i=1(−A + i)
(t0)2n−1.

By replacing ‖ · ‖4 for ‖ · ‖8 in the inequality given by (26), it follows that Ẏ2(t0) ∈ L8(Ω). In273

addition, −A, (t0)−A−1, (t0)−A are in L16(Ω), therefore Ẋ2(t0) ∈ L4(Ω). By assuming that ηi,274

i = 1, 2, and A are independent random variables, one follows that275

‖α1‖4 <
t0

2a0

(
‖η1‖4‖Ẋ2(t0)‖4 + ‖η2‖4‖X2(t0)‖4

)
< ∞,

if ηi ∈ L4(Ω), i = 1, 2. Therefore α1 ∈ L4(Ω). Similar arguments show that α2 ∈ L4(Ω). Finally,276

by expressing277

X(t)=η1

[
Ẋ2(t0)tAY1(t)−Ẋ1(t0)t−AY2(t)

W(X1, X2)(t0)

]
+ η2

[
X1(t0)t−AY2(t)−X2(t0)tAY1(t)

W(X1, X2)(t0)

]
it is also shown that X(t) is a 2-th mean solution of (1) and (27). Summarizing the following278

result has been established:279

Theorem 6. Let ηi ∈ L4(Ω), i = 1, 2, and let X0 = 1 in (19) and (25). Let A be a random variable280

satisfying conditions i), ii) of Theorem 4, and conditions i)-iii) of Theorem 5. Assume that A is281

independent of random variables ηi, i = 1, 2. If there exists ε > 0 as in Theorem 5, then the initial282

value problem283

t2Ẍ(t) + tẊ(t) + (t2 − A2)X(t) = 0, X(t0) = η1, Ẋ(t0) = η2, (32)

t0, t ∈ [r1, r2], 0 < r1 < r2 < ∞, has a solution stochastic process X(t) ∈ L2(Ω) given by284

X(t) = α1X1(t) + α2X2(t), (33)

with285

α1 =
η1Ẋ2(t0) − η2X2(t0)

W(X1, X2)(t0)
, α2 =

η2X1(t0) − η1Ẋ1(t0)
W(X1, X2)(t0)

, (34)

being286

W(X1, X2)(t0) = X1(t0)Ẋ2(t0) − Ẋ1(t0)X2(t0), (35)
for each t ∈ [r1, r2].287
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4.1. Determining statistical information associated to the solution of the Bessel random differ-288

ential equation289

So far sufficient conditions under which X(t) given by (33)–(34) defines a mean square so-290

lution to the initial value problem (32) have been provided. Since X(t) is a stochastic process, it291

is also important to give its main statistical functions in order to describe it from a probabilis-292

tic standpoint. In general, it is done by means of the expectation and variance (or equivalently,293

standard deviation) functions. Because the solution is represented through a random infinite se-294

ries, truncation is required to keep computationally feasible. The following result will play a295

key role to legitimate the approximations of the expectation and variance of the solution X(t) by296

truncating of its infinite series representation.297

Proposition 6. Let {Hn : n ≥ 0} be a 2-th mean convergent sequence of random variables in298

L2(Ω) and let us denote its limit by H ∈ L2(Ω). Then,299

E [Hn] −−−−−→
n→+∞

E [Hn] , E
[
(Hn)2

]
−−−−−→
n→+∞

E
[
H2

]
. (36)

And, as a consequence,300

Var [Hn] −−−−−→
n→+∞

Var [H] . (37)

At this point, notice that we can take advantage of this result because mean square convergence301

of the infinite series defining X(t) for t > 0 has been rigorously established in Theorem 6.302

To deal with the approximations of the mean and variance, first it is convenient to introduce303

the following notation:304

S (n) :=
(−1)n

4nn!
, U(n; A) :=

n∏
i=1

(A + i). (38)

Hence, according to (33)–(35) the truncated series of order N of X(t), can be expressed as305

follows306

XN(t) = η1K(t; t0, A,N) + η2F(t; t0, A,N), (39)

where307

K(t; t0, A,N) :=
ẊN

2 (t0)XN
1 (t) − ẊN

1 (t0)XN
2 (t)

W(XN
1 , X

N
2 )(t0)

, (40)

308

F(t; t0, A,N) :=
XN

2 (t)XN
1 (t0) − XN

1 (t)XN
2 (t0)

W(XN
1 , X

N
2 )(t0)

, (41)

being309

XN
1 (t) = tA

1 +

N∑
n=1

S (n)
U(n; A)

t2n

 , XN
2 (t) = t−A

1 +

N∑
n=1

S (n)
U(n;−A)

t2n

 , (42)

310

ẊN
1 (t) = tA

 N∑
n=1

2nS (n)
U(n; A)

t2n−1

 + AtA−1

1 +

N∑
n=1

S (n)
U(n; A)

t2n

 , (43)

and311

ẊN
2 (t) = t−A

 N∑
n=1

2nS (n)
U(n;−A)

t2n−1

 − At−A−1

1 +

N∑
n=1

S (n)
U(n;−A)

t2n

 . (44)
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By assuming pairwise independence among random model inputs A, η1 and η2, from (39),312

one gets the following approximations to the expectation and variance for the truncated solution313

stochastic process, XN(t), of X(t)314

E[XN(t)] = E[η1]E[K(t; t0, A,N)] + E[η2]E[F(t; t0, A,N)] (45)

and315

E[(XN(t))2] = E[(η1)2]E[(K(t; t0, A,N))2] + E[(η2)2]E[(F(t; t0; , A,N))2]

+ 2E[η1]E[η2]E[K(t; t0, A,N)F(t; t0, A,N)],
(46)

where the variance is approximated using the above expressions taking into account the well-316

known relationship317

Var[XN(t)] = E[(XN(t))2] − (E[XN(t)])2 . (47)

5. Examples and conclusions318

This section is devoted to illustrate the theoretical results previously established. We will319

show two examples where the input parameters A, η1 and η2 are assumed to be random variables320

with probabilistic distributions such as uniform, beta, Gaussian, etc. Approximations for the321

expectation and the standard deviation to the solution of the Bessel random differential equation322

(32) will be computed using different truncation order from expressions (45)–(47) and (38)–323

(44). The obtained numerical results will be compared against the ones computed by Monte324

Carlo simulations.325

Example 5. Let us consider the random initial value problem (32) where A has a uniform distri-326

bution on the interval [ 1
10 ,

9
10 ], i.e., A ∼ U

(
[ 1

10 ,
9
10 ]

)
, and assume that random initial conditions327

ηi, i = 1, 2, have Beta distributions, ηi ∼ Be(ai; bi), i = 1, 2, where a1 = 1, b1 = 3, a2 = 2328

and b2 = 5. Following the arguments exhibited in Example 4, it is straightforward to check329

that A satisfies conditions of the Theorem 6. Example 4 also justifies that each ηi, i = 1, 2 has330

finite moments. Then, by Theorem 6, there exists a solution stochastic process, X(t), given by331

(33)–(35). Let us compute reliable numerical approximations of the mean, E[XN(t)], and stan-332

dard deviation, σN(t) = +
√

Var[XN(t)], of the solution process X(t) from its truncated expression333

XN(t) of order N. For this purpose, expressions (45)–(47) and (38)–(44) are used assuming that334

random variables η1, η2 and A are pairwise independent. The obtained results for the mean and335

the standard deviation are shown in Tables 1-2, respectively. Approximations using Monte Carlo336

sampling with m simulations for the mean, µ̃m
X (t), and the standard deviation, σ̃m

X (t), are also337

collected in these tables. From these data we observe that both methods agree.338

Table 1: Approximations of the mean by the proposed truncated series method (E[XN (t)]) and Monte Carlo sampling
(µ̃m

X (t)) using different orders of truncation N and number m of simulations, respectively, at some selected time points t
in the context of Example 5.

t E[XN (t)]; N = 10 E[XN (t)]; N = 20 µ̃m
X (t); m = 50000 µ̃m

X (t); m = 100000
1.0 0.250000 0.250000 0.247345 0.249427
2.0 0.343619 0.343619 0.341780 0.343579
2.5 0.276392 0.276392 0.275382 0.276553
3.5 0.031725 0.031725 0.032386 0.032022
4.0 -0.088935 -0.088935 -0.087747 -0.088672

14



Table 2: Approximations of the standard deviation by the proposed truncated series method (σN (t)) and Monte Carlo
sampling (σ̃m

X (t)) using different orders of truncation N and number m of simulations, respectively, at some selected time
points t in the context of Example 5.

t σN (t); N = 10 σN (t); N = 20 σ̃m
X (t); m = 50000 σ̃m

X (t); m = 100000
1.0 0.193646 0.193649 0.192932 0.193486
2.0 0.165496 0.165132 0.193486 0.165337
2.5 0.128705 0.128705 0.128607 0.128744
3.5 0.078538 0.078538 0.078478 0.078603
4.0 0.090635 0.090635 0.090362 0.090572

Example 6. In this second example, we consider the random initial value problem (32) and we339

assume that A has a truncated beta distribution on [d,1-d] , d = 1 × 10−7, with parameters340

α = 1 and β = 3; η1 has a standard Gaussian distribution, η1 ∼ N(0; 1) and η2 has with341

uniform distribution on [0, 1], η2 ∼ U ([0, 1]). It is straightforward to check that hypotheses of342

Theorem 6 hold true and, therefore a solution of the form (33)–(35) can be constructed. In Tables343

3-4 approximations of the mean and the standard deviation of the solution process to initial344

value problem (32) using the proposed truncated series method and Monte Carlo simulations are345

shown. From the obtained tables we observe a high agreement between both approximations.346

Table 3: Approximations of the mean by the proposed truncated series method (E[XN (t)]) and Monte Carlo sampling
(µ̃m

X (t)) using different orders of truncation N and number m of simulations, respectively, at some selected time points t
in the context of Example 6.

t E[XN (t)]; N = 10 E[XN (t)]; N = 20 µ̃m
X (t); m = 50000 µ̃m

X (t); m = 100000
1.0 0 0 0.005396 -0.005113
2.0 0.293729 0.293729 0.297004 0.289315
2.5 0.307795 0.307795 0.309329 0.304980
3.5 0.147978 0.147978 0.146352 0.148902
4.0 0.024559 0.024559 0.022073 0.026854

Table 4: Approximations of the standard deviation by the proposed truncated series method (σN (t)) and Monte Carlo
sampling (σ̃m

X (t)) using different orders of truncation N and number m of simulations, respectively, at some selected time
points t in the context of Example 6.

t σN (t); N = 10 σN (t); N = 20 σ̃m
X (t); m = 50000 σ̃m

X (t); m = 100000
1.0 1.000000 1.000000 1.004220 1.002310
2.0 0.670807 0.670807 0.674305 0.672227
2.5 0.364257 0.364257 0.366328 0.364783
3.5 0.322779 0.322779 0.323623 0.323559
4.0 0.484010 0.484010 0.485911 0.485238

Finally, from Tables 1-4 it is observed that the absolute error of the numerical results with347

the truncated series method for N = 10 and N = 20 is less than 1 × 10−6. A comparison of the348

CPU time used in Mathematica R© 7.0 to compute some numerical results presented in Tables 1-4349

is shown in Table 5. These data show that the proposed truncated series method is faster than the350

Monte Carlo Method.351

In this paper mean square convergent generalized power series solution of the random Bessel352

differential equation (32) have been constructed taking advantage of Lp-random calculus together353

with random Fröbenius method. The results obtained extend their deterministic counterpart un-354

der mild conditions. In addition, general expressions to approximate both the mean and the355

variance of the solution have been determined. An important feature of our analysis is that these356
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Table 5: Execution time for computing the mean and variance for Examples 5 and 6 implemented on Intel R© CoreTM 2
Duo, 4GB, 2.4GHz.

Methods Monte Carlo Truncated series method % Increase
10 × 104 simulations truncation order N=20

CPU(seconds) CPU(seconds)
Example 5 94.30 31.46 300.2
Example 6 94.32 3.49 2702.6

approximations are guaranteed to converge to their respective exact values. To illustrate the re-357

liability of the results, two examples have been provided. Finally, we want to point out that our358

approach can be very useful to continue studying, from a probabilistic standpoint, other kind of359

Bessel differential equations (Weber, Kelvin, Neumann, etc) as well as another important second-360

order linear differential equations usually encountered in physics such as Jacobi, hypergeometric,361

etc.362
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