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Abstract

In this paper we propose some modifications in the schemes for the iterative splitting techniques
defined in [1] for partial differential equations and introduce the parallel version of these modified
algorithms. Theoretical results related to the order of the iterative splitting for these schemes are
obtained. In the numerical experiments we compare the obtained results by applying iterative
methods to approximate the solutions of the nonlinear systems obtained from the discretization
of the splitting techniques to the mixed convection-diffusion Burgers equation and a momentum
equation that models a viscous flow. The differential equations in each splitting interval are
solved by the back-Euler-Newton algorithm using sparse matrices.
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method; nonlinear equations.
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1. Introduction

Nowadays, iterative splitting methods are considered as excellent decomposition meth-
ods to obtain higher-order results and to embed nonlinearities. This is due to the ad-
vantage of this technique in combining iterative and splitting behavior for decoupling
physics problems. In this paper, we develop new nonlinear solvers that are modifications
of the iterative splitting schemes defined in [1] and [2].
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02.
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Iterative splitting schemes are used to solve nonlinear systems obtained from ordinary
differential equations or spatially discretized partial differential equations. For their orig-
inal scheme, one applies a Picard-iterative technique to solve the nonlinear systems, see
[2] and [3]. The drawback is that such Picard’s technique is a first order scheme, see [4].
Our benefit is embedding a nonlinear scheme, Newton’s method, in the splitting methods.
Such novel schemes are more accurate, higher order and accelerate the solver schemes.

The novelty consists in a modification based on the idea of using the solution of first
equation of the split problem for updating operators in the second equation of the same
iteration. We consider all possible variations for combining the nonlinear operators, get-
ting six different schemes. We also derive parallel versions of such schemes in order to
obtain additional faster schemes and an up to date nonlinear solver for large-scale com-
putations. Further, we derive parallel versions of such schemes to obtain additional faster
schemes and an up to date nonlinear solver for large scale computations, see [5].

The outline of the paper is as follows. In section 2 we introduce our mathematical
model. The splitting techniques are presented in Section 3. In section 4, we discuss the
theoretical results of the methods. Section 5 explains how to apply nonlinear solvers
to the equations of the splitting and Section 6 applies the new splitting methods to a
scalar and a vector valued PDE and compares the results with the ones of some classical
splitting methods.

2. Mathematical Model

A great variety of natural phenomena can be described by an ordinary differential
equation or a partial differential equation, the solution of which not always can be ob-
tained by analytical methods. In fact, in the majority of cases, is much more practical
using numerical methods in order to approximate the solution.

In the present paper we concentrate on partial differential equations given as:

du(v,t)
dt
Boundary condition: u(v,t) = w(v,t), (v,t) € 92 x [0,T]

Initial condition: u(v,0) = ug(v), v € €.

= f(t,u(v,t), u: QxR —R, QCR"

In case n = 0, we have an ordinary differential equation:

du(t)
dt

and in case n > 0, we will obtain a system of ordinary differential equations.

This is the case for convection-diffusion-reaction-equations, see [6-9], and for a compu-
tational simulation of heat-transfer [10], which, with the above notation, is a particular
case with n = 2. Function f(¢,u(z,y,t)) can contain partial derivatives up to second
order Uy, Uy, Uzey and Uy, .

Specifically, we deal with a particular form for function f(¢,u(v,t)), when it can be
expressed in the following form:

= f(t,u(t)), t€[0,T], w:[0,T] — R,

du(v,t)
dt

= A(u(v,t))u(v,t) + B(u(v,t))u(v,t) + g(v,t), (1)



with ¢ € [0,T], the initial condition is known u(v,0) = ug(v), and A(u), B(u) are oper-
ators in a Banach space X involving only spatial derivatives of u, whereas g(v,t) is an
exterior perturbation.

3. Splitting techniques

Splitting techniques can be used with the aim of decomposing the original problem
into a sequence of simpler problems when the size of the problem is big or maybe if
we need to solve the problem taking into account physical properties of some parts of
the equation. Sometimes, we want to separate the nonlinear part of the equation from
the linear part or just our aim is using different numerical methods in each part of the
equation, always with the final objective of building efficient methods with the usual
properties of accuracy and stability.

The traditional method is the sequential operator splitting, but nowadays iterative
splitting is being the objective of different studies, [11,12]. In all cases, we discretize the
time interval [0,7] in N subintervals by means of the partition 0 < t! <2 < ... <" <
t"tl < ... < T and solve a different problem consecutively in each of these subintervals.

3.1. Classical operator splitting techniques

Between the different splitting algorithms traditionally used, let us mention the fol-
lowing ones

3.1.1. Sequential Operator Splitting

In this scheme we solve two sub-problems in [t",¢"*!] sequentially connected via the
initial conditions. First we solve the problem considering only the first operator with
the given initial condition and after that, the problem is solved considering the second
operator with initial condition the solution obtained in the first problem, that is:

= A(a(t)ya(t), at") = u(t") (2)
dl;iit) = Bu())u(t), wu(t")=a(t"),

where u(t?) = u(0) = ug. The value of the split solution at the end of the subinterval,
@(t™*1) is the initial value for the next subinterval.

Operator splitting methods can be viewed as time-discretization methods, which define
exponential approximations to the exact solution at the mesh-points, ¢;, ¢ = 1,..., N.
Hence, as for any arbitrary time-discretization method, we can introduce the notion of
the discretization error, called local splitting error, as

€n (t) = “n(t) - Un(t)a

where u,,(t) is the splitting solution and U, (t) is the analytical solution.
The splitting is said to be of local order p in [t", "] if:

en(t) = O(TPY)) with 7, = "1 — ¢
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It is well known, by using Baker-Cambell-Hausdorff formula, that the Sequential Operator-
Splitting error equation has the following form, [17]:

1
ey = ETTQL[AB — BAJu(t") + O(TS)

0, for [A, B] =0,
O(ry), for [A,B] #0

where [A, B] = AB — BA is the commutator operator. So, this method is in general of
order 1 and it is exact if operators A and B commute.

In order to improve the local order of the splitting techniques, different alternatives
have been proposed, see the study presented in [13]. We will consider the additive split-
ting and the Strang-Marchuk splitting for purposes of comparison with the algorithms
introduced in this paper. The first one is of first order and the second one has order two.

3.1.2. Additive Splitting
In this method, one independently solves for each operator and then, combines the two
solutions before passing to the next interval, according to:

) ay)ace), with @) = u(t™),
dgltt )
Zi ) _ BEW)E®), with 7(t) = u(t™),

and we take the approximated solution u(t"*') = a(t"*t) + a(t" ) — u(t").

3.1.3. Strang-Marchuk Splitting

In this method, first we solve for operator A in the left half of interval ¢”,¢"*!, then
we solve for B in the whole interval, and again for A in the second half of the interval.
The three subproblems are connected by the initial conditions, according to

dZSst) = Aa(t))a(t), with @(t") = u(t")and t € [",1" +7/2],
T _ B, with i) = a(e" + /2. W
d%g) = A(u(t))u(t), with w(t" +7/2) = a(t™)and t € [t" + 7/2,t").

3.2. Iterative Splitting methods

Operator splitting methods have been overcome by the iterative splitting method de-
fined in [11]. Our aim now is to introduce some modifications in the recent iterative
splitting schemes appearing in [1] and develop parallel versions of these algorithms. In
the iterative splitting methods, the splitting is iteratively applied in each subinterval be-
fore passing to the next subinterval. There are several options for the iterative splitting
method:



— Solve each equation sequentially or independently.

— Linearize or not the differential equation.

— Exchange the splitting parts in each iteration.
Let us now examine different versions of the method that derive from these options.
Let us consider algorithm (5.13) of [1], that can be written as follows:

dﬂ;t(t) = A(uzfl(t))az(t) + B(’U/i,1(t))’(l,z',l(t)7 with ai(t”) — u(t”),
duc;t(t) = A(ui—1(¢))a;(t) + B(ui—1(¢))u;(t), with u; (") = u(t").

We propose a modification based on the idea of using the solution of first equation
4;(t) for updating operators A(u) and B(u) in the second equation of the same iteration,
that is, substituting A(u;—1) and B(u;—1) by A(@;) and B(@;). Moreover we consider all
possible variations for combining the nonlinear operators, getting six different schemes.

3.2.1. Linear Serial Iterative Splitting (LS)

The linear serial iterative splitting solves the first equation for the linear part of oper-
ator A, and then, solves the second equation for the linear part of operator B, using the
solution of part A. The process is iterated m times before passing to the next interval.

= A(ui_l(t))ﬁi(t) + B(ui_l(t))ui_l(t), with ’l]i(tn) = u(t"),

A (5)
sl) _ AG@a()(t) + Blas(o)uslt), with wi (") = u(e™),

fori =1,2,...,m. One starts with a fixed function ug(¢) that verifies the initial condition

u0(0) = ug. Once m iterations have been performed, we take the approximated solution
u(tn+1) — U,m(tn—"_l).

3.2.2. Linear Parallel Iterative Splitting (LP)

The linear parallel iterative splitting solves the first equation for the linear part of
operator A and the second equation for the linear part of operator B without using the
solution of part A. The next iterate is the average of these solutions.

dﬂ(;ft) = A(ui—1 (£)a(t) + B(uj— ())ui—1 (t), with @;(t") = u(t"), .
da;t(t) = A(ui—1(t))ui—1(t) + B(ui—1 (£))t;(t), with ;(t") = u(t"),

and the next iteration is

ui(p) = B ™

for i = 1,2,...,m.Once m iterations have been performed, we take the approximated
solution u(t"*1) = u,, (t"1).

3.2.3. Quasilinear Serial Iterative Splitting (QS)
The quasilinear versions solves each equation for a whole part of the operators, A or
B, not necessarily linear.



dii; (t
dt

dui (t
dt

withi=1,2,...,m.

~—

A(’lli(t»ﬂi(t) + B(ui,l(t))ui,l(t), with ﬂi(tn) = U(tn),

~—

At ()0 (t) + B(u (t))u; (¢), with u;(t") = u(t™),

3.2.4. Quasilinear Parallel Iterative Splitting (QP)
On the other hand, we can choose a parallel version, which is given as:

da;t(t) = A(@; () (t) + Blui1(t))ui_1(t), with @;(t") = u(t™),
dajt(t) = Aui—1 (B)wi—1(t) + B(u;(£))us(t), with a;(t") = u(t™),

and the next iteration is

fori=1,2,...,m.

3.2.5. Modified Linear Parallel Iterative Splitting algorithm (MLP)

In order accelerate the convergence of the parallel algorithms, it is sometimes useful to
perform the splitting twice in each iteration. In the modified parallel versions, there are
two processors. Each processor applies the splitting in different order at each iterative
step, and then both share their results before the next iteration.

Processor 1:

dﬂc;t(t) = A(ui—1(8))@i(t) + B(ui—1(t))ui-1(t), with a;(t") = u(t"),
dajt(t) = A(ui 1 () @(t) + Blui () @i(t), with @ (t") = u(t"),

Processor 2:

D) Al a ) a(t) + Bl 0)300), wieh #(1") = o(t"),
d%t) = A(vi—1(t))0;(t) + B(vi—1(£))0;(t), with 0;(t") = v(t"),

and the next iteration is

u;i(t) = v;(t)) = M7

for ¢ = 1,2,.... The starting solution is the same for both processors ug(t) = vo(t).
Once m iterations have been performed, we take the approximated solution u(t"*1) =
V(") = u,, (1Y),



3.2.6. Modified Quasilinear Parallel Iterative Splitting algorithm (MQP)
Processor 1:

da;l-it) = A (£))is(t) + Blui—1 () ui_1 (t), with @;(t") = u(t™),

dﬁét(t) = A(a(t))ai(t) + Bla;(t)u; (1), with a;(") = u(t"),
Processor 2:

dﬁ;it) = A(vi1 () vi_1 () + B(0:(1)5i(t), with ;(t") = v(t™),

d%t(t) = A(i(8)ia(t) + B(@:(8)5:(1), with 5(t") = v(t"),

4. Theoretical results

In this section we are going to obtain the convergence order for the different algorithms,
showing the expressions for the local error.
Theorem 1 We assume to have bounded monlinear operators A and B, while given as
[|A(w)|| < Apmaz and ||B(w)|] < Bhas for all u € X.

Then the numerical errors are given for the different schemes as:

(i) Serial version, the numerical error is given as:

[[u = uml|| < ‘|Amaz||m||BmaI||mO(T2m)a

where u is the exact solution and ., the iterative solution of (5).
(i1) Parallel version, the numerical error is given as:

A B "
||U—’U;m||§ (H Tgax” + H 7;(156”) (9(7_777,)7

where u is the exact solution and u,, the iterative solution of (6).

Proof:
(i) For the serial version, we have the following proof:

Let us consider the iteration (5) on the subinterval [t",¢"*]. For the local error
function é;(t) = u(t) — @;(t) and e;(t) = u(t) —u;(¢t) and u is the analytical solution.
We have the following linearized relations based on the assumption of maximal
operators A(u) and B(u):

8téi(t) = Amaacéi (t) + Bmaacei—l(t)a te (tn7 tn+1]a (8)
& (t") =0,

and



Orei(t) = Apani(t) + Bagei(t), te (t",t"1], (9)
€; (tn) =0.

For the iteration (8) and (9) we have:

t
éit) = / xp(Amas(t — 8)) Bmasei_1(s)ds, ¢ € [t "],
t

n

and

t
e;i(t) = / exp(Brnaz(t — 8)) Amaz€i(s)ds, t € [t",t"T].
t

n

We estimate:

t
&l < HBmM”HeFlH/t | exp(Amax(t — 5))[|ds
< kHBmMHHeFlH Tn + 0(7'7%))’

and

t
lleill < | Amazlll|l] / | exp(Bimaa (t — 5))||ds
t’VL
< K| Amasllllé]l 7 + O(r7)).
From these inequalities we obtain:

leill < K[| Amaz|l (K—”Bmar”eifl” 17n + O(Tg)) Tn
< Kol| Amaz|l|| Bmaz €17 + O(;)).

The recursion of our errors is applied and we obtain:
llemll < HAmaosHmHBmameO(Tim)'

Thus, for 2m serial iterations, m over operator A and m over operator B, we have
O(72™) of convergence order.
For the parallel version, we have the following proof:

Let us consider the iteration (6) on the subinterval [t",¢"*!]. For the local error
function &;(t) = u(t) — @;(t) and &;(t) = u(t) —u;(t) and  is the analytical solution.
We have the following linearized relations based on the assumption of maximal
operators A(u) and B(u):

016i(t) = Apnawbi(t) + Bazei_1(t), te€ (t",t" ], (10)
é;(t") =0,

and
Orei(t) = Apazei_1(t) + Bmag€i(t), te (", t" 1, (11)
(™) =0.

For the iteration (10) and (11) we have:

8



t
éit) = / xp(Amas(t — 8)) Bmasci_1(s)ds, t € [t "],
t'”,

and

t
éi(t) = / exp(Braz(t — 8)) Amazei_1(s)ds, t € [t", "
t

n

We estimate to:

t
&l < I\Bmaz||||€i—1|\/ | exp(Amaz(t — 5))llds
4n
< K”BmaxH”ei—lH Tn + O(Tg))v

and

t
el < HAmazllllei—lH/t | exp(Binaz (t = s))[|ds
< K[ Amasllllei-1ll 7 + O(77)).
We insert both into (7) and obtain:

< UAmaz|l + [ Bmaz|)

el < 3 lei—all 7 + O(77).-

The recursion of our errors is applied and we obtain:

e < (el 1Bz DY oy,

2

Thus, for 2m serial iterations, m over operator A and m over operator B, we have
O(1I™) of convergence order.

O

According to [15,16], the results about the order of splitting methods on bounded
operators, still remain valid in a setting of unbounded operators, without requiring any
additional order condition. This is achieved by basing the analysis on the abstract frame-
work of (semi)groups. The convergence analysis also includes generalizations to splittings
consisting of more than two operators, and to variable time steps.

5. Solving the problem

By applying one of these splitting techniques to the main problem (1), written as (12),
we have divided it into different simpler problems, but in any case we have to solve the
resulting systems of ordinary differential equations by using numerical methods. We will
construct a grid (z;,y;) € Q, i =1,2,...,ng, j =1,2,...,n, and use divided differences
for approximating the spatial derivatives. By using the notation, u;;(t) ~ u(x;, y;,t) the
problem becomes a system of ordinary differential equations:

9



duij (t)
dt

If we express this system of ODE’s in its integral form, we have:

= fij(tut)), te[0,T], i=1,2,....np, j=1,2,...,1m,. (12)

tn+1

i (") :uz‘j(i")Jr/tn fij(s,u(s))ds. (13)

By applying the left-hand rectangle method to approximate the integral, we obtain Eu-
ler’s method, defined as follows:

wig (") = i (87) + 7 fig (07, u(t™)),
where 1, =t — 7,

This method can be improved by applying instead the trapezoidal rule or Simpson’s
formula obtaining Heun’s method or Runge-Kutta’s method, in their explicit forms.
In order to avoid instability problems we consider implicit methods, such as backward
Euler’s method, obtained by applying the right-hand rectangle method to approximate
the integral (13), that is:

wig (") = g () + 7 fig (" u(E ).

In this way, the system of ODE’s has been approximated by a nonlinear system, which
can be expressed as a fixed point problem with function iteration:

Glugg (")) = i (") + 7 fig (0" w(t™H1)),
where we choose a starting guess and iterate for k = 1,2,...
0 n n
u (") = g ("),
k+1 n k n
ug ) = Gl (),
until a tolerance is reached:

Otherwise, we can apply Newton’s method, which converges quadratically. At each step,
we have to solve a linear system with n, x n, = .S unknowns. In order to use matrix
operations, we order the unknowns as a vector u;; (") = us(¢" 1), s=1,...,nyxn, =
S, so that, the nonlinear system is expressed as:

F(Us(tn+1)) = us(tn+1) _ Us(tn) _ Tnfs(thrl,u(thrl)).
The Jacobian matrix needed for Newton’s method is:
F'(us(t") = Isug — T fL(E T u(t™ 1)),

afs (tn+l7 u(tn+1))
du(t"+T)

u§;§+l)(tn+1) _ ugf) (tn+1)H < tol.

where I is the identity matrix and f,(¢"*!, u(t"*1)) represents . Then,

we choose a starting guess and iterate for Kk =1,2,...
ulP (") = ug ()

ugk+1)(tn+1) _ ugk)(tn+1) - (F/(ugk) (thrl)))le(ugk) (tn+1))

to achieve the desired tolerance if the method converges.

10



We illustrate the above procedure for the Linear Serial Iterative Splitting (5). The
two differential equations occurring in each step of the splitting method are solved by
applying Newton’s method to the nonlinear functions

F(a (") = ap(t" ) = @(t") = ma Alw ()@ (") + Blug 1 (") )us 1 (8",
Fug (") = wi(8"F) = wg (87) = 7 A ()@ (") + Bl (0"))us ().

Observe that the order of the numerical integrator will affect the outcome of the
splitting method, limiting its accuracy, see [13], as well as the convergence order of the
nonlinear solver. One has also to consider the problem of order reduction, see [18].

6. Numerical Results

In order to assess the performance of the splitting methods methods, we compare the
values u,(x;,y;,T) at the final time T of the solution obtained using a constant temporal
step 7 = ¢! — " with the corresponding ones of the analytical solution U(z;,y;,T) or
a fine reference. If the spatial discretization is fixed, the numerical solution converges to
a limit different from the analytical solution when the temporal step tends to 0. In this
case, it is better to refer the error to this limit instead of U.

Then we consider the following estimations for the error of a discrete solution. The
numerical error

er = max[|ur(2;,y;, T) = Ulwi, y;, T
and the estimated numerical error
é‘f' = Hllaj“x HUT(‘TZW yj7T) - UT/2(Ii7yjaT)||7

where wu,/5(z;,y;5,T) is the result obtained taking twice the number of temporal steps.
The convergence rate is computed from the estimated numerical errors corresponding
to different time steps such as

_ log(é,) — log(é,/2)
o log(2)
We also measure the convergence rate of the method with respect to the number of

iterations of the splitting algorithm, by comparing the errors obtained with different
number of iterations according to

log(€m, ) — log(ém, )

log(mz) — log(mi) ’

where €é,,, denotes the estimated numerical error of the solution obtained performing my,
iterations per step of the splitting method.

We compare different splitting schemes applied to two examples, the mixed convection-
diffusion and Burgers’ equation and a equation that models a viscous flow. The differential
equations in each splitting interval are solved by using the back-Euler-Newton algorithm.

It is worth mentioning that one step of Newton’s method suffices to reach an approx-
imate solution of the implicit Euler method in each splitting interval. Additional steps
do not produce a significant error reduction. Thus, in the numerical examples, only one
Newton’s step is performed.

pM1777l2 -
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6.1. Mized convection-diffusion and Burgers equation

Our first numerical example is a partial differential equation which is a a mix of the
convection-diffusion equation and the Burgers’ equation in 2D:

Ou = —%u(@xu + Oyu) — %(@cu + Oyu)

+ 11(Ozztt + Oyyu) + f(x,y,1), (x,y,t) € Qx [0,T], (14)
U(x,y»o) = uana(xa y70)7 (x,y) € Q,
u(w,y,t) = Uana(®,y, 1), (,y,t) € 02 x [0,T],

where Q = [0,1] x [0,1], T = 1.25, and p is the viscosity.
The analytical solution is

—1
zty—t Tt+y—t
Uana (T, Y, 1) = (1 + exp (y )) +exp (y ) ;
20 2

where we compute f(z,y,t) accordingly.
By considering the following operators

1 1
Alu)v = —iu(&av + 9yv) + iu(amv + Oyyv),

1 1
Bv = _i(a;cv + ayv) + 5.“(3xacv + ayyv) + f(l‘, Y, t),

we split (14) in the the Burgers’ term, A and the convection-diffusion term, B
Ou = A(u)u + Bu.

The spatial domain is discretized taking a rectangular mesh with n, = n, = 10
intervals. Tables 1 and 2 compare the errors and the convergence rate of methods LS,
LP, @S and QP with 8 iterations of the splitting method for the mixed convection-
diffusion and Burgers’ equation with different viscosities.

For u = 0.5, the behaviors of the methods are very similar, but for higher viscosities,
© =5, the serial methods overcome the parallel ones. The numerical error with respect
to the analytical solution decreases with the temporal step reaching a minimum at a
certain value of 7 but then starts increasing for smaller values of the time step. This
is because the analytical solution is not the ‘exact’ of the spatially discretized problem.
The common final value of the numerical errors is related to this difference. However, the
estimated numerical errors decrease steadily and the convergence rate is very stable for
the considered methods. The serial schemes are better than the parallel ones for small
N, but for big N the differences fade away.

The methods behave better for ;1 = 5. The increase of the numerical error appears at
a higher number of time intervals, the estimated errors are smaller than for 4 = 0.5 and
the convergence rate clearly increases with the number of time intervals.

The accuracy of the solutions depends on the number of iterations of the splitting
algorithm. The more iterations are performed, the more accurate the solution is. As
before, the error measured with respect to the analytical solution does not decrease after
a number of iterations. For the parallel schemes, it decreases mainly when the number
of iterations is odd, oscillating in some cases. However, the estimated numerical error
decreases more regularly.

12



Method Linear Serial Linear Parallel Quasilinear Serial [Quasilinear Parallel

N er ér P €r ér P er ér P er ér Pr

25 |3.09e-3|2.60e-3| — [1.23e-2|1.06e-2| — [3.40e-3|2.84e-3| — [1.05e-2|9.07e-3| —

50 |1.05e-3|7.68e-4(1.76|1.61e-3|1.43e-3|2.90|1.04e—-3|7.58e-4(1.90|1.45e-3|1.28e¢-3|2.83
100 |2.85e-4(3.76e—4|1.03|2.87e—4(3.84e-4|1.89|2.84e—4|3.75e-4(|1.01|2.92e-4/3.87e-4(1.73
200 [9.64e-5|1.87e-4(1.01]9.61e—-5|1.88e-4[1.03(9.65e—-5|1.87e—4[1.00(9.50e—5|1.89e-4(1.04
400 |2.84e-4(9.35e-5|1.00|2.84e-4(9.36e-5|1.00|2.84e-4|9.35e-5|1.00|2.84e-4/9.38e-5|1.01
800 |3.77e-4[4.67e-5|1.00(3.77e—4|4.67e-5|1.00|3.77e~4[4.67e-5|1.00(3.77e—4|4.68e-5|1.00
1600 |4.24e—4|2.34e-5(1.00(4.24e—4|2.34e-5|1.00[4.24e—4/|2.34e-5|1.00[4.24e—4/|2.34e-5|1.00

3200 [4.47e—4|1.17e-5|1.00|4.47e—4{1.17e-5(1.00[4.47e—4|1.17e-5|1.00|4.47e—4|1.17e-5|1.00
Table 1
Numerical error, estimated error and convergence rate for ny = 10 and g = 0.5.

Method Linear Serial Linear Parallel Quasilinear Serial |Quasilinear Parallel
N er er P €r er Pr er ér Pr €r ér Pr
25 5.02e-3 |4.04e-3| — [1.15e-2|8.93e-3| — |5.01e-3|4.03e-3| — |1.15e-2|8.91e-3| —

50 9.81e—4 [8.23e—4/2.30|2.57e-3|2.04e-3|2.13| 9.79e—4 |8.21e-4(2.30|2.56e-3|2.04e-3(2.13
100 | 1.58e—4 |1.40e—4(2.55(5.24e-4|4.33e—4(2.24| 1.58e—4 |1.40e-4|2.55|5.23e—-4|4.32e-4|2.24
200 |1.79e-5 |1.68e-5|3.06]9.12e-5|7.92e-5|2.45| 1.79e-5 |1.68e-5|3.06|9.11e-5|7.91e-5|2.45
400 |1.12e-6{1.09e-6(3.95/1.21e-5|1.10e-5|2.84| 1.12e—6 |1.09e-6|3.95|1.20e-5|1.10e-5|2.84
800 |5.70e-8 [5.61e—8|4.28|1.03e-6(9.85e—7|3.48| 5.70e-8 |5.61e—8|4.28(1.03e-6|9.85e—7|3.48
1600 |9.41e-10|2.77e—8|1.02(4.76e-8|5.17e—8|4.25|9.41e-10|2.77e-8|1.02|4.75e-8|5.17e-8|4.25

3200 |2.68e—8 |1.39e-8|1.00(2.68e—8|1.39e—8/1.90| 2.68e—8 |1.39e—8(1.00|2.68e—8|1.39e-8|1.90
Table 2
Numerical error, estimated error and convergence rate for n, = 10 and p = 5.

The convergence rates of each iteration with respect to the first one increase with the
number of iterations, being higher for the serial schemes and for small viscosities. Table 3
analyses the behaviour of the splitting methods (4), (2) and (3) in the conditions of table
(2) for comparison with the methods introduced in this paper. The classical methods
present convergence order about 1 and higher errors, specially for big N.

Table 4 shows the evolution of the numerical error, the estimated error and the nu-
merical convergence rate with the number of iterations of the splitting for the linear
serial and parallel schemes, LS and LP, with 100 time steps and the same values of the
viscosities. The quasilinear schemes give similar results.

If we are interested in approximating the analytical solution, we can look for a time
step that minimizes the numerical error for a given size of the spatial discretization. Table
5 shows that the number of temporal steps needed for the method LS to attain the least
numerical error is approximately proportional to the number of spatial discretization
points, n, x n,. The minimum error is inversely proportional to ng, X n,. For y =5 the
obtained accuracy is much better and the optimal number of time intervals is higher.
The other methods have a similar behavior.
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Method Operator splitting Additive splitting Strang-Marchuk

nt er ér pr er ér pr er ér pr
25  |2.04e-004(6.97e-005|NaN|2.37e-003|1.36e-003|NaN|5.78e-005|1.20e-004|NaN
50 |1.36e-004|5.66e—005]0.30 |1.00e-003(5.00e-004|1.45|1.71e-004|7.79¢-005|0.62
100 |8.05e-005(3.70e-005|0.61 |5.05e-004|2.52e-004|0.99 |2.49e-004[4.16e-005|0.91
200 [4.36e—005|2.12e-005]0.80|2.52e-004|1.26e-004|1.00|2.91e-004/2.11e-005|0.98
400 |2.31e-005(1.13e-005|0.90|1.26e-004|6.31e-005|1.00|3.11e-004|1.08e-005|0.97
800 |1.19e-005|5.86e-006(0.95|6.31e-005|3.16e-005|1.00|3.21e-004|5.44e-006(0.98
1600 |6.15e—006|3.03e-006|0.95|3.16e—-005(1.58e-005|1.00{3.27e-004/|2.75e-006|0.99
3200 |3.12e-006|1.54e-006|0.98 |1.58e-005|7.89e—006|1.00 [3.29e-004|1.38e—-006|1.00

Table 3
Results of some classical methods for Burger equation with ny = 10 and p = 5.

Method| Linear Serial = 0.5 |Linear Parallel ; = 0.5| Linear Serial 4 = 5 |Linear Parallel =5

Iter e € |p1,iter| € € |pijiter| € € |p1jiter| € € |p1,iter
6.68e-3|5.41e-3| — |9.84e-3|1.62e—2| — |3.19e-3|1.82e-3| — [5.04e-4(3.69e-3| —
1.27e-3|8.71le—4| 2.64 [6.36e—3|8.13e-3| 0.99 [1.38e-3|5.7Te—4| 1.65 |3.18¢-3|3.55e-3| 0.06
3.96e—4(2.09e—4| 2.96 |1.77e-3|2.97e-3| 1.54 |8.00e—4|2.75e—4| 1.72 [3.65e—4|1.74e—-3| 0.68
2.88e-4/5.94e-5| 3.25 |1.20e-3[1.59e-3| 1.68 |5.26e—4|1.56e—4| 1.77 [1.37e-3|1.66e—-3| 0.58
2.84e-4|1.86e-5| 3.52 |3.86e—4(7.64e—4| 1.90 |3.69e-4(9.84e-5| 1.81 [2.86e—4(|1.08e-3| 0.76
2.84e-4|6.28e—6| 3.77 |3.78e—4[|4.21e-4| 2.04 |2.71e-4|6.61le-5| 1.85 [7.98e—4(|1.03e-3| 0.71
2.85e-4(2.22e—6| 4.01 |2.84e—4[2.25e—4| 2.20 |2.05e—4|4.65e—5| 1.88 [2.31e—4|7.55e—4| 0.82
2.85e—4(8.22e-7| 4.23 |2.87e—4|1.28e—4| 2.33 |1.58e—4(3.38e—5| 1.92 |5.24e—4|7.12e-4| 0.79

0 N O Ut ke W N

Table 4
Numerical error, estimated error and convergence rate of the linear serial and parallel iterative splitting
methods for n; = 10 and ns = 100.

6.2. Momentum equation

We consider an example of momentum equation used to model the viscous flow of a
fluid, see [1].
1
dpu =u-Vu+2uV <D(u) + 3Vu) + f(z,y,t), (z,y,t) € Qx]0,T],

u(x,y,O) = g1(ﬂc,y), (x,y) €qQ,
u(x,yj) = gQ(xay7t)7 (xvyat) € 082 x [O7T]a

where the nonlinear function D(u) = u-u + v - u is the viscosity flow and v is a constant
velocity.
In the 2D case, the analytical solution u = (u1,u2)? is given by
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N ng = ny = 5|ng = ny = 10jny = ny = 200z = ny =40

25| 0.001308 0.013238 0.118062 1.188981
50| 0.000340 0.001696 0.018422 0.126009
100{ 0.001083 0.000288 0.002873 0.023147
200| 0.001453 0.000096 0.000354 0.004382
400 0.001637 0.000284 0.000072 0.000705
800 0.001728 0.000377 0.000024 0.000084
1600 0.001774 0.000424 0.000071 0.000018
3200[ 0.001797 0.000447 0.000095 0.000006

Table 5
Numerical error e of the linear serial scheme in terms of the spatial and temporal discretization points
for 4 = 0.5 and 4 iterations per time interval.

-1
r+y—t r+y—t
et = (14 mm (22 0)) v (221
2 21

-1
T+y—1 T+y—1
ug(x,y,t) = <1 + exp (’l)gi)) + exp (’Ugi) .

In order to apply splitting methods, the equation is decomposed in
A(u)u = —uVu+ 2uVD(u)
2
Bu = -Au.
3

The parallel versions of the splitting schemes above considered, LP and @QP, require a
very small temporal step to converge for this example, so that they are not competitive.
Thus, we use the modified versions MLP and MQP for recovering the convergence with
the same time steps as the serial schemes.

Table 6 shows the numerical error, the estimated error and the convergence rate of the
considered methods with 4 iterations of the splitting method for the momentum equation
with © = [0,1] x [0,1], T = 1.25, 4 = 2, and v = (1,1)%. The values correspond to the
first component of the solution, but the results are roughly the same for the second one.
The methods present a behaviour similar to that of the former example. The numerical
error e, does not decrease beyond about n; = 200, but the estimated error €, always
decreases, showing the convergence of the method.

Method Linear Serial Modified Linear Parallel| Quasilinear Serial |Modified Quasilinear Parallel

nt er ér pr er ér pr er ér pr er ér pr
50 |2.00e-3|1.83e-3| — |2.57e-3|2.31e-3 - 2.23e-3|2.07e-3| — [2.72e-3|2.52e-3 -
100 |2.72e-4(2.59¢-4|2.82|3.34e-4(3.22e—4| 2.84 [2.95¢-4/|2.87e-4|2.86|3.29¢—4|3.20e—4 2.97
200 [5.61e-5|2.09e-5(3.63(4.52e-5|3.43e-5| 3.23 |5.73e-5|2.26e-5(3.66|4.70e-5|3.38e-5 3.24

400 |4.36e-5(2.44e-6|3.10{4.20e—5(2.54e-6| 3.76 [4.37e-5|2.54e-6|3.16(4.22e-5|2.81e—6 3.59

800 [4.13e-5|1.07e—6(1.19(4.06e—-5|1.14e—6| 1.15 |4.13e-5{1.08e—6(1.23|4.06e—5|1.17e—6 1.26
Table 6
Numerical error, estimated error and convergence rate for ny = ny = 10, p = 2 and v = (1,1)%.
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Table 7 shows the corresponding results for the classical splitting method above con-
sidered. One observes that the sequential iterative methods have better convergence
properties and less error than the order one classical methods.

Method| Operator splitting Additive splitting Strang-Marchuk
nt er ér or er ér pr er ér pr
50 [9.46e-002|4.65e—002| — | Diverg. | Diverg. | — |1.70e—-001|2.13e-002| —
100 |4.83e—002|2.49¢—-002|0.90| Diverg. | Diverg. | — |1.69e—001[1.20e—-002(0.83

200 [2.35e-002|1.24e-002{1.00(6.99e-002(3.70e-002| — |1.74e-001|7.86e-003|0.61
400 |1.20e-002(5.91e-003|1.07|3.29e-002|1.77e-002|1.07|1.79e-001|4.66e-003|0.75
800 [6.04e-003|3.01e-003(0.97|1.61e-002(8.03e-003|1.14{1.83e-001(2.51e-003|0.89

Table 7
Numerical error, estimated error and convergence rate for ny = ny = 10, p = 2 and v = (1,1)%.

Under more demanding values of the parameters, u = 50, and v = (100,0.001), a
very small time step is required for convergence, as shown in table 8. Even when the
methods converge, the solution of the discretized problem is quite different from the
analytical solution. Thus, the numerical error is not very sensitive to the number of time
steps. Nevertheless, the estimated error shows the convergence of the methods. Due to
the parameters asymmetry, the errors of the first and the second components are quite
different, as seen in Table 8.

Method Linear Serial Modified Linear Parallel
nt €r.x €Ty ér,x éT,y Pr,x|PT,y| Et,x €1,y éra éT,y Pr,x|PT,y
1600 [4.95e-3|5.73e—2[5.75e—4|1.88e-3| — | — [4.84e-3|7.01e—2|1.68e—-3(2.85e-2| — | —

3200 |4.86e-3|5.58e—2(1.41e-4|5.71e-4(2.02(1.72|4.91e-3|5.54e-2|1.93e-4|2.27e-3|3.13|3.65
6400 |4.85e-3|5.57e—2(2.92e-5|4.66e-5(2.27|3.62|4.86e-3|5.58e—2(4.64e-5(1.92e-4/(2.05|3.57

Table 8
Numerical error, estimated error and convergence rate for each variable with n; = ny = 10, p = 50 and
v = (100,0.001)*.

7. Conclusion and Discussion

We present novel nonlinear solver methods, which are embedded to iterative splitting
schemes. The nonlinear methods are based on Newton’s method. We could see the ad-
vantage of dealing with higher accurate methods, while the linearization methods are
effective and less time consuming. We apply the new iterative splitting methods to Burg-
ers and momentum equations. For the serial and also parallel versions, we obtain higher
order results of about 2 — 4. The benefit of reducing the computational time for the full
solver process was seen for the modified linear and quasilinear parallel versions. In future,
such novel nonlinear iterative splitting schemes can be applied and tested for large scale
computational problems. Another issue deserving a deeper study it the problem or order
reduction for PDE problems with initial Dirichlet conditions.
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