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Abstract 

This Perspective article highlights how recent discoveries on the activity of 

defective graphene to promote different organic reactions as metal-free catalysts has led 

to propose certain substructures present on these defective graphenes as active sites. The 

sustainability of using as catalysts graphenes obtained from biomass, together with the 

possibility to generate active sites by introducing defects on the sheet are the two main 

characteristics that are triggering research in this area. Emphasis is made in the need of 

gaining understanding on the nature of the active sites and how this understanding 

requires the combination of conventional kinetic experiments as well as advanced 

characterization tools. The relationship between catalysis by graphene and 

organocatalysis has also been remarked. 
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1. Interest of metal-free catalysis 

A large percentage estimated in about 80 % of chemical industrial processes are 

catalytic reactions.
1
 Catalysis is nowadays dominated by the use of transition metals, 

some of them considered as noble and critical metals of which there are limited 

available resources.
2
 To avoid dependency of strategic sectors on precious and critical 

metals there is a large incentive in finding alternatives to some of the current metal 

catalysts.
2, 3

 Scheme 1 summarizes some of the research lines in heterogeneous catalysis  

that have been developed to reduce the dependency on noble and critical metals 

 

Scheme 1. Possible alternatives to the use of precious and critical metals.  

One obvious possibility is to make a much better use of the limited amount of 

these metals by developing more efficient catalysts that should allow diminishing the 

metal consumption by improving the activity per site. The present metal catalysts can be 

improved by decreasing the size of the particles, even reaching the state of single atom-

site catalyst and by increasing their stability and reactivation protocols.
4, 5

 It should be 

commented that current data have determined that the number of metal atoms in a 

cluster to have optimal activity varies depending on the reaction and can be from 5 to 10 

atoms.
4, 6, 7

 In any case, this strategy would require control of metal nanoparticles 

Noble and critical metal 
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(MNPs) and clusters with atomic precision that could eventually lead to optimal 

catalysts with clusters of the exact number of atoms required in the reaction 

mechanism.
6, 8

 By reaching this goal a substantial diminution in the amount of precious 

metal can be achieved. However, this strategy should overcome satisfactorily the 

general problems of how to produce them in sufficiently large quantities and how to 

stabilize these highly reactive small clusters avoiding their agglomeration under reaction 

conditions, without at the same time decreasing their activity. In this regard, the use of 

MNPs, instead of metal clusters, can be considered in a certain way as the current 

solution for this dilemma, finding a balance between the minimum number of metal 

atoms and stability. 

A radically different possibility consists in developing suitable alternative to 

critical metals, such as replacing them by abundant base transition metals or even the 

use of metal-free catalysts. One of the most fruitful approaches so far for metal-free 

catalysis has been the use of carbon-based materials.
9, 10

 For the sake of sustainability 

and affordability, a favorable situation will be to prepare carbon-based catalysts derived 

from biomass. Particularly interesting would be the use of biomass wastes as catalyst 

precursors, since this approach would not compete with the production of food, but 

rather will complement it by valorization of biomass residues.
11, 12

 

Carbocatalysis was known since long time, using initially active carbons.
13

 

Reactions like NOx decomposition or oxidation of pollutants have been reported to be 

catalyzed by active carbons in the 90s.
14

 Active carbons have also been used in as 

oxidation catalysts in desulfuration of air and fuels,
15

 in the combustion of ammonia and 

H2O2 decomposition,
16

 oxidative dehydrogenation of ethylbenzene,
17

 among many other 

reactions. However, since the structure of active carbons is ill-defined and there is a 

large complexity in the distribution and location of various functional groups, there was 
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never an intense research front comparable to those in metal catalysis trying to exploit 

in a systematic way the potential of carbons. The main reason was the lack of 

understanding on the nature of the active sites, the difficulty in their modeling and the 

limited control on how to increase their number and tune their properties. 

 

2. Graphene as carbocatalyst 

This area of carbocatalysis has received, however, a renewed attention since 

novel carbon allotropes, and particularly carbon materials rather than molecular carbon 

forms, have been discovered.
18

 The main advantage of carbon allotropes respect to 

active carbons is the well-defined structure of the ideal materials and the better and safer 

characterization of these materials, due to their much simpler and regular structure. 

Scheme 2 illustrates some of the carbon allotropes that have been used as 

carbocatalysts. 

 

Scheme 2. Three different carbon allotropes that have been used as metal-free 

catalysts. 

Diamond nanoparticles are metal-free catalysts, for instance, for the oxidative 

dehydrogenation of alkanes to alkenes and they are quite robust.
19

 However, sp
3
 carbons 

cannot establish specific interactions with substrates and reagents other than strong 

Diamond
nanoparticles

Multi wall carbon
nanotubes Graphene
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irreversible covalent bonds or very weak van der Waals forces. In comparison, the 

graphene walls of carbon nanotubes (CNTs) are suitable to adsorb and interact with 

substrates by relatively strong  interactions
20

 and the presence of defects on the ideal 

graphene structure can introduce some active sites. Thus, CNTs can be active to 

promote different reactions including the oxidative dehydrogenation of hydrocarbons,
21

 

but also reduction of C-C multiple bonds by NaBH4 or hydrazine under aerobic 

conditions.
22, 23

 

Carbocatalysis has, however, received a considerable impetus since the 

discovery of graphene (G). The main reason is the large availability of G in sufficient 

quantities by various methods and the ease in which Gs can be modified and 

derivatized. Although, carbocatalysis using G is a continuation in many respects of that 

initiated by CNTs, the availability and versatility of Gs offer new opportunities and 

additional possibilities. Thus, although certain multi-wall CNTs are produced 

industrially in multiton scale,
24

 mainly for their use as battery additives,
25

 the large 

proportion of metallic catalysts required in the synthesis of CNTs is still a limitation, 

particularly to develop metal-free catalysis. Complete removal of trace quantities of 

metals from CNTs is problematic, particularly considering the possibility that these 

metals can become incorporated inside the nanotube. Also, reliable preparation 

procedures for the synthesis of single wall or CNTs with a controlled number of walls 

as well as with the presence of dopants are still required. 

In contrast, there exist different preparation procedures of doped Gs.
26, 27

 

Basically there are two alternative strategies, either introducing the dopant during the 

synthesis of G or using graphene oxide (GO) as precursor and grafting of the dopant 

element, while GO is being reduced to a defective type of G, known as reduced 
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graphene oxide (rGO). For all these reasons, there is much current interest in exploring 

the possibilities that Gs can offer as metal-free heterogeneous catalysts. 

There exist in the literature several reviews covering exhaustively the type of 

reactions that have been reported using G as carbocatalysts.
18, 26-29

 In the present 

Perspective article and for the sake of space limitation, we will focus to the nature of the 

active sites that can be encountered in Gs and some of the types of chemical reactions 

that can promote. Active sites are always associated to defects in the structure of ideal 

G. Scheme 3 shows a pictorial illustration of some of the sites that have been proposed 

to be active in catalysis. 

 

Scheme 3. Pictorial illustration of the types of defects of the ideal G structure 

that can become active sites in catalysis. 

Most of the content of this Perspective article is derived from our own work, but 

references to other contributions will also be made. During this article, the close 
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relationship between carbocatalysis and organocatalysis with regard to the possibility to 

have common types of active sites will be commented. 

 

3. Frustrated Lewis acid-base pairs as hydrogenation active sites 

G obtained by pyrolysis of alginate is able to promote the selective gas-phase 

hydrogenation of acetylene in the presence of a large excess of ethylene.
30

 Alginate is a 

natural polysaccharide present in a large percentage in brown algae and that is able to 

form defectless films of nanometric dimensions.
31

 The tendency of carbohydrates to 

form graphitic carbons under physical or chemical treatments was well-known since 

long ago, but the recent discovery is that these carbon residues resulting from the 

pyrolysis of filmogenic carbohydrates, like alginate, chitosan and carrageenans, can 

undergo easy exfoliation upon sonication giving rise to defective G suspensions in a 

very high yield.
32

 The process is indicated in Scheme 4. This behavior of the alginate 

pyrolysis residue contrasts with highly crystalline graphite that essentially does not 

undergo exfoliation to deliver G under the same or harsher conditions. In addition, the 

G sheets obtained by alginate pyrolysis still contain a residual percentage of O or other 

heteroatoms present on the polysaccharide such as N or S. In addition evolution of CO2 

in the process generates carbon vacancies and holes (Scheme 3). The available 

characterization data of these G materials obtained from biomass indicate the presence 

of defects that are suitable to act as catalytic centers promoting different reactions, such 

as hydrogenation. In many respects, the G obtained by pyrolysis of alginate has many 

similarities with rGO formed by reduction of GO. 
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Scheme 4. Pyrolysis of natural filmogenic polysaccharides to render defective G 

suspensions (taken from ref. 
27

).  

Selective acetylene hydrogenation has interest in refineries as a way to purify 

cracking streams in which the presence of few percents of acetylene is highly 

detrimental due to its tendency to polymerize and form gums and residues. Considering 

the availability of hydrogen in refineries and the difficulty to separate acetylene from 

ethylene due to their similar boiling points and other physical properties, one possibility 

would be to convert acetylene into ethylene that has the additional advantage of increase 

the overall ethylene yield. Scheme 5 illustrates the process. But, hydrogenation of 

acetylene to ethylene in the presence of a large excess of the latter requires of a highly 

selective catalyst, like G derived from alginate. 

 

Scheme 5. Selective hydrogenation of acetylene in the presence of ethylene. 

Other related G types tested were not efficient, particularly doped Gs that are not 

stable under the reaction conditions and undergo hydrogenative removal of the dopant 

element in a significant extent.
30

 For instance, in the case of N-doped G, obtained in this 
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case by pyrolysis of chitosan and subsequent exfoliation, formation of NH3 was 

detected under the conditions of selective acetylene hydrogenation and XPS reveals that 

this partial dopant removal is also the case of P and S-doped Gs.
30

 

While selective acetylene hydrogenation is a gas-solid process, defective G from 

alginate exhibited also catalytic activity for hydrogenation of alkenes, such as 

cyclohexene and styrenes, in the liquid phase.
30

 Latter the catalytic activity rGO and G 

from alginate has been expanded to the hydrogenation of nitro groups, although the 

process is not selective and simultaneous hydrogenation of NO2 and C=C occur when 

both functional groups are present in the molecule.
33

 

Due to the importance of catalytic hydrogenation in industry as well as in 

organic synthesis, understanding of the nature of the active sites is crucial to develop 

more efficient carbocatalysts, particularly considering that comparison of the activity of 

Gs with that of Pd or other metals has shown that Gs are significantly less active.
30

 

Organocatalysis has shown that organic molecules containing simultaneously a Lewis 

acid and a Lewis base center at a short distance, but without reacting each other due to 

steric hindrance, are able to promote metal-free hydrogenations.
34

 Scheme 6 presents 

one of these molecular hydrogenation catalysts. The type of active centers present in 

these molecules has been denoted as “frustrated Lewis acid-base pairs” and theoretical 

calculations as well as experimental evidence has shown that they can activate 

molecular hydrogen.
34
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Scheme 6. Illustration of how steric encumbrance around the basic part of the 

molecule (blue) can impede its interaction with the Lewis acid moiety (red) of the left 

molecule, rendering a frustrated Lewis pair that is able to activate molecular H2 in 

contrast to the right analogue without steric hindrance (taken with permission from ref. 

35
) 

It has been proposed that similar types of frustrated Lewis pairs could be present 

on G, activating H2 molecule. Titrations by thermoprogrammed desorption of ammonia 

and CO2 as base and acid, respectively, has established the presence of both types of 

centers on defective G. At the same time, the reversible influence on the activity of G 

for selective acetylene hydrogenation of the presence of NH3 or CO2 in the 

acetylene/ethylene flow also supports that acidity and basicity is important in the 

catalytic activity. 

Theoretical calculations by Su and L have shown that H2 molecules within the 

interlayer space of two G layers one can be activated by graphitic B and N atoms at the 

appropriate distance (Figure 1).
36

 Although diffusion of H2 accessing the interlayer 

position to become activated can be problematic, these calculations prove that H2 

activation can be possible using the frustrated Lewis pair concept provided that 

geometric requirements are met. One concern for this mechanism of H2 activation by G 

is the lack of control in the distribution of acid and basic sites. Thus, random 
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distribution implies that only the minor fraction of the total acid and basic sites that 

meet the distance requirement are active in the reaction and, therefore, optimization of 

the catalytic activity of G materials for hydrogenation would require the development of 

advanced synthetic methods to gain a precise control on the distribution of sites on G.  

 

Figure 1. Energy profile of H2 activation and relevant states for the proposed 

mechanism for H2 activation by frustrated Lewis pairs constituted by graphitic N and B 

atoms in bilayer N, B-codoped G (taken with permission from ref. 
36

). 

However, to illustrate the current knowledge, it should be said that, besides 

frustrated Lewis pairs, other possible defects on G have also been proposed as sites for 

H2 activation. Thus, theoretical studies have also concluded that the edges of G, 

particularly the zig-zag having or not heteroatoms, can activate H2.
37, 38

 If borders of G 

would have the ability to activate H2, then, the smallest the G lateral size and larger the 

periphery of the sheets, the larger should be the catalytic activity, Catalytic data of G 

nanosheets would be valuable to address the possible H2 activation by the borders. Also 

carbon vacancies have been suggested as H2 activation sites, according to DFT 

calculations 
39, 40

 and, also in this case, experimental evidence supporting this proposal 

could be gained by comparing the activity of various G samples having different density 

of holes on the sheet, something that seems doable considering that density of holes can 

be quantified by TEM. 
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4. Carbon vacancies as initiators of aerobic oxidations. 

Oxidation of hydrocarbons and other organic molecules by oxygen is one 

reaction type that has considerable importance in industry.
1
 Among the industrial 

aerobic oxidations now in use, oxidation of benzylic positions of alkylaromatics, 

oxygenation of cyclic and acyclic alkanes and epoxidation of alkenes are well-known 

examples. 

There are several possible mechanisms for activation of O2, including electron 

transfer with the formation of O2
·-
 superoxide and other reactive oxygen species derived 

therefrom, generation of singlet oxygen and generation of carbon centered radicals able 

to react directly with O2.
41

 Aerobic oxidations involving carbon centered radicals are 

generally denoted as “autooxidations” and consist in a chain mechanism in which 

carbon centered radicals react without activation barrier with ground state, triplet 

oxygen to give a peroxyl radical that upon hydrogen abstraction from the substrates 

initiates another cycle. Scheme 7 summarizes the main steps in this general reaction 

with oxygen. 
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Scheme 7. The three steps of the chain mechanism of aerobic oxidations. Note 

that the propagation steps controlling the reaction rate do not require any catalyst. S-H: 

Substrate; In·: initiator. 

As indicated in Scheme 7, this mechanism requires an initiation step consisting 

in the generation of the first carbon centered radical that can result in the formation of 

tens to thousands of product molecules depending on the chain length, i.e., the average 

number of turnovers in the propagation steps. Since the propagation steps do not 

require any catalyst, due to the low activation barriers involved, autooxidations can be 

carried out by providing an initiator that is responsible of the generation of the initial 

carbon radicals. Thus, the role of Gs or other initiators such as classical azo 

bis(isobutyronitrile) is the generation of the primary radicals (In· in Scheme 7) that by 

hydrogen abstraction form the carbon radical of the substrate. 

Although Gs, GO and related materials can promote aerobic benzylic oxidations 

and autooxidation of other substrates,
42-44

 it is arguable that these reactions should be 

considered as “catalytic” as they are generally described in the literature. In any case, 

there is abundant information showing that Gs can trigger the generation of carbon 

radicals that in the presence of O2 result in the oxidation of a wide range of substrates, 

such as benzylic hydrocarbons,
45

 alcohols,
43, 46, 47

 and amines,
9
 (cyclo)alkanes, alkenes, 

thiols.
48

 The reaction mechanism of autooxidations can be proved by adding radical 

quenchers that should stop the reaction, while they are still present. Typical quenchers 

are phenols, but also TEMPO and stable O centered radicals. In addition, it is also quite 

common to observe an induction period in the time-conversion plot that is related with 

the initiation step and the generation of the first radicals. 
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It has been proposed that carbon vacancies and dangling bonds associated to 

defects are the most likely sites that can act as initiators in these aerobic oxidations.
9, 45

 

This is reasonable considering that carbons on G with incomplete valence should have 

some radical character that can act as initiators. In general, it seems that doping 

increases the activity of Gs as promoters of aerobic oxidations, therefore, it can be 

inferred that the dopant elements should also play a role in the activation of radical 

generation, although more insights on the reasons are needed. In the case of GO, where 

there is a large percentage of O, about 50 %, theoretical calculations for benzyl alcohol 

oxidation to aromatic aldehydes have led to propose that there is a hydrogen transfer 

from alcohol substrate to epoxide groups on F that undergo ring opening, followed by 

dehydration.
49

 This change in the nature of the active site depending on the aerobic 

oxidation and the type of G is also of large potential interest that can be exploited for 

controlling the selectivity of the process.  

Aerobic oxidations initiated by Gs can gain importance in the context of novel 

process for biomass conversion. Cellulose is the main component of biomass and it can 

be hydrolyzed using GO to glucose.
50

 Subsequently, glucose can be submitted to wet 

oxidation to afford succinic acid with a selectivity over 60 % using Gs to drive the 

selectivity to this wanted dicarboxylic acid.
51

 Scheme 8 summarizes the steps for 

preparation of succinic acid from cellulose. Succinic acid from glucose using O2 as 

reagent can be a key process in next generation polyesters based on biomass. 
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Scheme 8. Preparation of succinic acid from cellulose in two steps, the last one 

being the wet oxidation catalyzed by G. 

Besides cellulose, lignin is the second major constituent in biomass. 

Depolymerization of lignin is one of the main problems for its use as source of 

chemicals. Using guaiacylglycerylguaiacol as model of some of the strong ether 

bonds present in lignin, it has been found that this probe molecule can be fragmented by 

O2 using rGO as catalyst (Scheme 9).
52

 

 

Scheme 9. Oxidative cleavage of an ether bond promoted by rGO in a molecule 

considered as a model of this type of bonds in lignin.
52

 

 

5. Quinone/hydroquinone like substructures as oxidation sites 

The previous section describes promotion of aerobic oxidation through a radical 

chain mechanism, but there are many other oxidation reactions using a wide range of 

oxidants and occurring through different reaction mechanisms. Depending on the 
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reaction, the nature of the active sites could change, as already commented in the case 

of aerobic oxidation of benzyl alcohols in the presence of GO,
49

 and this could result in 

a change in the product selectivity. A clear example of this change in the nature of the 

active sites depending on the oxidizing reagent and in the product distribution has been 

observed in the case of primary amines using NaClO as oxidant and GO as catalyst.
53

 In 

this case, the main oxidation product depends on the substrate, but for long chain 

aliphatic amines the major products are the corresponding nitriles (Scheme 10).
53

 FT-IR 

spectroscopy supports that in this case, carboxylic acid groups forming peroxyacids or 

peroxylactones are the active sites. A clear analogy with carbocatalysis by G and 

organic chemistry in which peracids are well-known oxidizing reagents
54

 is clearly 

established. 

 

Scheme 10. Oxidation of primary long-chain aliphatic amines to the 

corresponding aliphatic nitriles with almost complete selectivity. 

Another oxidation process that has wide application for waste water treatment 

when the amount of organic matter is not very low or high ranging from 1 to 20 ppms is 

the Fenton reaction using hydrogen peroxide to form hydroxyl radicals (·OH) in 

water.
55

 Typically the Fenton reaction is carried out using stoichiometric amounts of 

Fe
2+

 salts to reduce H2O2 according to eq. 1. According to this eq. 1, formation of ·OH 

radicals from H2O2 is a one-electron reduction and, besides, Fe, it has also been reported 

for other transition metal salts, such as Cu and Mn.
55
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There is a large practical incentive in developing efficient Fenton catalysts to 

overcome the need of large amounts of metals of stoichiometric reactions. Supported Fe 

oxides and metal NPs have been reported as catalysts for this reaction,
55, 56

 although in 

most of the studies a large excess of H2O2 over substrate that can be of 1000 equivalents 

or even larger has been employed. 

Since active carbons are widely used in water purification, there is a very large 

number of publications reporting the use of active carbons of various types for the so-

called advanced oxidation processes,
57

 where the oxidant can be either oxygen (catalytic 

wet oxidation),
58-60

 hydrogen peroxide (catalytic peroxidation)
61, 62

 or ozone
63

.  In 

particular, it has been established that metal-free carbons of basic nature are excellent 

catalysts for these reactions, including nitrogen-doped CNTs 
64

 and graphene derived 

materials. 

In this context, using phenol as a model molecule for reluctant, non-

biodegradable organic pollutant it has been found that defective G obtained by pyrolysis 

of alginate is a convenient catalyst that is able to promote Fenton degradation using a 

minimal excess of 5.5 equivalents of H2O2.
65

 Compared to other G catalysts, defective 

G from alginate was found more efficient than rGO and doped Gs. Noteworthy is the 

lack of catalytic activity of GO to promote this reaction. Figure 2 depicts the temporal 

profiles for phenol degradation and H2O2 decomposition in the presence of various G 

catalysts.  



- 18 - 
 

 

Figure 2. Temporal profiles of phenol degradation (A) and consumed H2O2 (B) 

using three G-based catalysts. G corresponds to defective G obtained from alginate 

pyrolysis at 900 
o
C. Reaction conditions: Catalyst (200 mg L

-1
), phenol (100 mg L

-1
, 

1.06 mM), H2O2 (200 mg L
-1

, 5.88 mM), pH 3, 20 ºC. (Taken from ref. 
65

). 

Noteworthy is that for defective G the activation energy for phenol degradation 

coincides with that of H2O2 decomposition as it should be expected if highly aggressive 

·OH radicals were the only species formed from H2O2.
65

 Moreover, the process can be 

also activated by natural sunlight, probably reflecting the photocatalytic activity of these 

defective G.
66

 

Mechanistic studies using selective quenchers and, particularly unambiguous 

EPR detection of the adduct of ·OH trapping by phenyl N-tert-butyl nitrone, has 

provided firm support of the generation of ·OH radicals by defective G.
65

 Calculations 

have suggested that the hydroquinone/quinone redox pair with similar redox potential as 

the Fe
2+

/Fe
3+

 pair could be the active sites. This proposal was independently supported 

by using differently substituted hydroquinones and quinones as organocatalysts and by 

detecting the generation of ·OH radicals.
65

 It should be noted that since H2O2 can act as 

reducing agent forming O2 (Ered
o
 0.68 V) and oxidizing agent forming H2O (Ered

o
 1.78 

V), it is not relevant from the catalytic point of view to start from hydroquinones or 
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quinones, provided that the redox potential of the hydroquinone/quinone pair is in 

between the range of potentials of the two redox processes of H2O2 (Scheme 11). 

 

Scheme 11. H2O2 decomposition catalyzed by hydroquinone-quinone pair. Note 

that H2O2 can behave as oxidizing and reducing reagent.  

Again, to support the nature of active sites on Gs, an analogy with the activity of 

organic molecules was established.
65

 Scheme 12 shows some thermodynamic data, E, 

i.e. the difference in energy between the products and the reagents, showing that the 

process is moderately endoergonic by 1 or 2 eV in a difference between terms of about 

130 eV. Depending on the substituent, as in the case of condensed bis pyreno 

hydroquinone (Scheme 12 b), the difference is just 1 eV. It should be commented that 

from the point of view of catalysis, the ideal situation is quasi neutral process (E ~0 

eV) from the energy point of view, allowing turnover from hydroquinone to quinone 

and viceversa without irreversible oxidation or reduction. 
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Scheme 12. Calculated energy data for the generation of ·OH radicals by 

reduction of H2O2 with hydroquinones (taken from ref. 
65

). 

In organic chemistry, it is well known that quinones, such as 2,3-dichloro-5,6-

dicyanoquinone (DDQ) are good oxidizing reagents
67

 and that hydroquinones are 

reducing agents.
54

 One main difference is, however, that these hydroquinone-quinone 

substructures in Gs are notable stable, since the G can be reused as catalyst and a 

turnover number higher than 15,000 for H2O2 decomposition has been measured 

considering that the number of centers present in G correspond to the fraction of C 

atoms bonded to O atoms as carbonyls. 

This type of substructures in Gs in which a carbonyl group is attached to 

unsaturated sp2 carbons have also been generically denoted as oxygenated functional 

groups or more specifically carbonyl groups and have been proposed as active sites for 

different reactions.
68

 

 

6. Impurities as active sites. 

6.1 Non-metallic impurities 
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It has been determined that rGO can behave as acid catalyst for reactions such as 

aldehyde acetalization,
69

 epoxide ring opening
70

 and hydrolysis of biomass.
71

 It has 

been found, however, that this catalytic activity as acid correlates well with the 

percentage of S present in the G sample.
69

 Two possible functional groups, either 

hydrolyzable hydrogen sulfate (C-O-SO3H) or sulfonic acid (C-SO3H) can be formed in 

the process (Scheme 13).  

 

Scheme 13. Hydrogen sulfate (red) and sulfonic acid (blue) groups that can be 

formed during the process of rGO formation as consequence of the excess of sulfuric 

acid used in the Hummers oxidation of graphite. 

In aldehyde acetalization
69

 and epoxide ring aperture,
70

 both processes carried 

out in methanol, it was found that product yields and sulfur content decreases upon 

reuse, indicating that most of the catalytic activity is due to the presence of hydrogen 

sulfate groups. Similar behavior of rGO as acid catalyst due to the presence of S species 

have been reported in the literature,
73-75

 for instance in the hydrolysis of cellulose or the 

isomerization-dehydration of glucose, although in this case the activity was attributed 

mainly to carboxylic acid groups.
50

 

The activity of G anchored hydrogen sulfate groups is frequently much higher 

than equivalents amounts of H2SO4 or other acids in solution.
50, 70

 For this reason 

sulfated G is a highly active catalyst for various biomass conversion processes, such as, 
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for instance, degradative hydrolysis of starch to levulinic acid using a trifluorosulfonate 

G (Scheme 14).
76

  

 

Scheme 14. Possible structures of trifluorosulfonated defective G. Note that 

defective G was submitted to an oxidative pretreatment to increase the density of 

oxygenated groups. (Taken with permission from ref. 
76

). 

This synergy between the catalytic center and the morphology and properties of 

G is more general than just the case of acid sites as already commented
77

 and it can be 

taken advantageously in the case modified Gs having sulfonic groups covalently 

anchored through non-hydrolyzable bonds (Scheme 15). 

 

Scheme 15. Covalent anchoring of benzenesulfonic groups to G by reaction of 

diazonium salts with rGO (taken from 
73

). 

Defective G

Oxidized defective G
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6.2 Metal impurities. 

Exhaustive analyses by Pumera and coworkers have shown that natural and 

synthetic graphite may contain a series of metals that remain in various proportions after 

chemical oxidation and reduction to rGO.
78, 79

 Among them, the most abundant metals 

are Mn and Fe, followed by Ni and Cu or Mo at the level of tens of ppms, but many 

other elements can be introduced during the synthesis due to the impurity of the 

chemicals used in large quantities in the preparation of rGO from graphite.
79

 The 

presence of these metal impurities has been shown to contribute to the electrochemical 

properties of rGO obtained from graphite.
78, 79

 

Natural biomass materials may contain, similarly, metals in trace amounts that 

can be concentrated during the pyrolysis process. Thus, the presence of metal in trace 

quantities on G samples appears to be very common and probably unavoidable. 

It should be commented, however, that the problem of impurities in catalysis is 

not exclusive of G catalysis and that there have been controversial cases in the literature 

in which the claimed activity of one metal has been disputed
81

 or proved to be due to the 

presence of impurities of other metals.
82

  

There exist several approaches to determine the role of impurities in a catalytic 

process. One of the most logical ones is to use the purest possible catalysts and to 

determine the influence of higher purity on the activity. If the activity is not due to 

impurities, the performance of the catalyst should not decrease. These tests are not easy 

to be carried out in the case of Gs, due to their difficult purification. 



- 24 - 
 

A second widely used test is based on determination of the nature of the 

chemical impurities and the evaluation of the catalytic activity of these impurities at the 

concentrations present as impurity or even somewhat higher. In this case, a safe test 

consists in adding on purpose increasing amounts of the metal to G and determining the 

influence of the presence of increasing concentrations in the range of concentrations 

present as impurity on the initial reaction rate and final conversion of the impurified 

sample.  

Mn is generally by large the metal in highest proportion on GO and rGO. This 

test based on addition of Mn in hundreds of ppms to G has been used to rule out the 

influence of this metal at the percentages present in rGO in the selective acetylene 

hydrogenation.
30

 Addition of incremental amounts of impurities on the catalyst is better 

than evaluation of the activity of the impurity in the absence of G, due to the possible 

synergy that can be established between the impurity and G. From the catalytic point of 

view the lack of influence of Mn can be easily understood considering the negligible 

hydrogenation activity of this transition metal, particularly at low concentration. 

However, in other cases, such as the activity of Gs as Fenton catalyst, the doubts 

are more reasonable, particularly considering that Fe and Mn are both metals that 

exhibit under certain conditions high catalytic activity for the Fenton reaction.
56

 Also in 

this case, it was found that addition of Mn in various amounts does not change the 

temporal profile of the reaction, respect to the activity of the G catalyst. 
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Figure 3. Influence of the amount of Mn added purposely as impurity to 

defective G on initial reaction rate of phenol disappearance. Extrapolation to 0 % 

indicates that defective G should have an intrinsic catalytic activity when Mn free of 

about 95 h
-1

.  

 

7.  N and B as active sites 

As already commented, pyrolysis of some biopolymers leads to doped Gs. 

Depending on the pyrolysis temperature, chitosan affords (N)G with a maximum N 

content of about 7 wt% that decreases as the pyrolysis temperature increases. Similarly, 

(B)G can be obtained by pyrolysis of the borate ester of alginate. Other ways to obtain 

these doped defective Gs can be by reacting GO with ammonia and borax or borate. 

Doping with heteroelements is a general methodology to modify the properties of Gs, 

particularly with respect to their activity as carbocatalysts.  

In one of the pioneering studies, aerobic oxidation of benzylic alcohols was 

found to fail to be promoted by G, while (N)G catalyzes the reaction.
84

 Furthermore, 

analysis by XPS of the different families of N atoms in G led to the conclusion that the 
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activity of (N)G correlates with the population of graphenic N that were proposed to be 

the active sites for interaction with O2.
84

 Similarly, in the aerobic oxidation of styrene to 

a mixture of benzaldehyde and styrene oxide, it was found that (N)G from chitosan 

pyrolysis and (B)G from alginate borate were more active than G derived from 

pyrolysis of alginate.
45

 

Going a step forward, it is clear that co-doping introducing two elements having, 

in principle, opposing Lewis acid/base activity is a powerful tool to introduce 

functionality on the G sheet. Codoping is interesting from the point of view of creating 

frustrated Lewis acid-base pairs. As already said, theoretical calculations using on layer 

of (B)G interacting with a second layer of  doped G have shown the possibility to 

activate H2 molecules within the interlayer.
36

 In one of the experimental studies, it was 

found that B and N codoping on defective G is the most active carbocatalyst compared 

with G, (B)G and (N)G for the aerobic oxidation of benzylic hydrocarbons.
45

  

It is clear that doping will be further exploited as a general tool for introducing 

active sites or enhancing the activity of the neighbor sites of Gs as carbocatalysts. 

 

8. Beyond G catalysis 

In any case, it has to be agreed that the current situation is still somewhat 

controversial due to the lack of deep understanding on the nature of the active sites for 

most reactions and some doubts about the possible influence of metals are still 

reasonable. Determination of the nature of the active sites conclusively will not only 

rule out metal impurities as the origin of the catalytic activity claimed for Gs, but also 

will give hints of how to improve the catalytic efficiency of these materials. Surely the 

wanted evidence of metal-free catalysis is to reproduce the active sites found in Gs in 
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synthetic organic molecules, polymers or other materials. One of the major limitations 

of G at the present, that hopefully will be overcome in the future, is how to control at 

atomic level the position and nature of the defects and doping elements. However, until 

these synthetic tools are developed in a convenient way, Gs have a wide distribution of 

sites that is against the “single-site” concept of heterogeneous catalysis, according to 

which ideal heterogeneous catalysts should have exclusively the type of site that is the 

optimal for a given reaction.
85, 86

  

This wide distribution of different sites with limited synthetic control in their 

population and structure is a major drawback of Gs as catalysts and research aimed at 

overcoming it should be a priority in this area that should be developed in par with the 

understanding of the nature of the active sites. After disclosure of the wanted sites, it is 

possible to imagine that post-synthetic modifications of preformed Gs by physical or 

chemical means could introduce on the ideal G or in other types of Gs the centers that 

can promote the target reaction. But also it is possible to design other organocatalysts 

that must exhibit activity for the target process.  

Study of the nature of the active sites has to be made by using simultaneously 

kinetic studies, deep spectroscopic and microscopic characterization and theoretical 

calculations. Initially, theory should model the structure of the claimed active sites 

embedded in the G sheet and determine reasonable reaction mechanisms with activation 

barriers. Starting from this point, computational modeling should go beyond and predict 

the influence that structural parameters can exert on the active site, proposing further 

modifications on the G material to render it more active or selective by decreasing the 

activation energy of the rate determining step. 
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It is clear that classical kinetic and catalytic studies are powerful tools that can 

provide the necessary initial information, leading to reasonable proposals of the 

structure of the active sites. We have already commented general catalytic experiments 

used to rule out metal impurities as responsible of the observed catalytic activity in Gs 

(Figure 3) and now some further controls to determine the structure of active sites will 

be commented. 

Proposals about the structure of the active sites should be based on the 

knowledge of the composition and functional groups present in G. As an example, in 

carbon nanotubes (CNTs) there has been found a relationship between the CNT oxygen 

content and the catalytic activity of the material for the oxidative dehydrogenation of 

light alkanes into alkenes.
87

 A linear relationship between the catalytic activity for 

oxidative dehydrogenation of activated carbons and the density of C=O groups 

measured by thermoprogrammed desorption led to propose this type of groups as the 

active sites for the process.
17

 In the specific case of CNTs, since oxygen in CNT is 

assumed to be present as hydroxyl, carbonyl and carboxylic acid groups, then, the 

beneficial influence of the oxygen content on the catalytic activity for this reaction 

should be related with the presence of any or several of these functional groups.
88

 By 

contrasting the catalytic activity of pristine CNT with that of modified samples in which 

selective masking of each of the three types of oxygenated groups was performed, then, 

evidence in support that the catalytic activity is related to the carbonyl groups was 

provided.
87

 Scheme 16 illustrates this strategy. Similar conclusions claiming vic-diketo 

groups or quinone-like structures have been also proposed as active sites of the 

oxidative dehydrogenation of alkanes in rGO.
89

 It is clear that this type of studies on the 

influence of selective masking on the catalytic activity provide a useful information and 

should be performed routinely also for other types of reactions.  
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Scheme 16. Selective masking of oxygenated functional groups to determine the 

nature of the active sites in CNTs for the oxidative dehydrogenation of alkanes. (Taken 

with permission from ref. 
87

). 

Similar type of selective group masking has led to propose also ketonic groups 

as the active sites in CNTs for the hydrogenation of nitro groups by hydrazine as 

reducing agent.
90

 Considering that the ketonic groups in CNT are of quinone-like type, 

organic chemistry concepts can be used to assess how reasonable the proposal is, by 

providing examples of similar behavior in structurally related organic molecules or 

structures. 

This type of studies is based on the possibility to apply general organic reactions 

to the modification of graphenic materials. It should be commented, however, the 

methodology has to be adapted to the nature of the G material. In this sense, CNT 

should have, in principle, a low oxygen content in their structure of a few percents. In 

contrast, GO has much higher oxygen content at about 50 %, with other reactive 

oxygenated functional groups such as epoxides (Scheme 17) and the possibility of 

complete, selective masking without altering in a deep extent the original structure is 

considerably more difficult. Thus, for instance, for the previously commented oxidative 

Inactive

Inactive

Active
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dehydrogenation of light alkanes, GO is also an active catalyst and in this material 

epoxides have been claimed as the groups responsible for the observed activity.
27

  

 

Scheme 17. Proposed model structure of GO that is in accordance with the 

oxygen content and 
13

C NMR spectra. (Taken with permission from ref. 
27

) 

Alternatively catalytic experiments can be carried out in the presence of 

additives that mask certain types of sites or introduce new ones and the activity of the 

additivated catalysts is compared to that of the plain catalyst. As an example, the 

activity for the selective hydrogenation of acetylene in the presence of a large excess of 

ethylene of defective G changes reversibly when CO2 (increasing) or ammonia 

(decreasing) is added to the feed (Figure 4).
30

 CO2 reacts with basic sites and ammonia 

neutralizes the acid ones, so the influence in the catalytic activity of G or CO2 and NH3 

is taken as support that basic and acid sites are involved in the reaction mechanism, 

since otherwise CO2 is an inert gas that should not alter the catalytic activity. Note that 

the presence of these additives can decrease or increase the intrinsic catalytic activity, 

something that also agrees with the concept that only a fraction of the total acid and 

base centers (those that are in the correct distance range) are active to promote the 

reaction. 
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Figure 4. Influence of the presence of NH3 or CO2 in the stream in the gas-phase, 

continuous-flow selective hydrogenation of acetylene in a large excess of ethylene at 

100 
o
C (Figure taken with permission from ref. 

30
) 

Similarly the involvement of acid sites has been demonstrated in the mechanism 

of the aqueous phase reforming of glycerol by N and B-codoped G, by observing the 

influence that triarylborane in 1 wt% respect to G plays in glycerol conversion and 

selectivity towards H2 production (Figure 5).
91

  

 

Figure 5. Influence on the activity of defective G for the aqueous phase 

reforming of glycerol of the addition of 1 wt% of an organoboron molecule as Lewis 

acid. Black line: G plus 1wt% tris(pentafluorophenyl)borane; Red line: G plus 1 wt% of 
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bis(pinacoltl)diborane; Blue line: G without additive. Reaction conditions: 3.43 mmol 

glycerol (10 vol./vol% glycerol/water), 20 wt% catalyst, P0=1 bar. 

Characterization techniques are also extremely valuable to gain insight into the 

nature of the active sites. Electron microscopy can reveal the presence of holes on G 

that may increase significantly the periphery of the G sheet. Characterization by 

electron microscopy has also served to propose the nature of active sites on G. In one of 

these studies aimed at disclosing the nature of the active sites in GO to promote the 

aerobic oxidation of benzylamines to the corresponding N-benzylidene benzylamine, 

Loh and coworkers observed by electron microscopy that GO obtained by Hummers 

oxidation contains amorphous debris that can be removed from the rGO sample by acid 

washings and subsequent neutralization (Scheme 18).
9
 Since Hummers oxidation of 

graphite is a harsh oxidative treatment it is reasonable that, as in the case of GO, acid 

carboxylic groups are formed even in the small amorphous carbon NPs formed in the 

process. These carboxylic acid groups can be used to purify GO from these unwanted 

carbon NPs by washing with base. Interestingly, removal of these oxidized amorphous 

particles makes available free holes on the GO sheet as observed by TEM and this 

makes active the material as oxidation catalyst. Overall, this TEM characterization 

provides evidence in support of sheet holes as the active sites of the reaction. 
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Scheme 18. Purification process of GO by base and acid washings to release free 

holes from amorphous impurities resulting in an increase in its catalytic activity (taken 

with permission from ref. 
9
). 

While IR spectroscopy is very useful for GO characterization, the information 

provided by this technique for rGO and Gs in general is of lower value, among other 

reasons due to lack of transparency of these materials that do not generally allow 

applying transmission techniques. However, other techniques based on reflectance 

could be adequate. IR spectroscopy has been very useful to characterize species 

adsorbed on the surface of solids and to determine in situ their evolution upon 

controlled admission of reagents. It is clear that future research on G would be much 

facilitated by this type of mechanistic studies. As already commented in one particular 

case, the nature of the active sites on GO for the oxidation of amines to nitriles by 

hypochlorite as oxidizing reagent has been proposed to be carboxylic acids based on the 
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IR spectral changes. In the process it is claimed that carboxylic acids will be converted 

into peroxyacids or peroxylactones by ClO
-
 and these highly reactive carboxylic acid 

derivatives will be responsible for the conversion of the amines to nitriles (Scheme 10). 

Considering that GO and other G materials have a considerable population of 

carboxylic acid groups mainly at the periphery and holes of the sheet, it can be foreseen 

that in the near future Gs could be used as metal-free catalyst for those processes that 

can be promoted by peracids such as the alkene epoxidations, Bayer-Villiger oxidative 

rearrangement of cyclic ketones and sulfide oxidation, among others.
54

 

 

9. From Gs to organocatalysis. 

Most of the centers that are presumed as exhibiting catalytic activity in Gs can 

also be found in organic molecules that should be also active for the process. 

Organocatalysis should start at this point trying to increase the stability and the activity 

of the organic molecules by applying organic concepts such as introduction of electron 

donor or withdrawing substituents, tuning steric hindrance around the active group and 

preparation of derivatives, among others. Then, next steps could be to anchor these 

molecules on large surface area supports trying to transform homogeneous catalysts into 

heterogeneous and recoverable systems. Alternatively these molecules can be 

encapsulated into inert matrices to protect them or to prepare soluble and insoluble 

polymers having these active centers. 

Besides organic synthesis and easy derivatization, organocatalysis has the 

advantage over carbocatalysis that the former can, in principle, prepare single site 

catalysts and materials having a larger density of sites than those that can be obtained in 

Gs. On the other way around, the knowledge gained in organocatalysis can serve for the 
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initial proposal of the nature of active sites and for the post-synthetic modification of Gs 

increasing their performance. 

Probably, one of the main limitations in transferring catalysis by Gs to 

organocatalytic processes is when the active sites are carbon vacancies and holes. But 

also in this case, rigid large aromatic molecules having persistent radicals or biradical 

centers can be envisioned to emulate the performance of Gs. 

10. Future directions in carbocatalysis by Gs. 

The field of Gs as carbocatalysts is certainly in its infancy and can be considered 

that started in 2010 by Bielawski’s findings on the catalytic activity of graphite oxide 

and GO.
42, 43

 This short period of time with the limited effort that has been made so far, 

together with the growing pressure for replacing critical metals, makes us anticipate that 

the field will attract an increasing interest of researchers in the area of catalysis in the 

next years to come. One of the clear targets is to delineate for which reactions, Gs can 

be catalysts with comparable activity with respect to other alternatives. 

At the moment, Gs have well-proven catalytic activity to promote some aerobic 

oxidations, while information about other reaction types is more limited. In principle the 

objective is to show that most of the reactions that are promoted by metals can also be 

catalyzed by Gs. Metals can act as Lewis acid sites and as redox centers and, as 

commented, these type of centers can also be present in Gs. Clear objectives of Gs is to 

show their activity in catalytic reactions that are supposed to be carried out exclusively 

by metal-containing catalysts. Typical reactions catalyzed by metals are reductions, 

including hydrogenation, oxidations, Lewis acid-promoted processes, rearrangements 

and homo and cross couplings, Examples of Gs as metal-free catalysts for reductions 

and oxidations are also sufficiently documented.
27

 However, in spite of their large 
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importance in modern organic synthesis, the activity of G in coupling reactions has not 

been reported so far. In principle, based on the most widely accepted mechanism for Pd 

catalysis of this reaction, the active centers should be able to insert into aryl-halide 

bonds through oxidative addition and subsequently undergo transmetallation and 

reductive elimination (Scheme 19). Since, as discussed earlier, redox centers are 

available on G, it seems that the key point is to have on the G sheet a functional group 

or defect able to insert into the strong aryl-halide bond. It should be commented that, as 

Corma has shown
92, 93

 in the case of Au NPs, the main difference with homogeneous Pd 

catalysis can be that in the case of G the mechanism can be performed by using more 

than one atom or center and, therefore, it can be envisioned that the combination of 

electrophilic defects with redox sites could somehow act as a single Pd atom in a 

molecular complex (Scheme 20). If this were the case, then, most of the widely used C-

C bond formation cross coupling reaction could be promoted by Gs. 

 

Scheme 19. Commonly accepted steps in the Pd catalyzed Suzuki-Miyaura 

coupling. 
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Scheme 20. Proposal for catalytic cross-coupling based on a metal-free catalyst 

the combination of two sites with different properties rather than a single Pd atom can 

promote the coupling reaction. 

Besides delineating for which reactions Gs can be catalysts, disclosure of the 

corresponding active sites and the two-way interplay with organocatalysis is now 

mandatory for every reaction catalyzed by carbons. Comparison of the activity of 

various Gs in which oxygenated functional groups have been selectivity masked should 

be performed as a general tool to address the role of these groups in catalysis. It is clear 

that the final target is to use Gs as metal-free catalyst in a large scale industrial process. 

Development of metal-free G catalysis for an industrial process would mean that the 

combination of properties and availability of a certain G would make this material 

preferable as catalyst to any other alternatives, including those based on metals and, 

surely, will trigger much more effort trying to expand the use of Gs to other related 

large-scale process.  

In this context, it is difficult to envision Gs as replacement of noble metals in 

already-existing, well-established industrial processes, where a change in the catalyst 

would require massive capital investments and the technology has been already paid 
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back. However, Gs can have their opportunity in new areas that are currently being 

developed and that are close to commercial implementation, but still are searching for 

the most advantageous catalyst. It appears to us that biomass conversion and novel 

power-to-chemicals reactions in the context of renewable energies are more suitable 

fields to evaluate Gs as metal-free catalysts in comparison with metal-containing 

catalysts. For instance, one of the common problems in biomass conversion is the 

formation of heavy tars and the difficulty in recovering and reusing the catalyst. If the 

catalyst would be based on G obtained in an affordable way, it could be envisioned that 

it could not be necessary to separate the catalyst from the final wastes, since after its use 

it could be processed in the residue as an additional carbonaceous component of the 

mixture. As already commented, there are certain biomass processes such as cellulose 

hydrolysis currently carried out by homogeneous acids that can take place also with 

acidic rGOs. Similarly, glucose isomerization and dehydration or the direct glucose 

conversion to succinic acid are processes that can be promoted by modified Gs. Also, in 

power-to-chemicals in which conversion of renewable electricity to chemicals is going 

to become highly important, there are electrolytic processes in which Gs can act as 

electrocatalysts, increasing the efficiency of the electrochemical process and avoiding or 

minimizing the amount of metal present in the electrode. 

Thus, the final summary of this Perspective article is that metal-free catalysis by 

G will be intensely researched in the next years and that the outcome of this research 

could be a revolutionary change in the field of catalysis, moving from metal catalysis 

that has predominated since the early days of catalysis up to the XXth Century to a 

sustainable catalysis based on the use of carbon atoms in which the centers can be tuned 

by applying concepts of organic chemistry and, hopefully, engineered at atomic level. 



- 39 - 
 

Deep understanding of the active sites in G will lead to a unified view of carbocatalysis 

and organocatalysis. 
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