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Abstract

The characterization of the modality of a signal is a new concept, which
has been the subject of recent research. Its main purpose is to identify any
changes in the nature of a real signal. The term ‘nature of a signal’ refers
to the underlying model that generates the signal from the point of view
of two main characteristics: determinism and linearity. In this thesis, the
modality of a signal is used for the advanced processing of acoustic signals,
and in particular, in non-destructive tests of non-homogeneous materials,
such as concrete.

The problem of the characterization of the modality begins with the cor-
rect reconstruction of the phase space (Chapter 2). This new domain allows
identifying the different states of a signal, as to whether they are recurrent
or not, depending on whether they are deterministic, respectively, random.
In the field of non-destructive testing based on ultrasound, the material
is excited with a purely deterministic signal. However, the nature of the
received signal depends on the internal structure of the material. This
working hypothesis allows us to propose measuring the degree of determin-
ism as a complementary alternative to the usual ultrasound parameters
such, as attenuation and speed. The level of determinism has been found
to be proportional to the level of porosity in cementitious materials (Chap-
ter 3). It also allows characterizing the level of damage of mortar test
pieces subjected to different kinds of damaging processes: external attack
by sulphates, and loading processes (Chapter 4).

The study of the non-linearity or complexity of a time series is initially pre-
sented blindly (without having information about the input signal) through
hypothesis tests: generating surrogate data and applying a statistical test.
Significant progress has been made in adapting this approach to non-
stationary data, a common feature of real non-linear signals. The main
results in this regard have been achieved in the characterization of the
complexity of oscillatory signals of limited duration (Chapter 5).

The concept of signal modality has also been used to perform a detailed
study of the non-linear phenomenon of acoustic impact spectroscopy. This
analysis has allowed understanding the variables involved, and thus, propos-
ing a mathematical model that characterizes the phenomenon. The under-
standing of the phenomenon and the model have allowed proposing a new
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processing algorithm equivalent to the usual NIRAS technique, but opti-
mal in its application. This processing alternative may mean significant
advances, especially in industrial applications where time and effort are
variables to be optimized (Chapter 6).
This thesis demonstrates that the characterization of the modality of a sig-
nal not only presents an alternative to the characterization of complicated
real phenomena, but it also opens a new research perspective within the
field of signal processing. The measure of determinism and the FANSIRAS
algorithm have shown that the modality of a signal is an interesting tool
for future research into the characterization of cementitious materials.

Keywords: Signal Modality, Determinism, Non-linearity, Recurrence Plots,
Recurrence Quantification Analysis, Delay Vector Variance, surrogates,
Non-Destructive Testing, concrete, damage, FANSIRAS



Resumen

La caracterización de la modalidad de la señal es un nuevo concepto objeto
de recientes trabajos de investigación cuyo principal propósito es identificar
cambios en la naturaleza de señales reales. Con el término naturaleza de
las señales se hace referencia al modelo subyacente que genera una señal
desde el punto de vista de dos caracteŕısticas principales: determinismo
y linealidad. En esta tesis se emplea la modalidad de la señal para el
procesado avanzado de señales acústicas, y en particular, en ensayos no
destructivos de materiales no homogéneos como el hormigón.

El problema de la caracterización de la modalidad comienza con la cor-
recta reconstrucción del espacio de fases (Caṕıtulo 2). Este nuevo dominio
permite identificar los diferentes estados de una señal, recurrentes o no en
función de su naturaleza determinista o aleatoria, respectivamente. En el
ámbito de los ensayos no destructivos basados en ultrasonidos, el material
se excita con una señal puramente determinista, sin embargo, la naturaleza
de la señal recibida depende y es proporcional a la estructura interna del
material. Esta hipótesis de trabajo permite plantear la medida del grado
de determinismo como una alternativa complementaria a parámetros ha-
bituales de ultrasonidos como la atenuación y la velocidad. El nivel de
determinismo ha resultado ser proporcional al nivel de porosidad en ma-
teriales cementantes (Caṕıtulo 3). También permite la caracterización del
nivel de daño de probetas de mortero sometidas a diferentes procesos de
daño: ataque externo de sulfato y procesos de carga (Caṕıtulo 4).

El estudio de la no linealidad/ complejidad de una serie temporal se plantea
inicialmente de forma ciega (sin tener información de la señal de entrada)
mediante tests de hipótesis: generando datos surrogados y aplicando un
test estad́ıstico. Importantes avances se han logrado adaptando este en-
foque a datos no estacionarios, caracteŕıstica habitual de señales no lineales
reales. Los principales resultados en este sentido se han conseguido en la
caracterización de la complejidad de seales oscilatorias de duración limitada
(Caṕıtulo 5).

El concepto de la modalidad de la señal también se ha empleado para re-
alizar un detallado estudio del fenómeno no lineal de espectroscoṕıa acústica
por impacto. Este análisis ha permitido entender las variables involucradas
y plantear aśı un modelo matemático que caracterice el fenómeno. La com-
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prensión del fenómeno y el modelo han permitido plantear un nuevo algo-
ritmo de procesado equivalente a la técnica habitual NIRAS, pero óptimo
en su aplicación. Esta alternativa de procesado puede suponer significa-
tivos avances sobre todo en aplicaciones industriales donde el tiempo y el
esfuerzo son variables óptimas (Caṕıtulo 6).
Esta tesis demuestra que la caracterización de la modalidad de la señal
no solo supone una alternativa a la caracterización de complejos fenómenos
reales, sino que abre una nueva perspectiva de trabajo dentro del ámbito del
procesado de señal. La medida del determinismo y el algoritmo FANSIRAS
han demostrado que la modalidad de la señal es una interesante herramienta
para futuros trabajos de caracterización de materiales cementantes.

Palabras Clave : Modalidad de la señal, Determinismo, No Linealidad,
Representaciones Recurrentes, Cuantificación de Recurrencias, Vector de
Varianzas Retardadas, datos surrogados, Ensayos No Destructivos, hormigón,
daño, FANSIRAS



Resum

La caracterització de la modalitat del senyal és un nou concepte, objecte
de recents treballs de recerca amb el propòsit d'identificar canvis en la
natura de senyals reals. Amb el terme natura dels senyals es fa referència
al model subjacent que genera un senyal des del punt de vista de dues carac-
teŕıstiques principals: determinisme i linealitat. En aquesta tesi es fa servir
la modalitat del senyal per al processament avançat de senyals acústics i,
en particular, en assajos no destructius de materials no homogenis com ara
el formigó.

El problema de la caracterització de la modalitat comença amb la correcta
reconstrucció de l'espai de fase (Caṕıtol 2). Aquest nou domini permet
identificar els diferents estats d'un senyal, recurrents o no en funció de la
seva natura determinista o aleatòria, respectivament. Dins l'àmbit dels as-
sajos no destructius basats en ultrasons, el material s'excita amb un senyal
purament determinista, tanmateix, la natura del senyal rebut depèn i és
proporcional a l'estructura interna del material. Aquesta hipòtesi de treball
permet plantejar la mesura del grau de determinisme com una alternativa
complementària a paràmetres habituals dels ultrasons com ara l'atenuació
i la velocitat. El nivell de determinisme ha resultat ésser proporcional al
nivell de porositat en materials cementants (Caṕıtol 3). També permet la
caracterització del nivell de dany de provetes de morter sotmeses a diferents
processos de dany: atac extern de sulfat i processos de càrrega (Caṕıtol 4).

L'estudi de la no linealitat/ complexitat d'una sèrie temporal es planteja
inicialment de forma cega (sense tindre cap informació del senyal d'entrada)
mitjançant tests d'hipòtesi: generant dades subrogades i aplicant un test
estad́ıstic. Avanços importants s'han aconseguit adaptant aquest enfoc a
dades no estacionàries, caracteŕıstica habitual de senyals no lineals reals.
Els principals resultats en aquest sentit s'han aconseguit en la caracter-
ització de la complexitat de senyals oscil·latoris de durada limitada (Caṕıtol
5).

El concepte de modalitat del senyal també s'ha emprat per realitzar un de-
tallat estudi del fenomen no lineal d'espectroscòpia acústica per impacte.
Aquesta anàlisi ha permet entendre les variables involucrades i plantejar
llavors un nou algoritme de processament equivalent a la tècnica habitual
NIRAS, però òptim en la seva aplicació. Aquesta alternativa de processa-
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ment pot suposar significatius avanços sobretot en aplicacions industrials,
on el temps i l'esforç són variables òptimes (Caṕıtol 6).
Aquesta tesi demostra que la caracterització de la modalitat del senyal no
solament suposa una alternativa a la caracterització de complexes fenòmens
reals, sinó que obri una nova perspectiva de treball dins l'àmbit del pro-
cessament de senyal. La mesura del determinisme i l'algoritme FANSIRAS
han demostrat que la modalitat del senyal és una ferramenta interessant
per a futurs treballs de caracterització de materials cementants.

Paraules Clau : Modalitat del senyal, Determinisme, No Linealitat, Rep-
resentacions Recurrents, Quantificació de Recurrències, Vector de Variàncies
Retardades, dades subrogades, Assajos No Destructius, formigó, dany, FAN-
SIRAS
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Introduction and Objectives 1
1.1 Background

The term signal modality is employed to refer to the different techniques
and algorithms which can be used to gain information about the nature
of a signal and the underlying model which gives rise to it. In this thesis,
the study of the modality of a signal has mainly focused on two particular
features: determinism and linearity. Thus, this new concept tries to identify
the different regions of the hypothetical two-dimensional space defined by
these two features. The range of signals defined to date, based on their levels
of determinism and linearity, are summarized in Figure 1.1 [1], [2]. In this
scheme there are small well known regions that tend to be the extremes of
nature, namely, the purely non-linear deterministic signals (chaos), or the
random and linear signals represented by the autoregressive moving average
models (ARMA). However, these extremes do not cover most of the real-
world signals, and unknown horizons remain. The presence of factors, such
as different sources of noise, leads to the fact that most of the real-world
signals appear in the still unknown areas of Figure 1.1, for example, those
indicated by the signs (a), (b), and (c). The level of stationarity in a signal
might also be studied as a modality feature. However, in this thesis, non-
stationarity has been considered as the result of external artefacts, and not
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as much a particular characteristic of the system (i.e. changes in the path
travelled by the signal, channel fading, amplitude modulation, etc.).

Non-Linearity

Linearity

Determinism Randomness

Chaos

Figure 1.1. Distribution of real world signals according to

their deterministic/random nature vs. linear/non-linear na-

ture [1], [2].

The applications of signal modality are becoming increasingly significant
in signal processing and machine learning. Knowing this type of informa-
tion can facilitate the selection of the most appropriated model, avoiding
unnecessary complexity. To date, the study of the nature of a signal has
provided great advances in biomedical applications through the analysis of
electroencephalographic signals (EEG) and in applications related to me-
teorological information [3]. However, this new paradigm is not common
in acoustic applications, nor in non-destructive inspection techniques.

Most physical phenomena can be modelled as the response of a system to
an excitation. Under this approach, the excitation corresponds to a input
signal x(t), with y(t) the response of the system to that input signal or
excitation. A traditional ultrasonic inspection layout is represented in the
following scheme in terms of a system:

x(t) y(t) x(t) y(t)

f(·)

Figure 1.2. Traditional ultrasonic layout represented in

terms of a system.

Thus, the concept of the system f(·) may be seen as the mathematical
expression which describes the relation between the excitation input, x(t),
and the output y(t) = f(x(t)).
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A system is said to be deterministic when no randomness is involved in the
response to the input signal. In a deterministic model, thus, the output can
be mathematically predicted given the excitation, and it always produces
the same output from a given starting condition or initial state. Otherwise,
the system is said to be random. Therefore, an output response signal y(t)
is deterministic when it comes from a deterministic system.

The definition of non-linear system may be studied as the absence of linear-
ity. The theory of linear systems has been widely used in several areas of
engineering since they model a multitude of physical phenomena (propaga-
tion, reverberation, filters ...) and they are perfectly characterized by their
impulse response h(n). In order to see whether a system is linear or not,
we need to test whether it obeys certain rules that all linear systems obey.
The two main properties of linearity are homogeneity and additivity, which
taken together, are referred to as the principle of superposition. Given a
linear system f(·), whose input is x(t) and output y(t), the properties may
be enunciated as follows:

� Homogeneity: A scaling by α of the input signal is reflected in the
output signal’s being scaled by α as well. This property may also be
called the scalar rule of linear systems (Fig. 1.3).

x(t) y(t) α·x(t) α·y(t)

f(·) f(·)

Figure 1.3. Graphical representation of the homogeneity

property of linear systems.

� Additivity: An input obtained as the sum of two inputs, x1(t)+x2(t),
results in an output equivalent to the sum of the two outputs obtained
from each input separately, y1(t) + y2(t) (Fig. 1.4).

� Superposition: This is the result of the combination of the two pre-
vious properties.

Throughout this thesis, we use the phrase degree of determinism (or linear-
ity) to refer indistinctly to the signal under study, or to the system which
it comes from.
Different approaches can be taken to the problem of characterizing the
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x
1
(t) y

1
(t)

f(·)

x
2
(t) y

2
(t)

x
1
(t)+x

2
(t) y

1
(t)+y

2
(t)

f(·)

f(·)

Figure 1.4. Graphical representation of the additivity prop-

erty of linear systems.

modality of a signal, depending on whether we can gain access to the input
and output of the system or only to the output (blind characterization).
In many real life situations, having access to the input of the underlying
system is not possible (i.e. think about the vibration of the vocal cords in
voice production systems), or although the excitation is known, it does not
represent the real input due to multipath effects, e.g. the ultrasound (US)
inspection of complex structures. In most of this thesis, it is intended to
analyse the modality of the signal blindly, that is, not knowing the input
signal, which is most of the time not available. For this, it is necessary
to reconstruct the phase space of the underlying dynamic system (Chap-
ter 2). This approach is used for the study of the degree of determinism
(Chapters 3 and 4) and the linearity/complexity of the signals (Chapter 5).
In contrast, the last chapter (Chapter 6) takes a close look at a non-linear
application where the system is excited with an impact seen as a Dirac
Delta signal (x(t) = δ(t)), and the system does not respect the property of
homogeneity.

This work was carried out within a broader research project that uni-
fies the signal processing group (GTS) of the Institute of Telecommunica-
tions and Multimedia Applications (ITEAM) and the materials chemistry
group (GIQUIMA) of the Institute of Science and Technology of Concrete
(ICITECH). This research seeks to find the optimal synergy between both
disciplines and institutions by the application of the concept of the modal-
ity of the signal to the field of the processing of acoustic signals, and in
particular, to the non-destructive tests of concrete.
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1.1.1 Non-Destructive testing of non-homogeneous materials

Concrete is a non-homogeneous material that results from the mixture of
cement, aggregate, and water. Its use is fundamental in civil engineer-
ing. Due to its heterogeneity, its structure presents interfaces between the
aggregate and the cement paste, air voids, microcracks, etc., even before
suffering any damage. This material is the most important component in
buildings and civil structures, where it is exposed to different types of ex-
treme conditions: thermal damage, freeze–thaw cycles, chemical attacks,
etc. Its safety and control over its life time is critical.

The standard methods for detecting defects in a concrete structure involve
the use of drilled core samples [4]. Some of the traditional methods are
strength tests, compressive strength determination, elastic modulus deter-
mination, etc. These methods are the most immediate approaches, but have
the disadvantage of being strongly biased by the constraints of the proce-
dure, being inexact in terms of the real response of the material. Also, the
destructive nature of these methods only allows evaluating a small portion
of the structure. Hence, there is a need for researching non-destructive
methods for material characterization and damage detection. Owing to
their non-invasive nature, non-destructive testing (NDT) appears as a reli-
able tool for detecting and characterizing different types of damage.

NDT may be classiffied into many different categories, such as visual, mag-
netic field, electrical, acoustic, etc. [5, 6]. In this thesis, we are going to
focus on two of the so-called global methods, which quantify the healthiness
of a structure (or part of it) by examining changes in the propagation of
ultrasonic waves, or in its vibrational characteristics.

Because of the heterogeneous nature of concrete, scattering phenomena oc-
curs at each interface between the aggregate and the matrix [7]. Thus,
ultrasonic waves traveling through concrete are both modulated and at-
tenuated. The most common ultrasonic measurements are the propagation
velocity (ultrasonic pulse velocity, UPV) and the ultrasonic waveform at-
tenuation introduced by the material. These parameters have been widely
used not only in traditional through-transmission layouts but also in ul-
trasonic imaging and travel wave tomography [8, 9]. Both the propagation
velocity and the attenuation are based on the linear theory of the prop-
agation signal (the frequency components of the emitted pulse and the
received pulse are similar). However, the presence of non-linear terms in
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the elastic response of a granular medium is considered an indicator re-
lated to the presence of any kind of damage. Many techniques have been
presented to extract non-linear features from ultrasound, based on many
different approaches, such as higher-order harmonics [10], subharmonics
[11], and sidebands [12]. Non-linear ultrasonics are also being studied by
the Scaling Substraction Method (SSM), a novel technique that allows cor-
relating damage with the loss of linearity based on amplitude scaling in a
through-transmission layout [13, 14].

Because of its granular and inhomogeneous structure, concrete can be con-
sidered a synthetic rock, with static and dynamic behaviours similar to
other materials studied in geophysics and soil engineering. Recent studies
have focused on detecting non-linearities in mechanical waves in cemen-
titious materials, due to a sensitivity to damage, including the use of vi-
bration spectroscopy. Non-linear Elastic Wave Spectroscopy (NEWS) tech-
niques are based on the non-linear decreasing of the fundamental frequency
with the increasing amplitude of excitation. With these techniques, thermal
damage, alkali-silica reactions, sulphate attack, and other distributed dam-
age in concrete have been successfully monitored [15, 16, 17, 18]. Acoustic
Emission techniques have also exhibited good results in detecting the focus
of microcracking process and the location of flaws when energy is released
during mechanical tests [19, 20].

1.2 Objectives

Taking into account the background and the motivation, the main goals of
this thesis are the following:

� Making an exhaustive revision of the available approaches for signal
modality characterization, particularly, for the different routines to
quantify the degree of determinism, linearity, complexity, etc. The
proposed concept of signal modality encompass many different con-
cepts that have been traditionally studied, but called by different
names.

� Verification of the hypothesis of applying signal modality character-
ization as a new approach for acoustic signal detection/character-
ization both on bioacoustic signals, and/or non-destructive testing
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experiments. Prior to the beginning of this research, this approach
to applications was merely a working hypothesis.

� Delving into the traditional NDT for concrete, as well as their lay-
outs, experimental problems, needs, etc. Getting knowledge about
the drawbacks of this field might result in the development of new
approaches from the signal processing point of view.

� Application of the knowledge given by the signal modality features
for a better understanding of the underlying non-linear phenomena.
The signal modality may help the optimization of available signal
processing algorithms.

1.3 Organization of the Thesis

This thesis is structured in 7 sections that describe the developed re-
search. It is important to remark that this thesis involves the two afore-
mentioned disciplines, signal processing and acoustics, especially, applied
to non-destructive testing. Consequently, it has been deemed appropriate
to introduce the basic concepts of both fields in order to ease the reading
by specialists in each field. The chapters are arranged and presented as
follows:

� Chapter 2: The first part of the chapter contains some preliminar-
ies related to dynamical systems. The concept of phase space and,
accordingly, the problem of its reconstruction, is addressed. Further-
more, the signal processing tool known as Recurrence Plots (RP) and
the Recurrence Quantification Analysis (RQA) are also reviewed. A
new reconstruction approach is raised, applied and compared to the
traditional techniques when reconstructing a set of well-known dy-
namical systems and stochastic processes.

� Chapter 3: This chapter presents a detailed description of some tech-
niques used to estimate the degree of determinism of a signal. More-
over, an alternative index based on higher statistics is also developed.
All the methods are applied and compared in the second part of the
chapter, where the degree of determinism is presented as an indica-
tor of the porosity of cementitious materials by means of ultrasonic
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waves. Finally, the RP based on the angular distance approach is also
studied for the characterization of cement pastes.

� Chapter 4: In this chapter, the degree of determinism is evaluated as
an indicator for the characterization of damage. A detailed analysis
of this new approach is carried out for concrete specimens under an
external sulphate attack and different levels of load. Special attention
is paid to traditional ultrasonic NDT measures, such as velocity and
attenuation, not only for direct measuring configurations but also
indirect ones.

� Chapter 5: This chapter addresses the problem of detecting non-
linearities. The chapter includes a detailed description of the boot-
straping surrogate generation algorithms. Some modifications related
to surrogates and a statistical test are proposed to deal with the pos-
sible non-stationarities appearing in real data. In addition, a com-
plexity test for short time oscillatory signals is also developed, based
on the aforementioned bootstraping method. Finally, it is applied to
the characterization of dysphonic dog barking sounds.

� Chapter 6: This chapter contains a detailed analysis of the non-linear
phenomenon of the impact spectroscopy of inhomogeneous materials
such as concrete. A new method, based on a special windowing,
the so-called FANSIRAS, is presented. Additionally, thermal damage
NDT experiments are evaluated by means of the traditional resonance
procedures and the recently proposed FANSIRAS algorithm.

� Chapter 7: This chapter contains the main conclusions and publica-
tions derived from the work developed in this thesis. Finally, some
possible lines of future research are given.
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2.1 Introduction

In mathematics, a dynamical system is a function which describes the time
dependence of a point in a geometrical phase space. Examples include the
mathematical models that describe the swinging of a clock pendulum, the
flow of water in a pipe, and population dynamics [21]. For example, at
any given instant of time n0, the dynamical system plotted in Figure 2.1
has a state represented by a point in an appropriate state space, ~X[n0] =
[x[n0], y[n0], z[n0]]. The rule for the evolution of the dynamical system
describes the future states following the current state, ~X[n0 + 1].

The phase space (also called the state space) is a finite dimensional vector
space Rm that collects all the possible states of the system useful for deter-
mining the future evolution of a signal. A state is specified by a vector of
real numbers, ~X ∈ Rm. Depending on the nature of the time variable, the
dynamical system can be classified as:

� A continuous system, where time is a continuous variable and the
dynamics are described by an explicit system of m first-order ordinary
differential equations:
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Figure 2.1. Example of a dynamical system, such as the

Lorenz attractor: phase space and the data extracted from

the values of the x-component.

d

dt
~X (t) = f

(
~X (t)

)
(2.1)

� A discrete system, where time is a discrete variable and the dynamics
are described by a discrete m−dimensional map:

~X [n+ 1] = F
(
~X [n]

)
(2.2)

The functions f(·), respectively, F(·) describe the rules for the evolution over
time, in the continuous, respectively, discrete domains. In this thesis, the
discrete time formulation has been found more convenient, since, after all,
time series we have to deal with are given at discrete time steps. Moreover,
the numerical integration of differential equations with a finite time step
∆t yields a discrete map.

Commonly, what we observe in any experiment is not the set of states that
make up the phase space, ~X[n], but a time series, x[n]. Most usually, this
is a sequence of scalar measurements of some quantity which depends on
the current state of the system, ~X[n], taken at multiples of a fixed sampling
time, tn = n ·∆t:

x [n] = s
(
~X (n ·∆t)

)
+ η [n]



2.2. Delay Embedding Theorem 13

where s (·) (Rm → R) represents the measurement function through which
we look at the experiment and η[n] is the measurement noise. Therefore, the
time observations must be seen as projections of the underlying dynamical
system. In Figure 2.1, the real world observations of the Lorenz attractor
can be the x-component of the system.

One of the recurrent problems when dealing with dynamical systems is
the reconstruction of the phase space, from which comes the observed real
time series. Although this problem has been theoretically solved by the
Takens embedding theorem [22], the practical application is still an open
issue. Many authors have tried to address this problem from different
perspectives [23, 24, 25, 26], however, none of the techniques has established
a algorithm robust against the modality of the signal when estimating the
optimal reconstruction parameters.

The remainder of this chapter is organised as follows. In Section 2.2, the
delay embedding dimension theorem is introduced. Then, a signal process-
ing tool based on the recurrences of the signal is presented in Section 2.3.
In Section 2.4, a new reconstruction approach is presented, applied, and
compared to the traditional techniques when applied to a set of well-known
dynamical systems. Finally, the conclusions are summarized in Section 2.5.

2.2 Delay Embedding Theorem

A delay embedding theorem gives the conditions under which a chaotic
dynamical system can be reconstructed from a sequence of observations of
the state of a dynamical system. In [27], Deyle provided analytical proofs to
generalize the Takens embedding theorem and demonstrated how multiple
time series can be used in attractor reconstructions. This work opens a
potential growth area for Phase Space Reconstruction (PSR) applications
to a wide selection of the applied sciences.

There are two main aspects to the problem of the embedding of scalar data
x[n] into some Rm, so as to build the corresponding phase space ~X[n]. First,
for every time n, there must be constructed m independent variables from
the scalar time series. The second aspect is that of finding an embedding of
an m−dimensional curve into a Cartesian space. This was accomplished in
[28]. Whitney proved that every m−dimensional smooth manifold can be
embedded in R2m+1. The problem of the independent variables was solved
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by the theorem of Takens.

Let ~X[n] be the state vector at time n, s(·) the measurement function, and
F(·) the map representing the dynamics, ~X[n+1] = F( ~X[n]). Then a delay
vector is

~X [n] =
[
s
(
~X [n]

)
, s
(
F
(
~X [n]

))
, s
(
F ◦ F

(
~X [n]

))
, . . .

]
Knowing x[n] = s( ~X[n]) at successive time samples n is equivalent to know-
ing a set of different coordinates at a single moment if the map F(·) couples
the different degrees of freedom. Finally, for an observed time series x[n],
the delay state space reconstruction in an m-dimensional space is formed
by the delay vectors ~XL,m[n], given by

~XL,m [n] = [x [n] , x [n− L] , . . . , x [n− (m− 1) · L]]T ,

n = 1, . . . , N − (m− 1) · L
(2.3)

where N is the total number of points, L is the time difference, in terms
of the number of samples (or in time units, τ = L ·∆t), between adjacent
components (also called the lag or time delay), m is the number of indepen-
dent components used in the reconstruction, in other words, the embedding
dimension, and the superscript T indicates the transpose matrix.

The main problem in the application of the Takens theorem is that it only
postulates the existence of the parameters L and m, but does not pro-
vide a method to calculate them. The most common procedures used for
estimating these parameters are presented below. There are two theoret-
ical concepts associated with the pursuit of the parameters: the concept
of mutual information (Section 2.2.1) and the concept of false neighbours
(Section 2.2.2).

2.2.1 The Time Delay

The time delay L between successive elements in a delay vector is not a
subject of the embedding theorem. Although this choice is arbitrary from
the mathematical point of view, in practice, a good choice of L facilitates
the analysis. If L is small compared to the internal scale of the system, the
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successive elements of the delay vector are strongly correlated. All vectors
~X[n] are then clustered around the diagonal Rm. This is called redun-
dancy [29, 30]. However, if L is very large, successive elements are almost
independent and the points fill a large cloud in Rm, but the characteristic
structures may be confined to small scales. In this case, the reconstructed
attractor may become unnecessarily complicated, even if the true attractor
is simpler.

In order to obtain uncorrelated sequences from the observed data, many
different approaches have been developed. The first zero of the autocorre-
lation function, R [L], often yields a good approximation.

R (L) = R (x [n] , x [n+ L]) =
N−L∑
i=1

x [i] · x [i+ L]∗ (2.4)

This well-known function only takes into account the linear relations be-
tween the samples. However, when working with chaotic or just non-linear
functions, the signal must be uncorrelated not only for second order statis-
tics but also for those of higher order. A more refined version of the auto-
correlation function looks for the first local minimum of the time delayed
Mutual Information (MI) [31]. Based on Shannon’s concept of entropy [32],
the mutual information between two delayed sequences, I(x[n], x[n + L]),
represents the mean number of bits of the time series x[n+L] that can be
estimated from x[n]. Applying the expression for the mutual information
to the time delay reconstruction results in M [L]:

M(L) = I(x[n], x[n+L]) =
N−L∑
i=1

Px,x(i, i+L) · log2
[
Px,x(i, i+ L)

Px(i)Px(i+ L)

]
(2.5)

where Px(i) is the probability that the signal x[n] assumes a value inside
the ith bin of the histogram , and Px,x(i, i+ L) is the probability that the
signal x[n] assumes a value inside the ith bin of the histogram and the
signal x[n+ L] is in bin i+ L.

It is customary to use a fixed resolution for binning the data, although
alternative algorithms using adaptive partitioning are also available. Since
the interest is in the dependence of M(L) on L, coarse binning is not such
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a big issue. In Section 2.4, the mutual information, M(L), of some well-
known functions will be analysed.

2.2.2 The Embedding Dimension

The time series obtained by a measurement process is a projection of the
unobserved internal variables of the analysed system onto the real axis.
Takens’s embedding theorem guarantees that there exists a dimension m
such that the vectors ~X[n] are equivalent to the phase space. The term
equivalent does not imply the reconstruction of the original phase space, but
constructing a new space such that the attractor in this space is equivalent
to the original one. Under this assumption, several algorithms have been
developed to find the optimal embedding dimension m.

There are many different approaches in the literature to determining the
optimal embedding dimension. Here, the three main approaches will be
described.

� The computation of some invariant of the attractor [23]. The value of
the correlation integral, the Lyapunov exponents, and/or entropies,
stop changing after a certain dimension m, and these values are then
supposed to be identical to those in the original phase space. This
approach has the disadvantage of being data intensive and time con-
suming.

� A singular value decomposition [24]. This approach identifies orthog-
onal directions in the embedding space visited by the reconstructed
trajectory. The main directions are identified by their large singu-
lar values and the dimension of the smallest space that contains the
trajectory. This identification may depend on the details of the em-
bedding and the accuracy of the data.

� The method of false nearest neighbours (FNN) [33]. This exploits
the idea that if an m-dimensional embedding yields a faithful rep-
resentation of the state space, every m′ > m does so as well. This
idea, studied locally in the neighbourhood of a single point, means
that any two points which are close in the m-dimensional state space
will still be close in the m+ 1 dimensional reconstructed space. Such
pairs of points are called true neighbours. Otherwise, they are called
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false neighbours. Perfect embeddings means that no false neighbours
exist.

After analysing the many different approaches, we opted to go deeper into
the FNN technique, although here it is presented in a modified version,
which avoids any choice of threshold [25]. So far, the variable m has been
used to refer to the dimension of the original phase space. Hereinafter, we
will analyse the estimation of the equivalent phase space dimension E. An
auxiliary variable, denoted by e, will be used in an iteration process.

The implementation of the modified FNN algorithm begins with the phase
space reconstruction of the minimum embedding dimension e, ~XL,e (n), and

the following one e+1, ~XL,e+1 (n). The parameter L must be a priori com-
puted no matter what method is used (the mutual information algorithm
is suggested). For each vector state ~XL,e (i), the nearest (in the sense of

some distance) neighbour ~XL,e (n (i, e)) in the e-dimensional space must be
found. For each pair of neighbouring points, the following distance must
be measured:

a (i, e) =

∥∥ ~XL,e+1 (i)− ~XL,e+1 (n (i, e))
∥∥
max∥∥ ~XL,e (i)− ~XL,e (n (i, e))

∥∥
max

(2.6)

The authors in [25] suggest the use of the maximum norm:∥∥ ~XL,e (i)− ~XL,e (j)
∥∥
max

= max
0≤k≤e−1

∥∥xi+kL − xj+kL∥∥ (2.7)

where
∥∥ · ∥∥ is the Euclidean distance. Note that n (i, e) in the numerator

of Equation 2.6 is the same as that in the denominator, but in a higher
dimensional space (e + 1). In order to avoid any choice of threshold, the
mean value Q (e) of all a (i, e) is defined by

Q (e) =
1

N − e · L

N−e·L∑
i=1

a (i, e) (2.8)

This quantity is dependent only on the dimension e and the lag L. To
investigate its variation from e to e+ 1, Q1 (e) is defined:
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Q1 (e) =
Q (e+ 1)

Q (e)
(2.9)

They found that Q1 (e) stops changing when e is greater than some value
e0. Then e0 + 1 is the minimum embedding dimension sought for, E. The
minimum embedding dimension E is chosen to be when the fraction of
false points is smaller than 2%. Recall that the obtained optimal embed-
ding dimension, E, gives us an equivalent phase space, which does not have
to be the original m-dimensional phase space. From now on, we refer to
the phase space as the equivalent reconstruction computed substituting the
embedding parameters (L, E) in Equation 2.3, ~X(L,E)[n].

The parameter L is a parameter which must be given before the minimum
embedding dimension is determined numerically, no matter what methods
are used. Different values of L may lead to different minimum embedding
dimensions, especially for continuous time series. In further examples, dif-
ferent choices will be analysed and the results are not strongly influenced
if both parameters are properly computed. For many practical purposes,
the most important embedding parameter is the product E ·L of the delay
time and the embedding dimension, rather than the embedding dimension
E or the time delay L alone. The reason is that E · L is the time span
represented by an embedding vector. We are discussing the choice of E
and L separately but a joint choice can also be done [26]. In this chapter a
detailed joint determination of E and L is proposed and discussed.

2.3 Recurrence Plots

From the beginning of this chapter it has been pointed out that the starting
point of signal processing are sequences of measured data, which become
a phase space after an embedding process. No one has yet described the
properties of the optimal phase space, but intuitively all of us are able to
identify a correct embedding when looking at the evolution of the trajectory
of the states in the phase space. Different definitions can be found for the
word trajectory:

� In aerodynamics, a trajectory is the path that a moving object follows



2.3. Recurrence Plots 19

through space as a function of time.

� In control theory, a trajectory is a time-ordered set of states of a
dynamical system.

� In discrete mathematics, a trajectory is a sequence of values calcu-
lated by the iterated application of a mapping F(·) to an element
x.

The three definitions suggest the concept of states at different positions
as function of time. Furthermore, an approximate repetition of a state is
called a recurrence: the return of the trajectory in state space to a neigh-
bourhood of a point where it has been before.

In 1987, Eckmann introduced a tool called Recurrence Plots (RP), allow-
ing visualizing the recurrence of states which make up the phase space of
a signal x [n] [34]. The quantification of the number and duration of the
recurrences allows us to study significant properties of the underlying dy-
namic system: laminar phases [35], unstable periodic orbits [36], etc.
The RP of a signal x[n] begins with the E-dimensional phase space recon-
struction, ~XL,E [n], discussed in Section 2.2. Among the different variants
for computing the RP, the most common way is defining a Distance Plot
(DP) matrix based on the Euclidean distance using Equation 2.10:

DP (n1, n2) = || ~X [n1]− ~X [n2] ||, n1, n2 = 1, . . . , Ns (2.10)

where Ns is the number of considered states ~X [n]. One of the main advan-
tages of the RP is that they allow the E-dimensional phase-space trajectory
to be investigated through a binary two-dimensional representation of the
recurrences of the states. The binary expression is computed by the poste-
rior thresholding (Eq. 2.11):

RP (n1, n2) = Θ (ε−DP (n1, n2)) , n1, n2 = 1, . . . , Ns (2.11)

where ε is a threshold distance, and Θ (·) is the Heaviside step function.
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Figure 2.2. Steps of Recurrence Plot analysis: Left) Time

representation of the signal x[n]; Center) Phase space repre-

sentation of the signal, ~X[n]; Right) Computation of the re-

currence plot RP (n1, n2). In this example, the phase space is

obtained using E = 3 and L = 4.

Θ(x) =

{
0 si x < 0
1 si x ≥ 0

Figure 2.2 summarizes the generic steps of the recurrence plots analysis for
a signal x[n]. First, the time representation of the signal, x[n]. Second, the
phase space reconstruction, ~X[n], using the optimal parameters E and L
(Eq. 2.3). Third, the computation of the recurrence plot, RP (n1, n2). At
a glance, a characteristic matrix of the 0’s and 1’s can be seen. Black dots
represents the recurrent points, and white dots the non-recurrent points for
a fixed point in the time signal (each column).

The recurrence plots exhibit characteristic large-scale and small-scale pat-
terns that are caused by typical dynamic behaviour easily identified as
patterns of vertical and diagonal lines (Fig. 2.2). The appearance of ver-
tical black lines (and horizontal lines) means that the trajectory does not
change its state for some time [37], whereas the appearance of black di-
agonal lines is related to a similar local evolution of different parts of the
trajectory. Table 2.1 graphically illustrates the appearance of vertical and
diagonal lines for continuous and discrete functions. Vertical lines (first
row in Table 2.1) may be seen as static relations between a fixed point
in the phase space (black dot in the phase space and the corresponding
column in the RP) and the rest of the points. Time samples closed in the
time domain and in the state domain are identified as vertical lines around
the main diagonal (green dots). The rest of the vertical lines correspond
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to static positions of the trajectory of the dynamical system in the rest
of the time interval (red dots). Diagonal lines allow identifying dynamic
relations within a signal: different time intervals similarly evolving in the
phase state. In the case of continuous functions (second row in Table 2.1),
similar trajectories may be easily identified. However, in the discrete maps
(third row), the diagonal structures highlight hidden structures due to the
physical distance between consecutive time points. Magenta diagonal lines
in the RP represent the dynamical correlations between the green and red
points marked in the phase space.

In order to quantify the structures appearing in the RPs, Webber developed
Recurrence Quantification Analysis (RQA) [38]. RQA defines measures us-
ing the recurrence point density and the diagonal structures in the recur-
rence plot: the recurrence rate (RR), the average length of the diagonal
structures (Ld), and the entropy (ENTR) (see Table 2.2). The recurrent
points delineate the number of embedded vector pairs that are near each
other in the E-dimensional space; however, the measures related to the
diagonal patterns distinguish between points individually dispersed and
those that represent parts of the signal where it similarly evolves. Gao et
al. [40, 41] carried out a detailed analysis of the reasons for the appearance
of vertical lines (and horizontal lines for fixed values of ε) and its relation
with the appearance of square-like textures in RPs. Marwan et al. [37, 39]
extended this to the vertical structures and defined measures of complexity
based on the distribution of the lengths of the vertical lines: the percent-
age of points that form vertical lines, also called laminarity (LAM), and
the average length of the vertical lines or Trapping Time (TT ) (see Table
2.2). These variables have been widely applied to identify laminar states
and their transitions between regular and chaotic regimes [42], as well as
to detect the presence of the unstable singularities which are often found
in biological dynamics [37, 43]. In this thesis, we have pioneered the use of
RPs (and its extension, the RQA) in different fields of science.

2.4 Phase Space Reconstruction based on RQA

In Section 2.2, the traditional methods for determining the optimal em-
bedding parameters were analysed, whereby the optimal time lag L and
embedding dimension E are optimised separately. This way, the time lag
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Table 2.1. Graphical explanation of the appearance of verti-

cal and diagonal lines in the RPs.
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Table 2.2. Some measures for the Recurrence Quantification

Analysis (RQA). [37, 38, 39]

SYMBOL DESCRIPTION EQUATION

RR Recurrence rate: density of recur-

rence points. 1

N2

N∑
i,j=1

Ri,j

Ld Averaged diagonal line length. a ∑N
l=lmin

l · P (l)∑N
l=lmin

P (l)
(2.12)

ENTR Shannon entropy of the length of re-

currence points that form diagonal

lines. a
N∑

l=lmin

P (l) · lnP (l)

LAM Laminarity: Percentage of recur-

rence points that form vertical

lines. b

∑N
v=vmin

v · P (v)∑N
v=1 v · P (v)

TT Averaged vertical line length. b ∑N
v=vmin

v · P (v)∑N
v=vmin

P (v)
(2.13)

a P (l) is the histogram of the lengths l of the black diagonal lines, and lmin is the

minimal length of what should be considered to be a diagonal line (typically, lmin = 2).
b P (v) is the histogram of the lengths v of the black diagonal lines, and vmin is the

minimal length of what should be considered to be a vertical line (typically, vmin = 2).
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is first determined as that for which the mutual information between time
samples separated by L, that is x[n] and x[n + L], is minimal. Using this
optimal L, the optimal embedding dimension is found next based on the
FNN algorithm. We refer to the combination of the time delayed mutual
information and false nearest neighbour methods as the MI/FNN method.
An interpretation of the first step is that the axes of the 2D phase space
signal representation are being chosen to be as independent as possible, not
necessarily a good criterion if the embedding dimension exceeds two [44].
To this end, we propose a unified and unambiguous optimisation procedure
for simultaneously determining both the time lag L and the embedding
dimension E, based on the recurrence analysis. The RP allows quantifying
the integrity of the trajectories, and therefore, choosing the optimal pair of
embedding parameters. Among the different RQA measures available, we
have chosen the mean of the vertical lines, TT (Eq. 2.13), the value of the
longest vertical line, vLmax, and the mean of the diagonal lines, Ld (Eq.
2.12).

In this section, different simulated time series are used to assess the ef-
ficiency of the traditional reconstruction algorithms as well as the RQA
measures. There is no rule of thumb for all signals’ nature when apply-
ing the MI/FNN. Therefore, an exhaustive analysis for a representative set
of continuous/discrete, deterministic/stochastic signals has been done (see
Fig. 2.3). For each simulations, the selection of the minimum embedding
dimension E according to the FNN algorithm is chosen as the fraction of
false points smaller than 2%, and the threshold (ε) of the RP was chosen
to be 50% of the total amount of points making up the RP.

2.4.1 Continuous Functions

The Rössler system, the Lorenz system, the Van der Pol system, and a
sum of sinusoidal signals have been considered as the continuous examples.
All of them have been discretized using a sample period ∆t, so the real
time delay τ expressed in time units equals L · ∆t. In order to ease the
understanding, the time lag is expressed in discrete terms as the number
of samples L.

The Rössler Atractor

The Rössler system defines a chaotic dynamical system associated with the
fractal properties of the attractor originally studied by Rössler [45]. In this
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Figure 2.3. Simulated time series studied and their classifi-

cation taking into account the time variable and their deter-

ministic/stochastic nature.

experiment, we analyse the ẋ-component of the Rössler equation system:


ẋ(t) = − (y(t) + z(t))
ẏ(t) = x(t) + a · y(t)
ż(t) = b+ (x(t)− c) · z(t)

(2.14)

where a = 0.2, b = 0.2 and c = 5.7. The system is integrated using a
4th-order Runge–Kutta algorithm with integration step π/100. The first
2000 points are discarded to ensure the vanishing of all transients.

Figure 2.4 shows the application of the MI/FNN method to a 3000-point
long simulated Rössler time series. The MI algorithm shows a first local
minimum at L = 32. The FNN algorithm sets the corresponding optimal
value of the embedding dimension E = 2.

RQA measures also allow analysing the structure of the reconstructed phase
space. The mean and the maximal values of the vertical lines, TT and
vLmax, respectively, give an idea about the trapping time of the system.
On the other hand, the diagonal lines analyse similar trajectories in the
phase space. For this example, the TT presents local maxima at differ-
ent points, indicating that there are several possible pairs of values (L,E)
for the reconstruction: (42,2), (30,3), (22,4), (17,5), etc., marked on the
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Figure 2.4. PSR analysis of the Rössler Attractor. Data

extracted from the values of the ẋ-component of the Rössler

attractor. The table presents the embedding parameters ob-

tained with each method.

RQA/TT diagram with black crosses. Note that the result given by the
MI/FNN method (marked with a black circle) approximately coincides with
an absolute maximum signalled by the TT measure (30, 3). The maximum
vertical line diagram presents a similar trend, but it is easier to find the
optimal reconstruction parameters by looking at the TT results. The mean
of the diagonal lines also identifies a similar trend, where the values of the
local maxima coincide with the values pointed to by the TT measure.

Figure 2.5 compares the reconstructed phase space using the optimal pa-
rameters following the MI/FNN algorithm with that obtained from those
provided by the TT measure: (32, 2) and (30, 3), respectively. According
to the number of independent variables in the Rössler equation system, the
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3-dimensional reconstruction allows unfolding new trajectories unidentified
in the previous one.
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Figure 2.5. Examples of the Rössler reconstructed phase

space.

The Lorenz Attractor

Another well-known chaotic dynamical system is the Lorenz attractor. This
chaotic system models the movement of the convection currents in the ter-
restrial atmosphere [46]. Particularly, the ẋ-component of the following
equation systems has been analysed:


ẋ(t) = σ (y(t)− x(t))
ẏ(t) = −x(t) · z(t) + ρ · x(t)− y(t)
ż(t) = x(t) · y(t)− β · z(t)

(2.15)

where σ = 10, ρ = 28, and β = 8/3. The system is integrated using a
4th-order Runge–Kutta algorithm with integration step 0.01 and sampling
rate 2, after all transients have diminished.

Figure 2.6 shows the time evolution of the ẋ-component of the system. The
pair of optimal embedding parameters suggested by the MI/FNN method
is (10, 3). The RQA/TT measures also identify a group of possible pairs of
embedding parameters: (10,3), (9,4), (8,5), (7,6), (5,8). The MI/FNN pair
is the lowest dimensional one.
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Figure 2.6. PSR analysis of the Lorenz Attractor. Data

extracted from the x-component. The table presents the em-

bedding parameters obtained with each method.

The previous noise-free chaotic systems were easy to reconstruct based on
the optimal embedding parameters, since any of their points returned to
an arbitrarily small neighbourhood (chaotic behaviour). Next, two strong
periodic signals will be studied, in order to truly understand the difficulties
in the PSR when similar trajectories appear and are not adequately sepa-
rated. There is an unwritten law for periodic signals which claims that the
optimal time lag L is T/4, where T is the period of the signal expressed in
terms of the number of samples [47]. In the following examples, both the
optimal value of L found by the MI, LMI , and LT/4 are analysed.

Sinusoidal Signals

A strong periodic 3000-point signal was generated:
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x(t) = sin
(

2π · f1 · t+
π

2

)
+ 0.5 · sin

(
2π · f2 · t+

π

2

)
(2.16)

where f1 = 1 Hz and f2 = 2f1. The discrete time series version x[n] is
obtained using a sample period of ∆t = 0.01. The period of the signal T
in number of samples is 100, and T/4 equals 25.
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Figure 2.7. PSR analysis of a sinusoidal signal. The ta-

ble presents the embedding parameters obtained with each

method.

When analysing a periodic signal, different local minima may appear in
the MI analysis. In this case, two local minima are identified in the MI:
LMI is 11 and LT/4 is 25 (Fig. 2.7(b)). The FNN identifies two different
embedding parameters in each case: LMI = 11 and E = 9; and LT/4 = 25,
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E = 3. The RQA/TT measure (Fig. 2.7(d)) clearly identifies the lowest
order optimal pair (25, 3), marked with a black cross. The second identified
pair (11,9) may also be seen as a maximum but with higher computational
cost (11 · 9 > 25 · 3).

In the following section, these results will be contrasted with a strong non-
linear periodic signal.

Van der Pol

In dynamics, the Van der Pol oscillator is a non-conservative oscillator
with non-linear damping. It evolves in time according to the second order
differential equation

{
ẋ(t) = y(t)
ẏ(t) = µy(t)(1− x(t)2)− µx(t)

(2.17)

where the ẋ-component is the position coordinate as function of the time
t, and µ = 5 is a scalar parameter indicating the non-linearity and the
strength of the damping. The system is integrated using a 4th-order Runge–
Kutta algorithm with integration step π/100. The period of the signal
expressed in number of samples is 136, and T/4 equals 34.

In this case, two local minima have been identified: LMI is 15 and the
previously mentioned LT/4 is 34. Applying the FNN algorithm, E is 2 in
both cases. The RQA analysis allow understanding the differences between
these choices. The TT measure does not identify the first pair (15,2) as a
maximum (hollow black circle), but it does so with the second pair (34,2).
When studying the maximum length of the vertical lines, the first local
minimum in the MI function (15,2) is clearly identified as a maximum.
Hence, the differences can be concluded to be related to the statistics of
the vertical lines.

Figure 2.9 compares the three PSR: (15,2), (34,2), (21,3). Although at first
glance, the three PSRs seem similar (figures in first row), the RPs show
different patterns (figures in second row), which are easier to identify in
the histograms for the vertical lines (figures in third row). For the case
(15,2), the RP pattern does not correspond to a quasi sinusoidal signal
where long diagonal lines must predominate; the second case does so but
the corresponding histogram seems to identify the two sides of the rectangle
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Figure 2.8. PSR analysis of the Van der Pol Attractor. Data

extracted from the ẋ-component. The table presents the em-

bedding parameters obtained with each method.

appearing in the phase space, which means that the trajectories are broken
at the vertices of the phase space; finally, the third case really shows the
right pattern and the histogram shows a maximum in the half of the period
of the signal (T/2=68 samples) since the RP threshold is set to correspond
with 50% of the points. The FNN algorithm would also have obtained
E = 3 for L equals 21. However, the MI has not detected that delay as a
possible value. According to the expression of the Van der Pol oscillator,
there would correspond an embedding of 2, however, the RQA/TT analysis
seems to have found an optimal pair which really unfolds the trajectories
in the phase space. Both combinations would properly work in future
applications where phase space reconstruction is needed.
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Figure 2.9. Van der Pol PSR analysis for different embedding

paramters: first column (15,2), second column (34,2) and third

column (21,3). First row corresponds to the resulting PSR,

second row corresponds to a section of the RP, and third row

corresponds to the vertical length histogram.

This analysis suggests that for strong periodic signals, the use of an L equal
to one-fourth of the period (L = T/4) is an acceptable approximation.
However, the analysis of the TT measure may find a different optimal
value. In order to easily identify the period of the signals, the use of the
autocorrelation function is suggested (Eq. 2.4).
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2.4.2 Discrete Maps

We now analyse two deterministic discrete signals, also known as maps; a
subgroup of signals which need to be studied in detail to understand its
particular dynamics. Theoretically, it would have been thought that in the
case of pure discrete signals no vertical lines would appear (no significant
static relations), and that the statistics of the diagonal lines would be the
criterion to be optimized to identify the optimal embedding parameters.
However in this application, an exhaustive search for a fixed number of
points in the RP hides potential optimal pairs of reconstruction parameters
when looking at the TT measure. Due to the discrete nature of the signal,
the literature claims that the time delay must be equal 1 for discrete maps
[25]. In this section, the first local minimum of both the MI and L equal
to 1 are analysed.

The Henon map

Figure 2.11(a) represents the time evolution of a realization of the Henon
map. This deterministic signal is computed from the well-known chaotic
Henon map defined by

{
x[n+ 1] = 1− a · x[n]2 + y[n]
y[n+ 1] = b · x[n]

(2.18)

where a = 1.4 and b = 0.3. According to the FNN algorithm, E is 3 when
L is 3; and E is 2 when L is 1. RQA analysis suggests that the pairs (1,4)
and (1,5) may be possible optimal embedding parameters. In order to un-
derstand the differences in terms of the phase space, three reconstructions
are plotted in Figure 2.11. The use of the L suggested by the MI algorithm
breaks the structure. However, for L = 1, simpler trajectories are identi-
fied. The TT measure has also identified alternative valid reconstruction
parameters without a priori fixing the time lag L to be 1. According to
the expression of the Henon map, the combination L = 1 and FNN seems
the be the optimal option (E = 2). The RQA/TT combination seems to
be more conservative compared to the FNN algorithm due to the fact that
the FNN only takes into account the nearest neighbour (Eq. 2.6).

In this case the analysis of the maximal vertical line does not give too
much information. The diagonal lines when L is lower than 3 grow linearly.
This is a particular and characteristic behaviour of discrete systems. The
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Figure 2.10. PSR analysis of the Henon Map. The ta-

ble presents the embedding parameters obtained with each

method.

increasing number of dimension implies a larger distance between trajecto-
ries closely evolving. Hence, the analysis was done for a fixed percentage
of points in the RP: when E is increased, the number of points in the same
path is increased, making the average of diagonal lines larger.

The logistic map

The logistic function is given by

x[n+ 1] = a · x[n] · (1− x[n]) (2.19)

where a = 3.8 and the initial value x[0] = 0.23. This expression results
from a simple demographic model that explains that the dynamics of a
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Figure 2.11. Examples of the Henon map reconstructed

phase space.

population grows increasingly more slowly as it approaches a number of
individuals considered as a limit [21].

As was done in the previous section, two values of L are studied: LMI = 2,
and L = 1. According to the FNN algorithm, E is 2 in both cases. In
this case, the TT measure coincides with the optimal pair. However, the
maximal vertical length and the diagonal lines do not give any significant
information. Note also the high value of the parameter Q in the FNN
analysis for E = 1 (Eq. 2.9, Fig. 2.12(c)). This is due to the fact that this
signal is computed by a single dimensional map.

It can be concluded that for discrete maps, the different sequences used in
the phase space reconstruction do not have to be independent components.
Despite getting from the MI a value of L different from 1, the optimal value
of L for deterministic discrete time series is 1.

2.4.3 Stochastic Processes

Stochastic processes are more complicated to analyse from the perspective
of the phase space since a well-defined structure cannot be seen at a glance.
It is necessary to apply all the concepts learned from the prior analysis
related to deterministic signals. Next, two random signals are analysed: a
linear and a non-linear coloured noise signal.

Stochastic processes can be analysed initially as done for maps (Section
2.4.2). However, the presence of strong correlations between samples forces
them to be studied as continuous functions where the uncorrelation between
sequences is needed (Section 2.4.1). For deterministic continuous signals,
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Figure 2.12. PSR analysis of the Logistic Map. The ta-

ble presents the embedding parameters obtained with each

method.

the first local minimum of the MI is a non-null value. However, in the case
of stochastic processes, the MI presents a value from which the function
becomes null. As in previous studies, the FNN algorithm has been analysed
not only for the first local minimum but also for L equal to 1, due to
the discrete nature of the signals. The optimal embedding parameter is
generally found at higher values of E than in the previous examples since
the points are randomly placed and false neighbours are easily found. For
the following examples, the RQA measures are plotted in conventional xy
graphs instead of using pseudo-colour maps to avoid losing any information
due to the high dynamical range of the RQA parameters.
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Linear Stochastic Processes

The first stochastic process is a linear correlated signal described by

x [n+ 1] = 1.79 · x [n]− 1.85 · x [n− 1]

+1.27 · x [n− 2]− 0.41 · x [n− 3] + η [n]
(2.20)

where η[n] is a white Gaussian noise (WGN) of zero mean and unit variance.

The resulting MI is plotted in Figure 2.13(b). Although L equal to 3 seems
to be a good approximation, the rule of the first local minimum has been
followed. The FNN algorithm has been analysed for L equal to 4 and
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Figure 2.13. PSR analysis for a linear correlated stochas-

tic realization. The table presents the embedding parameters

obtained with each method.
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L equal to 1, and the optimal embedding dimension is found sooner for
uncorrelated sequences (higher values of L): L = 4, E = 6; L = 1, E = 10.

RQA measures have been analysed for a wide range of values of L, although
only the most interesting values have been plotted (L = 1, L = 2, L =
3, L = 4, L = 5). A characteristic trend can be seen as the value of the
embedding dimension grows. For L equal to 1 and 2, the value of the TT
does not stop increasing. However, for L greater than or equal to 3, the TT
converges to a maximum value. The optimal value obtained by the FNN
approximately coincides with the change in trend found for L equal to 4
and E equal to 6. A similar trend is observed for the mean of the diagonal
lines.

Note that the optimal pair of embedding parameters in the previous deter-
ministic signals (Eqs 2.14, 2.15, 2.16, 2.17, 2.18, 2.19) was chosen at the
maximum value of the mean of vertical lines (TT). However for random
signals, the optimal pair corresponds to the lowest dimensional pair of val-
ues where the mean of vertical lines converges. When working with random
signals, special care must be taken not to confuse real neighbours in the
state space with neighbours wrongly placed due to the correlations between
sequences. This is the reason why TT and Ld do not reach a maximum
when L < LMI .

Figure 2.14 compares two reconstructed phase spaces: L < LMI , (1,3);
and L = LMI , (4,3). Due to the correlations between samples, the cloud
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Figure 2.14. Linear stochastic process reconstructed phase

space.
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of points is clustered at the diagonal of the 3-dimensional space and false
neighbours are continually found. However, when the sequences are in-
dependent, the cloud fills the whole space. Independent components are
needed in order to correctly study the nature of the signal.

Non-Linear Stochastic Processes

A non-linear random process has also been analysed:

x[n+ 1] =
x[n− 1]2 (x[n− 1] + 2.5)

1 + x[n− 1]2 + x[n− 2]2
+ η[n] (2.21)

where η[n] is a white Gaussian noise (WGN) of zero mean and unit variance.
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Figure 2.15. PSR analysis of a non-linear correlated signal.

The table presents the embedding parameters obtained with

each method.
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A similar and expected trend has been observed. The MI analysis finds the
first null value for L to be 14. Its corresponding embedding dimension is 3.
For L equal to 1, E is 9. The TT measure finds convergence values from L
equal to 14, and the corresponding embedding dimension is 5 (Fig. 2.15).

In summary, the pair of embedding parameters given by the combination
of the MI and the FNN algorithms approximately coincides with the RQA
analysis for random signals. The slight differences are due to RQA mea-
sures’ analysing the whole of the time series, whereas the FNN just takes
into account the closest neighbours. The RQA analysis is a more conser-
vative criterion in that sense.

2.5 Conclusions

The phase space reconstruction problem was assessed through traditional
techniques. The different techniques to find the optimal time lag and em-
bedding dimension were investigated. An alternative joint search for both
optimal parameters, based on the RQA, has been developed. From the
standpoint of phase space reconstruction, RQA measures exhibited a sig-
nificantly better ability to adapt to the different natures of signals than
traditional techniques. For instance, in those signals involving strong peri-
odicities, an exhaustive search is needed since both embedding parameters
have to be found together. In the case of discrete deterministic maps, the
time lag must be fixed to 1, although the mutual information yielded a
higher value. Finally, it has been shown that RQA measures are suitable
for identifying the optimal embedding dimensions, and thus are a feasible
alternative to the traditional techniques for any kind of signals.
Table 2.3 summarizes the analysed set of signals as well as the traditional
and the proposed criterion applied to estimate the phase space reconstruc-
tion embedding parameters. In the following, the corresponding parameters
are applied to each situation.

The analysis done in this chapter has shown one of the main motivations
of the study of the modality of the signal: the need to identify the nature
of the signals to improve its modelling and/or its analysis.
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Table 2.3. Summary of the PSR criterion as a function of

the nature of the signal and the applied technique.

NATURE OF THE SIGNAL
TRATIONAL

TECHNIQUES
RQA MEASURE

Continuous

Functions

Non-Periodic
LMI

FNN

Periodic
LT/4
FNN

Maximum TT

Discrete

Functions

Maps
L = 1

FNN

Stochastic

Processes

LMI

FNN
Convergence TT
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Determinism 3
3.1 Introduction

Physical phenomena are naturally characterized by specific measures which
progress in time. This evolution is quantified for the observer in recorded
time series. Hereby, those recordings carry information along with distur-
bances described by stochastic, deterministic, chaotic processes, etc. [48].
There are several examples of acquired data which apparently may seem
random but, in reality, an added stochastic process hides an underlying
deterministic behaviour which may predict the forecast for the following
day. Examples of that situation might be the aforementioned Henon map
(Eq. 2.18) when adding a low amplitude stochastic process. At a glance,
it might seem random, however, its phase space reconstruction reveals its
underlying deterministic state space. Another example corresponds to the
record of the air-conditioning in a warm summer. Its normal distribution
corresponds to an apparently white noise, however, its state space shows
the hidden periodic vibration of the corresponding machine engine.

Our work continues with this line of thought and proposes a new approach
that attempts to extract information about the nature of the signal, thereby
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characterizing the degree of determinism on ultrasonic signals. When scat-
tering materials are subject to ultrasonic non-destructive testing (NDT),
the deterministic ultrasonic pulse undergoes some variations that are re-
lated to the internal grain microstructure of the specimen. Each grain
behaves like a scattering center, producing an echo that when superim-
posed on other echoes coming from other grains can even hide the echoes
produced by a possible defect. Similar situations are found in other related
fields such as ultrasound B-mode scans (where the grain noise is called
speckle) and in radar with clutter [49].

In the literature, a wide range of solutions has been proposed to enhance
the detection of small cracks or defects and to reduce (or even eliminate) the
effect discussed in each of the above situations. Some of these solutions are
signal averaging, auto- and cross-correlation, matched filtering, frequency
spectrum analysis [50], spectral correlation [51], and wavelet transforma-
tions [52]. The aforementioned analyses discard the information encoded in
the grain noise; however, this information can be used to recognize potential
differences among materials, tissues, or surfaces. This approach has been
employed to characterize materials by extracting temporal signal statistics
[49], the resonance frequency [53], and even the penetration depth [54]. In
this chapter, we propose a novel and completely different approach to the
problem of scattering material characterization: measuring the degree of
determinism of the time series. Measuring predictability can provide infor-
mation of the signal strength of the deterministic component of the time
series in relation to the whole time series acquired.

The remainder of this chapter is organised as follows. Section 3.2 de-
scribes and mathematically formulates three algorithms that are typically
employed in chaos theory when studying determinism. Furthermore, Sec-
tion 3.2.4 proposes an alternative index based on higher order statistics
which avoids some of the drawbacks when measuring predictability. All
these algorithms are tested in Section 3.3 with a theoretical ultrasound
model. In Section 3.4, we focus on a real ultrasonic application where dif-
ferent kinds of scattering materials are classified by measuring their degree
of predictability. A further step is done in Section 3.5 where a new ap-
proach of the Recurrence Plots based on angular distance is studied for
cement pastes characterization. Finally, the conclusions are summarized in
Section 3.6.
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3.2 Algorithms

Having access to the input and the output of a system, the level of de-
terminism of a system might be quantified as the difference between the
predicted output computed from the input, however, in a blind approach
the study of a deterministic signal relies on the phase space reconstruction.
A time series x[n] is said to be deterministic if its reconstructed phase space
is smooth and can be modelled as a continuous function. In the bibliog-
raphy can be found different algorithms which have tried to measure the
continuity of the phase space, Kaplan-Glass method (Section 3.2.1), or its
smoothness, Jeong et al. method (Section 3.2.2).

3.2.1 Modified Kaplan-Glass Method

Wayland et al. [55] developed a method that detects determinism by testing
the continuity in the reconstructed phase space. This algorithm finds the
nearest neighbours and computes the average distance between consecutive
points.
Let ~X[n0] be a fixed phase space vector that is computed as in Equation 2.3
(Section 2.2), and let ~X[n1], ~X[n2], . . . , ~X[nK ] be its K nearest neighbours.
If the time series under study is deterministic, the displacement vector
defined as

~V [nk] = ~X[nk + 1]− ~X[nk] (3.1)

for each one of the K neighbours and its consecutive vectors is expected to
be almost the same.

To quantify this similarity, we compute the average of the translation vec-
tors ~V [nk]

〈
~V
〉

=
1

K + 1

K∑
k=0

~V [nk] (3.2)

The translation error that is used as the predictability index is computed
as shown in Equation (3.3)
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DMKGn0 =
1

K + 1

K∑
k=0

∥∥∥~V [nk]−
〈
~V
〉∥∥∥2∥∥∥〈~V 〉∥∥∥2 (3.3)

This calculation is extended to a subset ~X[p] ⊂ ~X[n] of Nres random centres
(defined by ~X[n0]) of the phase space (a quarter of the total number of
points is an accurate solution). The median of these values will be called
DMKG and it provides a robust measure of the continuity of the “phase
space”.

DMKG = Median
~X[n0]∈ ~X[p]

[DMKG[n0]] (3.4)

With this algorithm, we are able to quantify the spread of the phase space
based on the vector translations. If the time series is predictable, ~V [nk] will
be nearly equal and the continuity index using the Modified Kaplan-Glass
Method (DMKG) will be very small. Otherwise, ~V [nk] will be different
and the resulting continuity index will be larger.

3.2.2 The Method of Jeong et al.

Jeong et al. [56] also computed the phase space, proposing a new pre-
dictability measure that is based on the angles between consecutive vectors,
eliminating the need to search for neighbouring points.

Let

~V [n] = ~X[n+ 1]− ~X[n] (3.5)

be the tangent between consecutive vectors in the phase space; the angles
are computed as

cos(θn) =
~V [n+ 1] · ~V [n]∥∥∥~V [n+ 1]

∥∥∥∥∥∥~V [n]
∥∥∥ (3.6)

where ~V [n+1]·~V [n] denotes the scalar product of vectors ~V [n+1] and ~V [n].
The predictability index is obtained by averaging the computed angles in
the whole phase space:
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DJM =
1

S

S∑
n=1

cos(θn) (3.7)

where S = (N − (E − 1) · L)− 2, and N is the total number of samples.

If the time series is deterministic, the trajectory in the state space is smooth
and most of the cosine values are close to 1 (or larger than 0.7). Otherwise,
if the time series is stochastic, cosine values are near 0 (or smaller than
0.3). The intermediate case (0.3-0.7) is known to sometimes arise from
time series having different degrees of predictability.

3.2.3 Recurrence Plots

In Section 3.2.3, the Recurrence Plots were introduced, which allow visu-
alizing the recurrence of states ~X[n] in a phase space. This tool may also
be used to study the degree of determinism since a diagonal line in the RP
appears when a segment of the trajectory runs parallel to another segment.
The length of this diagonal line is determined by the duration that the two
trajectory segments have a similar evolution. As a result, the presence of
diagonal lines that run parallel to the mean diagonal (line of identity) indi-
cates that the evolution of states is similar at different times and that the
process could be deterministic. The percentage of recurrence points that
form diagonal lines can be used to measure predictability. This percentage
can be computed as follows:

DRP =

∑Ns
j=jmin

j · P (j)∑Ns
n1,n2=1RP [n1, n2]

(3.8)

where Ns is the number of possible states, P (j) is the number of diagonal
lines of length j and jmin is the minimum number of points to be considered
as a diagonal line (in this work, jmin = 2 is used).

3.2.4 Determinism based on higher order statistics

Ultrasonic scattered signals are not simply deterministic or stochastic, but
rather a combination of both [57]. Predictability can be viewed as the
signal strength of the deterministic component of the time series with re-
spect to the whole time series. A feasible alternative for characterizing
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the predictability of the signal is to use the correlation between points.
Second-order correlation (autocorrelation) cannot give enough information
about higher order interactions among parameters that govern the model
which leads to the time series. Due to the complex physical interactions
taking place in the ultrasonic inspection of a highly scattering material, we
propose using higher order statistics to measure the predictability of the
time series.

Let us model the ultrasonic register as a discrete stationary stochastic pro-
cess {x̃[n]}. We can define what will be called a displacement sequence,

{S̃m[n]} = {x̃[n]} − {x̃[n+m]} = {x̃[n]} ∗ h[n] (3.9)

where m is the time delay, ∗ denotes the discrete convolution of the stochas-
tic process {x̃[n]} with the linear time-invariant system h[n] = δ[n]− δ[n+
m], and δ[n] is the discrete Dirac delta function.

The statistical properties of {S̃m[n]} can be analysed as a function of the
statistics of the input process {x̃[n]} and the impulse response of the filter
h[n], previously defined. We can obtain the 4th order cumulant of {S̃m[n]}
(cSm4 (k1, k2, k3) = E[Sm[n]Sm[n + k1]Sm[n + k2]Sm[n + k3]]) using filter
relationships of a colored process [58]:

cSm4 (k1, k2, k3) =
∑
m1

∑
m2

∑
m3

cx4(k1 −m1, k2 −m2, k3 −m3) · ch4(m1,m2,m3)

(3.10)
where

ch4(m1,m2,m3) =
∑
l

h(l)h(l +m1)h(l +m2)h(l +m3) (3.11)

In Equation 3.10, k1, k2 and k3 are the time lags where the 4th order
cumulant of the process {S̃m(n)} is evaluated and m1, m2, m3 are also
time lags varying in the region of support of the 4th order cumulant. If
Equation 3.10 is particularized for k1 = k2 = k3 = 0, the kurtosis (γSm4 ) of
the displacement sequence is obtained (see Equation 3.12).

cSm4 (0, 0, 0) = γSm4 =
∑
m1

∑
m2

∑
m3

cx4(−m1,−m2,−m3) · ch4(m1,m2,m3)

(3.12)
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Figure 3.1. Graphical representation of the 4th order cumu-

lants of h[n]. The black dots indicate unique values where

ch4 [m1,m2,m3] is non zero (the blue numbers next to the dots

indicate the amplitude of the cumulants at these lags).

The deterministic 4th order cumulants ch4(m1,m2,m3) are only non zero for
some specific lags as illustrated in Fig. 3.1. Using this property and also
taking into account the symmetry properties of the 4th order cumulants,
Equation (3.12) can be simplified into Equation (3.13).

γSm4 = 2 ·
(
cx4(0, 0, 0)− cx4(m, 0, 0)− cx4(0, 0,m)− cx4(0,m, 0)+

cx4(m,m, 0) + cx4(m, 0,m) + cx4(0,m,m)− cx4(m,m,m)

)
= 2 ·

(
cx4(0, 0, 0)− cx4(m,m,m) + 3 · cx4(m,m, 0)− 3 · cx4(m, 0, 0)

)
(3.13)

Thus, evaluating the 4th order central moment (kurtosis) of the displace-
ment sequence {S̃m[n]} provides a simple way of measuring how the 4th

order cumluants of {x̃[n]} change with the time lag m. This time lag de-
fines the side of the cube whose vertexes are the points where cx4(k1, k2, k3)
is evaluated. In order to obtain a clear indication of how the higher order
correlations evolve as the time lag increases, the vertex of this cube must
increase. In this work, we propose using an averaged kurtosis of the dis-
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placement sequence obtained for different time lags m as an estimator of
the predictability:

DAKDS =
1

M

M∑
m=1

γSm4 (3.14)

where M is the maximum lag introduced whose choice depends on the sam-
ple frequency and the size of the observation window; however, this choice
is not critical. DAKDS are the acronyms of Determinism based on the
Average Kurtosis of the Displacement Sequence. It is worth noting that
the 3rd order statistic moment (skewness) has not been applied since its
equivalent expression to Equation 3.13 would be null for all kind of signals,
whether they are deterministic or stochastic. The 4th order cumulant is
the lowest statistic which allows predictability to be measured taking into
account higher order interactions.

The conventional way of measuring the kurtosis consists of assuming er-

godicity and computing the time averages of E[(Sm[n]−µ)4]
σ4 − 3, where µ is

its mean and σ is its standard deviation of {S̃m[n]}. Kurtosis can be inter-
preted as a measure of the dispersion of a distribution around the values
µ±σ, which can be large when the probability mass is concentrated either
near the mean or in the tails of the distributions. To solve this, a robust
alternative to estimate the kurtosis was proposed in [59] and will be used
here:

γSm4 = RK(Sm(n)) =
(E7 − E5) + E3 − E1

E6 − E2
− 1.23 (3.15)

where Ej is the jth octile of the distribution of a realization {S̃m(n)}.
The estimator RK is consistent and unbiased. A detailed analysis of this
estimator for different types of distributions is done in [60]. Additionally,
RK it is not even influenced by the presence of outliers since it is based on
octiles, which converge to the true values reasonably quickly.
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3.3 Determinism on Ultrasonic Signals

In order to apply signal modality algorithms to ultrasonic signals, a brief
review of the typical noise sources that appear in ultrasonic inspection must
be made. The vast majority of noise sources can be approximated by ran-
dom processes (thermal noise, quantification, etc.), but some of the sources
have a distinctly deterministic pattern (vibrations, grain noise, or speckle).
Figure 4.1 illustrates how coherent and incoherent noises are combined as
a function of the inner material structure in a typical ultrasonic inspection
of scattering materials. Measuring the predictability of the resulting sig-
nals can give information about this blend and, thus, about the material
characteristics.

Ultrasonic probe

Dispersive material
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x(n)
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Figure 3.2. Pulse-echo model of an ultrasonic inspection of

scattering materials and an example of the resulting signals.

Firstly, we analyse the results achieved by applying the four methods de-
scribed above on simulated ultrasound signals. The simulated signals were
obtained using the model presented in [49] and reproduced in Equation
3.16. This equation simulates a backscattered ultrasonic signal at time t
for a given transducer position z.

x(t, z) =

Ne(z)∑
i=1

Ai(z) · p(t− τi(z)) · cos(w0(t− τi(z))) + {ñ(t)} (3.16)

where
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p(t− τi(z)) = p0(t− τi(z)) · e−α·(t−τi(z)) (3.17)

Equation 3.16 computes the backscattered signal (A-scan) as the sum of
all contributions from the Ne(z) scatters characterized by their reflectivity
Ai(z) placed randomly (τi(z)) inside the sample, with p0(t) being the pulse
envelope at the origin, and w0 being the carrier frequency. Note that, due
to attenuation α(dB/cm), the amplitude of p(t− τi(z)) will decrease expo-
nentially as the ultrasonic pulse propagates deeply into the material (Eq.
3.17). The stochastic process {ñ(t)} models the Observation Noise (ON),
and it is incorporated to model the instrumentation noise or other effects
that are not related to material properties (Fig. 3.2). Thus, the resulting
simulated signals are the sum of a material dependent Grain Noise (GN)
plus a random ON. Due to the different grain echoes and the attenuation
with depth, the registered A-scans show characteristic waveforms whose
amplitude decays until GN collapses below the ON level. As a result, the
signals have a decreasing GOR (Grain-to-Observation-Noise-Ratio), which
is characteristic of the sample being tested. When two specimens with dif-
ferent amounts of grain are compared, the nature of the reflected signal will
be different. In the case of fewer grain echoes, the reflections or echoes will
be similar to the incident signal. However, in the presence of more scatters,
the energy will be dispersed and there will be a large number of contribu-
tions which will give rise to different levels of predictability. In order to
prevent predictability measures being from the result of attenuation and
signal amplitude changes, the signal resulting from the model have been
normalized in amplitude without varying the rest of the properties.

The four methods described in Section 3.2 have been evaluated using the
the ultrasonic backscattered signal of Equation 3.16. The parameters em-
ployed in the simulation were: w0 = 2 ·π ·10 MHz, attenuation 10 dB/cm,
percentage of scatterers 40%, and K-Type amplitude distributed reflec-
tions with shape parameter 0.5. The estimated indexes were computed for
50 Monte Carlo realizations for each attenuation level. The data length
is 1500 points. We present Figure 3.3 to analyse the behaviour of the
predictability indexes against different attenuation values. Figure 3.3(a)
shows that DMKG (Eq. 3.4) and DJM (Eq. 3.7) do not allow the level
of signal attenuation to be identified from predictability since the curves
reach constant values above a certain level of attenuation (1 dB/cm and
4.5 dB/cm, respectively). When attenuation increases, the maximum GOR
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decreases; therefore, both methods fail to provide a characteristic measure
that allows predictability identification for high noise levels. However, Fig-
ure 3.3(b) shows the resulting curves for DRP (Eq. 3.8) and DAKDS
(Eq. 3.14) that allow us to determine the value of the characteristic atten-
uation based on the predictability measured. Both curves show that despite
high attenuation levels, both methods are able to distinguish signals even
if they are random. This results are justified because of the binarization
process that the RP plots undergo through the Heaviside function (DRP
parameter) and because of the insensitivity of the higher order statistics to
Gaussian noise (DAKDS parameter).
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Figure 3.3. Degree of predictability as a function of the at-

tenuation values (dB/cm) for the ultrasonic model. The data

length is 1500 points, and 50 Monte Carlo realizations are

used for each attenuation level and each model. The ultra-

sonic model parameters are: carrier frequency f0 equals 10

MHz, reflectivity 40% and the statistic of the reflectivity is

K-Type. a) DMKG (left) and RJM (right), b) DRP (left) and

DAKDS (right).

3.4 Cement Pastes Characterization I

We applied the proposed parameters in a real application to measure the
degree of porosity of different cement paste probes. This is an impor-
tant problem because cement paste is the main component of mortar and
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concrete [61]. The vulnerability (and, thus, the durability) of these con-
struction materials to external agents is very dependent on the porosity of
the cement [62].

3.4.1 Experimental

We consider cement paste to be composed of a hydrated gel matrix with
pore cavities that are incrusted within and not occupied by gel. Porosity is
dependent upon the water/cement ratio (w/c) and cement composition. In
this study, we chose two types of cement with the same mineral composition
and identical percentage of added limestone (about 17% of substitution),
but with a different specific surface of grain. Therefore, we had two different
mechanical strength categories, namely 32.5 and 42.5 MPa. We used the
notation CEM 32.5 and CEM 42.5 and considered two different w/c ratios
(0.4 and 0.5), so that there were four cement paste types.

We built 32 test samples (8 for each type of cement paste), which were
prisms of a size 4 × 4 × 16 (cm3) (Fig. 3.4). Four of them were used for
measuring (in a destructive manner) the porosity of each type of cement
paste following the method described in [63]. Table 3.1 shows the porosity
mean value obtained (the average of the four test samples) for each type of
cement paste. The other four test samples were used to perform ultrasonic
non-destructive testing.

Table 3.1. Porosity mean values corresponding to the four

types of test samples.

Water/Cement ratio

Type of cement (MPa) 0.4 0.5

32.5 30.73 % 37.63 %

42.5 27.36 % 33.65 %

Ultrasonic testing in pulse-echo mode involves one transducer (also called
probe) sending an ultrasonic pulse wave into the part under inspection and
receiving the reflected echoes (Fig. 3.5). The transducer is directly cou-
pled to the specimen’s surface with gel as coupling medium. At boundaries
between materials that differ on density and ultrasonic velocity, the acous-
tic impedance, part of the wave is transmitted and part of the wave is
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reflected. The received echoes are converted to voltage in the transducer
due to the direct piezoelectric effect. These can be shown against time as a
so-called amplitude scan or A-scan on a screen, similar to an oscilloscope.
In each sample, we collected 20 A-scans of backscattering noise along the
two sides of the prism that were uniformly spaced. One of this A-Scan
is shown in Figure 3.2. The ultrasonic equipment and the most signifi-
cant acquisition settings were: ultrasound pulser-receiver card (IPR-100,
Physical Acoustics, Princeton, USA); transducer (Krautkramer KBA-10
MHz, Huerth, Germany); digitalisation (Osciloscope Tektronix TDS-3012,
Wilsonville, USA); and sampling frequency (250 MHz).

16 cm

4 cm

4 cm

Figure 3.4. Example of cement paste specimen and the places

where the 20 A-scan were measured.

1 2 3 4

Ext.

Ch. 2

Ch. 1

pulse

Pulse generator
Oscilloscope Computer

Specimen

Tx Rx

USBSYNC

Figure 3.5. Pulse-echo model of an ultrasonic inspection of

scattering materials

The selection of the 10 MHz transducer was justified by the need to ob-
tain enough grain noise in the collected records. Using the mercury intru-
sion method, we verified that, at 10 MHz, E[D]/λ varied between 0.026
and 0.071 for the different types of cement paste considered, where λ is
the wavelength, D is the grain size and E[·] is the expected value opera-
tor. Therefore, we are working in the Rayleigh region [64], and we have
a moderate, but sufficient, amount of grain noise (Fig. 3.6). When the
frequency increases, it produces an attenuation that is too large; when the
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frequency decreases, it reduces the level of GN (the ultrasound pulse prop-
agated better, but there were no echoes from the inner microstructure).
Having enough information about the inner composition of the probes is
paramount in classifying the probes as a function of the predictability mea-
sured on the echo pulses.

Figure 3.6. Behavior of the dispersion coefficient in ultra-

sound as a function of the normalized grain diameter (E[D]/λ).

3.4.2 Results

As mentioned in Section 3.3, the degree of predictability must be propor-
tional to the number of pores in the material. Figure 3.7 compares the phase
space of ultrasound signals measured in two different specimens. It must
be highlighted that the trajectories followed similar paths, but the plot on
the left is smoother than one on the right. If there is a higher number of
pores, the signal is more irregular, which is a clear sign of randomness.

Accordingly, we must be able to estimate the percentage of pores in each
of the resulting samples of different materials or different manufacturing
processes by applying the reviewed methods. For this purpose, the four
algorithms were applied on the 20 signals measured in each specimen. For
each record, we considered an interval of 1300 points, removing the initial
transient and long end tails, which had been subjected to a process of
normalization in amplitude. Those points covered a depth distance of 2
cm (an average propagation velocity of 3500 m/s was used to convert time
scale into depth scale).

For each method, the parameters introduced in the mathematical formu-
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Figure 3.7. a) Phase space of an ultrasound signal measured

in a w/c 0.4 sample. b) Phase space of an ultrasound signal

measured in a w/c 0.5 sample. E=2 and L=11.

lation were configured as follows. For the reviewed methods (DMKG,
DRP , and DJM), the embedding parameters were chosen according to
the analysis done in Chapter 2. Being strong periodic signals, the embed-
ding dimension E was equal to 2 and the time lag L corresponds to the
forth of the period T expressed in number of samples, T/4. It might be
computed as the first null of the non-bias autocorrelation function of the
signal. Moreover, in DMKG, K = 5 neighbors and Nres = 100. In DRP ,
ε was equal to 60% of the mean Euclidean distance of the phase space vec-
tors [65]. From the above, it can be deduced that the reviewed methods
require a greater number of input parameters than the proposed method
which eliminates having to calculate the autocorrelation, and the result was
weighted to a maximum lag M equal to 400 points.

Figure 3.8 shows the boxplots obtained for each test sample and each
method. Note that we tested 4 specimens of each class indicated on the
x-axis. The red marks represent the median value of the 20 measures, and
the blue box boundaries are the 25th and 75th percentiles. At a glance,
it can be observed that the four methods group each specimen sample so
that a cluster can be identified for each type of material. If we compare
the predictability values obtained and the results using the theoretical sim-
ulation (Fig. 3.3), it can be concluded that all recorded signals had low
attenuation levels (below 5 dB/cm), and, therefore, excellent GOR rela-
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Figure 3.8. Plot of the predictability measures versus the

different cement paste samples. The red marks represent the

median value and the blue box boundaries are the 25th and

the 75th percentiles. a) DMKG, b) DRP, c) DJM, d) DAKDS.

tions. Then, all four methods were able to identify the different materials
in this interval. Moreover, the trend coincided in all of the methods and
indicated that the specimens with w/c ratio 0.4 were classified with greater
predictability values; however, the specimens of w/c ratio equal to 0.5 were
more random, which is correlated with the higher percentage of porosity
presented in Table 3.1.

In order to further analyse the relation between predictability and the per-
centage of pores, the results were adjusted to a linear equation whose rep-
resentation is plotted in Figure 3.9. The plot illustrates the linear approx-
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Figure 3.9. Plot of the predictability measures versus the

porosity for each type of cement paste. The blue marks rep-

resent the median value for each sample, the green marks rep-

resent the median value for each class, and the red lines rep-

resent the linear approximation computed for each method.

a)DMKG, b) DRP, c) DJM, d) DAKDS.

imation estimated for each method as well as the median predictability
index obtained for each specimen of each class (blue marks). Furthermore,
the median value for each class (green diamonds) is also shown. Table 3.2
highlights the excellent linear fitting obtained in all cases regarding the
regression error. To compute this quality measure, the resulting linear ap-
proximations and the measures were normalized to the interval between 0
and 1. The proposed robust DAKDS algorithm obtained results that are
comparable to other published methods.
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Table 3.2. Linear regression error corresponding to the four

algorithms.

DMKG DRP DJM DAKDS

Error 0.3559 0.1378 0.2978 0.2875

3.5 Cement Pastes Characterization II

Standard methods for detecting porosity with NDT using ultrasonic pulse-
echo inspection include the evaluation of the back-wall echo (BWE) from
the side opposite to the ultrasonic probe, or the grain noise signals men-
tioned in Section 3.1. Both approaches are based on the analysis of the
received echoes against time, the so-called amplitude scans or A-scans.
These standard techniques fail in special situations: complex geometries
like wedge or curved parts, sandwich structures with multiple echoes, etc.
Therefore, new robust techniques not depending on the signal amplitude
or attenuation need to be studied.

In Section 3.4.2, it has been highlighted that in order to avoid depending
on the received amplitude and intrinsic material attenuation, the signals
had been normalized in amplitude. In the current section, the amplitude
dependence of the RP is analysed in detail and the use of an alternative
RP approach based on the angular distances is developed.

3.5.1 RP based on Angular Distance

In order to illustrate the sensitivity of the RP to the amplitude, Eqs 2.10
and 2.11 must be recalled (Section 2.3). Figure 3.10 graphically explains
the concept of applying the Euclidean distance in the expression of the Re-
currence Plots. The diagonal lines in the DP (and the RP after threshold)
computed by Euclidean distance represent states where a section of the
trajectory of the dynamical system runs nearly parallel to another section
of the trajectory, or more exactly, in a region with the shape of a tube (of
radius ε) around the other section. The Euclidean distance causes only
the closest points in the phase space to be taken into account as recurrence
points, and not those that also follow similar paths but with different values
of the amplitude.
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Figure 3.10(b) plots an example DP computed by the Euclidean distance
for a representative ultrasonic A-scan. It must be noted that the diagonal
lines are not equally distributed over the whole time signal, but are fo-
cussed on a temporal interval that correspond to the higher amplitudes of
the signal. Furthermore, this characteristic distribution makes it difficult
to choose the Euclidean distance threshold, ε. Figure 3.11 compares the
choice of two different thresholds and the resulting RPs: a large one and a
small one. The decaying amplitude of the original time series apparently
leads to a trajectory which falls for later instants of time completely into
the ball with radius ε in state space (almost black regions on the upper
right corner). Therefore, the Euclidean distance cannot reveal recurrences
in the case of signals having similar time-shifted components but with dif-
ferent amplitudes. Using a non-Euclidean distance may help to alleviate
the ‘banding effect’ due to the non-stationarity of the ultrasonic signal.
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Figure 3.10. RP based on the Euclidean distance. a) Graph-

ical representation of the Euclidean distance projected over a

representative phase space. b) Distance Plot based on the

Euclidean distance.

Ioana et al. [48] propose a new approach for computing the RP based on the
angular distance, which stands out for its independence from scaling effects.
The proximity between points in the phase space stops being proportional
to the Euclidean distance and is measured by the solid angle which they
form with the origin. Its mathematical expression is given by Equation
3.18.
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Figure 3.11. RP comparison based on the threshold ε choice.

a)RP applying ε equals 0.5. b) a)RP applying ε equals 1.3.

DP (n1, n2) = arccos

 ~X[n1] · ~X[n2]∥∥∥ ~X[n1]
∥∥∥− ∥∥∥ ~X[n2]

∥∥∥
 (3.18)

where ~X[n1] · ~X[n2] is the scalar product of two vector samples. Using
this distance, it is possible to identify the points of the trajectory placed
in a solid angle and that correspond to the components with different am-
plitudes. Unlike the Euclidean distance, the angular distance quantifies
the aperture delimited by the position vectors ~X[n1] and ~X[n2] (Figure
3.12(a)).

Figure 3.12(b) shows the DP based on the angular distance from the same
ultrasound signal whose DP was shown in Figure 3.10. At a glance, it can be
noticed that the diagonal lines are now almost uniformly distributed along
the time domain. This illustrates how the points corresponding to similar
trajectories of the ultrasonic backscattered signal with different amplitudes
are found using the angular distance, whereas in the case of the Euclidean
distance, they were separated depending on the radius of the sphere. Fur-
thermore, the angular distance not only highlights signals having similar
trajectory features regardless of their amplitude, but also eases the choice
of the optimal value of ε. The phase results on a uniform distribution in
[0, π] so the value of ε may be fixed to be π/2.
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Figure 3.12. RP based on the angular distance. a) Graphical

representation of the angular distance projected over a repre-

sentative phase space. b) Distance Plot based on the angular

distance.

Figures 3.13(a) and 3.13(b) compare the resulting RP for two ultrasonic
signals measured in two different specimens. The left graph corresponds to
a specimen built with a w/c ratio equal to 0.4 (porosity equal to 30.73%)
and the right graph corresponds to a specimen built with a w/c ratio of
0.5 (porosity equal to 37.63%). The presence of a larger number of pores
results in a clear sign of randomness, seen as a deviation from the diagonal
lines in the angular distance RP domain. The whole set of measurements
is analysed in the following Section 3.5.2.

The use of this metric for Recurrence Plots is considered as a great asset
for NDT to be less dependent on the adjustment of the gain in the course
of calibration. Because this often involves a human factor, it is advisable
to achieve an independence or reduced dependence on the calibration.

3.5.2 Results

In order to show the potential of the technique, this new signal processing
approach is applied on the same experimental real data described in Section
3.4.1. There is a single input parameter: the aforementioned ε threshold,
which is set to π/2. Figure 3.14(a) shows the resulting boxplot obtained
for each specimen. Recall that the legend is the same as in Figure 3.8.
The manufacturing properties of each specimen are described on the x-
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Figure 3.13. a) Recurrence Plot based on angular distances

of an ultrasound signal measured in a sample with w/c = 0.4.

a) Recurrence Plot based on angular distances of an ultrasound

signal measured for a sample with w/c = 0.5. E = 2 and

L = 11.

axis: the red line marks the mean values, and the blue box boundaries are
the 25th and 75th percentiles. It can be observed that the specimens with
same properties make up easily identifiable clusters, slightly up-biased in
values of DET compared to the amplitude analysis shown in Figure 3.8(d).
As expected, the determinism decreases as w/c increases, a trend which
appears in both kinds of cement (for 32.5 MPa and 42.5 MPa).

Figure 3.14(b) plots a linear fitted model to the median value of the param-
eter DET of each category and its real porosity values. Once again, each
cement makes up a clear cluster, and all together would allow computing
a linear regression in order to compute the real value of the porosity as
means of determinism. Furthermore, the error from the linear regression
has turned out to be 0.1052, lower than any approach reviewed in Section
3.4.

In summary, for the angular distance, the RQA feature DET has been
found to be appropriate porosity measurement equivalent. Amplitude ef-
fects are not taken into account with angular distance by definition, and
the feature decreases with increasing porosity, showing a lower periodicity



3.6. Conclusions 67

                32.5−0.4                        32.5−0.5                        42.5−0.4                        42.5−0.5                
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

Cement Paste Samples

D
E

T

(a)

26 28 30 32 34 36 38
0.96

0.965

0.97

0.975

0.98

0.985

Porosity (%)

D
E

T

42.5−0.4

32.5−0.4

42.5−0.5

32.5−0.5

(b)

Figure 3.14. a) Boxplot representation of the cement paste

types and the values of determinism. b) Linear regression of

the values of porosity and the values of determinism.

in the ultrasonic wave propagation caused by the pores.

3.6 Conclusions

In this chapter, we have considered the general problem of ultrasonic char-
acterization of scattering materials from a viewpoint that is different from
those seen to date. We propose the study of the nature of the signal through
predictability and using this parameter as a source of information of the
inner material structure.

We have reviewed some of the methods that are available in the literature to
measure predictability, and we have also proposed an alternative algorithm
based on higher order statistics that is easier to implement than traditional
ones and that achieves equivalent results. The predictability index has been
used to evaluate a theoretical ultrasound model as well as to estimate the
porosity of real cement probes. The theoretical results have shown that the
proposed algorithm is more robust against low SNR signals than the rest
of the methods and is also less parameter-dependent. When measuring
real signals, determinism is strongly related to the degree of ultrasonic
scattering; in fact, it has been shown that a linear relation can be an
excellent approximation for calculating the porosity of the cement paste
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probes based on predictability. This new approach can complement or even
be used as an alternative to other techniques when extracting information
about the internal structure of scattering materials.

A recent RP approach for non-stationary signals has also been analysed
in detail. Angular distance, by definition, is not affected by attenuation
with depth; resulting an appropriate estimation for ultrasonic wave signals
which attenuate as propagate. The results are equivalent to the previ-
ous algorithms leading to lower values of determinism with higher porosity
content.

The proposed approach based on predictability could be used in other ap-
plications of characterization of scattering materials using ultrasound. In
Chapter 4, we analyse its applicability on a NDT damage characterization
application.



NDT Damage Characterization 4



70 NDT Damage Characterization



NDT Damage Characterization 4
4.1 Introduction

In the present chapter, the signal modality concept is applied to analyse the
interaction between the injected ultrasonic wave and the non-linear scatters
placed at the concrete specimen under study. Figure 4.1 illustrates a typical
ultrasonic inspection where the input signal has a predominant determin-
istic component (coherent component) and the output is the sum of many
superimposed echoes scattered by the heterogeneous microstructure of the
material (incoherent components). The resulting stochastic nature of the
received signal comes not only from the randomly placed reflections, which
cause significant changes in amplitude, but also from the echoes trans-
mitted by non-linear coupling, which combine with different initial phases.
Measuring the degree of predictability of the received signals can give infor-
mation about how the coherent and incoherent components are combined
as a function of the inner microstructure and, thus, about the internal dam-
age. The aim of the proposed method is to provide a quantitative measure
of the growth of the damage, assessing any change in the material integrity
as a whole. The results obtained from some concrete specimens exposed
to different damage processes are analysed and discussed in order to make
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an initial assessment of the performance of the new proposed measurement
method.

Σ
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Figure 4.1. Typical ultrasonic inspection of a specimen and

examples of input and output signals. The received signal

results from many superimposed echoes scattered by the het-

erogeneous microstructure of the material.

The reminder of this chapter is organized as follows. The new approach
based on the signal modality characterization is raised in Section 4.2. Sec-
tion 4.3 describes the traditional ultrasonic measurements carried out on
the specimens to characterized them. The results of predictability are dis-
cussed and compared to the foreknown techniques when applied on two
different experiences. Section 4.4 describes a typical External Sulphate At-
tack (ESA) and the damage characterization results estimated by means
of destructive and non-destructive techniques; traditional and the new ap-
proach. In Section 4.5, the experience of concrete cube specimens damaged
under different uniaxial loads is described and characterized. Finally, the
conclusions are summarized in Section 4.6.

4.2 Signal Modality Approach based on RQA

Ultrasonic wave has numerous interactions with the internal structure of
the material and the data derived from such observations is related to the
behaviour of materials at different structure scales (from macro to micro
level). The concept of multi-scale interactions can be described starting
at the level of atomic bonds, its nanometric scale (gel pores, capillary net
mainly made by portlandite and calcium aluminate hydrates), and includ-
ing that of the mesoscopic (microscopic and millimetric) structure, the
aggregate dimension, and finally the concrete structure as a single compo-
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nent [66]. The advantage of ultrasonic waves is that they allow access to
every level of these interactions by changing the injected frequency, thereby
providing a reliable mean of characterising the material at each scale.

The new proposed technique aims to quantify the non-coherent waves pro-
duced by echoes from edges and faces of the specimen in addition to the
scattering effects from the aggregates. Both, echoes and scattering effects,
strongly depend on the structure scale, and therefore, on the working fre-
quency. Particularly, the scattering component of the global attenuation
of the ultrasonic wave is well-known to be determined as function of the
input frequency (or its corresponding wavelength, λ) and the average size of
the aggregates (D̄), being identified three different regions: Rayleigh field
(λ� D̄), stochastic field (λ ' D̄), and diffusion field (λ > D̄) [67] (Figure
3.6). The appearing stochastic component depends on the aforementioned
ratio and, somehow, summarizes the inhomogeneities seen at the analysed
scale and present in the specimen under study. Quantifying the degree of
predictability of the time series based on the signal modality characteriza-
tion concept [68] can provide information about the signal strength of the
input deterministic component in relation to the whole time series acquired.

The variation of the degree of determinism related to the frequency of the
transmitted ultrasonic wave lets characterise the heterogeneous nature of
concrete. Among the different approaches to compute the degree of de-
terminism, in this chapter the algorithm based on the Recurrence Plots
is applied (Section 3.2.3). Deterministic values close to 1 mean that the
received signal presents a strong deterministic component linked to the in-
put signal which has not been hardly altered, however, deterministic values
close to 0 mean that the stochastic component predominates. The evolution
of the determinism (in the following called DET ) along the frequency (or
the equivalent wavelength) allows identifying the different structure scales
of the material.

4.3 Traditional Ultrasonic Measurements

For non-continous waves of a specific frequency, f , propagation velocity
(or wavefront speed), vp(f) [m/s], is defined as the speed with which the
beginning of the disturbance moves. This value equals the phase velocity
and the group velocity as long as they are independent of the wavelength
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(non-dispersive materials). The computed vp(f) is given by Equation 4.1,

vp(f)[m/s] =
dmat[m]

ta(f)[s]
(4.1)

where ta(f)[s] is the time that the emitted wave takes to pass through the
material (whose distance is dmat[m]) and it is estimated as the instant of
time when the received signal level exceeds 50 % of the noise level. This time
is proportional to the mechanical constants of the material, and therefore,
to the movement of the particles forming the material caused by the applied
external forces.

The examination of the amplitude of the signals at different frequencies
revealed interesting features related to the aggregate content and size. The
attenuative behaviour of the material implies both, intrinsic (absorption)
and extrinsic (scattering) mechanism, which cannot be directly separated.
The attenuation coefficient, αmat(f) [dB/cm], is determined by measuring
the reduction of the amplitude of a sinusoidal permanent wave and is given
by Equation 4.2,

αmat(f) [dB/cm] =
Ptx(f) [dB]− Prx(f) [dB]− αequip(f) [dB]

dmat [cm]
(4.2)

Ptx [dB] = 10 · log10

(
A2
tx

2

)
(4.3)

Prx [dB] = 10 · log10

(
A2
rx

2

)
= 10 · log10

(
max {srx(t)}2

2

)
(4.4)

where Ptx [dB] is the transmitted power and can be obtained theoretically
from the amplitude of the transmitted signal, Atx, using Equation 4.3,
Prx(f) [dB] is the received power and is obtained from Equation 4.4 being
srx(t) the received signal, αequip [dB] is the attenuation of the equipment
and dmat [cm] is the total length of the specimen. Note that the transmitted
amplitude Atx is a priori knowledge parameters since it is fixed by the user,
however, the received amplitude Arx has to be estimated as the maximum
of the received ultrasonic signal.

The attenuation associated to the measurement equipment (transducers,
amplifier, wires, acquisition module,...), αequip(f), requires a calibration
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process [69]. The calibration process was carried out facing emitter and
receiver transducers without any material between them and, applying
the simplified version of Equation 4.2 which becomes into Equation 4.5.
Figure 4.3 plots the resulting frequency response of the used equipment,
−αequip(f).

αequip(f) [dB] = Ptx(f) [dB]− Prx(f) [dB] (4.5)

An ultrasonic through-transmission setup was chosen since it offers good
penetration and accuracy for the ultrasound measures estimated from the
received signal: the p-wave velocity and the attenuation due to the ma-
terial [70, 71, 72]. The transmitter transducer was excited directly by a
programmable signal generator (Agilent 33120A). The received and am-
plified ultrasonic signal was captured by a digital oscilloscope (Tektronix
DPO3014) with a sampling frequency of 50 MHz. And finally, a laptop was
used to control the signal generator and to acquire and store the digitized
signals by the oscilloscope (see Figure 4.2 for the schematic layout of the
experiment).

SYNC.

OUTPUT

OUTPUTINPUT

OFF

ON TEST

1 2 3 4

Ext.

40 dB

Ch. 2

Ch. 1 USB

GPIB

SYNC.

Oscilloscope

Function generator

Tx Transducer Rx Transducer

Pre-amplifier

Computer

Specimen

Figure 4.2. Ultrasonic equipment layout: transmission and

reception transducers, programmable signal generator, pre-

amplifier, digital oscilloscope and a laptop.

4.4 External Sulphate Attack

Concrete is the most widely used synthetic material all over the world in
civil and building engineering and architecture. It is composed of water,
cement, gravel and sand mixed in different proportions depending on the
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kind of mechanical and physico-chemical properties required. This material
has an excellent mechanical and structural performance. However, it has
important issues in terms of durability when exposed to different environ-
ments and harsh conditions. Freeze-thawing cycles, internal sulphate attack
(ISA), external sulphate attack (ESA), overload cracking and wet-drying
cycles are some of the processes which require early damage detection in or-
der to avoid serious problems involving the structural elements made with
concrete.

Of all the problems previously mentioned, in the present research, ESA was
selected to damage the concrete, due to its micro-cracking and expansive
process (produced by the formation of secondary ettringite), which globally
affects the cement paste structure, weakening the different interfaces, and
consequently reducing the physical and mechanical integrity of the material.

Ettringite is an expansive compound formed during the Portland cement
hydration process (primary ettringite) and also during the lifetime of the
concrete structures exposed to sulphate attack (secondary ettringite) [73].
Primary ettringite has no harmful effect on concrete because expansions
produced by the reaction between tricalcium aluminate and calcium sul-
phate in water medium (Eq. 4.6) are absorbed by fresh concrete. Secondary
ettringite is formed for months, or even years after concrete has been hard-
ened. The stresses that appear when an external or internal source of
sulphate salts reacts with calcium aluminate hydrates can spoil the matrix,
causing micro cracks, expansion and spalling. Additionally, gypsum is also
formed by reaction of sulphate anions and portlandite (Eq. 4.7).

3 CaSO4 · 2 H2O + Al2O3 · 3 CaO + 24 H2O −−→ 3 CaSO4 · 3 CaO ·Al2O3 · 32 H2O (4.6)

SO 2−
4 + Ca(OH)2 + 2 H2O −−→ CaSO4 · 2 H2O + 2 OH− (4.7)

4.4.1 Experimental

Two concrete series with two types of cement with different C3A content
and similar mechanical properties were subjected to ESA and evaluated us-
ing the traditional ultrasonic measurements and the Recurrence Plot Quan-
tification Analysis (Section 3.2.3).
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Materials and specimens

Table 4.1 shows the chemical composition of both types of cement used in
this experiment. The main difference between them is the C3A content:
the sulphate resistant cement was a Spanish Portland cement CEM I-52,5
SR (in this study is marked as G) and it has 2.33% of C3A, and the white
Portland cement, BL II A-LL 42.5 R, has 9.84% C3A (in this study is
marked as W).

A plain 0.65 water/cement ratio concrete was designed for this experiment
varying the cement type in order to obtain two materials with different
chemical properties against ESA. The dosage used for each series is shown
in Table 4.2.

Table 4.1. Cement composition by % weight.

Cement type LOI* SiO2 Al2O3 Fe2O3 CaO MgO SO3 C4AF C3A C3S C2S

CEM I-52,5 SR 2.05 20.52 3.37 3.92 63.36 1.96 2.59 11.93 2.33 55.7 16.94

BL II A-LL 42.5 R 9.75 16.55 3.88 0.26 62.91 1.39 4.28 0.8 9.84 51.73 8.56

* Loss on ignition

Table 4.2. Concrete dosage in kg.

Series Cement type Cement Water Gravel 7/12 Gravel 4/7 Sand 0/4

GT0 & GT1 CEM I-52,5 SR 5.25 3.41 5.44 5.44 16.33

WT0 & WT1 BL II A-LL 42.5 R 5.25 3.41 5.44 5.44 16.33

After a properly mixing of raw materials, five 60 x 60 x 240 mm3 moulds
per each series were filled with the fresh concrete and stored into the wet
chamber (20 ◦C and 100 % HR) during 28 days. After that, GT0 and
WT0 were tested (samples before sulphate attack), and GT1 and WT1
were stored in the wet chamber immersed in tanks with a 10 % Na2SO4

solution for 28 days. Afterwards, GT1 and WT1 (samples after sulphate
attack) were tested as the previous series.

Mechanical and Physical Tests

Traditional methods to material damage detection were used in this exper-
imental study following the established standards, three point bending test
(Instron universal testing machine, model 3382), compressive strength test
(Ibertest MEH LC MD2 W) and transversal dynamic elastic modulus test
(determined according to ASTM C 215 02 standard [74]), in order to com-
pare with typical ultrasonic parameters and the new proposed technique.
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Ultrasonic Test
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Figure 4.3. Frequency response of the measuring equipment

(-αequip(f)). Red lines represent the lower (200 kHz) and up-

per (550 kHz) bounds of the working interval.

An ultrasonic through-transmission setup (Figure 4.2) was chosen since it
offers good penetration and accuracy for the ultrasound measures estimated
from the received signal: the p-wave velocity and the attenuation due to
the material (Figure 4.2). The transducers employed for transmission and
reception were the K05SM from General Electric. Both are broadband
transducers which bandwidth is centered at 500 kHz. The transmitted sig-
nals were different in each performed analysis: a 5 cycles sinusoidal tone
burst signal for time-of-flight estimation and a sinusoidal signal for atten-
uation and signal modality measurements. The wave parameters in both
signals were: amplitude, Atx equals 10 V, and the fundamental frequency,
f0, was swept from 200 kHz to 550 kHz in 5 kHz steps. Two aspects were
considered for determining the lower bound (200 kHz) of the frequency
range: surface waves generating and frequency response of the transduc-
ers. For the first one, the maximum ultrasound wavelength λ was chosen
to be smaller than the cross section of the specimens (60 mm), so that
the wave did not propagate across its entire volume. Otherwise, if the en-
tire volume of the specimen is affected, lamb waves are generated and the
propagation velocity becomes depending on the input frequency. Secondly,
the frequency response of the equipment and, mainly, of the transducers,
limits the working bandwidth. Regarding Figure 4.3, the transducers ex-
perimented an efficiency loss and the measurements became unstable below
the 200 KHz threshold. On the other hand, the upper bound (550 kHz) of
frequency range was chosen considering the amplitude level of the received
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signal for the less dispersive series (GT1). For this serie (GT1), frequencies
exceeding 550 kHz were highly attenuated. Therefore, the time-of-flight
and, as well as, attenuation were estimated inaccurately due to low signal
to noise ratio.

4.4.2 Results

Mechanical and physical properties

In Figure 4.4 mechanical results of all series were plotted. As it can be
observed, W series have an important decrease on its mechanical properties
denoting more weakness than G series against ESA. Figure 4.4(a) shows
the compressive strength for material series before (WT0 and GT0) and
after the ESA (WT1 and GT1). The differences between WT0 and GT0
are due to the strength class of the cement as described in Section 4.4.1.
Moreover, the decay of the compressive strength of WT1 respect to WT0
is notorious as expected, however, this parameter in G series was virtually
the same in both cases. Figure 4.4(b) represents flexural strength and a
similar behaviour for W series was found. For G series, the median value
of the flexural strength is practically the same for both GT0 and GT1,
nevertheless, the high dispersion values for GT1 series suggest an initial
change triggered by ESA.
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Figure 4.4. Mechanical results obtained for each series. (a)

Compressive strength test. (b) Three-point bending test. (c)

Transversal dynamic elastic modulus test.

Dynamic modulus of elasticity assess on the stiffness of concrete and is
directly proportional to Young’s modulus [75, 76]. Unlike the previous
mechanical parameters, the initial dynamic modulus for W and G series was
the same before ESA (Figure 4.4(c)). W series showed a marked decay from
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WT0 to WT1, meanwhile G series shows no difference between GT0 and
GT1. All these results confirm the expected behaviour of these concretes in
terms of the action of sulphates and the chemical composition of cements.

Traditional ultrasonic measurements

Typical parameters extracted from the ultrasonic wave in time and fre-
quency domains are represented in Figure 4.5. Figure 4.5(a) shows the
propagation velocity through the different concrete series. The chosen fre-
quency range avoids surface wave generation and the propagation velocity
is equivalent to the p-wave velocity. In the initial state, GT0 had a greater
propagation velocity than WT0 due to the cement type used in each mix.
However, their behaviour after the ESA was completely different since G se-
ries had better durability than W ones. WT1 shows lower values of velocity
than WT0 because ESA made significant damage in its internal structure,
as it has been previously analysed by the mechanical results. Nevertheless,
GT1 had an increment in its wavefront velocity due to the effect of ini-
tial stage of ESA. The ettringite formed into pores and capillary network
filled the voids and reinforced the microstructure of the material, making
it more compact. This behaviour could be supported by the results showed
in Figure 4.4(c), that suggest an slightly improvement in the stiffness of the
material.

Although concrete has been reported previously to exhibit dispersive be-
haviour in through transmission layouts, results of this work reveal that
the velocity can be considered constant (differs for about 1%) at enough
high working frequencies compared to the size of the inhomogeneities. No-
tice that standard deviation for WT1 and GT1 series is so low that shaded
areas are almost undistinguishable. Hereafter, characteristic velocities (the
average value) for each series are considered: vp,WT0 = 4250 m/s, vp,WT1

= 4128 m/s, vp,GT0 = 4338 m/s and vp,GT1 = 4389 m/s.

The attenuation strongly depends on the reflectivity of the material which
is related to the scatters (inhomogeneities) of the microstructure. This
relationship makes the attenuation a parameter that depends on the size of
the reflectors respect to the input signal wavelength. The wavelength (λ)
and frequency (f) of a signal are related through the expression λ = v/f ,
where v is the characteristic propagation velocity. Figure 4.5(b) shows
the attenuation of each series versus the wavelength ranging from low to
high frequencies. The corresponding wavelength has been computed using
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Figure 4.5. Mean values (lines) and standard deviations

(shaded areas) of typical ultrasonic parameters extracted from

signals. The x-axis represents the frequency sweep of the in-

put signal expressed in terms of the frequency [KHz], or its

corresponding wavelength [mm] stepped by 5 kHz. (a) Ultra-

sonic p-wave velocity, vp(f). (b) Attenuation of the material,

αmat(f).

the characteristic propagation velocity of each serie and it is related to
the size of scatters (reflectors, cracks...) of the tested material. At higher
values of frequency (lower values of wavelength), the ultrasonic wave suffers
greater number of interactions with the inner structure of the material and,
therefore, it implies higher attenuation.

The initial attenuation for both types of cement, WT0 and GT0, is virtually
the same, suggesting the integrity of the matrix of the concrete. However
after ESA, each material follows a different trend. WT1 serie presents
a progressively greater attenuation than WT0 as the input frequency in-
creases (wavelength decreases). For instance, for 12 mm wavelength, WT0
presented 3.5 dB/cm, whereas WT1 presented 4.8 dB/cm. This behaviour
is attributed to the appearing microcracking of the cementing matrix which
becomes more significant in the case of small structures. For GT1 series,
the attenuation decreases after the sulphate attack, a result which sup-
ports the aforedescribed filling effect of the capillary network by formation
of sulphate bearing compounds. Since the larger pores have more weight
to volume level and, therefore, greater presence in the system, the attenua-
tion significantly decreases at low frequencies: for 21 mm wavelength, GT0
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presented 3.5 dB/cm whereas GT1 presented 2.7 dB/cm.

RQA results

The degree of determinism must be proportional to the damage suffered
by the material. Figure 4.6 compares the reconstructed phase spaces of
four ultrasonic signals at the same excitation frequency, f0 = 301 kHz,
from different cement concrete series. It can be noticed that trajectories
follow similar paths, but each plot has its corresponding stochastic com-
ponent represented as the dispersion of points in the phase space. Both
cement series, GT0 and WT0, have a similar initial stage (Figures 4.6(a)
and 4.6(c)) but, due to ESA effect, each series evolved differently at the
final stage depending on the effect of expansive products formation. Figure
4.6(b) shows how the serie WT1 has a predominant stochastic component,
however, Figure 4.6(d) shows even a stronger deterministic path.

Accordingly, we must be able to characterize each material by applying
the RQA parameter. Figure 4.7 plots the value of determinism as function
of the signal wavelength. For each acquisition, the phase space has been
reconstructed using its optimal embedding parameters. Figure 4.7(a) rep-
resents determinism levels for W series. Initially, the determinism (DET)
for WT0 decayed from input signals with wavelengths lower than 10 mm.
However after ESA, the parameter DET suffers a sudden fall from 16 mm
wavelength. This result indicates a signifficant change in the inner struc-
ture of the material to which this parameter is sensitive from 16 mm. The
wide spread of the standard deviation of the determinism values obtained
in the range 10 mm to 16 mm are probably due to the heterogenous crack-
ing process triggered by ESA in each specimen of the serie. Figure 4.7(b)
represents determinism levels for G series, both for initial (GT0) and final
(GT1) states of the experiment. Although the trends remain the same, the
later series present higher values of determinism at every point.

For GT0, GT1 and WT0 series, the determinism curves sharply decreases
for high values of frequency (low wavelength values) due to the charac-
teristic inhomogeneities of the matrix-aggregate interface. Note that the
ultrasonic sinusoidal signals used in the RQA analysis have not been com-
pensated in terms of calibration. Although that, the curves keep high values
of determinism, and the obtained trends cannot be attributed to the system
frequency response seen in Figure 4.3. Therefore the technique seems to be
robust against the used equipment involved in the measurement process.
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Figure 4.6. Phase space representation of four different sig-

nals acquired on four different specimens at the same fre-

quency, f = 301 kHz. Each phase space is reconstructed using

its optimal embedding parameters, E and L. (a) WT0, (b)

WT1, (c) GT0 and (d) GT1.

The results carried out by the new proposed method based on RQA have
been probed to be equivalent to the aforementioned both mechanical and
ultrasonic traditional methods. The new measuring method could be used
not only to characterize damage occurring in materials but also to sup-
plement the information obtained by the attenuation curves. It has been
observed that the attenuation can vary both when the frequency increases
and if any heterogeneity is appearing. When damaging (or highly hetero-
geneous material), the injected signal not only must suffer a significant
decrease in amplitude but also the random echoes are added to the travel-
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ling signal, therefore, the rise of the attenuation levels must be accompanied
by low values of determinism.

4.5 The cube problem

In this section, a complex damage in concrete cube specimens under dif-
ferent axial loads was assessed using the proposed new technique and com-
paring the results with the traditional ultrasonic measurements.

4.5.1 Experimental

Material and Specimens

Eight cubic specimens of concrete (water/cement = 0.65) of 100 × 100 ×
100 mm3 were manufactured for this experiment. After the iron moulds
were filled with the fresh concrete, they were stored in a wet chamber (20◦C
and 100% RH) for 24 hours. After that, the specimens were removed from



4.5. The cube problem 85

the moulds and cured under water at 20◦C for 60 days. Four specimens
were used to determine the ultimate compressive strength of the material
and the remaining four were utilized to perform the ultrasonic NDT anal-
ysis. These four remaining specimens were subjected to 0%, 25%, 50%,
75% respectively of their ultimate compressive strength (40 MPa) using a
calibrated hydraulic press following the scheme in Figure 4.8(a).
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Figure 4.8. Damage protocol, nomenclature and disposition

of the specimens. (4.8(a)) Scheme Stress/Strain curve of con-

crete with the % of load used for this experiment . (4.8(b))

Nomenclature of the faces, casting and load direction and

cracking pattern.

Due to the typical inverted-pyramid cracking pattern of a cube specimen
under uniaxial load Figure 4.8(b), direct and indirect ultrasonic through-
transmission setups were evaluated. In Figure 4.8(b) , the different faces of
a particular cube have been labelled. The two direct ultrasonic configura-
tions were named relatively to the direction of the load. A-Ā corresponds
to measures acquired in the direction of the load and B-B̄ corresponds to
measures acquired perpendicular to the direction of the load. C-C̄ con-
figuration could not being measured due to the imperfection of C̄ (casting
face) generated by the manufacturing process of the specimens that leaves a
rough face. The four measured indirect configurations have been classified
between parallel and perpendicular to the casting planes (Table 4.3).
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Table 4.3. Layout configuration. ·̄ faces are the opposite

parallel faces.

Direct Indirect

‖ Casting Face A-Ā, B-B̄ A-B, Ā-B

⊥ Casting Face - A-C, Ā-C

Ultrasonic Layout

The layout of the experiment is plotted in Figure 4.2. The transducers em-
ployed for transmission and reception were the K1SC from General Electric.
Both are broadband transducers whose bandwidth is centered at 1 MHz.

The transmitted signals were different in each performed analysis: a 5 cycles
sinusoidal tone burst signal for time of flight estimation and a sinusoidal
permanent signal for attenuation and signal modality measurements. The
rest of the signal parameters for both cases were: amplitude, Atx = 10 V,
and the fundamental frequency, f0, was swept from 250 kHz to 1.5 MHz in
10 kHz steps (126 measures for each case).

4.5.2 Results

Traditional Ultrasonic Measures

Since the dynamic modulus of the material depends on the square of the
propagation velocity, p-wave speed inside the material gives an important
information about the loss of stiffness of the concrete caused by the cracking
process in the loading phase. Propagation velocity extracted from the ul-
trasonic wave in the different direct configurations for the whole measured
frequency range are represented in Figure 4.9.

At a glance, as the load percentage increments for cube specimens, the
wave velocity changes to lower values due to the stiffness loss. Load direc-
tion configuration measures (A-Ā) are plotted, showing a linear decrease
in the velocity. This behaviour matches with 0%, 25% and 50% series in
perpendicular configuration measurements (B-B̄). Nonetheless, in 75 %
load step, an important drop in velocity could be noticed due to the typical
aforementioned cracking pattern of the specimens. This behavior makes
more noticeable the differences between both dispositions.
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Figure 4.9. Ultrasonic p-wave velocity for direct configura-

tions: load direction A-Ā (solid line), and perpendicular to the

load direction B-B̄ (dashed line).

Attenuation measures have been plotted according to the layout configu-
rations described in Table 4.3: direct configuration, indirect parallel and
indirect perpendicular. Because of inhomogeneities present in the concrete
structure (gravel, sand, pore, micro-cracks, voids...), attenuation of elas-
tic waves gives important information about the different mechanisms of
absorption and reflection of the material. In this case, such mechanisms
depends directly on the cracking pattern of the cubes under the axial load.
The afformentioned asymmetry in loading process (and consequent hetero-
geneity in material state after the load) rises as the stress and subsequent
deformation increases, making more noticeable the differences between dif-
ferent configurations. Figure 4.10(a) shows the attenuation curves for direct
configuration. It can be observed that 0% series shows the lowest values
of attenuation for all frequencies as expected. 25% and 50% showed very
similar trends, being 50% series less attenuative than 25% in some cases.
75% series performed the most attenuative behavior in all frequency range,
exhibiting a relative huge difference between both configurations. Figure
4.10(b) shows the indirect measures parallel to the rough face. Here, the
0%, 25% and 50% series are quite similar, having the same trend and similar
values in all frequencies. 75% series have the highest values of attenuation
in the frequency analysis. Figure 4.10(c) shows the indirect measures per-
pendicular to the rough face, performing quietly the same behaviour in all
series and being slightly difficult to distinguish between levels of damage
and dispositions.
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Figure 4.10. Ultrasonic attenuation for each configuration

and level of damage: 0 % (gray), 25 % (green), 50 % (blue) and

75 % (red). (a) Direct configuration: load direction (solid line),

and perpendicular to the load direction (dashed line). (b)

Indirect configuration parallel to the rough face. (c) Indirect

configuration perpendicular to the rough face.

Signal Modality Approach

The degree of determinism quantifies how the pressure waves combine at
their propagation path as a function of the inner heterogeneities, and it
must be proportional to the damage suffered by the material. Figure 4.11
shows the computed degree of determinism of continuous sinusoidal signals
for all series and dispositions. Figure 4.11(a) shows the determinism curves
for direct configuration. It can be observed that determinism curves of 0
% drops at high frequencies (1.4 MHz). 25% and 50% performed practi-
cally the same behavior, DET drops to 0 values at 1.2-1.3 MHz. 75% series
drops under 1 MHz. Figure 4.11(b) illustrates the determinism curves for
the indirect configuration parallel to the casting plane. Notable differ-
ences can be identified for each level of load, being the differences between
the two dispositions bigger as the load increases. Unlike the attenuation
curves, the four determinism curves are easily identificable. Lastly, Fig-
ure 4.11(c) shows the determinism curves for the indirect configurations
perpendicular to rough face. Despite the attenuation curves were very sim-
ilar, the determinism curves progressively drop and allow identifying the
different levels of load. The differences in determinism between the indi-
rect configurations (Figure 4.11(b) and 4.11(c)) might be attributed to the
manufacturing process of the concrete cubes (wall effect, compaction pro-
cess, casting direction, etc.), being the signal modality approach the most
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sensitive characterization measure to distinguish between dispositions and
levels of load.
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Figure 4.11. Ultrasonic signal modality for each configu-

ration and level of damage: 0 % (gray), 25 % (green), 50 %

(blue) and 75 % (red). (a) Direct configuration: load direction

(solid line), and perpendicular to the load direction (dashed

line). (b) Indirect configuration parallel to the rough face. (c)

Indirect configuration perpendicular to the rough face.

4.6 Conclusions

In this chapter, the approach based on the predictability estimation has
been proposed for characterizing material damage using ultrasonic waves.
This brand new technique has been widely compared with several methods,
such as mechanical tests (compressive and flexural strenght determination),
dynamic test (dynamic modulus) measurements, and traditional measure-
ments (propagation velocity and ultrasonic wave attenuation). Two differ-
ent experiences have been evaluated in order to progressively demonstrate
the high sensitivity to damage in spoiled series, improving the reliability of
damage detection with ultrasonics in non-homogeneous materials compared
to other non-destructive techniques.

In the first experience, two concrete series with two types of cement class
with different C3A content and similar mechanical properties were assessed
in terms of External Sulphate Attack. Recurrence Quantification Analysis
showed valuable information about the degradation process. In the case of
W series, non-deterministic values are reached at higher wavelength values
than for the concrete before the sulphate attack. Moreover, damaged W
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series showed more dispersion (high standard deviation) in the results than
the W series in the initial stage. G series remained constant with slightly
changes in the results dispersion.

In the second experience, a detailed ultrasonic analysis of a concrete cube
under uniaxial load has been done. The degree of determinism accurately
characterizes the level of damage even when many echoes are superim-
posed and/or the wave-front trajectory cannot be accurately estimated. It
has demonstrated its ability to classify between dispositions and levels of
load. The typical pyramid-cracking pattern and its exhibited asymmetry
due to the concrete heterogeneity has been perfectly analysed in terms of
determinism when dispositions in indirect configurations were compared.

In the following, the degree of determinism may be used not only to charac-
terize damage occurring in materials but also to supplement the information
obtained by the attenuation curves. It has been observed that the attenu-
ation can vary both when the frequency increases and if any heterogeneity
is appearing (Figure 4.12). When damaging (or highly heterogeneous ma-
terial), the injected signal not only must suffer a significant decrease in
amplitude but also the random echoes are added to the travelling signal,
therefore, the rise of the attenuation levels must be accompanied by low
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values of determinism.

Summarizing, RQA method showed a significant improvement in damage
evaluation techniques (destructive and non-destructive ones) for different
reasons: DET measure is normalized (0 to 1 range), a calibration process
is not required, its standard deviation shows the damage dispersion, it
has higher sensitivity in damage detection in some situations and highly
contributes to diagnose the degree of damage of a material when is plotted
versus the wavelength of the emitted signal. It can greatly contribute to
the diagnosis of the degree of damage to a material, when combined with
other traditional measures such as the attenuation of the material.
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5.1 Introduction

Detecting non-linearities and complexity in time signals can be used in
many situations as an indicator of changes in the underlying dynamical sys-
tem responsible of the generation of those signals. In some disciplines, the
study of these phenomena has been avoided and it is a common practice to
model such processes using suboptimal, but mathematically tractable mod-
els. However, an adequate detection and characterization of the non-linear
and deterministic nature of the signal can convey important information in
a large number of situations such as: early symptoms of epileptic detection
with EEG signals [77], non-linear phenomena in mammalian voice produc-
tion [78], stock market predictability [79], river flow discharge rates [80],
etc.

Many authors have worked on different techniques to detect and charac-
terize non-linearities in time series. One of the most used methods rely
on the Monte-Carlo approach, namely the surrogate data bootstrapping
method. This approach is based on the computation of an ensemble of
surrogate data which are representative realizations of the null hypothesis
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under study. A statistical measure is computed for the original time series
and the surrogates. If the statistic is significantly different from the values
obtained for the surrogate set, the null hypothesis can be rejected. There-
fore, there are three major aspects of the surrogate data method that need
to be considered:

� The exact definition of the null hypothesis.

� The realization of the null hypothesis.

� The test statistic.
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Figure 5.1. Scheme of the surrogate data bootstrapping

method.

In the literature, different kinds of surrogate generation algorithms can
be found according to the null hypothesis under study: stationarity/non-
stationarity [81], determinism/randomness [82], linearity/non-linearity [83,
84], chaos [85], etc. A surrogate data generation algorithm for testing
fluctuations and trends in the data is the Small-shuffle surrogate algorithm
(SSS) [86], surrogate data generation algorithms for testing pseudo-periodic
or oscillating time series are the pseudoperiodic surrogates (PPS) [87] and
the twin surrogates (TS) [88] and surrogate data generation algorithms for
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testing linearity are the well-known Amplitude Adjusted Fourier Transform
(AAFT) [83] and its improved version, the iterative Amplitude Adjusted
Fourier Transform (iAAFT) [89]. In each analysis different statistical mea-
sures are applied to quantify the differences between the original data and
the surrogates. Some of the ones applied in linear analysis are the Kaplans
δ-ε method [90], the Deterministic Versus Stochastic plots [91], or the Delay
Vector Variance (DVV) [92].

Continuing with the line of though of the thesis, the use of the RP may have
an important role in the signal modality characterization framework. In this
work, we analyse how this visualization tool not only can be applied for the
generation of surrogate data but also for the quantification of statistical
differences between the original data and the surrogate data. Mainly, we
have focused in two main features of signal modality: the characterization
of the linear/non-linear nature of a signal and its complexity.

To explain these ideas, the phase space and the RP definitions are going to
be employed in the rest of the chapter. The expression of the phase space
reconstruction for a given N -point signal x[n] for an embedding dimension
E and a time lag L is used to compute the Delay Vectors DV s, ~XL,E (Eq.
2.3). Every delay vector DV has a corresponding target, basically, the
next sample xt[n] = x[n+ 1] [93]. The proper selection of E and L is done
according to the procedure studied in Chapter 2.

The remaining of this work is structure as follows. In Section 5.2 we will
present a selection of surrogate techniques that can be applied in real sig-
nals in order to test the linear/non-linear nature having non-stationary
behaviour and to test for oscillatory signals having higher complexity than
a quasi-periodic orbit. In Section 5.3 we will illustrate how by means of
RQA new discriminating measures for non-linear statistical tests can be de-
vised. In Section 5.4 some examples of signal modality characterization are
summarized, both with simulated and real signals. Finally, we will present
the conclusions in Section 5.5.

5.2 Surrogates

Theiler et al. [83] introduced the concept of ‘surrogate data’, which has
been extensively used in the context of statistical non-linearity testing. A
surrogate time series, or surrogate for short, is generated as a realization of
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the null hypothesis under study. So given an original signal, realizations of
this data must be generated only modifying the desired characteristic of the
signal which is being tested remaining all the rest of properties. Care must
be taken when using surrogate data to ensure that statistical differences
come from the desired characteristic and not from an undesired one, such as
a failure of the surrogate algorithm to mimic non-stationary data. Choosing
a surrogate technique that does not mimic these fluctuations or changes the
statistical distribution may lead to false positives.

We next present two techniques for the generation of surrogates which will
be used later in statistical analysis based on RQA. The first one is used
to detect the presence of non-linearities whereas the second one uses RP
concepts to generate surrogates valid for testing high complexity in short
oscillatory signals.

5.2.1 Testing non-linearity

One of the key issues in signal modality is the definition of a linear signal.
The standard definition is that such a signal is generated by a Gaussian
linear stochastic process. Based on this definition the null hypothesis re-
mains on the properties of any AR-model driven by white noise. Since any
AR-model can be described by its amplitude spectrum and, therefore, the
phase spectrum is irrelevant, most of surrogate data generation algorithm
for testing linearity are based on a phase spectrum randomization. The
most common established method for generating constrained surrogates is
the Iterative Amplitude Adjusted Fourier Transform (iAAFT) [89].

Iterative Amplitude Adjusted Fourier Transform (iAAFT)

Let x[n] be the original time series, s[k] the sorted version of x[n] and
X[f ] the Fourier transform of the original data series. The original iAAFT
algorithm is based on the following steps:

1. Make a random permutation of the time samples of the original time
series x[n], namely r[n].

2. Compute the phase spectrum of r[n], namely φ[f ].

3. Compute the Inverse Fourier Transform of {|X[f ]|·exp(jφ[f ])}, namely
c[n].
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4. Obtain a new version of the time series r[n] by rank-ordering (sort in
increasing order) c[n] so as to match s[k].

5. Repeat steps 2-4 until the discrepancy between |X[f ]| and the ampli-
tude spectrum of r[n] is lower than a chosen tolerance.

This iterative algorithm has been shown to converge after a finite number
of steps [89]. Each initial random permutation gives a different output
surrogate data r[n] with identical signal distribution and approximately
identical amplitude spectra as the original signal.

Figure 5.2 shows an example of a surrogate data of the AR model seen in
Eq. 2.20. Figure 5.2(a) compares the temporal evolution of the original
data (blue) and the surrogate data (red). Both realization share the same
statistical distribution (Fig. 5.2(b)), as well as their amplitude spectrum
(Fig.5.2(c)). However, according to the algorithm, the resulting surrogate
data presents a random behaviour of the spectrum (Fig. 5.2(d)).

The process of generating surrogates always starts with a finite length time
series with an initial value (x[0]) and a final value (x[N − 1]). Special at-
tention must be taken when generating surrogate data of stationary signals
which extremes may be different significantly (x[0] 6= x[N − 1]). Due to
the use of the Fourier Transform, the periodicity of the signal is assumed
and the interval of the signal must correspond to an hypothetical periodic
signal (or an integer number of it). Otherwise, the resulting surrogate data
may significantly differ on its temporal domain, the discriminating test will
fail, and the null hypothesis automatically accepted. An example of this
is illustrated in Figure 5.3 where we show two resulting surrogate data of
a sinusoidal signal for both cases: upper part of the panel, both extremes
of the interval are carefully chosen to simulate a periodic interval of the
signal; lower part of the panel, extremes of the original time signal signif-
icantly differ. Note that in the second case, the surrogate does not model
the original data despite the amplitude Fourier Transform closely match.

The original iAAFT method has recently been refined in order not only to
retain the signal distribution and amplitude spectrum of the original time
series, but also the local mean and variance of the original time series [94].
This new approach uses a wavelet transform to preserve the behaviour in
the time-frequency plane. It makes this new technique most suitable to non-
stationary signals which time-changing properties that would be destroyed
using the original iAAFT algorithm.
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Figure 5.2. Example of a surrogate data generation algo-

rithm iAAFT for a realization of Model I (Eq. 2.20).

Wavelet Iterative Amplitude Adjusted Fourier Transform (WiAAFT)

Let x[n] be the N-point original time series and s[n] the sorted version, x[n]
is decomposed in J scales, where N = 2J , the scales j ranges j = 1, 2, . . . , J .
The WiAAFT algorithm can be summarized as follows:

1. Compute the Maximal Overlap Discrete Wavelet Transform (MODWT)
of the original time series x[n] using a high number of vanishing mo-
ments to deal with any potential non-stationarity in the series [95].
The result is a wavelet detail coefficients at each scale j, cj .
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(d) Frequency domain

Figure 5.3. Example of the potential pitfalls one can have

when using the iAAFT in sinusoidal signals.

2. Apply the iAAFT algorithm to each cj to generate a constrained
realization of the original detail coefficients, c′j , preserving the original
values and their periodicity.

3. Transpose c′j so that the first detail coefficient in the transposed case
is the last in the new variant, c′′j .

4. Find the best match in each scale between cj and the two variants,
c′j and c′′j , by circularly rotating until an error function is minimized.
In this work, least-squares is used. This will mean that the positions
with high energies in the original data are mimicked in the surrogates.
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5. Invert the MODWT (using the original approximation coefficients)
to yield a surrogate dataset, w[n].

6. Perform rank-ordering (sort in increasing order) to w[n] so as to match
s[n].

7. Use the new time series w[n] as the initialization of the described
iAAFT algorithm (Step 2 where r[n] = w[n]).

Therefore, this new approach represents the seed for the original iAAFT
giving a closer solution to the original data. Figure 5.4 compares the sur-
rogate data computed with the original iAAFT algorithm and the new
WiAAFT for a heart rate variability signal (HRV) recorded during a med-
itation session. HRV signals are widely used to analyse humans health,
however, one of the main challenges from the signal processing point of
view is the presence of many artefacts or temporal changes in the recorded
time series due to different factors such as patient motion, eye blinking,
etc. The blue line represents the original time series. The green line cor-
responds to the surrogate data computed using the iAAFT. Note that the
iAAFT has almost destroyed the temporal structure of the original signal.
The red line plots the surrogate data computed with the WiAAFT, which
though still is a random realization compared with the original signal it
highly preserves the time evolution of the original data.
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Figure 5.4. Comparison between two surrogate data gen-

eration algorithms: iAAFT and WiAAFT, for a heart rate

variability signal (HRV) recorded during a meditation session.
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5.2.2 Testing complexity

Oscillatory signals can be frequently found in the solution of real world
problems. Sometimes these signals have a high complexity in the oscilla-
tions that may evidence the presence of non-linearities. Some examples are:
the study of bi-phonation, sub-harmonics or other pathologies in animal
sounds [96], the study of non-linearities in ultrasonic signals [97], etc. In
most of these problems conventional surrogates have a limited use, mainly
due to the finite duration of the events that need to be analysed and to the
sensitivity that needs to be achieved. Some of the techniques that rely on
the Fourier Transform require long data series and thus, specific algorithms
for the generation of surrogates in short length oscillating data have to be
devised.

In the literature, there are two methods that preserve the higher order
moments for the surrogate generation of oscillatory signals [87, 98]. The
first method, called pseudoperiodic surrogates (PPS), was proposed in [87]
by Small et al. (2001). It mimics the phase space of the original data,
by adding some dynamic noise in such a way that any existing fine dy-
namics (which are closely related to chaos) are destroyed. This method
was first proposed to test the null hypothesis that an observed time series
is consistent with an (uncorrelated) noise-driven periodic orbit. However,
this method does not provide good results when applied to the problem of
characterizing/ differentiating complex patterns of amplitude modulation
(chaos) from quasi-periodic signals obtained as the sum of sinusoids with
incommensurate frequencies. The amount of dynamic noise that needs to
be added to remove the fine patterns in an oscillatory signal strongly de-
pends on the complexity of the signal (more complex signals need more
dynamic noise to remove details). Thus, the method cannot be applied
to compare two low-noise oscillatory orbits that have a different degree of
complexity. The second method, called twin surrogates (TS), was proposed
in [98] by Thiel et al. (2006). It reproduces the trajectory of the underlying
system by visiting the attractor in a different way. These surrogates were
devised to test for complex synchronization problems. Importantly, this
algorithm can also be used to distinguish chaos from quasi-periodicity us-
ing RQA. To this end we have to deal with some practical implementation
problems when generating surrogates with the TS algorithm for short time
series (such us the limited number of twins [99]). We propose combining
both algorithms (PPS and TS) to introduce a new surrogate generation
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algorithm to the characterization of complexity of oscillatory signals.

Pseudo-Periodic Twin Surrogates (PPTS)

The PPTS algorithm uses the phase space and RP concepts in order to ob-
tain the surrogates. This is achieved embarking upon the idea of jumping
among twin points in the same way the TS algorithm does. Twin points are
points which are not only neighbors || ~X[i]− ~X[j]|| < εTP ; but also share the
same neighbourhood RP (i, l) = RP (j, l) ∀l. The choice of εTP is not cru-
cial; it has been shown in [98] that a choice of εTP corresponding to 5% -10%
of black points in the RP is appropriate. Twin points are indistinguishable
regarding their neighbourhoods, but, in general, they have different pasts
and, more importantly, different futures. Surrogates can be generated by
changing the structures in the RP consistently with those produced by the
underlying dynamical system. Jumping among twin points produces sur-
rogates with very similar RP representations to the RP representation of
the original signal if the time signal is periodic or quasi-periodic (similar
futures). In contrast, jumping among twin points produces surrogates with
quite different RP representations for a chaotic signal.

Unfortunately, jumping among twin points is not always enough to generate
surrogates that allow to stablish the confidence level for null test rejection.
Additionally, there exist some practical implementation problems with the
TS algorithm for short time series (such us the limited number of twins
[99]). Thus, the PPTS algorithm uses a second randomization technique.
It consists in moving from point to point in the phase space in accordance
with a probability that is inversely proportional to the distance between
the two points (Eq. 5.1). The proposed PPTS algorithm is summarized as
follows:

1. Compute the RP of the original signal using Eq. 2.11, with an ap-
propriate choice of ε, denoted by εTP , and identify the twin points
(RP (i, l) = R(j, l) ∀l).

2. Randomly choose an initial condition i0 and make i = i0. Initialize
n = 1.

3. If there is a twin point for ~X[i], make the next point of the surrogate
~Xs[n] = ~X[j], where j is randomly chosen among the twin points

with the probability 1/T (T is the number of twin points for the
state ~X[i]). Let i = j and n = n+ 1.
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4. For ~X[i], choose a neighbour ~X[j] from all of the elements of the
phase space representation (j = m · τ, . . . , N − 1) with probability

Prob( ~X[j]) ∝ exp−||
~X[i]− ~X[j]||

ρ
(5.1)

where ρ is the noise radius studied in [87]. Make the next point of
the surrogate ~Xs[n] = ~X[j]. Let i = j and n = n+ 1.

5. Repeat from Step (3) until n = N .

The surrogate is formed from the first scalar component of ~Xs[n].

The proposed PPTS algorithm generates surrogates that are very similar to
the original signal as long as the original signal is periodic or quasi-periodic.
When the original signal deviates from a periodic or quasi-periodic oscilla-
tion the PPTS generates surrogates that have quite a different RP matrix
while still preserving the approximate phase space shape of the original sig-
nal. Thus, these surrogates are appropriate for testing the null hypothesis
that the observed time series is consistent with a quasi-periodic orbit. This
is going to be illustrated in the following example (all the PPTS examples
in this work were computed using a εTP corresponding to 10 % of black
points in the RP).

Consider the following signals: a quasi-periodic time series composed of the
sum of two sinusoids with incommensurate frequencies [100] and a Rössler
chaotic time series. The quasi-periodic signal was generated as given by:

x(t) = 8 · sin(2 · π f1 · t) + 4 · sin(2 · π · f2 · t) (5.2)

where f1 =
√

3 Hz, f2 =
√

5 Hz. The discrete time series version x[n] is
obtained using a sample period of ∆t = 0.02 . We only generate 400 samples
of this signal. The Rössler signal is generated as given by Equation 2.14
seen in Section 2.4. Figure 5.5 illustrates the phase space reconstruction
(with E = 3 and L = 6) of the original quasiperiodic time series, the
PPS and the PPTS. When comparing the PPS and the PPTS, it can be
observed that for quasi-periodic signals, both algorithms achieved similar
phase space reconstructions. Note that 2-D projections have been plotted.

The phase space reconstruction of the Rössler signal is shown in Figure
5.6. In this case two examples of the PPS were compared. When compar-
ing Figure 5.6(b) and 5.6(d), it can be observed that for the same noise
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Figure 5.5. Phase space reconstruction of a sum of sine

waves. (a) Quasi-periodic time series. (b) Surrogates obtained

with the PPS algorithm (ρ = 0.25). (c) Surrogates obtained

with the proposed PPTS algorithm (ρ = 0.25).

radius (ρ = 0.25), the proposed PPTS algorithm achieves a phase-space
representation that removes most of the details which evidence chaos (the
large number of trajectories that run arbitrarily close together) while at
the same time preserving the shape of the original time series. The PPS
algorithm would need a higher noise radius (ρ = 0.55) to produce similar
detail removal (Fig. 5.6(c)). However, using such a high noise radius will
produce noisy surrogates, and this lowering of the signal to noise ratio is
always inherent in the null test hypothesis of the PPS.

These two examples also show one of the weak points of the PPS algorithm
when it is used to compare the complexity between orbits: the selection of
the noise radius (ρ). The selection of the noise radius in the PPS is strongly
related to the amount of detail that has to be removed. Thus, signals that
have a chaotic structure require higher values of ρ than signals that do not
have that structure. This makes the PPS algorithm unsuitable for distin-
guishing between chaotic and quasi-periodic time series with comparable
noise levels. The proposed PPTS algorithm overcomes this weakness and
achieves enough detail removal regardless of whether the signal is chaotic or
quasi-periodic; therefore, it can be used as a feasible alternative to establish
the confidence intervals when testing for quasi-periodic deviation.

All these details are also captured and represented in the structures of the
RPs (see Fig. 5.7). The appropriated metrics for testing with the PPTS
(or some of the rest of the presented surrogates) can then be obtained by
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Figure 5.6. Phase space reconstruction of Rössler attractor.

(a) Rössler chaotic time series. (b) PPS algorithm (ρ = 0.25).

(c) PPS algorithm (ρ = 0.55). (d) PPTS algorithm (ρ = 0.25).

means of the RQA. This idea, that will be developed in the following section,
will allow us to create tests to distinguish between oscillatory signals with
different complex patterns of amplitude modulation.

5.3 Discriminating Statistics

In order to test the null hypothesis of linearity, a statistical discriminating
measure has to be performed on both the original data and the surrogates.
Many different techniques and statistical tests have been suggested for this
purpose. Some of the discriminating statistics are based on computing
Lyapunov exponents, return maps or some other graphs or functions rep-
resentative of the topology of the underlying dynamics. The computation
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Figure 5.7. (a)RP representation of the Rössler attractor.

(b) RP representation of the PPTS for the Rössler attractor .

(c) RP representation of the quasi-periodic time series. (d) RP

representation of the PPTS for the quasi-periodic time series.

The PPTS were computed with εTP corresponding to 10% of

black points in the RP and a ρ = 0.25.

of these functions may be quite complex in real world signals. As a re-
sult of this difficulty, a large number of techniques that compute a much
more simple graphical representation of the underlying system have been
developed. Some of the most cited methods are the Deterministic Versus
Stochastic plots [91], the Kaplans - method [90], the correlation exponent
[101], or the Delay Vector Variance (DVV) [92].
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All these methods introduce, alongside with the already presented DVs (Eq.
2.3), the concept of the target of the DV xt[n]. The idea underpinning these
methods is that the study of the evolution functions f(·) (continuous sys-
tems, Eq. 2.1) or F(·) (discrete systems, Eq. 2.2) which maps the DVs onto
their corresponding targets. The analysis is done by means of the locality
of the unknown models, when combined with the method of the surrogates
provides information of the non-linear behaviour of the underlying process.
The degree of locality of a time series is closely related to the distribution
of the nearest neighbour points, however, each method analyses the local-
ity degree using different approaches: mean of the targets, variance of the
targets, prediction error, etc. Despite of the fact, none of the techniques
exploits the advantages of the RP and, therefore of the RQA.

The RPs can widely help in designing robust and less parameter dependent
tests for non-linearity detection. In the following section, a detailed analysis
of one of the aforementioned methods is done in order to further understand
the motivation of this new approach and its potential.

5.3.1 Delay Vector Variance

The delay vector variance (DVV) method is a phase space based technique
which examines the deterministic nature of a time series and when combined
with the method of surrogates data provides information of the non-linear
behavior of the underlying process.

The DVV method can be summarized as follows [92].

1. Given the optimal embedding parameters, E and L, generate the
delay vectors (DVs) following Eq. 2.3. Every DV , ~X[n], has a corre-
sponding target, namely the next sample xt[n].

2. The mean, µd, and the standard deviation, σd, are computed over all
pairwise Euclidean distances between DVs, || ~X[i]− ~X[j]||(i 6= j).

3. The sets Ωk(rd) are generated such that:

Ωk(rd) =
{
~X[i] | || ~X[k]− ~X[i]|| ≤ rd

}
i.e., sets which consist of all DVs that lie closer to ~X[k] than a certain
distance rd, taken from the interval [max {0, µd − ndσd}], e.g., Ntv
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uniformly spaced distances, where nd is a parameter controlling the
span over which to perform the DVV analysis.

4. For every set Ωk(rd), the variance of the corresponding targets, σ2k(rd),
is computed. The average over all sets Ωk(rd), normalized by the
variance of the time series, σx, yields the target variance, σ∗2(rd):

σ∗2(rd) =
1
N0

∑N0
k=1 σ

2
k(rd)

σ2x
, (5.3)

where N0 denotes the total number of sets Ωk(rd).

5. Repeat steps 1 to 4 for the Ns surrogates.

The DVV analysis can be conveniently illustrated in the resulting DVV
plots where the x-axis corresponds to the standardized distance rd, and the
y-axis corresponds to the target variance. If the surrogate data yield similar
results to that of the original signal, the target variance of the original signal
fall into the confidence interval and the null hypothesis cannot be rejected.
Figure 5.8 shows the DVV analysis for two deterministic examples where
the input parameters were Ntv = 50 uniformly spaced distances, nd = 3
and Ns = 99 surrogates. Each signal phase space was reconstructed using
its corresponding embedding parameters (E and L). The quasi-periodic
signal (Eq. 5.2 , Fig. 5.8(a)) results in a linear example where the original
signal target variance falls into the surrogate data distribution. However,
for the Rössler atractor analysis (Eq. 2.14, Fig. 5.8(b)) the linear surrogates
computed by the iAAFT algorithm yield variance vectors different from the
original signal.

Due to the standardization of the intervals of rd, both statistics from the
original and the surrogates can be jointly represented in the so-called DVV
plots. The x-axis corresponds to the original target variance, and the y-axis
represented as an errorbar represents the surrogate target variances. When
the signal under study has a linear nature, the distribution will correspond
to the bisector line, otherwise, they will not match. Figure 5.9 presents
both previous examples: panel a), the quasi-periodic signal; panel b) the
Rössler attractor. We also present in Figure 5.9 the DVV plots of two
stochastic processes. Figure 5.9(c) represents the DVV analysis for Model
I (Eq. 2.20) and Figure 5.9(d) represents the DVV analysis for Model II
(Eq. 2.21).
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(b) Rössler Attractor

Figure 5.8. DVV analysis for two deterministic examples.

The input parameters were Ntv = 50, nd = 3 and Ns = 99

surrogates.

The potentiality of this technique not only resides on its capability to detect
non-linear behaviour but also to do it based on the randomness/ determin-
istic nature of the signal. In Figure 5.9, note that for the deterministic
signals (upper part of the panel) the target variance vector has the lowest
value under 0.2, however, in the case of stochastic signals, the lowest values
(above part of the panel) are greater. Therefore, this technique is able to
both characterise the degree of uncertainty and linearity simultaneously.

Despite of the potentiality of the technique both when characterising the
deterministic/randomness of the signal, and its linear/non-linearity, the
authors are quite critical when applying it to real signal due to two main
aspects both related to the non-stationarities habitually present in real com-
plex signal. The first issue is not strictly related to the DVV algorithm but
to the iAAFT algorithm. It is mostly solved by the usage of the WiAAFT
algorithm presented in Section 5.2.1. The second is related to the estimator
applied on the targets points. It allows the study of the evolution function
for the original signals and the surrogates, however, it might not be robust
on real signals. In the following both issues are discussed:

� The original iAAFT algorithm is substituted by the recently proposed
WiAAFT.

� The statistical test computed on the target domain based on the
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Figure 5.9. DVV plots for two deterministic (a) and b)), and

two stochastic (c) and d)) examples. The input parameters

were Ntv = 50, nd = 3 and Ns = 99 surrogates.

variance estimator is modified by the usage of any RQA measure.

5.3.2 Reformulation of the DVV using RPs

Those readers familiar with the RPs may readily understand that the com-
putation of the DVV plot can be explained by using RP concepts. The RP
is a 2D plot showing, for a given moment in time, the times at which a
phase space trajectory visits roughly the same area in the phase space. As
a result of that, for a given DV from the RP we can easily found the DVs
that are closer than a given distance rd, completely equivalent to the so
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called ε in the RP (Eq. 2.11), just by looking in the corresponding column
of the RP(ε). Figure 5.10 illustrates this idea and shows how we can obtain
the corresponding set of targets (horizontal red and green lines), Ωk(rd) in
the DVV algorithm, for the later computation of its variance. The red and
green vertical lines are two randomly chosen DVs (~x(i0) and ~x(i1) respec-
tively E = 3, L = 1) represented in the bottom panel using asterisks. The
red and green horizontal dashed lines are their corresponding neighbours
lying within the distance ε. The red circles in the left panel are the corre-
sponding targets of ~x(i0) whereas the green squares are the corresponding
targets of ~x(i1). The RP was computed for an ε corresponding to 14 % of
black points.

In this way, for a given i0 and ε, we obtain lε ⊆ {j} s.t. Ri0j = 1, and
σ2i0(ε) = V AR[xlε ], where V AR[·] is a variance estimator and xlε is the
target of the DV ~x(lε). Averaging this variance for N0 different DVs and
dividing by the variance of the time series (σ2x) we obtain Eq. (5.4) which
is clearly equivalent to Eq. (5.3). Notice that the plot of this normalized
variance σ∗2(ε) as a function of the standardized distance is the DVV plot.
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Figure 5.10. Example of how to find, using the RP(ε), the

nearest DVs and the normalized variance of its targets.

σ∗2(ε) =
1
N0

∑N0
i=1 σ

2
i0

(ε)

σ2x
(5.4)
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The analysis of targets variance according to a distance rd, in the DVV
algorithm, or a distance ε, in the RP, is an indicator of the recurrence
behaviour of the studied phase space. This is not the only way to quantify
the number and duration of recurrences of a dynamical system presented
by its phase space trajectory. A proper selection of a RQA measure may
allow an equivalent analysis, less parameter dependent and with greater
robustness.

RQA measures as discriminating statistics

The main purpose of the statistical test within the surrogate data method
is being sensitive to any changes exclusively related to the null hypothesis
under study. For that reason, it must be highlighted the need to understand
the signal modality characteristic being studied, and its relationship with
the applied surrogate data generation algorithm.

As discussed in Section 5.2, the hypothesis of non-linearity is linked to the
presence of information on the phase spectrum. The randomization of the
phase spectrum leads to significant changes in the structure of the signal.
The surrogates of a non-linear signal (using the WiAAFT algorithm) de-
spite preserving the probability distribution and the spectrum amplitude
(and therefore, the autocorrelation function) of the original signal, have
a new arrangement of closest points. The DVV algorithm detects these
changes through the variance of the targets of the closest points. An equiv-
alent measure of RQA susceptible to the distribution of the closest points
is the Trapping Time (TT ), a statistic linked to the length of the vertical
lines. The TT is related with the laminarity of the dynamical system, i.e.
how long the system remains in a specific state. The study of TT parame-
ter as a function of the recurrence threshold ε allows to study the evolution
of recurrent states with increasing percentage of nearby points. In the case
of linear signals, the statistic computed for the surrogate data will coincide
with the vector TT (ε) of the original signal. Otherwise, the difference
between statistics allows the identification of non-linear signals.

A similar argument can be given regarding the hypothesis of complexity us-
ing the PPTS algorithm (Section 5.2.2). Jumping among twin-points when
generating the surrogates, break the diagonals when the signals deviate
from a quasi-periodic oscillation. This produces surrogates with different
diagonal line length in the RP for temporal series having high complexity
while maintaining approximately the same diagonal line length in quasi-
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periodic ones. An equivalent measure of RQA susceptible to the diagonal
line length distribution is the average diagonal line length (Ld), or any
other parameter related to the diagonal line length (see Table 2.2). The
study of Ld as a function of the recurrence threshold ε and the comparison
with that of its surrogates allows the identification of complexity.

Note that in both analysis, the compared statistics (original signal and
surrogates) need to be computed having the same percentage of black points
in the RP matrix. In this work a swept between the 10 % and the 80 % of the
black points has been done. This new proposed representation (from now on
called DVRQA, Delay Vector Recurrence Quantification Analysis) avoids
the problem of choosing the most appropriate threshold for computing the
RP in an unknown situation. Among the advantages of statistical analysis
based on RQA it must be highlighted that it uses the entire signal, unlike
the aforementioned techniques that only take into account some randomly
chosen points. This supposed to be a more robust technique, less parameter
dependent and with smaller resultant confidence intervals. On the other
hand, the use of any estimator is avoided, such as the variance which needs
a high minimum number of points for correct estimation.

The modality tests done in this work will compare different kind of Re-
currence Quantification metrics computed for the original signal to those
obtained for an ensemble of surrogates. If the metric of the original signal
is significantly different from those of the surrogate, the null hypothesis
is rejected. Since the analytical form of the probability distribution of
the applied metric is not known, a non-parametric rank-based test is used
[102]. In this work, for every original time series, we generate Ns = 99
surrogates. The metric for the original signal, to, and for the surrogates,
ts,i(i = 1, . . . , Ns), are computed and the series {to, ts,i} is sorted in in-
creasing order, after which the position index (rank) r of to is determined.
A right-tailed test is rejected if rank r of the original time series exceed 90.

The metric used in the analysis is the same as in the original DVV algo-
rithm but substituting the variance estimator for each of the applied RQA
parameters, ξ, in each case:
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tTEST =

√√√√〈(ξ2(ε)− ∑Ns
i=1 ξ

2
s,i(ε)

Ns

)〉
ε

(5.5)

where ξ2(ε) is the corresponding RQA metric at recurrence threshold ε for
the original signal, ξ2s,i(ε) is the corresponding RQA metric at recurrence
threshold ε for the i − th surrogate, and the average is taken over all the
threshold vector. In this way, a single test statistic is obtained, and the
aforementioned right-tailed surrogate testing can be performed.

5.4 Applications

This section presents some results of signal modality characterization for
the detection of non-linearities and complexity both using the surrogate
data generation algorithms presented in Section 5.2 and the test statistics
based on RQA measures presented in Section 5.3.

5.4.1 Non-linearity characterization

The linear and non-linear nature of time series is examined by perform-
ing the DVRQA analysis on both the original and 99 surrogates time se-
ries computed with the WiAAFT algorithm. The applied statistical mea-
sure was the parameter TT . In the following this technique is referred as
DVRQA/TT. To verify the proposed technique a number of time series
with different linear and non-linear natures, deterministic and stochastic
are generated. Each of the generated signals consists of 1024 samples. The
first set corresponds to deterministic examples: sum of two sinusoidal sig-
nals (Eq. 2.16) and the quasiperidic signal (Eq. 5.2), and two non-linear,
the Rössler signal (Eq. 2.14) and the Lorenz signal (Eq. 2.15). The second
set correspond to four stochastic processes: two linear, Model I (Eq. 2.20)
and Model III (Eq. 5.6), respectively, and two non-linear, Model II (Eq.
2.21) and Model IV (Eq. 5.7).

y[n] = 0.3 + 0.7 · y[n− 1] + v[n] + 0.4 · v[n− 1] (5.6)

where y[0] = 0 and v[n] is a standard normal distribution, N(0, 1).
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y[n] = (
√

1 + 0.5 · y[n− 1]) · v[n] (5.7)

where v[n] is a standard normal distribution, N(0, 1). For each signal, the
optimal embedding parameters have been determined using the RQA/TT
technique studied in Section 2.4.

The results for the DVRQA analysis are illustrated in Fig. 5.11. For
the sum of sinusoidal signals (Fig. 5.11(a)) and the quasiperiodic signal
(5.11(b)), the computed TT vector for the original signal coincides with
the results obtained for the surrogates, therefore, the linear null hypothesis
cannot be rejected. Figures 5.11(c) and 5.11(d) correspond to the simu-
lation of the Rössler and Lorenz signals, respectively. In those cases, the
resulting TT values for the original signal significantly differ from the ones
for the surrogates in both extremes of the graph. The resulting value of the
rank-order test, r, is 100. For the stochastics Models I and III (Fig. 5.11(e)
and 5.11(f)), the values of TT fall into the confidence interval defined by
the surrogates. However, in the case of the non-linear Models II and IV
(Fig. 5.11(g) and 5.11(h)), original and surrogate statistics are clearly dif-
ferent. Undoubtedly, the variable r is equal to 100 and the null-hypothesis
related to linearity can be rejected.

Note that for the continuous deterministic time systems (panels a),b), c)
and d)), the maximum value of the parameter TT is higher than the one
computed for the stochastic signals (panels e), f),g) and h)). High values
of TT appear for continuous time systems with a fine time resolution and
with a not too small recurrence threshold ε [41, 37]. Analogously to the
DVV algorithm, this technique detects the presence of non-linearities based
on the comparison of the locality between the original data and the surro-
gates. Moreover, it is interesting to see that linear surrogates in the case of
deterministic signals (panels c) and d)) present larger values of TT (which
is closely related to its lower complexity), compare to the linear realization
of the stochastic processes (panels g) and h)) which present shorter values
of TT . It might be due to the broken underlying non-linear structures.
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(a) Sinusoidal signal. r=51
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(b) Quasiperiodic signal. r=66
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(c) Rossler signal. r=100
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(d) Lorenz signal. r=100
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(e) Model I. r=72
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(f) Model II. r=55
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(g) Model II. r=100
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(h) Model IV. r=100

Figure 5.11. DVRQA/TT analysis with 99 WiAAFT sur-

rogates performed on eight simulated time series using their

corresponding embedding parameters.
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Unfortunately we have not found any real application where applying the
new propose algorithm, neither the DVV algorithm. Despite having worked
on the problem of the non-stationarities of the real data, and the problem
of the estimator related to the following sample, we cannot certainly claim
that this blind approach may detect real linear/non-linear data. However,
we have worked out the complexity characterisation by means of the new
approach based on the PPTS surrogate data generation algorithm and the
DVRQA method.

5.4.2 Complexity characterization

Regarding the complexity characterization, we have focused on the bioa-
coustic problem of irregular animal vocalizations. Being able to detect
these irregular vocalizations is an important thing since they may convey
information about pathologies in the voice production organs. In order
to demonstrate this idea we have employed a database from [103]. The
database contains dysphonic sounds from animals, and was recorded in a
clinic for small animals with a sample frequency of 22050 Hz.

We analysed a recording containing dog barking sounds with different Har-
monic to Noise Ratio (HNR). This parameter can be used in animal bioa-
coustics to quantify dysphonia. Normal sounding dogs occupy a middle
HNR range, while dysphonic dogs exceed this range to higher as well as
to lower HNR values [104, 105]. Figure 5.12 shows the time representation
of a fragment of the sound alongside with the phase space representation
(only the first two components of the DVs). It is interesting to emphasize
that the phase space representation of both the original and one of the
surrogates, are quite similar; although in the time domain, the surrogate
sequence seems to be more homogeneous (lower complexity).

Figure 5.13 shows the three different sounds with low, medium and high
HNR. We have performed the DVRQA test using the average diagonal
line length (Ld) as the discriminating statistic and using a limited number
of samples (400 samples). The null hypothesis is that the signal can be
obtained as the sum of sinusoids with incommensurate frequencies. The
confidence interval was established comparing with 99 PPTSs. The results
show that the medium and high HNR dog barks reject the null test evi-
dencing non-linear deterministic chaos (rank-order test, r=90 and r=100
respectively). The DVRQA test cannot only be employed to detected but
also to quantify in accordance with the HNR.
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Figure 5.12. Up) Time representation of the medium HNR

dog sound alongside with its phase space representation.

Down) Time representation of one of the surrogates obtained

with the PPTS alongside with its phase space representation.

5.5 Conclusions

In this chapter we have analysed the problem of using hypothesis testing for
non-linear detection and characterization of complexity in temporal series
from the RPs point of view. In order to do this we have focused on both,
the generation of surrogates and the devising of statistical tests. Regarding
the surrogate generation, we have worked with the WiAAFT algorithm,
a technique which maintains the temporal structure of the original signal
while at the same time provides enough degree of randomness to obtain
valid surrogates for testing non-linearity (suitable for non-stationary sig-
nals). We have also raised a different kind of surrogates, the PPTS, that
are valid for detecting non-linear determinism and complexity in short os-
cillating signals. In the devising of this new kind of surrogates the RPs play
an important role in the definition of twin points and in the final under-
standing of the algorithm. We have also demonstrated that the RPs are a
valid tool not only for the generation of surrogates, but also for the design
of the statistical tests. This has been illustrated by reformulating the DVV
method using RPs.

This analysis has led to the creation of new discriminating tests based on
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RQA oriented to hypothesis testing, mainly non-linear and complexity de-
tection. The proposed test (DVRQA) has the advantage of analysing the
recurrent structures avoiding the problem of choosing the most appropriate
recurrence threshold in an unknown situation. The selection of the RQA
metrics has to be carefully chosen depending on the surrogates. The trap-
ping time parameter captures significant differences in the recurrences, and
therefore, it is appropriate for testing non-linearity with the WiAAFT al-
gorithm. Whereas the PPTS has proven to be useful for testing complexity
in short oscillating signals using the averaged diagonal line length.

We have demonstrated through simulations that we can detect non-linearities
in signals of different nature (stochastic and deterministic) using the pro-
posed algorithms. Moreover, we have analysed the problem of anomalies
in voice production of mammals and the use of algorithms for their detec-
tion and characterization. The analysis of a database containing real-world
sounds from dysphonic dogs, has shown that the Ld parameter, alongside
with the PPTS, allows establishing relationships among the HNR, the com-
plexity and the dysphonic dog barking sounds.
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Non-linear Impact Acoustic Spectroscopy6
6.1 Introduction

The study of the vibration of engineered materials is obtaining high levels
of interest from scientific communities due to the accuracy and facility
of damage assessment [106, 107]. Concrete is an inhomogeneous material
with a mesoscopic structure, multi-scaled, from nano- to millimetric sizes,
where Hertzian contact between particles predominates. In this material,
an anomalous resonance frequency shift appears (a change in the elastic
constants) when excited by an external source.

y[n]

n

x[n]

n

Figure 6.1. Schematic representation of a vibrational experi-

ment, where the input x[n] is an impact and the output y[n] is

the acceleration of the specimen proportional to its vibration.
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Figure 6.1 shows an schematic representation of the experimental showing
the input impact x[n] and the output y[n]. This vibration is attenuated
and finally stops, returning to its primary state, as the driving amplitude
decreases and low strain values are reached [108]. The system varies its
dynamical modulus, K, as a function of the input amplitude and the cor-
responding strain, therefore, it does not obey the linear systems property
of homogeneity seen in Chapter 1.

The first studies in mesoscopic materials focusing on its dynamic behaviour
were carried out for rocks and granular solids like sandstone and limestone,
reporting non-linear and hysterectic responses, while trying to model this
phenomenon with complex equations [109, 110]. Van Den Abeele et al.
[111] presented a one-dimensional constitutive relation between the stress
and strain in this new class of materials (Eq. 6.1):

K(ε, ε̇) = K0 · [1− βε− δε2 + α[∆ε+ ε · sign(ε̇)]] (6.1)

where K is the non-linear hysteretic modulus with K0 denoting the linear
modulus, β and δ the classical quadratic and cubic non-linear parameters,
respectively, ε the strain, ∆ε the strain amplitude in a cycle, ε̇ the strain
rate, sgn(·) is the sign function and the parameter α is a measure pro-
portional to the hysteresis of the material. Figure 6.2 shows a graphical
representation of Equation 6.1. For low strain ratios, the hysteretic mod-
ulus equals the constant K0 and the system under study behaves linearly.
For higher strain ratios, the modulus varies proportional to the strain and
the non-linear parameters β and δ. When the loading (ε̇ > 0) and relaxing
processes (ε̇ < 0) do not follow the same path, the system shows a hys-
teretic behaviour proportional to parameter α (shadow area). Due to the
proportionality between the resonance frequency of an element (f) and its
elastic constants, the evolution of the non-linear hysteretic modulus of the
system might be studied by mean of its resonance frequency.

In the last decade, several authors have successfully characterized the dam-
age of materials by means of Nonlinear Elastic Wave Spectroscopy (NEWS)
methods [112]. These experiments are based on the same phenomenological
model and they can be categorized by the source of excitation (acoustic,
ultrasonic or impact) and the number of signals injected into the system
(one or several). The apparatus used in the different studies varies sub-
stantially, but the essence of the determination of the non-linear proper-
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Figure 6.2. Graphical representation of hystretic modulus

decribed by Equation 6.1.

ties remains the same in all cases. Some authors have used an acoustical
source (electroacoustic transducer, mainly) in order to induce the element
under examination into a steady state of reverberation. Some investiga-
tions have evaluated this behaviour by using several signals, involving the
use of frequency sweeps around the principal mode of vibration of the el-
ement, at different input amplitudes (SIngle MOde Nonlinear Resonance
Acoustic Spectroscopy, SIMONRAS [109, 113]; Nonlinear Wave Modula-
tion Spectroscopy, NWMS [111]), and others have used one single signal
and computed the attenuation of the material when the source of motion
stops (Non-linear Resonance Spectroscopy, NRS[114]). The signals were
recorded by accelerometers or laser vibrometers. In ultrasonic excitation,
there has been used a piezoelectric transducer for signal transmission and
another transducer or laser vibrometer as the receiver. In this case, fre-
quency sweeps at different input voltages have been employed to induce
the element into a steady state of vibration (SIngle MOde Nonlinear Res-
onance Ultrasonic Spectroscopy, SIMONRUS [111]; Nonlinear Resonance
Ultrasonic Spectroscopy, NRUS [115, 116, 117, 118]). New research is fo-
cused in impact spectroscopy because of its low cost and the easy excitation
of the elements under study. An impact hammer has been used to induce
the vibration of the element and record the acceleration experienced by the
specimen, by means of an accelerometer attached to its surface (Nonlinear
Impact Resonance Acoustic Spectroscopy, NIRAS [119, 120, 121]; Nonlin-
ear Single Impact Resonance Acoustic Spectroscopy, NSIRAS [122]; and
Impact Nonlinear Reverberation Spectroscopy, INRS [123]). A summary
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of NEWS methods is shown in Table 6.1.

Table 6.1. Summary of non-linear elastic wave spectroscopy

(NEWS) methods according to the type of excitation source

and the number of signals.

NUMBER OF SIGNALS

>1 1

E
X
C
IT

A
T
IO

N

S
O
U
R
C
E

ACOUSTIC

WAVES

SIMONRAS [109, 113],

NWMS [111]
NRS [114]

ULTRASONIC

WAVES

NWMS [111],

SIMONRUS [108],

NRUS [115, 116, 117, 118]

-

IMPACT NIRAS [119, 120, 121]
NSIRAS [122],

INRS [123]

As can be observed in the literature, the recent scientific research in NEWS
techniques is focused on impact spectroscopy with one single signal, because
of the obvious advantage in the testing time and probe conditioning. In the
present chapter, a brand-new technique is developed, following the original
methodology seen in NIRAS and inspired by a different signal processing
procedure proposed by J. Eiras [122] and U. Dahlen [123]. The aim of
this chapter is to obtain a valid technique completely equivalent to NIRAS
but developed with one single impact, by means of the analysis of the
signal processing procedure. This technique has been tested on the thermal
damage assessment of specimens of Portland cement mortar.

The reminder of this chapter is organized as follows: In Section 6.2, mathe-
matical background and signal processing issues of the different techniques
are described. The materials, specimens, and test layout used to obtain the
results of the present study are described in Section 6.3. The results ob-
tained from the new technique and a comparison of the data obtained from
the different impact resonance acoustic spectroscopic methods are found in
Section 6.4. In Section 6.5 the conclusions of this study are presented.
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6.2 Mathematical Background

Most of the usual threats to the durability of concrete result in distributed
micro-cracking damage, which favours a hysteretic behaviour in the stress–
strain relation. In typical resonance frequency tests, this hysteretic be-
haviour manifests itself as a downward shift of the resonance frequency
with increasing amplitude of the excitation. Along with the frequency–
amplitude dependence, the damping properties also become dependent on
the amplitude. The origin of this behaviour appears to be in the rub-
bing between the interfaces of internal defects produced upon mechanical
wave propagation. Besides these effects, a considerable effort has to be
made to understand the underlying physical phenomena to develop new
non-destructive non-linear resonance spectroscopy based techniques.

A discrete reverberation signal, y [n], may be studied as the product of
an exponentially decaying function, a [n], and an exponential time-varying
phase signal, s [n] [124, 114]. The instantaneous frequency exponentially
varies from a minimum frequency fmin (f [1] = fmin) up to a maximum
frequency fmax taken at the end of the sampling interval (f [N ] = fmax),
resulting:

f [n] = fmin + ∆f · (1− e−γnTs), n ∈ {1, . . . , N} (6.2)

where ∆f = fmax−fmin
1−e−γNTs controls the exponential frequency swept. There-

fore, a reverberation signal y[n] may be modelled as:

y [n] =a [n] · s [n]

=

a[n]︷ ︸︸ ︷(
a · e−γnTs

)
·

s[n]︷ ︸︸ ︷(
sin

(
2πfmaxnTs − 2π

∆f

γ

(
1− e−γnTs

)))
,

n ∈{1, . . . , N}

(6.3)

where a denotes the amplitude and γ the attenuation, Ts is the sampling
period (which is the inverse of the sampling frequency, i.e. fs = 1/Ts),
and N is the number of samples acquired in the sampling interval N ·
Ts. The resulting signal is an exponentially decaying sine function with a
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time-varying phase, which simulates the upward resonance frequency shift
observed during the analysis of resonance frequency tests. The shifts in
both the resonance frequency and in the attenuation properties due to
non-linear effects are then studied in the frequency domain by applying
the discrete-time, discrete-frequency Fourier Transform (DFT) with NDFT

equally spaced points:

Y [f ] =Ts ·DFT{y[n]} = Ts ·
NDFT−1∑
n=0

y[n] · e−j2πfnTs ,

f ∈[0, 1 · fs/NDFT , ..., (NDFT /2− 1) · fs/NDFT ] ' [0, fs/2]

(6.4)

Note that the DFT has been expressed in terms of the analog frequency
(f) to ease the understanding of the variables involved in the technique,
regardless of the digital acquisition process. Two corrections have been
made to the expression: the discrete frequency samples have been expressed
in terms of the analog frequency, and the amplitude spectrum has been
weighted by Ts. The number of points over which the Fourier transform
is computed, NDFT , is always larger than the number of time samples,
N , to improve the frequency visualization (zero padding). In order to
avoid discrepancies between different sampling frequencies fs, the graphical
resolution in the frequency domain (fs/NDFT ) is kept equal to 0.25.

Due to the characteristic damped non-linear reverberation signal, wherein
both the frequency and the damping change as a function of time and
amplitude, both these factors will influence the width and the amplitude
of the resulting resonance spectral peak. Mathematically, the influence of
these factors is explained by substituting Equation 6.3 in Equation 6.4 and
applying the convolution theorem. This results in the following equation.

Y [f ] = Ts ·
NDFT−1∑
n=0

(
a · e−γTsn · sin

(
2πfmaxnTs − 2π

∆f

γ

(
1− e−γnTs

)))
· e−j2πfnTs

=Ts ·
(
DFT{a · e−γnTs} ∗DFT

{
sin

(
2πfmaxnTs − 2π

∆f

γ

(
1− e−γnTs

))
· e−γnTs

})
=Ts · (A [f ] ∗ S [f ]) , f ∈ [0, fs/2]

(6.5)

Here, A[f ] is the Fourier transform of the exponentially decaying signal,
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Figure 6.3. The left part of the panel represents the tem-

poral aspect of the three involved signals, and the right part

represents the three amplitude spectra. The blue lines are re-

lated to the exponential decay signal with γ = 300 and a = 3.

The green line represents the time-varying phase sinusoidal

function with fmin = 2.8 kHz, ∆f = 200 Hz, fmax = 3 kHz,

fs = 500 kHz, N = 10000. The red line represents the result-

ing reverberation signal.

a[n], and S[f ] is the Fourier transform of the time-varying phase sinusoidal
function, s[n]. The Fourier transform of the resulting signal, Y [f ], can be
seen as a weighted average of the frequency and amplitude content of both
of the previous signals, resulting from the convolution.

An example is shown in Figure 6.3 with the following parameters: a = 3,
γ = 300, fmin = 2.8 kHz, ∆f = 200 Hz, fmax = 3 kHz, fs = 500 kHz,
N = 10000. The left part of the panel represents the temporal aspect of
the three involved signals, and the right part represents the three amplitude
spectra. The product of any two time signals is equivalent to a convolution
in the frequency domain, where the maximum amplitude of the reverbera-
tion signal, Y [f ], corresponds to the minimum frequency of the chirp signal
involved (2.8 kHz), and the peak width of the reverberation signal, Y [f ],
is proportional not only to the bandwidth of the spectrum of the decreas-
ing exponential signal (proportional to the attenuation γ) but also to the
frequency width of the chirp signal.

Traditional non-linear resonance tests are based on the investigation of the
damping variations and the shift of the resonance frequency by excitations
of increasing amplitude. These effects can also be studied as results of
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Figure 6.4. Temporal evolution of the instantaneous ampli-

tude, a[n] (blue line), and the instantaneous frequency, f [n]

(green line), according to Eq. 6.3 and Eq. 6.2, respectively.

The parameters are with a = 3, γ = 300, fmin = 2.8 kHz,

∆f = 200 Hz, fmax = 3 kHz, fs = 500 kHz and N = 10000.

increasing the frequency range of the underlying time-varying phase signal:
a widening of the chirp spectrum as the impact energy increases. The
different reverberation signals of a resonance test are denoted by yi(n),
with i the impact number and proportional to the strength (in this study,
i ∈ [1, 10]). According to Equation 6.3, both the instantaneous frequency,
f [n] (Eq. 6.2), and the amplitude envelope of a reverberation signal, a [n]
(Eq. 6.3) vary according to the attenuation γ.

The attenuation γ not only controls the system instantaneous amplitude
but also the frequency ranging from fmin to fmax (see Fig. 6.4). In the
practice for different levels of impact, it has been checked that the attenu-
ation γ does not change, it only varies the maximum amplitude a; and its
corresponding minimum frequency fmin following Figure 6.4. So that, the
reverberation signals acquired in a traditional resonance test at different
impact levels, i, may be mathematically modelled as follows:

yi [n] = ai · e−γnTs · sin
(

2πfmaxnTs − 2π
∆fi
γ

(
1− e−γnTs

))
,

n ∈ {1, . . . , N} (6.6)

ai = i · a (6.7)

∆fi =
fmax − fmin,i
1− e−γNTs

(6.8)
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Figure 6.5. The left part of the panel represents the tempo-

ral evolution of the envelope amplitude ai[n] (blue lines) and

its corresponding instantaneous frequency fi[n] with i ∈ [1, 10]

(green lines). In the right part of the panel, the different am-

plitude Fourier transform of the resulting simulated signals,
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dark colors as the level of impact increases. The parameters
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where a is the lowest impact amplitude, and fmin,i is the corresponding
minimum frequency according to the attenuation γ, the amplitude ai and
the relations marked in Figure 6.4. The reference amplitude and frequency
functions correspond to the aforemention simulated experimental described
in Figure 6.3, which corresponds to the strongest impact in a simulated res-
onance test. From these strogest impact curves, it is possible to determine
the frequency variation for lower impacts: the corresponding first impact
would have an amplitude a1 equals to 0.3 and a fmin,1 equals to 2980
Hz. The corresponding sixth impact would have an amplitude a6 equals
to 1.8 and a initial minimum frequency fmin,6 equals to 2880 Hz. Figure
6.5 presents the temporal evolution of the envelope amplitude ai[n] with
i ∈ [1, 10] and its corresponding instantaneous frequency fi[n]. In the right
part of the panel, the different amplitude Fourier transform of the resulting
simulated signals, Yi[f ], are plotted. The color legend varies from light to
dark colors as the level of impact increases. This model will be used in
Section 6.2.4 to evaluate the different signal processing algorithms.
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6.2.1 NIRAS

The technique of Non-linear Impact Resonance Acoustic Spectroscopy (NI-
RAS) relies on an impulse excitation of the specimen repeated with differ-
ent impact strengths. The hysteresis parameter related to the resonance
frequency shift αNIRASf is obtained from a linear fit of the obtained peak

amplitude spectrum Ai (Eq. 6.9) versus the peak normalized frequency f̃i
(Eq. 6.10) of one mode from the multiple impacts at different strengths
(Eq. 6.11).

Ai = max{|Yi[f ]|} (6.9)

f̃i = maxf{|Yi[f ]|} (6.10)

f̃0 − f̃i
f̃0

= αNIRASf ·Ai (6.11)

Here, f̃0 is the resonance frequency obtained in the linear strain regime.
The shift of the damping properties also exhibits a linear relation between
the damping factor Qi (Eq. 6.12) and the amplitude Ai (Eq. 6.9) following
Eq. 6.13 [113]:

Qi =
f̃i

f̃i,2 − f̃i,1
(6.12)

1

Qi
− 1

Q0
= αNIRASQ ·Ai (6.13)

where f̃i is the resonance frequency of vibrations (Eq. 6.10), f̃i,1 and f̃i,2 are
those frequencies on either side of the resonance at which the amplitude is
1/
√

2 times the amplitude at resonance, and Q0 is the linear regime damp-
ing factor. For low excitation amplitudes, the frequency shift (f̃0 − fmin)
is non-existent and the peak frequency and quality factor are considered to
be obtained in the linear strain regime. In this study, f̃0 and Q0 are deter-
mined as the intersection with the y-axis of the linear relations between the
peak amplitudes Ai and the peak frequencies f̃i, and the peak amplitudes
Ai and the measured damping factors Qi, respectively [125]. One expects
to find an increase in the both parameters proportional to the hysteresis,
αNIRASf and αNIRASQ , with increasing damage of the specimen.
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6.2.2 NSIRAS

A single-impact based version of the NIRAS technique was recently intro-
duced by Eiras et al. [122]. In the so-called NSIRAS technique (Non-linear
Single Impact Acoustic Spectroscopy), the reverberation from a standard
impact resonance frequency test is analysed using a short time Fourier
Transform (STFT), and the non-linear frequency shift as a function of
the amplitude can be successfully determined over a dynamic range. The
method consists of a sliding window with fixed length L, wL(n), that moves
in S−sample steps through a single reverberation signal, yI(n), and trans-
forms the time segment within the p−window, yI,wLp (n), to the frequency

domain at every temporal window position (Eq. 6.14).

yI,wLp (n) =yI(n) · wL (n− p · S) , n ∈ {1, . . . , N} ,

p ∈
{

0, . . . ,

⌊
N − L
S

⌋}
(6.14)

The original study was done with a Tukey window, however, the mathemat-
ical formulation of this work has been done for any kind of window wL(n).
In this study, a traditional rectangular window has been used (Eq. 6.15).
The window length has been chosen to ensure that at least 10 periods in
the fundamental ringdown signal are captured, the window shift (S) is 30%
of the window length, or a 70% overlap between consecutive windows.

wL(n) =

{
1, 1 ≤ n ≤ L
0, otherwise

(6.15)

Figure 6.6 shows a schematic representation of the algorithm. The moving
window analysis is stopped when the spectral amplitude falls below a preset
threshold value (th), e.g. 5% of the maximum spectral amplitude measured
in the first time window. Figure 6.6(b) represents the frequency domain
at every window position. It can be seen that the shape of the resulting
amplitude spectra seem similar to the spectrum of a burst signal, and not as
much to that of the reverberation signal seen in Figure 6.3 (red line). This
windowing breaks the underlying effect of the exponentially decaying signal
and the effects are reflected in the estimation of the non-linear parameters
αNSIRASf and αNSIRASQ . Both are estimated following the linear fit seen
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Figure 6.6. NSIRAS. a) Schematic representation of the sig-

nal processing algorithm to obtain the time-varying resonance

frequency shift through the NSIRAS algorithm. b) Stacked

frequency spectrum representation of the time signals within

the first 8 windows.

earlier; they are reformulated using the current variables according to the
NSIRAS technique in Eqs 6.16, 6.17, 6.18, 6.19, and 6.20:

AI,p = max{|YI,wLp [f ]|} (6.16)

f̃I,p = maxf{|YI,wLp [f ]|} (6.17)

f̃I,0 − f̃I,p
f̃I,0

= αNSIRASf,I ·AI,p (6.18)

QI,p =
f̃I,p

f̃I,p,2 − f̃I,p,1
(6.19)

1

QI,p
− 1

QI,0
= αNSIRASQ,I ·AI,p (6.20)

where f̃I,0 and QI,0 are the linear approximations for the linear regime
resonance frequency and the damping factor, respectively, related to the
reverberation signal yI(n).
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6.2.3 FANSIRAS

The proposed technique, called Flipped Accumulative Non-Linear Single
Impact Resonance Acoustic Spectroscopy (FANSIRAS), is based on the
NSIRAS technique but with a variable length window. As with the spectro-
gram-based technique, the proposed method only requires a single rever-
beration signal yI(n) to obtain a reliable estimate of the non-linearity. The
acronym of the technique corresponds to the original idea of the algorithm,
based on the equivalent reconstruction of the signals of the NIRAS tech-
nique but from a single signal: flipping the signal and windowing cumu-
latively. In order to ease the mathematical nomenclature, the method is
described as a window of initial length equal to that of the acquired sig-
nals, N , which progressively decreases its length to the lower bound, and
transforms the time segment of the impact signal within the pth window,
y
I,w

Lp
p

(n), to the frequency domain at each window position as follows:

y
I,w

Lp
p

(n) =yI(n) · wLp (n− p ·M) , n ∈ {1, . . . , N} ,

p ∈
{

0, . . . ,

⌊
N

M

⌋
− 1

} (6.21)

Here, wLp(n) represents the rectangular window, which shortens at each
step of the algorithm. It has the same expression as in Equation 6.15, but
the length of the window varies at each position p, Lp = N − p ·M . M
represents the number of samples by which the window decreases at each
step of the algorithm, and it is equivalent to the parameter S of NSIRAS.
It is related to the number of points used in the regression, but it does
not significantly affect the estimation of the non-linear parameters. In this
work, it is computed as the number of samples in 4 periods of the signal.

Figure 6.7(a) shows a schematic representation of the algorithm in the time
domain. This algorithm preserves the phenomena underlying a reverbera-
tion signal, as can be seen in the resulting amplitude spectra (Fig. 6.7(b)).
Obviously, the first signal’s amplitude spectrum coincides with the origi-
nal input signal, since the whole signal is analysed. As the time window
shortens, the amplitude of the signals decrease and the resulting signals are
equivalent to having excited the specimen with impacts of lesser strengths.
As the strength of the impact decays, the peak amplitude decreases, and
the resonance frequency increases. The damping factor also increases for
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each time window, as will be seen in the following (Section 6.2.3).
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Figure 6.7. FANSIRAS. a) Schematic representation of the

signal processing algorithm to obtain the time-varying reso-

nance frequency shift through the FANSIRAS algorithm. b)

Stacked frequency spectrum representation of the time signals

within the first 4 windows.

The non-linearity parameters αFANSIRASf,I and αFANSIRASQ,I are both
estimated with the previous linear fits according to the NSIRAS technique
in Eqs 6.16, 6.17, 6.18, 6.19, and 6.20, but splitting the time signal with
the new windowing approach (Eq. 6.21).

Stop criterion

Apart from being a feature related to the hysteresis behaviour of the mate-
rial, the damping factor 1/Q may reveal useful information for determining
the final window in the FANSIRAS algorithm. The algorithm must stop
before losing the signal information (too small window).

The progressive windowing done in the new proposed algorithm implies that
the corresponding underlying chirp signal ranges from a larger minimum
frequency up to the maximum linear frequency f̃0. It supposes a lower
bandwidth as wLp(n) decreases its size. The mathematical expression of the
damping factor controls the increasing of the peak frequency (which never
stops growing) in the numerator split by the decreasing of the bandwidth
as the window length decreases. What is used as the stop criterion is a
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comparison of the current value of the damping factor with the previous
one. The window in the FANSIRAS algorithm is decreased until the value
of Q is lower than that obtained in the previous window.

Figure 6.8 represents an example of the amplitude spectrum obtained by
the FANSIRAS algorithm applied to the simulated signal. The amplitude
spectrum has been normalized in both axes: frequency, (f − f̃I,p), and
amplitude, A/AI,p. The large size of the bandwidth of the largest window
can be observed, which implies the lowest value of the quality factor. The
decreasing window in the FANSIRAS algorithm is decreased until there
occurs a value of Q lower than the previous window. In the example,
the selected number of different time windows applied in the FANSIRAS
algorithm would be 8.
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Figure 6.8. Stop criterion in the FANSIRAS algorithm. Ex-

ample of the amplitude spectra obtained for consecutive win-

dows by FANSIRAS algorithm applied to a real signal. The

decreasing window is decreased until there occurs a value of Q

lower than the previous window.

In the following, the non-linearity parameters for NSIRAS are referred
to as αNSIRASf and αNSIRASQ , and those for the FANSIRAS algorithm as

αFANSIRASf and αFANSIRASQ , taking into account that they are extracted
from the largest impact reverberation signal in each experience.

6.2.4 Comparison

In order to fully understand the effects of the windowing on the estimation
of the non-linear hysteretic parameters, the results of NIRAS, NSIRAS
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and FANSIRAS algorithms applied on the simulation signal raised in Fig-
ure 6.3 are compared in Figure 6.9. The blue line represents the reference
strongest original signal spectrum obtained from the simulated model seen
in Figure 6.5; the NSIRAS and FANSIRAS results are obtained from it.
The green lines represent the first 8 NSIRAS stacked spectra and the red
lines represent the 8 first FANSIRAS spectra. This representation allows
the comparison of how the resonant frequencies migrate with time and am-
plitude for the same measured signal depending on the applied algorithm.
The short-time frequency transform (STFT) done in the NSIRAS algorithm
results in a down-biased amplitude estimation. The STFT also avoids the
weighted average of the whole frequency content available in the signal,
allowing a ranging more widely over frequencies. The interval of frequen-
cies ranges from a lower minimum resonance frequency, fmin, up to the
same fmax than NIRAS. The new proposed FANSIRAS algorithm is able
to extract equivalent amplitude spectra to the traditional NIRAS technique
from a single signal. The decreasing cumulative window respects not only
the decreasing exponential shape but also the frequency average along the
whole ring-down.
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Figure 6.9. Comparison of the simulated signal amplitude

spectrum computed by NSIRAS and FANSIRAS algorithms.

The blue line represents the reference original simulated spec-

trum, the green lines represent the first 8 NSIRAS stacked

spectra and the red lines represent the 8 first FANSIRAS spec-

tra.

In Figure 6.10, the estimation of the hysteretic non-linear parameters αf
and αQ for the simulated model and the three different techniques is graph-
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Figure 6.10. Comparison of NSIRAS and FANSIRAS algo-

rithms for a simulated signal. a) Amplitude dependent reso-

nance frequency shift computation (αf ). b) Amplitude depen-

dent resonance damping shift computation (αQ). The y-axis

interceptions represent the values of f̃0 and Q0 for each tech-

nique, respectively.

ically shown. The linear regime parameters f̃0 and Q0 are also marked. Re-
mind that NIRAS algorithm is applied over the whole set of reverberation
signals obtained from the mathematical model raised in Eqs 6.6, 6.7 and 6.8
(Fig. 6.5), however, NSIRAS and FANSIRAS are applied over the highest
impact signal (Fig. 6.3). The parameters used in the NSIRAS algorithm
were: window length equals to 10 periods of the signal, and a window shift
equals to 30%. The window used in FANSIRAS algorithm progressively de-
creases 400 samples in each step. Due to the STFT, it can be noticed that
NSIRAS varies in a bigger frequency range and a smaller amplitude interval.
It results in a significantly higher value of slope αNSIRASf than αNIRASf for

the same simulated model. The parameter αFANSIRASf results equivalent

to αNIRASf . Therefore, the new windowing approach demonstrate a better
estimation than the original single-based technique NSIRAS, at least, for
the proposed numerical model.

As far as the authors’ knowledge extends, the study of the variation of the
amplitude-dependent damping had never been done before for the NSIRAS
technique. It has been included in this study in order to show the impor-
tance of the kind of windowing when studying the quality factor of a rever-
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beration signal. Figure 6.10(b) compares the results obtained by NIRAS
and NSIRAS. At a glance, it can be observed that the αNSIRASQ values are

greater and less varying than αNIRASQ . Although NSIRAS is able to esti-
mate the shift of the peak frequency, the shape of the resulting time signals
are almost equivalent to pure sinusoidal signals with an almost constant
bandwidth bigger than in the NIRAS technique, proportional to the length
of the window. Figure 6.10(b) also compares the variation of the damp-
ing factor obtained both from the NIRAS and FANSIRAS techniques. At
a glance, it can be observed that FANSIRAS algorithm allows estimating
the damping values equivalently to the NIRAS algorithm but from a single
signal.

The shortening of the time signal from the lower bound, which is the base
of the FANSIRAS technique, results on two different effects over the two
involved signals. For the instantaneous amplitude, a[n], it allows reducing
the amplitude of the signal a but keeping constant the exponential decay
factor γ. For the time-varying signal, s[n], the decrease in the temporal
window amounts to a narrower bandwidth (∆f). Therefore, the proposed
numerical model (later verified with real experiments) shows that the vari-
ation of the damping factor Q with the amplitude is exclusively sensitive
to changes on the bandwidth. There is not an amplitude-dependent at-
tenuation. According to that, it must be noted that for the NIRAS and
FANSIRAS algorithms applied over the theoretical model, the parameters
of αf and αQ have resulted on similar numerical values. Despite having
been computed by different procedures they are sensitive to the same ef-
fect: the widening of the underlying exponential phase-varying signal as
the amplitude increases. In further sections, both hysteretic parameters
for the three raised techniques are compared for a real dataset.

6.3 Experimental

6.3.1 Materials and specimens

Three mixes of standardized Portland cement mortar (water/cement =
0.5) made of 450 grams of Spanish cement CEM I-52.5-R (supplied by Ce-
mentval, Puerto de Sagunto, Spain), 1350 grams of 0/2 crushed quartz
normalized sand and 225 grams of water were carried out in order to ob-
tain nine 40x30x160 mm3 specimens to perform the present study. This
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geometry was chosen with the intention of avoiding two fundamental flex-
ural modes in close frequencies coming from imperfections in the mixing
and manufacturing process. Having a square cross section stimulates modal
coupling between two resonance modes with similar frequencies, resulting
in peak splitting in the spectra, and consequently, a decrease of accuracy
in the frequency analysis. After the mixing process, filled iron moulds were
stored in a wet chamber (20◦C and 100% H.R.) for 24 hours, then the nine
mortar pieces were released and stored in the wet chamber again for 60
days in order to reach the stabilization stage of elastic properties. After-
wards, the specimens were dried to constant mass in an oven at 40◦C for
7 days and wrapped with plastic film until they reached room temperature
again. These prismatic specimens were characterized by resonance impact
acoustic spectroscopy, in order to determine their properties in the pristine
state (TH40). Two thermal damage treatments were performed accord-
ing to the chemical decomposition of Portland cement hydrates. First, the
pristine specimens were thermally damaged at 400◦C, achieving the decom-
position of the calcium silicate hydrates (C-S-H) and calcium aluminate (C-
A-H) and sulphoaluminate (Ettringite, monosulphate) hydrates, reaching
this temperature in two hours, maintaining it for three hours, and slowly
cooling for twelve hours inside the oven (TH400). Once room tempera-
ture was reached, the mortar bars were tested again by impact resonance
acoustic spectroscopy. Second, the 400◦C-treated specimens were thermally
damaged at 525◦C (this favours the Ca(OH)2 decomposition) following the
same heating–cooling procedure as explained above (TH525). This way, the
same 9 specimens had been characterised for the three different treatments:
TH40, TH400 and TH525.

6.3.2 Test layout

Acoustic resonance tests were performed with the elements as shown in
Figure 6.11. An impact hammer (Brüel & Kjær 8206-003) was attached to
an axis, located in a metallic structure. This axis, supported on two ball
bearings, yields a free rotational motion in one plane with minimum fric-
tion. The specimen was placed on the metallic supports, slightly sloping,
positioned for impact in the centre of the face and perpendicular to the
axis of greater inertia of its cross section. In the opposite top-left corner,
a piezoelectric accelerometer sensor (PCB 352A21, 0.956 mV/m/s2 sensi-
tivity) was attached in order to obtain the vibrational motion of the test
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probe. The electric signal of the instrumented hammer and the accelerom-
eter go through a signal conditioner (PCB 482A18), so as to be polarized
and then transmitted to the oscilloscope (Tektronics MDO3014). The os-
cilloscope was configured to optimize the signal acquisition and processing
with fs equal to 250 kHz, N equal to 10000 samples, trigger voltage equal
to 120 mV, and pre-trigger time equal to 4 ms. Finally, the information
was transmitted via USB to a computer with a control software code de-
veloped by the authors. Taking advantage of the potential offered by the
Instrument Control Toolbox of the MATLAB software package, a graphical
user interface was developed, for the automation of the technique and to
optimize it with respect to the test procedure requirements.

AxisInstrumented

hammer

Specimen

Sensor

Specimen 

supports

Hammer 

Supports

Max. energy

Min. energy

Neoprene

Figure 6.11. Experimental layout of the support hammer,

disposition of the specimen, and location of the sensor.

6.3.3 Reproducibility test

In order to assess the robustness of the techniques, a reproducibility test of
the non-linear resonance technique was performed (10 impacts of different
energies were applied), making 5 repetitions in the same specimen in the
bottom-up (starting with the lowest impact) configuration and the up-down
(starting with the highest impact) configuration. The purpose of testing
two different configurations is to make sure the discrete memory of the
material does not affect the calculation of the non-linearity parameters [108,



6.3. Experimental 145

126]. For this reason, there was a 24 hour space of time between the tests
in the bottom-up configuration and those in the up-down configuration. In
Figure 6.12(a) there can be seen the maximum intensity in the impact curve
described by the instrumented hammer. In this graph, the repeatability
of the impact energy can be seen since the 5 repetitions are in the same
range and magnitude for all impact levels and both configurations. Figure
6.12(b) shows the peak amplitude spectrum versus peak frequency plot
for the 5 tests made in each configuration. A very significant difference
between the correlation from the first test in the bottom-up series and the
rest of the correlations can be appreciated. This behaviour matches some
experiments previously reported, when a specimen of mesoscopic material is
conditioned with an external source of motion and it takes several hours to
recover the mechanical properties of its initial state [110, 127]. Hence, the
authors decided undertaking the experiment in the up-down configuration
to ensure the reproducibility of the test and perform a proper comparison
of the different procedures for assessing the non-linearity parameters.
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Figure 6.12. Reproducibility Test. Five repetitions of the

resonance test (10 different amplitude impacts) in the same

specimen in bottom-up (starting with the lowest impact) con-

figuration (blue) and up-down (starting with the highest im-

pact) configuration (green) were carried out. 6.12(a) Maxi-

mum amplitude of the impact signal. 6.12(b) Relation between

the spectral peak amplitude and the resonance frequency. The

markers represent the experimental results and the straight

lines represent the best fitted linear model for each test.
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6.4 Results and Discussion

Figure 6.13 shows representative resonance spectra obtained at different
impact energies for one mortar sample at the different damage treatments.
It is important to notice how these real spectra fit to the model showed
in Section 6.2. In the first instance, the TH40 specimens exhibited good
performance due to the fact that the evaporated water inside the porous
structure of the material had no influence on the material’s mechanical
properties. The second thermal treatment, the TH400 series, forced the
evaporation of part of the water combined in the S-C-H, sulphoaluminates,
and the A-C-H of the hydrated Portland cement, yielding a loss of stiffen-
ing and increasing the non-linearity of the system. Lastly, the TH525 series
were severely damaged, greatly increasing the non-linearity and losing me-
chanical performance. The described damage produced by high tempera-
tures resulted in 4 effects that can be distinguished in the spectra presented
here: a progressive decrease of the resonance frequency, an increase of sig-
nal bandwidth, a downward shift of the resonance frequency with increasing
impact energy, and the resonance peak became noticeably asymmetric. Al-
though the impact energy was the same for all series and specimens, the
maximum intensity reached in the spectra decreased as the damage in the
specimens increased.
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Figure 6.13. Representative resonance spectra obtained at

different impact energies for one mortar sample at the tem-

peratures 40◦C (blue line), 400◦C (green line) and 525◦C (red

line).
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6.4.1 NIRAS

To evaluate the thermal damage in the mortar specimens, the hysteretic
non-linearity parameters αNIRASf and αNIRASQ were computed on the basis
of the NIRAS technique described in Section 6.2.1. Representative results
of the amplitude-dependent dynamic features (resonance frequency and
damping) at different temperatures (40◦C, 400◦C and 525◦C) are shown in
Figure 6.14.

Figure 6.14(a) shows the difference in resonance frequencies versus the peak
of the spectral amplitude. The linear regime frequency f̃0 is the amplitude-
independent resonance frequency computed in the linear regime (A = 0).
The parameter αNIRASf of the thermally damaged concrete was determined
by the slope of the linear regressions (solid lines) of the 10 plotted results
(hollow circles), which rapidly increases with the damaging temperature.
Figure 6.14(b) shows the evolution of the damping as a function of the
spectral amplitude, at different damage states. The linear damping factor
Q0 is also computed in the linear strain stage (A = 0). These results
demonstrate that both hysteretic parameters are sensitive to the internal
damage of the material caused by the thermal treatment, and that shifts
of resonance frequency are paired with shifts in Q values.

6.4.2 NSIRAS

Unlike the NIRAS technique, the NSIRAS method investigates the non-
linearity of the material using a single impact event, which allows reducing
the total number of impacts. Figure 6.15 compares the variations in reso-
nance frequency and damping factor obtained by applying the NIRAS and
NSIRAS algorithms to a representative specimen. The parameters used
in the NSIRAS algorithm were: window length equal to 10 periods of the
signal, and a window shift equal to 30%. Figure 6.15(a) shows the rela-
tion between the resonance frequency and spectral peak amplitude, and the
best fitted linear model in every damage state. The same holds for Fig-
ure 6.15(b), in which the relation between the damping factor and spectral
peak amplitude is shown. The slope of the linear regressions, αNIRASf and

αNSIRASQ , gradually increases with thermal damage, as expected. How-
ever, the relation between the resonance frequencies and the spectral peak
amplitudes differs in each technique.

As seen for the theoretical model (Section 6.2.4), the STFT applied in the
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Figure 6.14. NIRAS. Representative results of the

amplitude-dependent dynamic features at different tempera-

tures 40◦C (blue), 400◦C (green) and 525◦C (red) computed

by the NIRAS technique. The markers represent the experi-

mental results and the straight lines represent the best fitted

linear model. a) Resonance frequency shift (αNIRASf ). b) At-

tenuation (αNIRASQ ).

NSIRAS algorithm significantly reduces the amplitude estimation, while
avoids the weighted average of the whole frequency content. It results on
higher values of the linear slope αNSIRASf than αNIRASf . Moreover, the
relation obtained from the NSIRAS algorithm between the peak amplitude
values and the estimated frequencies is rather non-linear. Whereas the
undamaged specimen still exhibited a fairly linear behaviour (like in the
simulated model), an important deviation from the linear model is espe-
cially notable for damaged samples. According to this study, this might
be due to the differences between the characteristic exponentially decaying
envelope of the signal and the also exponential frequency variation (Eq.
6.2). The difference are more pronounced as the level of damage of the
material increases.

Figure 6.15(b) compares the results obtained by NIRAS and NSIRAS for
the amplitude-dependent damping factor. As occurred with the theoretical
analysis, it can be observed that the αNSIRASQ values are greater and less

varying than αNIRASQ due to the STFT analysis. The variable αNSIRASQ

increases with the damage although less noticeably than that observed from
the NIRAS study.
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Figure 6.15. NSIRAS. Comparison of representative re-

sults for the amplitude-dependent dynamic features at dif-

ferent temperatures 40◦C (blue), 400◦C (green) and 525◦C

(red) computed by NIRAS (solid lines) and NSIRAS (dashed

lines). The markers represent the experimental results and the

straight lines represent the best fitted linear model. a) Reso-

nance frequency shift (αNIRASf and αNSIRASf ). b) Attenuation

(αNIRASQ and αNSIRASQ ).

Lastly, it must be noted that this processing approach is very sensitive to
the input parameters (window length) and its relation with the reverbera-
tion signal under study (f0/fs). A bigger window length implies lower fre-
quency variations but greater attenuation variations due to the averaging of
the frequency content in the temporal window and the corresponding band-
width. This implies that similar studies which determine the non-linear
parameters cannot be compared if the number of periods of the signal per
window is not the same.

6.4.3 FANSIRAS

Like the NSIRAS technique, the new proposed FANSIRAS algorithm anal-
yses the hysteretic behaviour of the material from the reverberation signal
coming from the strongest strength impact. Figure 6.16 compares some rep-
resentative results of the reference NIRAS technique and the new proposed
FANSIRAS technique. The parameters used in the FANSIRAS algorithm
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were a window with initial length equal to the acquired signals, N equal to
10000 samples, which progressively decreases by 400 samples until reaching
a window with a quality factor lower than the previous one.

Figure 6.16(a) plots the relation between the resonance frequency and the
spectral peak amplitude, and the best fitted linear model in every damage
state. The starting point of the regression (highest amplitude values) obvi-
ously coincides for both techniques since the analysed signals are the same.
The linear regressions are equivalent, but the FANSIRAS algorithm evolves
to values of lower amplitudes and higher linear frequencies along the ring-
down of the signal. This effect supposes a slight upwards bias of the slope
of the estimated linear regression, as will be seen later, and this is more
pronounced as the damage of the material increases. This means that the
new proposed approach slightly overcomes the drawback to the analytical
procedure present in the NIRAS algorithm technique, and previously no-
ticed in [123]. It was pointed out that the frequency shift may be evaluated
in a relatively limited dynamic range of amplitude values. FANSIRAS gets
to increase the measurable dynamic range from smaller peak amplitudes to
the same largest value, which improves the sensitivity when estimating the
linear regime parameters (f̃0 and Q0).

Figure 6.16(b) compares the variation of the damping obtained both from
the NIRAS and FANSIRAS techniques. It can be observed that FANSIRAS
algorithm allows estimating the damping values equivalently to the NIRAS
algorithm from a single signal also for real signals. The hysteretic parameter
αFANSIRASQ clearly classifies the level of damage following the variations of
the damping factor.

6.4.4 Comparison

In this study, it has been suggested that the single signal based algorithms,
NSIRAS and FANSIRAS, have to be applied to the signals from the impact
of greatest strength in order to ensure that the peak frequency variable
ranges up to its maximum value. Figure 6.17 compares the evolution of
the non-linear hysteretic features, αf and αQ, for each technique (NIRAS,
NSIRAS and FANSIRAS) and each impact strength on a representative
example at the different studied levels of damage. In each plot, αNIRASf

and αNIRASQ are the constant reference values obtained from the 10 impact
signals. For NSIRAS (dashed lines) and FANSIRAS (dotted lines), different
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Figure 6.16. FANSIRAS. Comparison of representative re-

sults of the amplitude-dependent dynamic features at differ-

ent temperatures 40◦C (blue), 400◦C (green) and 525◦C (red)

computed by NIRAS (solid lines) and FANSIRAS (dotted

lines). The markers represent the experimental results and

the straight lines represent the best fitted linear model. a)

Resonance frequency shift (αNIRASf and αFANSIRASf ). b) At-

tenuation (αNIRASQ and αFANSIRASQ ).

results are obtained for each impact signal level. For the three analysed
levels of damage, αNSIRASf and αNSIRASQ yield closer values to the reference
results for higher levels of impact. However, the results obtained by the
new proposed technique, αFANSIRASf and αFANSIRASQ , seemed to be more
robust against the different impacts.

Resonance tests were performed on all the mortar pieces fabricated (9 spec-
imens) to ensure the reproducibility of the hysteretic measurements. The
robustness test results are shown in Figure 6.18, and they confirm that the
non-linear resonance vibration tests can provide a consistent measure of the
internal damage of the specimens. Particularly for each studied technique,
the resulting trends coincides with the results seen both for the simulated
model (Section 6.2.4) and for the representative example described in pre-
vious Sections 6.4.1, 6.4.2 and 6.4.3. The NIRAS technique is considered to
be the reference result. The previously proposed NSIRAS technique is bi-
ased upwards when measuring the frequency shift (αf ) and significantly
down biased when measuring the amplitude-dependent damping factor.
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Figure 6.17. Comparison of the evolution of the non-linear

hysteretic features for each technique, NIRAS (solid lines),

NSIRAS (dashed lines) and FANSIRAS (dotted lines), and

each impact strength, on a representative example at the dif-

ferent studied levels of damage, 40◦C (blue), 400◦C (green)

and 525◦C (red). a) αf , b) αQ.

The brand-new technique FANSIRAS coincides with the NIRAS results
for undamaged results. However, they are slightly up biased when damage
is present. This trend has previously been justified due to the analysis done
by FANSIRAS up to lower amplitude values along the ring down.

Because the linear parameters f̃0 and Q0 are estimated independently of
the value of the amplitude of the weaker impact, the hysteretic parameters
αf and αQ are equivalent for both the NIRAS and FANSIRAS techniques.
This is a result that has never before been diffused, as far as the authors’
knowledge extends, but which is explained since both features are propor-
tional to the same underlying hysteric behaviour of the material.

Figure 6.19 plots the root mean square error (RMSE) computed for all
the experimental results versus the obtained linear fits. Whereas for un-
damaged specimens the regressions still exhibit fairly linear relations, the
relations become rather non-linear for the damaged specimen tests. This
behaviour is closely correlated to the need to use higher order coefficients
in Equation 6.1. Particularly, the high value of αFANSIRASQ for TH525 is
due to its characteristic S-shape data distribution as the level of damage
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increases (Fig. 6.16(b)). The characteristic S-shape is directly attributed
to Q parameter estimation: the difference appears when computing the
lowest frequency bound, f1 (Eq. 6.19), closely related to the stiffness of
the material for the highest amplitude deformations. This difference might
be related to the nature of the signals used in each spectroscopy technique.
NIRAS procedure estimates non-linear hysteretic parameters from original
and several impact signals, however, FANSIRAS algorithm estimates the
different strain levels from a single relaxing signal. The fact of f1 being in
the denominator might boost the S-shape trajectory.
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Figure 6.18. Comparing boxplots of the results of the

amplitude-dependent dynamic features at different tempera-

tures 40◦C (blue), 400◦C (green) and 525◦C (red) computed

by the different analysed techniques: NIRAS, NSIRAS and

FANSIRAS. a) Resonance frequency shift (αf ). b) Attenua-

tion (αQ).

6.5 Conclusions

In this study, a new method to evaluate non-linear behaviour in materials
is presented. NIRAS is the traditional resonant method to determine the
non-linearity of mesoscopic materials; it uses several impacts. The proposed
so-called FANSIRAS procedure is focused on obtaining the same results
as the traditional technique but by analysing only a single impact. Both
techniques, along with the NSIRAS procedure, have been analysed in detail,
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Figure 6.19. Comparing boxplots of the root mean square er-

ror (RMSE) for the amplitude-dependent dynamic features at

different temperatures 40◦C (blue), 400◦C (green) and 525◦C

(red) computed by the different analysed techniques: NI-

RAS, NSIRAS and FANSIRAS. a) Resonance frequency shift

(RMSEf ). b) Attenuation (RMSEQ).

based on their mathematical backgrounds, and compared in terms of their
estimations for a proposed simulated model and the damage level of heat-
exposed mortar.

The FANSIRAS algorithm takes advantage of the appropriate processing
of a single reverberation signal to estimate equivalent acquisitions to those
obtained from NIRAS with its several blow impacts. This novel procedure
respects the underlying phenomena, composed of both an exponentially de-
caying signal and a time-varying phase signal, which results in the feasibility
of using a single impact to evaluate the non-linear features of damaged ma-
terials. Both, the theoretical and the experimental results have shown that
the downward frequency shifts and the damping changes are equivalent for
NIRAS and FANSIRAS techniques. It has been concluded that the varia-
tion of the damping factor Q with the amplitude is exclusively sensitive to
changes on the bandwidth. There is not an amplitude-dependent attenua-
tion. Moreover, a special effort has been made to standardize the technique
regardless of the acquisition equipment (accelerometer sensitivity, fs, N)
and the computation variables (NDFT ) in order for the results to be repro-
ducible in further studies. The application of the FANSIRAS analysis may
have important uses in industrial applications in that the quality control
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can then be conducted through a single resonance frequency measurement.
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Conclusions 7
The overall aim of this research has been to deepen the study of the

characterization of the modality of acoustic signals, especially as applied
to non-destructive applications. The motivation for this research came
from the necessity of developing alternative detection/characterization al-
gorithms, not only from the signal processing point of view, but also for
civil engineers who need to improve their characterization procedures.

This chapter summarizes the findings of this research, revisiting the re-
search objectives given in the introductory chapter. First, Section 7.1 re-
views the contents of this thesis, outlining the main conclusions that were
extracted from each chapter. Section 7.2 contains a list of publications dur-
ing the course of work as a PhD candidate. In addition, recommendations
for future research will be discussed in the final section.

7.1 Main Contributions

The initial hypothesis was to characterize the nature of the signal in a
blind way, without having a priori knowledge of the input excitation of the
system under study. In order to do that, the phase space reconstruction
problem had to be addressed. Previously published techniques need to have
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some a priori knowledge of the origin of the signal. We have proposed an
alternative procedure based on RQA which allows estimating the optimal
embedding parameters without any information about the nature of the
signal.

Delving into the concept of determinism and quantifying its level in a given
signal has turned out to be the philosopher’s stone for ultrasonic mate-
rial inspection applications. Firstly, this approach has been developed to
estimate the level of porosity of cement paste specimens. This approach
was verified by three different algorithms and an alternative index based on
higher order statistics, showing a linear correlation between the amount of
inner pores in the material and the degree of determinism of its pulse-echo
signals. Measuring the degree of determinism has demonstrated a propor-
tionality to the inner structure of the material. Furthermore, the same
approach has been exploited to quantify the level of damage of different
concrete specimens in non-destructive studies.

Two different damage treatments, an external sulphate attack and a step
loading process, have been thoroughly characterized by means of tradi-
tional ultrasound measures (attenuation and pulse velocity) and the degree
of determinism. This novel procedure has been shown to be more robust
than the traditional approaches, particularly in indirect measurement dis-
positions, where the ultrasonic waves travels through different paths and
may mix as a function of the internal damage. Unlike the attenuation
measurement, based on the linear theory, it is able to explore the level of
randomness with which the different pulses combine. This result has been
properly protected under patent rights.

The study of the non-linearity/complexity of a temporal series has been
addressed using hypothesis tests. To do that, we have focused both on sur-
rogate data generation algorithms and statistical tests. The main pursuit
has been the development of new tools to deal with real world non-linear
signals, which habitually come with strong non-stationarities. Unfortu-
nately, being strictly critical as to the different stages of the procedure,
the authors cannot claim that this approach will work on real applications.
Nevertheless, this study has involved an arduous work of research that has
allowed deepening the concept and proposing an alternative surrogate data
algorithm which has been proven to be useful for testing complexity in short
oscillatory signals.

Due to the aforementioned lack of confidence when applying blind hypothe-
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sis tests to real world signals, the non-linear approach has been significantly
modified. We have deepened the non-linear resonance acoustic spectroscopy
technique. A new theoretical model that explains the underlying mecha-
nism of vibration in a concrete probe has been developed. Based on it, a
new signal processing approach has been also developed (FANSIRAS). This
scheme allows a single impact reverberation test compared to the ten im-
pacts needed before, apart from the understanding of the mechanism. This
approach may have significant applications in industrial quality control,
where time and effort are variables to be optimized.

In short, this work provides insight into the importance and the advantages
of signal modality in the signal processing field of work. Particularly for
civil engineers, this study not only eased the performance, but also provides
further information. The degree of determinism and the ease of employing
the FANSIRAS algorithm convert this thesis to an interesting support tool
for future material characterization studies.

7.2 List of Publications

A list of published work produced during the course of candidature for the
degree is presented in what follows.
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Bernabeu. “Optimized ultrasonic attenuation measures for internal
sulphate attack monitoring in Portland cement mortars”, 2017 IEEE
International Ultrasonics Symposium, Washington D.C., 2017.
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Horizons”. 180 - 1, pp. 91 - 112. Springer Proceedings Phys., 2016.

Patents
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7.3 Future Work

Following the investigations described in this thesis, the main lines of re-
search that remain open are listed below:

� Despite having been widely used in applications with concrete, the
determinism parameter should be evaluated in new materials, as well
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as in different measurement configurations. A possible field of appli-
cation that has recently emerged would be the manufacture of pieces
by 3D printing, where the design is usually unique and the piece
cannot be subjected to destructive tests.

� Application of the algorithms of complexity of short oscillatory signals
in modal conversion between pressure waves (also known as P-waves)
and shear waves (S-waves) in the estimation of rheological properties.
The main goal is detecting the setting, hardening and curing stages
of the concrete, parameters correlated to physical properties of the
material.

� Application of the proposed non-linear model to the acoustic reso-
nance phenomenon in real applications. The idea is the parametriza-
tion of real experiences as a new way of non-linear characterization.
The parameters to extract would be γ, and both frequencies, fmin
and fmax.

� The equivalence between the algorithm of NIRAS in downward con-
figuration, and the proposed FANSIRAS algorithm has been demon-
strated. However, significant differences can be seen between the
NIRAS technique in upward configuration (with the previous rest of
the specimen) and the FANSIRAS algorithm. In future studies, these
differences should be studied, as well as understanding the apparent
memory mechanisms. Both techniques jointly (upward NIRAS and
FANSIRAS) may model the hysteresis area of a non-linear material.

In short, signal modality might be the foundation for futures studies of com-
plex non-linear phenomena. Getting knowledge about the underlying sys-
tems may provide crucial information to develop easier and optimal signal
processing algorithms not only in the non-destructive testing of concrete,
but also in further applications, such as biomedicine, acoustics, etc.
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en el procesado avanzado de señales acústicas (TEC2011-23403).

� Nuevas Aplicaciones de Ensayos No Destructivos basados en Ondas
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Abbreviations and Acronyms

AAFT Amplitude Adjusted Fourier Transform
AR Autoregressive Models
ARMA Autoregressive Moving Average Models
BWE Back Wall Echo
DAKDS Determinism based on the Average Kurtosis
DET Determinism based on the Recurrence Plots
DFT Discrete Fourier Transform
DJM Determinism based on the Jeong Method
DMKG Determinism based on the Kaplan-Glass Method
DP Distance Plot
DV Delay Vector
DVRQA Delay Vector based on RQA
DVV Delay Vector Variance
EEG Electroencephalography
e.g. for example (from the latin exempli gratia)
ENTR Entropy
ESA External Sulphate Attack
FANSIRAS Flipped Accumulative NSIRAS
FNN False Nearest Neighbour
FT Fourier Transform
GN Grain Noise
GOR Grain-to-Observation-Noise-Ratio
HNR Harmonic to Noise Ratio
HR Humidity Relative
HRV Heart Rate Variability
i.e. that is (from the latin id est)
iAAFT Iterative Amplitude Adjusted Fourier Transform
INRS Impact Non-linear Resonance Spectroscopy
ISA Internal Sulphate Attack
LAM Laminarity
MI Mutual Information
MODWT Maximal Overlap DiscreteWavelet Transform
MSE Mean Squared Error
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NDT Non-Destructive Testing
NEWS Non-linear Elastic Wave Spectroscopy
NIRAS Non-linear Impact Resonance Acoustic Spectroscopy
NRS Non-linear Resonance Spectroscopy
NRUS Non-linear Resonance Ultrasonic Spectroscopy
NSIRAS Non-linear Single Impact Resonance Acoustic Spectroscopy
NWMS Non-linear Wave Modulation Spectroscopy
ON Observation Noise
PPS Pseudoperiodic Surrogates
PPTS Pseudo-Periodic Twin Surrogates
PSR Phase Space Reconstruction
RP Recurrence Plot
RQA Recurrence Quantification Analysis
RMSE Root Mean Square Error
RR Recurrence Rate
STFT Short Time Fourier Transform
SIMONRAS Single Mode Non-linear Resonance Acoustic Spectroscopy
SIMONRUS Single Mode Non-linear Resonance Ultrasonic Spectroscopy
SNR Signal to Noise Ratio
SSM Scaling Substraction Method
STFT Short-time Frequency Transform
TS Twin Surrogates
TT Trapping Time
UPV Ultrasonic Pulse Velocity
US Ultrasounds
WiAAFT Wavelet Iterative Amplitude Adjusted Fourier Transform
w/c Water to Cement Ratio



List of symbols

t Continuous time
n Discrete time
x(·) Input signal
y(·) Output signal
∆t Time step
f Frequency
w0 Angular frequency
λ Wavelength
T Period
Ts Time sampling
fs Sampling frequency
N Number of samples of a signal
X[f ] Fourier Transform of the signal x
NDFT Number of points used in the DFT
L Discrete time lag
τ Continuous time lag
m Real embedding dimension
E Optimal found embedding dimension
~X(·) Delay vector of the phase space
~XL,E(·) Delay vector of the phase space recontructed

with the embedding parameters L and E
f(·) Continuous time evolution function
F(·) Discrete time evolution function
d
dt(·) Differential equation
s(·) Measurement function
η(·) Measurement noise
(·)T Transpose
(·)∗ Complex conjugation
| · | Absolute value
‖ · ‖ 2 norm
‖ · ‖max Maximum norm∑j

i (·) Summation sign
max Maximum of a set
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min Minimum of a set
log Natural logarithm
log10 Decimal logarithm
Px(i) Probability that the signal x assumes a

value inside the i-th bin of the histogram
log10 Decimal logarithm
Θ(·) Heaviside step function of ·
sgn(·) Sign function of ·
b·c The greatest integer less than or equal to ·
R Set of real numbers
sin(·) Sinusoidal function
cos(·) Cosine function
arccos(·) Inverse of the cosine function
exp(·) Exponential function
∗ Convolution
E[·] Expected value
cx4(·, ·, ·) Forth order cumulant function
Ej j-th octile of the distribution of data
σ2 Variance

DP (i, j) Distance between ~X(i) and ~X(j)

RP (i, j) Recurrence Plot between ~X(i) and ~X(j)
ε Recurrence threshold
v Vertical lines
l Diagonal lines
xt(·) Target value
NS Number of surrogates
rd Standard distance
No Number of sets of points
D Diameter of the aggregates
dmat[m] Distance of the material
vp[m/s] Ultrasonic pulse velocity
ta[s] Time of arrival
αmat[dB/cm] Ultrasonic attenuation due to the material
αequip[dB/cm] Ultrasonic attenuation due to the equipment
srx Received signal
Ptx, Prx Transmitted and received power, respectively
Atx, Arx Amplitude of the transmitted and received signal, respectively
ε Strain amplitude
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K Non-linear hysteretic modulus
K0 Linear modulus

f̃0 Linear frequency
Q0 Linear damping factor
wL(·) Rectangular window of length L
αf Hysteretic parameter proportional to frequency shift
αQ Hysteretic parameter proportional to damping factor
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