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A novel numerical approach to compute the eigenvalues of linear viscoelastic oscillators is developed.The dissipative forces of these
systems are characterized by convolution integrals with kernel functions, which in turn contain a set of damping parameters. The
free-motion characteristic equation defines implicitly the eigenvalues as functions of such parameters. After choosing one of them
as independent variable, the key idea of the current paper is to obtain a differential equation whose solution can be considered,
under certain conditions, a good approximation. The method is validated with several numerical examples related to damping
models based on exponential kernels, on fractional derivatives, and on the well-known viscous model. Taylor series expansions up
to the second order are obtained and in addition analytical solutions for the viscous model are achieved. The numerical results are
very close to the exact ones for light and medium levels of damping and also very good for high levels if the chosen parameter is
close to initial values that are defined for every case.

1. Introduction

The importance of mathematical modeling for structural
dynamic systems in fields such as Aerospace or Civil Engi-
neering is well known. One of the most studied issues in
the last 50 years has been the search for robust and efficient
models for energy dissipation mechanisms. In this sense, the
linear viscoelastic models have been profusely used, covering
a wide range of structural systems. A large number of analysis
methods for thesemodels depend on the solution of the asso-
ciated eigenvalue problem. This dependency has motivated
us to investigate efficient numerical methods to compute the
complex eigenvalues of linear viscoelastic oscillators.

The most general case of a viscoelastic system with
one degree-of-freedom, say 𝑢(𝑡), can be modeled with a
single mass, say 𝑚, attached to a fixed point by a viscoelas-
tic constraint. Figure 1 shows the schematic configuration
mass-spring-viscoelastic damper and the corresponding free
body diagram with the applied forces of the mass. Hence,

the reaction force produced in the mass, say 𝑅(𝑡), is related
with the displacement by

𝑅 (𝑡) = ∫

𝑡

−∞

G (𝑡 − 𝜏) 𝑢̇ (𝜏) d𝜏 + 𝑘𝑢 (𝑡) , (1)

where G(𝑡) is the dissipative kernel or damping function,
characteristic of the considered viscoelastic model, and 𝑘

is the constant of the linear-elastic spring. Notice that the
dissipative force depends on the past history of velocities via
convolution integral over the kernel.

The motion equation can be deduced from the dynamic
equilibrium:

𝑚𝑢̈ + ∫

𝑡

−∞

G (𝑡 − 𝜏) 𝑢̇ (𝜏) d𝜏 + 𝑘𝑢 (𝑡) = 𝐹 (𝑡)

𝑢 (0) = 𝑢
0
,

𝑢̇ (0) = V
0
,

(2)

where 𝑢
0
and V

0
are the initial position and velocity of the

mass and 𝐹(𝑡) is the external, time-dependent, applied force.
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Figure 1: Schematic representation of the viscoelastic oscillator.

With reference to the mathematical form ofG(𝑡), several
works have been published, proposing different expressions
basically in the Laplace domain. The most popular is due
to Biot [1] and is called multiexponential model, which
assumes that the viscoelastic function is a linear combination
of exponential functions. Also, the models based on the
fractional derivative proposed by Bagley and Torvik [2, 3]
have been widely used. Other viscoelastic models of special
interest, again based on state-space methods, are the GHM
approach of Golla, Hughes, and McTavish [4, 5] or the
Anelastic Displacement Field of Lesieutre and Mingori [6].
Reference [4] gave the required conditions ofG(𝑡) to describe
a real dissipative motion. Adhikari and Woodhouse [7, 8]
proposed viscoelastic functions in the context of damping
identification in dynamic systems.

The main objective of the present work is to propose
a numerical method to solve the characteristic equation
associatedwith the nonviscously damped oscillator described
by (2). As known, the approximation embraces not only
physical systems with only one degree-of-freedom but also
multiple-degree-of-freedom systems with proportional or
lightly nonproportional nature, that is, those in which the
dynamic matrices become diagonal in the modal space. The
Laplace transformof the free-motion equation leads to a non-
linear eigenvalue problem in the Laplace variable 𝑠. The form
of this problem will depend on the nature of the viscoelastic
function transform, named𝐺(𝑠) = L{G(𝑡)}. Severalmethods
to solve the general nonlinear eigenvalue problem exist in
the bibliography. Yang [9] and Singh and Ram [10] proposed
some methods based on Taylor series expansion of the
transcendental matrices combined with Newton’s eigenvalue
iteration method. Williams and Kennedy [11] developed a
numerical procedure based on the parabolic interpolation of
the determinant that governs the eigenvalue problem. Daya
and Potier-Ferry [12] used asymptotic numerical techniques
to determine the natural frequencies and the loss factors of
viscoelastic damped sandwich structures. Voss [13, 14] pro-
posed two methods based on the shift-and-invert Arnoldi’s
technique and on the Jacobi-Davidson method, respectively.
In both references, an iterative process is used to compute a
few eigenvalues that lie close to a given point. An important
subset of viscoelastic models, in which 𝐺(𝑠) has a rational
expression, have been published. In them, the nonlinear
eigenvalue problem can be transformed into a linear one,
introducing new internal variables and using state-space
approaches; see for instance the works of Muravyov and
Menon [15–17]. However, these methods become computa-
tionally expensive for large systems. In addition, the physical

insight of the problem can also be lost due to the introduction
of the new variables. Recently, Adhikari and Pascual [18,
19] have published efficient iterative methods based on the
Taylor series expansion of 𝐺(𝑠). Lázaro et al. [20] proposed
a recursive scheme based on the fixed-point iteration which
always converge to the complex eigenvalues.

Several authors have studied the eigensolutions as func-
tions of the parameters involved in the dynamic matrices.
The main results are related to numerical methods for the
computation of eigenvalues and eigenvector derivatives with
respect to certain design parameter. Fox and Kapoor [21]
published an important work in which analytical solutions
of the derivatives were given. However, in their results, the
complete set of eigenvectors of the modal space are involved,
and again the computations become expensive for large-
order systems. Nelson [22] gave an alternative and efficient
method to obtain the derivatives requiring only the eigen-
vector and eigenvalue of interest. Wang [23] and later Zhang
and Zerva [24] introduced improved methods in truncated
systems. Murthy and Haftka [25] published a survey of
methods for the calculation of the derivatives applied to
general non-Hermitian matrix problems. The same authors
in [26] studied the computational efficiency of different
approximations based on eigenvalue derivatives, generalized
Rayleigh quotient, and the trace theorem.The generalization
of the eigensolution derivatives for nonviscous systems was
studied byAdhikari [27, 28]. Cortés and Elejebarrieta [29, 30]
used Adhikari’s solutions in an iterative numerical method to
compute eigensolutions which are applicable even to highly
damped systems.

The current paper is aimed at numerically solving the
eigenvalues of the nonlinear eigenvalue problem of viscoelas-
tic oscillators. As known, a dynamic model is governed
by inertial masses, linear rigidities, and several damping
parameters that are included in the viscoelastic function.The
newly developed eigenvalues will be functions of a single
damping parameter, called valid parameter, leaving the others
fixed. The key idea is to transform the modal characteristic
equation into a differential one with separated variables. The
methodology is applied to widely used viscoelastic systems
and also illustrated with numerical examples to validate the
theoretical results and to show the limits of application.

2. Dynamics of Single Degree-of-Freedom
Viscoelastic Systems

The characteristic equation of the eigenvalue problem can be
obtained trying solutions with the form 𝑢(𝑡) = 𝑢

0
𝑒
𝑠𝑡 in the

free-motion equation obtained from (2). Consider

𝑚𝑠
2
+ 𝑠𝐺 (𝑠) + 𝑘 = 0. (3)

Here, as mentioned, 𝐺(𝑠) is the Laplace transform of the
kernel function G(𝑡). Note that the eigenvalue problem of
proportional or lightly nonproportionalMDOF systems of𝑁
degrees of freedom can be reduced to solve just𝑁 decoupling
characteristic equations; therefore, the method described in
this paper can also be applied to these MDOF dynamic
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systems. Adhikari [31] gave the necessary and sufficient con-
ditions under which nonviscous systems have proportional
damping. The previous equation can be mass-normalized to

𝐷 (𝑠) = 𝑠
2
+ 𝑠Γ (𝑠) + 𝜔

2

𝑛
= 0. (4)

The damping function Γ(𝑠) = 𝐺(𝑠)/𝑚 and the natural fre-
quency of the undamped system𝜔

𝑛
= √𝑘/𝑚 have been intro-

duced. Golla and Hughes [4] gave the necessary conditions
that 𝐺(𝑠) has to fulfil in order to define a real dissipative
motion. Assuming that 𝐺(𝑠) verifies these conditions, it can
be assured [32, 33] that the characteristic equation (4) has 2+𝑞
eigenvalues, with 𝑞 ≥ 0. These can be arranged in a set with
the form

{𝑠
0
, 𝑠

∗

0
, 𝑠

1
, . . . , 𝑠

𝑞
} , (5)

where 𝑠
0
, 𝑠

∗

0
are a pair of complex conjugate roots which

induce oscillatory motion. The rest {𝑠
𝑗
}
𝑞

𝑗=1
are named non-

viscous eigenvalues [34] and are negative real numbers
associated with overcritical damped responses.

According to Adhikari [34], if the set of eigenvalues
is available, the complete solution of the integrodifferential
equation (2) can be expressed in terms of these eigenvalues
in the form

𝑢 (𝑡) = 𝛾
0
𝑎
0
(𝑡) + 𝛾

∗

0
𝑎
∗

0
(𝑡) +

𝑞

∑

𝑗=1

𝛾
𝑗
𝑎
𝑗
(𝑡) , (6)

where the function and coefficient are

𝑎
𝑗
(𝑡) = ∫

𝑡

0

𝑒
𝑠𝑗(𝑡−𝜏)

[𝐹 (𝜏) −G (𝜏) 𝑢
0
] d𝜏

+ 𝑚𝑒
𝑠𝑗𝑡

(V
0
+ 𝑠

𝑗
𝑢
0
) ,

𝛾
𝑗
= [

𝜕𝐷 (𝑠
𝑗
)

𝜕𝑠

]

−1

, 0 ≤ 𝑗 ≤ 𝑞.

(7)

Due to the relevance of the eigenvalues in the final
solution, the availability of efficient numerical computation
tools is important. We propose a new method to compute
the roots of (3), based on the perturbation of the damping
parameters. In the next section, the theoretical foundations
of the method are introduced.

3. Perturbation Method of the Damping Model

3.1. Fundamentals of the Method. As explained in Section 2,
the eigenvalues are the roots of the characteristic equation
given by (4).The key idea of themethod is to consider that the
function Γ = Γ(𝑠, 𝑝

1
, . . . , 𝑝

𝑟
) depends not only on the variable

𝑠 but also on a set of damping parameters {𝑝
1
, . . . , 𝑝

𝑟
} which

controls the viscoelastic behavior of the system.
In the general case, any eigenvalue 𝜆 = 𝜆(𝑝

1
, . . . , 𝑝

𝑟
) can

be considered as function of the damping parameters. Let us
consider one of these parameters as variable, while the rest
remain fixed. Without loss of generality, it can be assumed

that this is 𝑝
1
. Denoting as 𝜃 = 𝑝

1
, let us assume now that

there exists a particular value (or initial point) of 𝜃, say 𝜃
0
, so

that the characteristic equation can be solved analytically in
terms of𝑝

2
, 𝑝

3
, . . . , 𝑝

𝑟
, obtaining the related initial eigenvalue

𝜆
0
:

𝜆
2

0
+ 𝜆

0
Γ (𝜆

0
, 𝜃

0
, 𝑝

2
, . . . , 𝑝

𝑟
) + 𝜔

2

𝑛
= 0

󳨀→ 𝜆
0
= 𝜆

0
(𝜃

0
, 𝑝

2
, . . . , 𝑝

𝑟
) .

(8)

Under these conditions, the parameter 𝜃 = 𝑝
1
is named valid

parameter for the purposes of the current paper. Somehow,
this parameter will be used to perturb (4) and therefore we
need a particular initial value, which has been denoted by 𝜃

0
.

The method is constructed assuming that the eigenvalue at
𝜃 = 𝜃

0
, say 𝜆

0
, can be analytically available (and consequently

also its derivatives will be shown later).Therefore, we can take
as independent variables those parameters which, evaluated
at certain particular value, allow reducing (4) to another one
with analytical solution. Along the numerical examples of the
present paper, different choices for the damping parameters
will be carried out in order to show the flexibility of the
proposed method.

Since the rest of parameters are fixed, the eigenvalue
𝜆 = 𝜆(𝜃) can be considered as single-variable function of 𝜃.
The conditions of existence and uniqueness of such function
are given by the implicit function theorem. As known, the
equation

𝐷 (𝜆, 𝜃) = 𝜆
2
+ 𝜆Γ (𝜆, 𝜃) + 𝜔

2

𝑛
= 0 (9)

defines an implicit function 𝜆 = 𝜆(𝜃) around the point 𝜃 = 𝜃
0

if
𝜕𝐷 (𝜆

0
, 𝜃

0
)

𝜕𝜆

= Γ (𝜆
0
, 𝜃

0
) + 𝜆

0
[2 +

𝜕Γ (𝜆
0
, 𝜃

0
)

𝜕𝜆

] ̸= 0. (10)

Under this hypothesis, it is also guaranteed that there exist
(i) an open interval 𝐼 =]𝜃

0
− ℎ/2, 𝜃

0
+ ℎ/2[ with ℎ > 0 and (ii)

an open neighborhood around the point 𝜆
0
in the complex

domain 𝐵 ⊂ C, such that the function 𝜆(𝜃) will be unique
and continuously differentiable in 𝐼 and its graph verifies

{(𝜃, 𝜆 (𝜃)) : 𝜃 ∈ 𝐼} = {(𝑠, 𝜃) ∈ 𝐵 × 𝐼 : 𝐷 (𝑠, 𝜃) = 0} . (11)

Notice that the damping function has been represented
directly as Γ(𝑠, 𝜃) in the implicit function theorem due to the
fact that the parameters 𝑝

2
, . . . , 𝑝

𝑟
are assumed to be fixed.

Themain challenge of this paper is to construct approximated
solutions of the function 𝜆(𝜃). In the next subsection, the
methodology to obtain the 𝑘th-order Taylor series of𝜆(𝜃)will
be developed. Moreover, this approximation will be used in a
further step to improve the solution.

3.2. Taylor Expansion of the Eigenvalues. Assuming that the
necessary conditions for the existence of the function 𝜆 =

𝜆(𝜃) are satisfied, the Taylor series expansion up to the 𝑘th
order can be obtained around the initial point 𝜃

0
, provided

that the derivatives evaluated at this point are available.
Consider

𝜆
𝑘
(𝜃) = 𝜆

0
+

𝑘

∑

𝑟=1

𝜆
(𝑟)

(𝜃
0
)

𝑟!

(𝜃 − 𝜃
0
)
𝑟 (12)
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with

𝜆
(𝑟)

(𝜃
0
) =

d𝑟𝜆
d𝜃𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=𝜃0

. (13)

The computation of 𝜆(𝑟)(𝜃
0
) can be carried out from the

characteristic equation (9), in which consecutive derivatives
can be taken with respect to 𝜃. The first-order derivative is
calculated as

d𝐷
d𝜃

= 2𝜆𝜆
󸀠
+ 𝜆

󸀠
Γ + 𝜆 (Γ

󸀠

𝜆
𝜆
󸀠
+ Γ

󸀠

𝜃
) = 0 (14)

whence solving 𝜆󸀠 results in

𝜆
󸀠
=

−𝜆Γ
󸀠

𝜃

Γ + 𝜆 [2 + Γ
󸀠

𝜆
]

, (15)

Γ
󸀠

𝜆
=

𝜕Γ

𝜕𝜆

,

Γ
󸀠

𝜃
=

𝜕Γ

𝜕𝜃

.

(16)

Using the same procedure to compute the second deriva-
tive, the term 𝜆

󸀠󸀠 is extracted. After some simplifications, this
second derivative results in

𝜆
󸀠󸀠
= −

𝑅 (𝜃, 𝜆, 𝜆
󸀠
)

(Γ + 𝜆 [2 + Γ
󸀠

𝜆
])

2
, (17)

where

𝑅 (𝜃, 𝜆, 𝜆
󸀠
) = (𝜆

󸀠
)

2

(2 + 2Γ
󸀠

𝜆
+ 𝜆Γ

󸀠󸀠

𝜆𝜆
)

+ 2𝜆
󸀠
(Γ

󸀠

𝜃
+ 𝜆Γ

󸀠󸀠

𝜆𝜃
) + 𝜆Γ

󸀠󸀠

𝜃𝜃

(18)

and now

Γ
󸀠󸀠

𝜆𝜆
=

𝜕
2
Γ

𝜕𝜆
2
,

Γ
󸀠󸀠

𝜆𝜃
=

𝜕
2
Γ

𝜕𝜆𝜕𝜃

,

Γ
󸀠󸀠

𝜃𝜃
=

𝜕
2
Γ

𝜕𝜃
2
.

(19)

Finding more terms of the series would be possible if
higher order derivatives were calculated. However, for the
proposes of the present work, only the explicit expressions of
the first two derivatives are necessary. Note that both are well
defined since the denominators of (15) and (17) are never nil
due to (10).

As will later be described, in some cases, (12) suffices
when the objective is to calculate the eigenvalue at the prox-
imities of point 𝜃

0
. However, the availability of the solution

in a wider interval of the parameter 𝜃 is sometimes necessary.
For these situations, an improved solution is presented in the
next subsection.

3.3. Improving the Solution: Eigenvalue Differential Equation.
The challenge now is to use the previously obtained results to
improve the estimation accuracy of 𝜆(𝜃) in a wider range of
𝜃. To describe the procedure, the expression of the first-order
derivative 𝜆󸀠(𝜃) given in (15) is rewritten in the form

𝜆
󸀠
= −𝜆Ψ (𝜆, 𝜃) , (20)

where the new function Ψ(𝜆, 𝜃) is defined by

Ψ (𝜆, 𝜃) =

Γ
󸀠

𝜃
(𝜆, 𝜃)

Γ (𝜆, 𝜃) + 𝜆 [2 + Γ
󸀠

𝜆
(𝜆, 𝜃)]

. (21)

From a mathematical point of view, (20) can be considered
an ordinary differential equation to be complemented with
the initial condition 𝜆

0
= 𝜆(𝜃

0
). Obviously, its solution is

the same as that of the characteristic equation (8). The fun-
damental objective of the current method is to transform this
ordinary differential equation into another with separated
variables. For that, the 𝑘th-order solution of the Taylor series
obtained in (12), namely, 𝜆

𝑘
(𝜃), will be used to approximate

the value of 𝜆 inside the function Ψ(𝜆, 𝜃). So

Ψ (𝜆, 𝜃) ≈ Ψ (𝜆
𝑘
(𝜃) , 𝜃) ≡ 𝜓

𝑘
(𝜃) . (22)

Hence, the new function 𝜓
𝑘
(𝜃) depends only on a single

variable. The accuracy of the approximation is related to the
quality of the assumption made in (22), which in turn is
conditioned by the level of viscoelasticity of the system. In
other words, it depends on the variability of the viscoelastic
function Γ(𝑠, 𝜃) with respect to 𝑠; a viscoelastic system with
low viscoelasticity does not present large variations in 𝑠-
domain. More details about the study of the viscoelasticity
in nonviscous dynamic systems can be found in the work
of Adhikari and Woodhouse [35]. Here it will be shown
that, under certain conditions, the approximation Ψ(𝜆, 𝜃) ≈

Ψ(𝜆
𝑘
(𝜃), 𝜃) will produce results close to the exact ones.

With regard to the order of the approximation, in the
next subsection, it will be demonstrated that the proposed
method improves the error order with respect to that of the
Taylor approximation. However, as will be shown with the
numerical examples, the order does not ensure a better mean
approximation in the wider range of the parameter.

Under the aforementioned assumptions, the differential
equation can be expressed as

𝜆
󸀠

𝜆

= −𝜓
𝑘
(𝜃) ,

𝜆 (𝜃
0
) = 𝜆

0

(23)

whose solution will be denoted by ̂
𝜆
𝑘
(𝜃). The subindex

indicates the 𝑘-order Taylor series approximation. An explicit
expression can be represented by

̂
𝜆
𝑘
(𝜃) = 𝜆

0
𝑒
−𝑍(𝜃)

, (24)

where the exponential function is defined by

𝑍 (𝜃) = ∫

𝜃

𝜃0

𝜓
𝑘
(𝜗) d𝜗. (25)
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When the function ̂
𝜆
𝑘
(𝜃) is obtained from the first-order

approximation of the Taylor series expansion 𝑘 = 1, the
solution will be named Improved Linear Solution (ILS). If the
second-order approximation 𝑘 = 2 is used, the name will
be Improved Quadratic Solution (IQS). The functions Ψ(𝑠, 𝜃)
and 𝜓

𝑘
(𝜃) will be called exact and approximated integrand

functions, respectively. The next subsection is aimed at the
analysis of the truncation error.

4. Analysis of the Error

Section 3 was focused on the methodology exposition to
compute the function ̂

𝜆
𝑘
(𝜃) as approximation of the exact

eigenvalues 𝜆(𝜃). It has already been mentioned that, intu-
itively, the proposed function will be a good estimation
provided that the error between the functionsΨ(𝜆(𝜃), 𝜃) and
𝜓
𝑘
(𝜃) is not important. In this subsection more quantitative

information is provided, finding a bound of the error |̂𝜆
𝑘
(𝜃)−

𝜆(𝜃)|. The necessary conditions to calculate this bound are
directly relatedwith the properties of the viscoelastic function
𝐺(𝑠, 𝜃) = 𝑚Γ(𝑠, 𝜃) and will be given by three hypotheses:

(H1) If (𝜆
0
, 𝜃

0
) is the initial point verifying (8), then

Γ(𝜆
0
, 𝜃

0
) + 𝜆

0
[2 + Γ

󸀠

𝜆
(𝜆

0
, 𝜃

0
)] ̸= 0.

(H2) Let 𝐼 and 𝐵 be the neighborhoods of 𝜃
0
and 𝜆

0
,

respectively; the existence of these sets is assured
by the implicit function theorem. Then 𝐺(𝑠, 𝜃) is a
continuous and differentiable functionwith respect to
the variables 𝑠, 𝜃 up to order 𝑘 + 1 in the set 𝐵 × 𝐼.
In addition, 𝐺(𝑠, 𝜃) and its partial derivatives with
respect to 𝑠, 𝜃 up to order 𝑘 + 1 are bounded in the
set 𝐵.

(H3) The function Ψ(𝑠, 𝜃) defined by (21) is Lipschitz
continuous with respect to the first variable 𝑠 in the
set 𝐵, with constant 𝑞 > 0:

󵄨
󵄨
󵄨
󵄨
Ψ (𝑠

1
, 𝜃) − Ψ (𝑠

2
, 𝜃)

󵄨
󵄨
󵄨
󵄨
≤ 𝑞

󵄨
󵄨
󵄨
󵄨
𝑠
1
− 𝑠

2

󵄨
󵄨
󵄨
󵄨
, ∀𝑠

1
, 𝑠

2
∈ 𝐵. (26)

The hypothesis (H1) allows assuring the existence of the
function 𝜆(𝜃) : 𝐼 → 𝐵 in the interval 𝐼 =]𝜃

0
− ℎ/2, 𝜃

0
+

ℎ/2[. One of the theses of the implicit function theorem
is the existence of the set 𝐵 ⊂ C in which the image of
𝜆(𝜃) is defined. Under this consideration, hypotheses (H2)
and (H3) are well established because they are based on the
existence of such sets. The main conclusions of the current
subsection will be presented in Theorem 1. Previously, two
properties are formulated since they will be necessary later
in the demonstration of the main theorem.

Property 1. If Ψ(𝑠, 𝜃) is a function from (21), then a real
and positive number exists, 𝑝 > 0, such that |Ψ(𝑠, 𝜃)| ≤

𝑝 ∀(𝑠, 𝜃) ∈ 𝐵 × 𝐼.

Property 2. Let 𝜆(𝜃) be the eigenvalue as function of the
parameter 𝜃 ∈ 𝐼. Then for any integer 𝑘 ≥ 0 there exists a real
and positive number, 𝜌

𝑘
> 0, such that |𝜆(𝑘)(𝜃)| ≤ 𝜌

𝑘
∀𝜃 ∈ 𝐼.

Notice that with the previous nomenclature 𝜆
(0)
(𝜃) =

𝜆(𝜃). The proof of Properties 1 and 2 is found in Appendices
A and B.

Theorem 1. Let 𝜆(𝜃) be the eigenvalue and let ̂𝜆
𝑘
(𝜃) be the

approximation calculated from (22) to (25) with 𝑘 ≥ 1.
Assuming that hypotheses (H1), (H2), and (H3) are satisfied,
there exist two positive real numbers, 𝜌

𝑘
> 0 and 𝑝 > 0, such

that
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝜆
𝑘
(𝜃) − 𝜆 (𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑞

󵄨
󵄨
󵄨
󵄨
𝜆
0

󵄨
󵄨
󵄨
󵄨

𝜌
𝑘

(𝑘 + 1)!

ℎ
𝑘+2

𝑒
𝑝ℎ
, ∀𝜃 ∈ 𝐼. (27)

Proof. From (20), the exact eigenvalue 𝜆(𝜃) verifies the
relation

𝜆 (𝜃) = 𝜆
0
𝑒
−𝑌(𝜃)

, (28)

where

𝑌 (𝜃) = ∫

𝜃

𝜃0

Ψ (𝜆 (𝜗) , 𝜗) d𝜗. (29)

For demonstration purposes, it is necessary to bound the
difference norm |𝑍

𝑛
(𝜃)−𝑌

𝑛
(𝜃)| for any natural number 𝑛 ≥ 1.

First, using (H3) and the subtraction ̂
𝜆
𝑘
(𝜃)−𝜆(𝜃) in Taylor

series, the previous norm for 𝑛 = 1 is

|𝑍 (𝜃) − 𝑌 (𝜃)| ≤ ∫

𝜃

𝜃0

󵄨
󵄨
󵄨
󵄨
Ψ (𝜆

𝑘
(𝜗) , 𝜗) − Ψ (𝜆 (𝜗) , 𝜗)

󵄨
󵄨
󵄨
󵄨
d𝜗

≤ ∫

𝜃

𝜃0

𝑞
󵄨
󵄨
󵄨
󵄨
𝜆
𝑘
(𝜗) − 𝜆 (𝜗)

󵄨
󵄨
󵄨
󵄨
d𝜗

≤ 𝑞∫

𝜃

𝜃0

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
(𝑘+1)

(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

(𝑘 + 1)!

󵄨
󵄨
󵄨
󵄨
𝜉 − 𝜃

0

󵄨
󵄨
󵄨
󵄨

𝑘+1 d𝜗

≤ 𝑞

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
(𝑘+1)

(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

(𝑘 + 1)!

ℎ
𝑘+2

≤

𝑞𝜌
𝑘

(𝑘 + 1)!

ℎ
𝑘+2

,

(30)

where 𝜉 ∈ 𝐼 defines the truncation residual of the Taylor
series up to the order 𝑘. For the last inequality Property 2 has
been used. In general, a bound of the functions𝑍(𝜃) and𝑌(𝜃)
can be calculated using Property 1. From the definitions, one
directly obtains

|𝑍 (𝜃)| ≤ ∫

𝜃

𝜃0

󵄨
󵄨
󵄨
󵄨
Ψ (𝜆

𝑘
(𝜗) , 𝜗)

󵄨
󵄨
󵄨
󵄨
d𝜗 ≤ 𝑝ℎ,

|𝑌 (𝜃)| ≤ ∫

𝜃

𝜃0

|Ψ (𝜆 (𝜗) , 𝜗)| d𝜗 ≤ 𝑝ℎ.

(31)

Second, using (30) and (31), for 𝑛 ≥ 1,
󵄨
󵄨
󵄨
󵄨
𝑍
𝑛
(𝜃) − 𝑌

𝑛
(𝜃)

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

[𝑍 (𝜃) − 𝑌 (𝜃)]

𝑛

∑

𝑗=0

𝑍
𝑛−𝑗

(𝜃) 𝑌
𝑗−1

(𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ |𝑍 (𝜃) − 𝑌 (𝜃)|

𝑛

∑

𝑗=1

|𝑍 (𝜃)|
𝑛−𝑗

|𝑌 (𝜃)|
𝑗−1
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≤ |𝑍 (𝜃) − 𝑌 (𝜃)|

𝑛

∑

𝑗=1

(𝑝ℎ)
𝑛−𝑗

(𝑝ℎ)
𝑗−1

= |𝑍 (𝜃) − 𝑌 (𝜃)| 𝑛 (𝑝ℎ)
𝑛−1

.

(32)

Now the error can be calculated; using the definitions of
both functions,

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝜆
𝑘
(𝜃) − 𝜆 (𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝜆
0

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∞

∑

𝑛=1

(−1)
𝑛

𝑛!

[𝑍
𝑛
(𝜃) − 𝑌

𝑛
(𝜃)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝜆
0

󵄨
󵄨
󵄨
󵄨

∞

∑

𝑛=1

1

𝑛!

󵄨
󵄨
󵄨
󵄨
𝑍
𝑛
(𝜃) − 𝑌

𝑛
(𝜃)

󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝜆
0

󵄨
󵄨
󵄨
󵄨
|𝑍 (𝜃) − 𝑌 (𝜃)|

∞

∑

𝑛=1

𝑛 (𝑝ℎ)
𝑛−1

𝑛!

≤
󵄨
󵄨
󵄨
󵄨
𝜆
0

󵄨
󵄨
󵄨
󵄨
|𝑍 (𝜃) − 𝑌 (𝜃)|

∞

∑

𝑛=1

(𝑝ℎ)
𝑛−1

(𝑛 − 1)!

≤
󵄨
󵄨
󵄨
󵄨
𝜆
0

󵄨
󵄨
󵄨
󵄨
|𝑍 (𝜃) − 𝑌 (𝜃)| 𝑒

𝑝ℎ

≤ 𝑞
󵄨
󵄨
󵄨
󵄨
𝜆
0

󵄨
󵄨
󵄨
󵄨

𝜌
𝑘

(𝑘 + 1)!

ℎ
𝑘+2

𝑒
𝑝ℎ
.

(33)

The theorem states that the approximation order of the
improved solution is O(ℎ𝑘+2), while approximating with
Taylor series up to the 𝑘th term gives O(ℎ𝑘+1). This result
allows us to assure that an improvement of the solution in
a neighborhood of the initial point exists.

To illustrate the efficiency of the proposed method, the
next section describes its implementation for systems with
Biot’s model-based viscoelastic function. Cases with one
exponential kernel and with more than one exponential ker-
nel will be also developed. In addition, the viscously damping
systems are analyzed, since the current methodology allows
finding analytical solutions.

5. Numerical Examples

5.1. The Viscous Model. The viscous model is a special case
of viscoelastic behavior whose kernel is proportional to the
Dirac delta, G(𝑡) = 𝑐V𝛿(𝑡), where 𝑐V is the viscous damping
coefficient. The Laplace transform of the kernel function
becomes the 𝑠-independent function 𝐺(𝑠) ≡ 𝑐V. In general,
instead of 𝑐V the damping ratio 𝜁 is commonly used. Both
are related by the well-known expression 𝑐V = 2𝑚𝜔

𝑛
𝜁, and

consequently the mathematical model depends only on the
single parameter 𝜃 ≡ 𝜁. The mass-normalized characteristic
equation (3) can be rewritten as

𝑠
2
+ 2𝑠𝜁𝜔

𝑛
+ 𝜔

2

𝑛
= 0, (34)

where now Γ(𝑠, 𝜁) = 2𝜁𝜔
𝑛
. The classical exact solution of (34)

is the pair of complex numbers

𝜆 (𝜁) = −𝜔
𝑛
𝜁 ± 𝑖𝜔

𝑛
√1 − 𝜁

2
. (35)

Although the exact solution is here available, the application
of the proposed method is of interest due to the availability
of analytical solutions for (23) considering Taylor series up to
the linear order 𝜆

1
(𝜁) or up to the quadratic one 𝜆

2
(𝜁).

Taking 𝜁
0

= 0 as the initial point, the solution of the
characteristic equation corresponds to that of the undamped
system, 𝜆(0) = 𝜆

0
= ±𝑖𝜔

𝑛
. Using now the eigenvalue with

positive imaginary part, the derivatives of 𝜆(𝜁) can be
deduced from (15) and (17):

𝜆
󸀠
(𝜁) = −

𝜔
𝑛
𝜆 (𝜁)

𝜔
𝑛
𝜁 + 𝜆 (𝜁)

󳨀→ 𝜆
󸀠
(0) = −𝜔

𝑛
,

𝜆
󸀠󸀠
(𝜁) = −𝜆

󸀠
(𝜁)

2𝜔
𝑛
+ 𝜆

󸀠
(𝜁)

𝜔
𝑛
𝜁 + 𝜆 (𝜁)

󳨀→ 𝜆
󸀠󸀠
(0) = −𝑖𝜔

𝑛
.

(36)

The Taylor series expansion of the function 𝜆(𝜁) up to the
second order can be obtained as

𝜆
2
(𝜁) = 𝑖𝜔

𝑛
− 𝜔

𝑛
𝜁 −

𝑖𝜔
𝑛
𝜁
2

2

≡ 𝜆
1
(𝜁) −

𝑖𝜔
𝑛
𝜁
2

2

. (37)

It can be verified that the three first terms of the Taylor
expansion (see (35)) coincide with (37). In view of the
theoretical results of the previous section, the improved
solutions ILS (𝑘 = 1) and IQS (𝑘 = 2) can be computed
solving the following differential equation:

𝜆
󸀠
= −𝜆

𝜔
𝑛

𝜔
𝑛
𝜁 + 𝜆

𝑘
(𝜁)

,

𝜆 (0) = 𝑖𝜔
𝑛
.

(38)

Substituting in (38) the first order approximation of the
root 𝜆

1
(𝜁) from (37), the ordinary differential equation leads

to

𝜆
󸀠
= 𝑖𝜆,

𝜆 (0) = 𝑖𝜔
𝑛

(39)

and a closed expression for ILS is obtained:

̂
𝜆
1
(𝜁) = 𝑖𝜔

𝑛
𝑒
𝑖𝜁
. (40)

It is also interesting to deduce the improved solution corre-
sponding to the quadratic approximation 𝜆

2
(𝜁) from (37); the

differential equation results in

𝜆
󸀠
= 𝜆

𝑖

1 − 𝜁
2
/2

,

𝜆 (0) = 𝑖𝜔
𝑛

(41)

and the explicit expression of IQS can also be easily inte-
grated, resulting in

̂
𝜆
2
(𝜁) = 𝑖𝜔

𝑛
(

√2 + 𝜁

√2 − 𝜁

)

𝑖/√2

. (42)
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Damping ratio, 𝜁
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Figure 2: Eigenvalues of viscous model versus 𝜁. Continuous line
for exact values and dotted one for Improved Solutions: square tick
for Linear (ILS) and bullet for Quadratic (IQS).

Both improved solutions together with the exact one are
plotted versus the damping ratio 𝜁 in Figure 2. This ratio is
represented in logarithmic scale since the great majority of
dynamic systems are lightly damped, with range 0.001 ≤

𝜁 ≤ 0.2. For this numerical example an undamped natural
frequency 𝜔

𝑛
= 1 rad/s has been chosen. The improved

solutions are close or very close to the exact one through
almost the complete range of 𝜁, even for high damped
systems. The noticeable differences are for 𝜁 > 0.6 far from
the initial value 𝜁

0
= 0 as mentioned at the end of Section 4.

Moreover, it can be noted that the improved solutions
and the exact one lie along the same complex domain
circumference when the parameter 𝜁 varies. This fact can
easily be verified calculating the absolute value of (40) and
(42):

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝜆
1
(𝜁)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝜆
2
(𝜁)

󵄨
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝜆 (𝜁)

󵄨
󵄨
󵄨
󵄨
= 𝜔

𝑛
, ∀𝜁 ≥ 0 (43)

which coincides with the absolute value of the exact root for
any damping ratio.

5.2. Biot’s Exponential Model. This model was introduced
by Biot [1] and has been extensively used for the analysis
of viscoelastic systems. It is based on the assumption that
dissipative forces depend on the history of the velocities of
the degrees of freedom via an exponential kernel with form

G (𝑡) = 𝑐V𝜇𝑒
−𝜇𝑡

, 𝜇, 𝑡 ≥ 0, (44)

where 𝜇 is the relaxation parameter, also called nonviscous
parameter. Notice that for high values of 𝜇 the viscoelastic
model tends to the viscous model, mathematically expressed
by lim

𝜇→∞
G(𝑡) = 𝑐V𝛿(𝑡). Therefore, the nonviscous behavior

will be controlled by 𝜇, so that when 𝜇 ≫ 𝜔
𝑛
the damping

model is viscous with coefficient 𝑐V [34, 35]. Otherwise, when
𝜇 ≪ 𝜔

𝑛
the behavior is highly nonviscous. The characteristic

equation in the Laplace domain can be written as

𝑚𝑠
2
+ 𝑠𝐺 (𝑠) + 𝑘 = 0, (45)

where 𝐺(𝑠) = 𝑐V𝜇/(𝑠 + 𝜇). The coefficient of the limit viscous
model can again be expressed in terms of the damping ratio
𝑐V = 2𝑚𝜔

𝑛
𝜁. Under these conditions, the viscoelastic model

can be written as function of the two parameters, 𝜁 and 𝜇, as
follows:

𝜆
2
+ 2𝜔

𝑛
𝜁

𝜇

𝜆 + 𝜇

𝜆 + 𝜔
2

𝑛
= 0. (46)

Introducing a new parameter 𝜏 = 1/𝜇 with 𝜇 > 0, the
previous characteristic equation can be rewritten as

𝜆
2
+ 2𝜔

𝑛
𝜁

1

𝜏𝜆 + 1

𝜆 + 𝜔
2

𝑛
= 0. (47)

Equations (46) and (47) allow defining the eigenvalues 𝜆 =

𝜆(𝜃) as single-variable functions of either 𝜃 = 𝜇, 𝜃 = 𝜏, or 𝜃 =

𝜁. Table 1 shows information related with the three cases and
the eigenvalues evaluated at the initial values (𝜆

0
, 𝜃

0
). In the

present subsection the first two cases will be developed. The
third one will be considered for a model with𝑁 exponential
kernels in Section 5.3.

Case 1 (𝜃 = 𝜇). The function 𝜆(𝜇) is implicitly defined by

𝐷(𝜆, 𝜇) = 𝜆
2
+ 2𝜔

𝑛
𝜁

𝜇

𝜆 + 𝜇

𝜆 + 𝜔
2

𝑛
= 0. (48)

As an initial point, any root of the equation 𝐷(𝜆, 0) = 𝜆
2
+

𝜔
2

𝑛
= 0 can be taken. Without loss of generality we will use

the positive imaginary part 𝜆
0
= 𝑖𝜔. From (15) and (17) the

values of 𝜆󸀠(0), 𝜆󸀠󸀠(0) can be computed, obtaining after some
operations the expressions

𝜆
󸀠
(0) = 𝑖𝜁,

𝜆
󸀠󸀠
(0) = −

𝜁 (2 + 𝜁)

𝜔
𝑛

.

(49)

Hence, the second-order Taylor polynomial is

𝜆
2
(𝜇) = 𝑖𝜔

𝑛
+ 𝑖𝜁𝜇 −

𝜁 (2 + 𝜁)

2𝜔
𝑛

𝜇
2
, 𝜇 ≥ 0. (50)

ILS and IQS, constructed from linear and quadratic
Taylor approximations, respectively, can be calculated with
(24). For that, the expression of the approximated integrand
function must be considered:

𝜓
𝑘
(𝜇) =

𝜆
𝑘
(𝜇) 𝜁𝜔

𝑛

𝜆
𝑘
(𝜇) [𝜆

𝑘
(𝜇) + 𝜇]

2

+ 𝜁𝜇
2
𝜔
𝑛

, (51)

where 𝜆
𝑘
(𝜇) is defined by (12). As described before, the qual-

ity of the approximated eigenvalue function ̂𝜆
𝑘
(𝜇)depends on

the accuracy of the assumption over the integrand function
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Table 1: Biot’s exponential model. Damping parameters, considered eigenvalue functions, and initial values of the proposed method.

Parameter, 𝜃 Function 𝜆(𝜃) Initial value, 𝜃
0

Initial eigenvalue, 𝜆
0
= 𝜆(𝜃

0
) Section 𝐷(𝜆, 𝜃) Results

𝜃 = 𝜇 𝜆 = 𝜆 (𝜇) 𝜇
0
= 0 𝜆

0
= ±𝑖𝜔

𝑛
Section 5.2 (Case 1) Equation (48) Figure 3

𝜃 = 𝜏 𝜆 = 𝜆 (𝜏) 𝜏
0
= 0 𝜆

0
= −𝜔

𝑛
𝜁 ± 𝑖𝜔

𝑛
√1 − 𝜁

2 Section 5.2 (Case 2) Equation (53) Figure 4
𝜃 = 𝜁 𝜆 = 𝜆 (𝜁) 𝜁

0
= 0 𝜆

0
= ±𝑖𝜔

𝑛
Section 5.3 Equation (60) Figure 5

Ψ(𝜆(𝜇), 𝜇) ≈ 𝜓
𝑘
(𝜇) given by (22). The method can be

implemented calculating the integral given in (25) through
numerical quadrature for each parameter value. The results
have been represented in Figure 3, where the functions ̂𝜆

1
(𝜇)

and ̂
𝜆
2
(𝜇) have been plotted versus 𝜇 for an oscillator with

natural frequency 𝜔
𝑛
= 1 rad/s. Three damping ratios 𝜁 =

{0.01, 0.05, 0.10} have been considered for comparison. In
addition, the relative error of the exact integrand function
Ψ(𝜆, 𝜇),

𝜖
𝑘
(𝜇) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Ψ (𝜆 (𝜇) , 𝜇) − 𝜓
𝑘
(𝜇)

Ψ (𝜆 (𝜇) , 𝜇)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (52)

is shown. Notice that the exact eigenvalue 𝜆(𝜇) from (46) is
required for the error computation.

Figure 3 shows that, as expected, close to the initial point
𝜇 = 0, the proposedmethod eigenvalues are very accurate for
all damping levels. Moreover, it can be seen that 𝜖

2
(𝜇) < 𝜖

1
(𝜇)

in the range 0 < 𝜇 < 1, inequality that, as predicted from
the theory of Section 4, implies that IQS is more precise than
ILS. On the contrary, when 𝜇 > 1, the errors are 𝜖

1
(𝜇) <

𝜖
2
(𝜇) and, in addition, while 𝜖

2
(𝜇) increases monotonically,

𝜖
1
(𝜇) remains almost constant. Therefore in this range ILS

is more accurate and stable than IQS so that the eigenvalues
calculated with ILS are in average closer to the exact solution
over the considered range of 𝜇. For a fixed 𝜇, the higher the
damping the poorer the approximation, especially for IQS
that completely fails for high values of𝜇 and 𝜁.The divergence
of IQS in this situation can be avoided with a different choice
of the parameter as will be explained in the next case.

This example suggests that the improved solution with
quadratic approximation is not always the best option when
the results are required in a wide range.

Case 2 (𝜃 = 𝜏 = 1/𝜇). The solution of this case is somewhat
equivalent to the expansion of the eigenvalues in their Taylor
series around 𝜇 → ∞ or 𝜏 = 0. As will be seen, the use of this
parameter results in a significant improvement of the results
from those of the previous case.The function 𝜆 = 𝜆(𝜏) is now
implicitly defined by the equation

𝐷 (𝜆, 𝜏) = 𝜆
2
+ 2𝜔

𝑛
𝜁

1

𝜏𝜆 + 1

𝜆 + 𝜔
2

𝑛
= 0. (53)

The complex roots of this equation for 𝜏
0
= 0 have already

been presented in Table 1. As before, (15) and (17) are used
to analytically calculate the derivatives evaluated at the initial
point:

𝜆
󸀠
(0) =

𝜁𝜆
2

0
𝜔
𝑛

𝜆
0
+ 𝜁𝜔

𝑛

,

𝜆
󸀠󸀠
(0) = −𝜁𝜆

3

0
𝜔
𝑛

2𝜆
2

0
+ 𝜁𝜆

0
𝜔
𝑛
− 2𝜁

2
𝜔
2

𝑛

(𝜆
0
+ 𝜁𝜔

𝑛
)
3

.

(54)

With these expressions, the second-order Taylor series
expansion of 𝜆(𝜏) is

𝜆
2
(𝜏) = 𝜆

0
+

𝜁𝜆
2

0
𝜔
𝑛

𝜆
0
+ 𝜁𝜔

𝑛

𝜏

−

2𝜆
2

0
+ 𝜁𝜆

0
𝜔
𝑛
− 2𝜁

2
𝜔
2

𝑛

2 (𝜆
0
+ 𝜁𝜔

𝑛
)
3

𝜁𝜆
3

0
𝜔
𝑛
𝜏
2

(55)

defined in the range 𝜁, 𝜏 ≥ 0. Now, ILS and IQS can be
calculated with the methodology described in Section 3.3.
First, in this particular case,

𝜓
𝑘
(𝜏) = −

𝜆
𝑘
(𝜏) 𝜁𝜔

𝑛

𝜆
𝑘
(𝜏) [1 + 𝜏𝜆

𝑘
(𝜏)]

2

+ 𝜁𝜔
𝑛

. (56)

Second, for each value of the parameter 𝜏, the eigenvalue
̂
𝜆
𝑘
(𝜏) = 𝜆

0
𝑒
−𝑍(𝜏) can be estimated by numerical quadrature

of the integral:

𝑍 (𝜏) = ∫

𝜏

0

𝜓
𝑘
(𝑡) d𝑡. (57)

Figure 4 shows the error and the complex eigenvalues
versus 𝜏 from the exact and the two improved solutions. To
compare the results with those of the previous example, the
same 𝜇-axis has been used, taking the inverse of 𝜏. It is clear
that the choice of 𝜏 produces better results for all 𝜁 and for
the complete range of 𝜇. The distributions of 𝜖

1
(𝜇) and 𝜖

2
(𝜇)

reverse their relative position but now both tend to zero for
high values of 𝜇. Except close to the origin 𝜇 = 0 (𝜏 → ∞),
the estimated eigenvalues are very close to the exact ones.The
ILS is again the best solution, although the IQS presents now
an almost perfect behavior, even for high damping.

5.3. Biot’s MultiexponentialModel. Thismodel arises as a nat-
ural generalization of Biot’s single-exponential model. Using
the same nomenclature as that in the previous subsection (see
(44)), the viscoelastic kernel function can be written as

G (𝑡) =

𝑐V

𝑁

𝑁

∑

𝑗=1

𝜇
𝑗
𝑒
−𝜇𝑗𝑡

, 𝜇
𝑗
, 𝑡 ≥ 0, 1 ≤ 𝑗 ≤ 𝑁, (58)

where 𝜇
𝑗
are the relaxation parameters and 𝑐V = 2𝑚𝜔

𝑛
𝜁 is,

as before, the damping coefficient of the viscous model when
𝜇
𝑗

→ ∞. The Laplace transform of (58) can be expressed
as

𝐺 (𝑠, 𝜁, 𝜇
1
, . . . , 𝜇

𝑁
) =

2𝑚𝜔
𝑛
𝜁

𝑁

𝑁

∑

𝑗=1

𝜇
𝑗

𝑠 + 𝜇
𝑗

. (59)
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Figure 3: Case 𝜃 = 𝜇. Relative error 𝜖
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(𝜇) = |Ψ−𝜓

𝑘
|/|Ψ| of the integrand function (a). Eigenvalues versus parameter 𝜇 (b and c). Continuous

line for exact values and dotted one for Improved Solutions: square tick for Linear (ILS) and bullet for Quadratic (IQS).

Directly, the mass-normalized characteristic equation takes
the form

𝜆
2
+ 2𝜆

𝜔
𝑛
𝜁

𝑁

𝑁

∑

𝑗=1

𝜇
𝑗

𝜆 + 𝜇
𝑗

+ 𝜔
2

𝑛
= 0. (60)

Note that the previous equation can be transformed into a
polynomial of order 2+𝑁.The set formed by 2+𝑁 eigenvalues
can be separated, on one side, in a subset with the two
complex conjugate eigenvalues and, on the other, in another
with 𝑁 nonviscous eigenvalues that in general are real and
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Figure 4: Case 𝜃 = 𝜏 = 1/𝜇. Relative error 𝜖
𝑘
(𝜏) = |Ψ − 𝜓

𝑘
|/|Ψ| of the integrand function (a). Eigenvalues versus parameter 𝜇 (b and c).

Continuous line for exact values and dotted one for Improved Solutions: square tick for Linear (ILS) and bullet for Quadratic (IQS).

negative.Theparameters𝜇
𝑗
cannot be usedwith the proposed

method because analytical solutions at the initial point for𝑁
kernels are not available. However, if the damping ratio 𝜁 is
used as parameter, the choice of initial value 𝜁

0
= 0 permits

obtaining closed solutions for both the complex eigenvalues
and the nonviscous ones.

Complex Eigenvalues. The value 𝜁
0
= 0 produces the eigen-

values of the undamped system in (60); that is, 𝜆
0
= ±𝑖𝜔

𝑛
.

Expanding the solution in its Taylor series around this point,
the proposedmethod allows obtaining 𝜆 = 𝜆(𝜁).The first and
second derivatives, 𝜆󸀠(0) and 𝜆

󸀠󸀠
(0), can be calculated from

(15) and (17). After some operations,
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𝜆
󸀠
(0) = −

𝜔
𝑛

𝑁

𝑁

∑

𝑗=1

𝜇
𝑗

𝜆
0
+ 𝜇

𝑗

,

𝜆
󸀠󸀠
(0) = 𝜆

󸀠
(0)

[

[

𝜆
󸀠
(0)

𝜆
0

+

2

𝑁

𝑁

∑

𝑗=1

𝜔
𝑛
𝜇
𝑗

(𝜆
0
+ 𝜇

𝑗
)

2

]

]

.

(61)

The second-order Taylor series become function of 𝜁: 𝜆
2
(𝜁) =

𝜆
0
+ 𝜆

󸀠
(0)𝜁 + 𝜆

󸀠󸀠
(0)𝜁

2
/2 ≡ 𝜆

1
(𝜁) + 𝜆

󸀠󸀠
(0)𝜁

2
/2. As in the

previous cases, this approximation can be improved solving
the differential equation (23), for which

𝜓
𝑘
(𝜁) =

[

[

[

𝜁 + 𝜆
𝑘
(𝜁)

⋅

1 − (𝜁𝜔
𝑛
/𝑁)∑

𝑁

𝑗=1
(𝜇

𝑗
/ (𝜆

𝑘
(𝜁) + 𝜇

𝑗
)

2

)

(𝜔
𝑛
/𝑁)∑

𝑁

𝑗=1
(𝜇

𝑗
/ (𝜆

𝑘
(𝜁) + 𝜇

𝑗
))

]

]

]

−1

.

(62)

Themethod is implemented for a numerical examplewith
𝑁 = 5 kernels. The relaxation parameters are taken as 𝜇

𝑗
=

{2, 4, 6, 10, 15} rad/s.Three different natural frequencies 𝜔
𝑛
=

{0.2, 2, 20} rad/s have been considered to validate the results
when the system is near-viscous 𝜇

𝑗
≫ 𝜔

𝑛
or, otherwise,

nonviscous 𝜇
𝑗
≈ 𝜔

𝑛
.

Figure 5 shows the errors of the integrand function and
the approximated eigenvalues ̂𝜆

1
(𝜁) and ̂

𝜆
2
(𝜁) as before. The

damping ratio 𝜁 has again been represented log-scaled. As in
the previous case 𝜖

2
(𝜁) < 𝜖

1
(𝜁), (several orders of magnitude)

∀𝜁 ∈ [0, 1], obtaining better approximations for IQS than
those for ILS. For both viscous and nonviscous systems the
agreement is very good, except for 𝜁 ≈ 1 and 𝜔

𝑛
= 0.20

rad/s (viscous behavior), where the slope of the imaginary
part becomes almost vertical.

Real Eigenvalues. It is expected that the real eigenvalues of
(59) will be relatively close to the parameters 𝜇

𝑗
in lightly

damped systems, as described by Adhikari and Pascual [19].
Naming 𝜆 = 𝜆(𝜁) to the nonviscous eigenvalue associated
with a particular parameter 𝜇

𝑟
, then 𝜆

0
= lim

𝜁→0
𝜆(𝜁) = −𝜇

𝑟
.

Indeed, multiplying (60) by 𝜆 + 𝜇
𝑟
results in

[𝜆 (𝜁) + 𝜇
𝑟
] [𝜆

2
(𝜁) + 𝜔

2

𝑛
] + 2𝜆 (𝜁)

𝜔
𝑛
𝜁

𝑁

𝜇
𝑟

+ 2𝜆 (𝜁)

𝜔
𝑛
𝜁

𝑁

𝑁

∑

𝑗=1

𝑗 ̸=𝑟

𝜆 (𝜁) + 𝜇
𝑟

𝜆 (𝜁) + 𝜇
𝑗

𝜇
𝑗
= 0.

(63)

Taking limits 𝜁 → 0 in the previous expression,

(𝜆
0
+ 𝜇

𝑟
) (𝜆

2

0
+ 𝜔

2

𝑛
) = 0. (64)

Since 𝜆
0
∈ R for the nonviscous eigenvalues, 𝜆2

0
+ 𝜔

2

𝑛
> 0

and consequently 𝜆
0
+ 𝜇

𝑟
= 0. Therefore, the nonviscous

eigenvalue associated with 𝜇
𝑗
can be expanded around the

point 𝜆
0

= 𝜆(0) = −𝜇
𝑗
. Without loss of generality,

it can always be assumed that 𝜆(𝜁) is associated with the first
parameter 𝜇

1
. Thus, for any value 𝜁 > 0, the Taylor series

expansion is now 𝜆
2
(𝜁) = −𝜇

1
+ 𝜆

󸀠
(0)𝜁 + 𝜆

󸀠󸀠
(0)𝜁

2
/2. Since

the viscoelastic function and its derivatives are not defined in
𝑠 = −𝜇

𝑗
(see (59)), the derivatives from (15) and (17) cannot be

calculated. To avoid this problem, (63)with 𝑟 = 1will be used.
Thus, 𝜆󸀠(0) and 𝜆

󸀠󸀠
(0) can be calculated taking derivatives

with respect to 𝜁 in the expression:

[𝜆 (𝜁) + 𝜇
1
] [𝜆

2
(𝜁) + 𝜔

2

𝑛
]

+ 2𝜆 (𝜁)

𝜔
𝑛
𝜁

𝑁

(𝜇
1
+

𝑁

∑

𝑗=2

𝜆 (𝜁) + 𝜇
1

𝜆 (𝜁) + 𝜇
𝑗

𝜇
𝑗
) = 0.

(65)

Evaluating (65) at 𝜁 = 0, and after some operations, the
following results are obtained:

𝜆
󸀠
(0) =

2𝜔
𝑛
𝜇
2

1

𝜔
2

𝑛
+ 𝜇

2

1

,

𝜆
󸀠󸀠
(0) =

8𝜔
2

𝑛
𝜇
3

1

(𝜔
2

𝑛
+ 𝜇

2

1
)
2

[

[

𝜇
2

1
− 𝜔

2

𝑛

𝜔
2

𝑛
+ 𝜇

2

1

+

𝑁

∑

𝑗=2

𝜇
𝑗

𝜇
𝑗
− 𝜇

1

]

]

.

(66)

The computation of the improved solutions from the
differential equation (20) requires that 𝐺(𝑠) is well defined
at the initial point. Since 𝜆

0
= −𝜇

𝑗
is a pole of 𝐺(𝑠) and of

𝜕𝐺(𝑠)/𝜕𝑠, the Taylor series up to the first order and second
order will be used to estimate the eigenvalues.

Figure 6 shows results for a numerical example with
𝜔
𝑛

= 3 rad/s and Biot’s model with 𝑁 = 3 kernels and
𝜇
𝑗
= {1, 5, 10} rad/s. As expected, the eigenvalues show very

good accuracy for damping range 0 ≤ 𝜁 ≤ 0.20. Better
results could be achieved through expansion of the Taylor
series up to higher orders. For that, successive derivatives,
𝜆
󸀠󸀠󸀠
(0), 𝜆

IV
(0), . . ., from (65) can be extracted and new terms

can be added.

5.4. Multiple-Degree-of-Freedom Systems. In this last point,
the application of the proposed method for multiple degrees-
of-freedom (mdof) nonviscously damped systems is pre-
sented. First, the derivation of the general expressions will be
addressed without formal restrictions on the dampingmodel.
Later, a numerical example of a mdof discrete system with a
viscoelastic model based on the fractional derivative will be
developed and discussed.

Let us consider 𝑛 degrees-of-freedom (dof) vibrating
system. The dofs’ time-domain response is represented by a
vector u(𝑡) ∈ R𝑛. With help of the Finite Element Method,
the mass and the stiffness matrices of the system, denoted,
respectively, by M,K ∈ R𝑛×𝑛, can be assembled. In general,
M,K are symmetric and positive definite and semidefinite,
respectively. The viscoelastic damping is introduced in the
system assuming that the dissipative forces f

𝑑
(𝑡) ∈ R𝑛

are proportional to the history of the dofs’ velocities via
kernel hereditary functions.These functions are the entries of
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Figure 5: Case 𝜃 = 𝜁 for Biot’s multiexponential model 𝜇
𝑗
= {2, 4, 6, 10, 15} rad/s. Relative error 𝜖

𝑘
(𝜁) = |Ψ−𝜓

𝑘
|/|Ψ| of the integrand function

(a). Eigenvalues versus parameter 𝜁 (b and c). Continuous line for exact values and dotted one for Improved Solutions: square tick for Linear
(ILS) and bullet for Quadratic (IQS).
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and linear) of the nonviscous eigenvalues versus damping ratio 𝜁.
Biot’s model with 𝑁 = 3 kernels and nonviscous parameters 𝜇

𝑗
=

{1, 5, 10} rad/s.

a matrix denoted by G(𝑡) ∈ R𝑛×𝑛, also assumed symmetric.
Consider

f
𝑑
(𝑡) = ∫

𝑡

−∞

G (𝑡 − 𝜏) u̇ (𝜏) d𝜏. (67)

Assuming small displacements, the motion equations
linearly relate the dynamic balance among inertiaMü, elastic
Ku, damping f

𝑑
(𝑡), and external forces f

𝑒
(𝑡).The general form

of the systemof integrodiferential equations can bewritten by

Mü + ∫

𝑡

−∞

G (𝑡 − 𝜏) u̇ (𝜏) d𝜏 + Ku = f
𝑒
(𝑡) ,

u̇ (0) = k
0
,

u (0) = u
0
.

(68)

Under these conditions, the modes of the system can be
obtained as the nontrivial solutions of the free-motion prob-
lem obtained considering f

𝑒
(𝑡) = k

0
= u

0
= 0 in (68). Thus,

checking functions of the form u(𝑡) = u𝑒𝑠𝑡, we obtain

[𝑠
2M + 𝑠G (𝑠) + K] u ≡ D (𝑠) u = 0, (69)

where G(𝑠) = L{G(𝑡)} ∈ C𝑛×𝑛 represents the Laplace
transform of the viscoelastic kernels and D(𝑠) : C →

C𝑛×𝑛 is the dynamic stiffness matrix. Equation (69) is the the
nonlinear eigenvalue problem of a viscoelastically damped
vibration system. The eigenvalues are then the roots of the
equation

det [D (𝑠)] = 0. (70)

The complete set of eigenmodes of this problem present 2𝑛+𝑞
distinct values distributed as

{𝜆
1
, . . . , 𝜆

𝑛
, 𝜆

∗

1
, . . . , 𝜆

∗

𝑛
, 𝜎

1
, . . . , 𝜎

𝑞
} , (71)

where 𝜆
𝑗
, 𝜆

∗

𝑗
∈ C, 1 ≤ 𝑗 ≤ 𝑛, are 𝑛 conjugate complex pairs,

corresponding to the modes with oscillatory nature.The rest,
𝜎
𝑗
∈ R−, 1 ≤ 𝑗 ≤ 𝑞, are negative real numbers that represent

overcritically damped modes called nonviscous since they are
a feature of nonviscous systems particularly of those governed
by Biot’s exponential kernels [36, 37]. Associated with each
eigenvalue there exists an eigenvector: we denote u

𝑗
, u∗

𝑗
∈

C𝑛
, 1 ≤ 𝑗 ≤ 𝑛 to the complex eigenvectors associated with

𝜆
𝑗
, 𝜆

∗

𝑗
, and a

𝑗
∈ R𝑛

, 1 ≤ 𝑗 ≤ 𝑞 to the eigenvector associated
with the real eigenvalue 𝜎

𝑗
.

In the analysis and search of solutions of the eigenprob-
lem, the proportionality of 𝑛-dof system, that is, the modal
decoupling capability, becomes of special importance. As
known, the undamped problem obtained from G(𝑡) ≡ 0
can always be diagonalized in the modal space of matricesM
and K. Denoting by 𝜙

𝑗
∈ R𝑛 to the 𝑗th mass-homogenized

real mode (in column) and by 𝜔
𝑗
to its associated natural

frequency, the classical orthogonal relations can be written
as

𝜙
𝑇

𝑗
M𝜙

𝑘
= 𝛿

𝑗𝑘
,

𝜙
𝑇

𝑗
K𝜙

𝑘
= 𝜔

2

𝑗
𝛿
𝑗𝑘
,

(72)

where 𝛿
𝑗𝑘
is the Kronecker delta.Themodal matrixΦ groups

in columns 𝑛 undamped modes and is used to change the
dof ’s to the modal coordinates by u = Φq. Hence, (69) can
be expressed as

[𝑠
2I

𝑁
+ 𝑠Γ (𝑠) + Λ] q = 0, (73)

whereΛ = Φ𝑇KΦ = diag[𝜔2

𝑗
] is the diagonal squared natural

frequencymatrix and Γ(𝑠) = Φ𝑇G(𝑠)Φ is the dampingmatrix
in the modal space. In general, the latter is not diagonal,
although under certain conditions it could become so. The
systems with this property are called proportional, since the
necessary and sufficient conditions for the modal decoupling
are directly related with proportional relationships between
the damping matrix G(𝑠) and the dynamic matrices M,K
[31]. In some cases of nonproportionality, the matrix Γ(𝜆

𝑗
)

is diagonally dominant but not purely diagonal, fact which is
equivalent to assume as true:

𝑛

∑

𝑙=1

𝑙 ̸=𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
Γ
𝑘𝑙
(𝜆

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
<

󵄨
󵄨
󵄨
󵄨
󵄨
Γ
𝑘𝑘
(𝜆

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
, ∀1 ≤ 𝑘, 𝑗 ≤ 𝑛. (74)

The system is then said to be lightly nonproportional. This
property is commonly assumed in many problems related to
nonviscous damping [18, 19, 34, 38] and allows approximating
the determinant as product of the terms of its main diagonal
as

det [𝑠2I
𝑛
+ 𝑠Γ (𝑠) + Λ] ≈

𝑛

∏

𝑗=1

(𝑠
2
+ 𝑠Γ

𝑗𝑗
(𝑠) + 𝜔

2

𝑗
) . (75)
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Figure 7: Multiple degrees-of-freedom example: lumped-mass dynamical system with viscoelastic links based on the fractional derivatives.

Hence, the set of eigenvalues can be obtained from the
following 𝑛 decoupled equations:

𝐷
𝑗
(𝑠) = 𝑠

2
+ 𝑠Γ

𝑗𝑗
(𝑠) + 𝜔

2

𝑗
= 0, 1 ≤ 𝑗 ≤ 𝑛, (76)

where Γ
𝑗𝑗
(𝑠) = 𝜙𝑇

𝑗
G(𝑠)𝜙

𝑗
. Equation (76) represents the 𝑗th

modal equation and presents the same structure as that of
(4) derived for single degree-of-freedom systems. Thus, as
done at the first part of this paper, we can assume that
some parameter of the dampingmodel is considered variable,
say 𝜃. Consequently, we introduce the notation Γ

𝑗𝑗
(𝑠, 𝜃) =

𝜙𝑇
𝑗
G(𝑠, 𝜃)𝜙

𝑗
to refer to the 𝑗th modal damping function. For

certain particular value of this parameter, say 𝜃 = 𝜃
0
, (76)

admits a closed-form analytic solution, denoted by 𝜆
𝑗
(𝜃

0
).

This solution will be taken as our initial point from which we
perturb the equation. Therefore, the first- and second-order
Taylor series expansions around 𝜃 = 𝜃

0
are

𝜆
𝑗1
(𝜃) = 𝜆

𝑗
(𝜃

0
) + 𝜆

󸀠

𝑗
(𝜃

0
) (𝜃 − 𝜃

0
) , (77)

𝜆
𝑗2
(𝜃) = 𝜆

𝑗
(𝜃

0
) + 𝜆

󸀠

𝑗
(𝜃

0
) (𝜃 − 𝜃

0
)

+

𝜆
󸀠󸀠

𝑗
(𝜃

0
) (𝜃 − 𝜃

0
)
2

2

,

(78)

where the subscripts (⋅)
𝑗1

and (⋅)
𝑗2

denote the first- and
second-order approximations of the 𝑗th eigenvalue, respec-
tively. Expressions for 𝜆󸀠

𝑗
and 𝜆

󸀠󸀠

𝑗
as function of the damping

function can be obtained from (15) and (17). Application of
the method includes the definition of the following function
for mdof systems and for the mode 𝑗:

Ψ
𝑗
(𝑠, 𝜃) =

𝜕Γ
𝑗𝑗
/𝜕𝜃

Γ
𝑗𝑗
(𝑠, 𝜃) + 𝑠 [2 + 𝜕Γ

𝑗𝑗
/𝜕𝑠]

(79)

as a generalization of that of (21). It has been proved that the
Improved Linear and Quadratic Solutions (ILS and IQS, see
(24)) defined as

ILS: ̂𝜆
𝑗1
(𝜃)

= 𝜆
𝑗
(𝜃

0
) exp{−∫

𝜃

𝜃0

Ψ
𝑗
(𝜆

𝑗1
(𝜗) , 𝜗) d𝜗} ,

(80)

IQS: ̂𝜆
𝑗2
(𝜃) = 𝜆

𝑗
(𝜃

0
) exp{−∫

𝜃

𝜃0

Ψ
𝑗
(𝜆

𝑗2
(𝜗) , 𝜗) d𝜗} (81)

present, respectively, one approximation order higher than
those of (77) and (78) (see demonstration in Section 4). The
computation of the eigenvalue is thus reduced to the calcula-
tion of an integral, which can be performednumerically using
any quadrature methods available in the literature [39].

To complete the validation of the proposed method on
mdof systems, a five-dof discrete system with five masses
and viscoelastic links is studied, as shown in Figure 7. The
nonviscous constrains (represented in the figure by a linear
spring and by a viscoelastic damper) relate reactions and
displacements through a four-parameter viscoelastic model
based on the fractional derivatives [40]. Indexes 𝑗 = 0, 6 of
fixed boundaries are related with zero dof ’s so that 𝑢

0
= 𝑢̇

0
=

𝑢
6
= 𝑢̇

6
= 0. Thus, the constitutive equations can be written

as

R
𝑗−1,𝑗

+ 𝑇
𝛼

𝑟

d𝛼R
𝑗−1,𝑗

d𝑡𝛼
= 𝑘(Δ𝑢

𝑗
+ 𝑐𝑇

𝛼

𝑟

d𝛼Δ𝑢
𝑗

d𝑡𝛼
) ,

𝑗 = 1, 3, 4, 5,

(82)

where Δ𝑢
𝑗
= 𝑢

𝑗
− 𝑢

𝑗−1
and 𝑐, 𝛼, and 𝑇

𝑟
are the parameters of

the damping model based on the fractional derivatives, also
called storage coefficient, fractional exponent, and relaxation
time, respectively. For real materials 𝑐 > 1, 0 < 𝛼 < 1, 𝑇

𝑟
>

0. The coefficient 𝑘, is the linear, static rigidity.
The kernel function G(𝑡) is difficult to obtain explicitly

and it becomes necessary to appeal to infinite series based
functions [41]. However, the damping function in the Laplace
domain𝐺(𝑠) can easily be calculated by simply applying to the
fractional derivatives of (82) the Laplace transform and using
its properties. If

𝑅
𝑗−1,𝑗

(𝑠) = L {R
𝑗−1,𝑗

(𝑡)} ,

Δ𝑢̂
𝑗
(𝑠) = 𝑢̂

𝑗
(𝑠) − 𝑢̂

𝑗−1
(𝑠) = L {Δ𝑢̂

𝑗
(𝑡)}

(83)

are the Laplace transform of the reactions and relative
displacements, respectively, then

𝑅
𝑗
(𝑠) = 𝑘

1 + 𝑐 (𝑇
𝑟
𝑠)

𝛼

1 + (𝑇
𝑟
𝑠)

𝛼
Δ𝑢̂

𝑗
(𝑠) ≡ [𝑘 + 𝑠𝐺 (𝑠)] Δ𝑢̂

𝑗
(𝑠) , (84)

where

𝐺 (𝑠) =

𝑘

𝑠

(𝑐 − 1) (𝑇
𝑟
𝑠)

𝛼

1 + (𝑇
𝑟
𝑠)

𝛼
. (85)

The free-motion equations in the Laplace domain can be
obtained assembling themass and the stiffness matrices asso-
ciated with the structural configuration shown in Figure 7,
resulting in

[𝑠
2M + 𝑠G (𝑠) + K] û (𝑠) = 0, (86)



Shock and Vibration 15

whereM = 𝑚I
5
and

K = 𝑘

[

[

[

[

[

[

[

[

[

2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2

]

]

]

]

]

]

]

]

]

,

G (𝑠) = 𝐺 (𝑠)

[

[

[

[

[

[

[

[

[

1 0 0 0 0

0 1 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1

]

]

]

]

]

]

]

]

]

≡ 𝐺 (𝑠)Q.

(87)

The viscoelastic model is controlled by three parameters
directly related to the damping, say 𝑐, 𝑇

𝑟
, and 𝛼. In multiple-

dof systems it seems logical to start a perturbation-based
numerical method from the undamped problem. Therefore,
checking the damping function, we note that the particular
values 𝑇

𝑟
= 0 and 𝑐 = 1 transform the nonlinear eigenvalue

problem of (86) into the undamped linear one; that is,
for these particular values, it is verified that G(𝑠) ≡ 0.
Among these parameters we chose 𝑐 as our perturbation
parameter. Initially, without previous information, there is
no reason to take one or another parameter as long as it
admits certain initial value associated with the undamped
problem.However, the behavior of each parameter is different
and depends on its roll within the mathematical viscoelastic
model. A deeper research on the suitability of the different
damping parameters of each damping model lies far from
the objective of this paper, although it would be desirable as
further research.

Considering then the storage parameter as variable, the
damping function can be written as G(𝑠, 𝑐) (note that now
our parameter is 𝜃 ≡ 𝑐). Solving the undamped eigenvalue
problem we can extract the natural frequencies and the
normal modes {±𝜔

𝑗
,𝜙

𝑗
}
5

𝑗=1
. Thus, the 𝑗th modal damping

function is
Γ
𝑗𝑗
(𝑠, 𝑐) = 𝜙

𝑇

𝑗
G (𝑠, 𝑐)𝜙

𝑗
= 𝐺 (𝑠)𝜙

𝑇

𝑗
Q𝜙

𝑗
≡ 𝐺 (𝑠) 𝑄

𝑗
. (88)

After some straight operations the function Ψ
𝑗
(𝑠, 𝑐) can be

expressed as

Ψ
𝑗
(𝑠, 𝑐) =

𝜕Γ
𝑗𝑗
/𝜕𝜃

Γ
𝑗𝑗
(𝑠, 𝜃) + 𝑠 [2 + 𝜕Γ

𝑗𝑗
/𝜕𝑠]

=

1 + (𝑠𝑇
𝑟
)
𝛼

𝛼 (𝑐 − 1) + 2𝑠
2
[1 + (𝑠𝑇

𝑟
)
𝛼

]

2

/𝑘𝑄
𝑗
(𝑠𝑇

𝑟
)
𝛼
.

(89)

Moreover, considering the eigenvalues as 𝑐-dependent func-
tions, the first- and second-order approximations based on
the Taylor series expansion are

𝜆
𝑗1
(𝑐) = 𝜆

𝑗
(1) + 𝜆

󸀠

𝑗
(1) (𝑐 − 1)

= 𝑖𝜔
𝑗
−

(𝑐 − 1) 𝑘𝑄
𝑗
𝑇
𝑟
(𝑖𝜔

𝑗
𝑇
𝑟
)

𝛼−1

2 [1 + (𝑖𝜔
𝑗
𝑇
𝑟
)

𝛼

]

,

𝜆
𝑗2
(𝑐) = 𝜆

𝑗
(1) + 𝜆

󸀠

𝑗
(1) (𝑐 − 1) +

𝜆
󸀠󸀠

𝑗
(1) (𝑐 − 1)

2

2

= 𝜆
𝑗1
(𝑐)

−

𝑖 (𝑐 − 1)
2
𝑘
2
𝑄
2

𝑗
(𝑖𝜔

𝑗
𝑇
𝑟
)

2𝛼

[1 − 2𝛼 + (𝑖𝜔
𝑗
𝑇
𝑟
)

𝛼

]

8𝜔
3

𝑗
[1 + (𝑖𝜔

𝑗
𝑇
𝑟
)

𝛼

]

3
.

(90)

As aforementioned, the current method improves these
approximations proposing the so-named ILS and IQS solu-
tions whose expressions for this particular case are

ILS: ̂𝜆
𝑗1
(𝑐) = 𝑖𝜔

𝑗
exp{−∫

𝑐

𝛾=1

Ψ
𝑗
(𝜆

𝑗1
(𝛾) , 𝛾) d𝛾} , (91)

IQS: ̂𝜆
𝑗2
(𝑐) = 𝑖𝜔

𝑗
exp{−∫

𝑐

𝛾=1

Ψ
𝑗
(𝜆

𝑗2
(𝛾) , 𝛾) d𝛾} , (92)

where the notation 𝛾 has been used to denote the storage
coefficient inside the integral.

In this example the results of the proposed method
will be compared not only with the exact solution but also
with another numerical method proposed by Adhikari and
Pascual [18] with similar characteristics to the current: first,
the eigenvalues are calculated by a noniterative approach;
and, second, the method is valid for proportional or lightly
nonproportional damping. Adhikari and Pascual’s method
assumes that the 𝑗th eigenvalue can be written as 𝑠

𝑗
= 𝑠

0𝑗
+ 𝛿,

with 𝑠
0𝑗
being certain point adequately chosen and 𝛿 being an

unknown value to be obtained. It is assumed that |𝛿/𝑠
0𝑗
| ≪ 1;

hence the solution is obtained expanding the characteristic
modal equationD

𝑗
(𝑠) from (76) around 𝑠

0𝑗
up to the first or

up to the second order. Thus, the first-order approximation
yields (using the same notation as [18])

𝑠
AP
𝑗1

≈ 𝑠
0𝑗
+ 𝛿

(1)
= 𝑠

0𝑗
−

𝐷
𝑗
(𝑠

0𝑗
)

𝜕𝐷
𝑗
(𝑠

0𝑗
) /𝜕𝑠

, (93)

while the second-order approximation yields

𝑠
AP
𝑗2

≈ 𝑠
0𝑗
+ 𝛿

(2)
= 𝑠

0𝑗
+

−𝐵 ± √𝐵
2
− 4𝐴𝐶

2𝐴

, (94)

where

𝐴 =

1

2

𝜕
2
𝐷

𝑗
(𝑠

0𝑗
)

𝜕𝑠
2

,

𝐵 =

𝜕𝐷
𝑗
(𝑠

0𝑗
)

𝜕𝑠

,

𝐶 = 𝐷
𝑗
(𝑠

0𝑗
) .

(95)

The lowest of the two roots (in absolute value) is chosen
since a priori the correct value is not known. Adhikari and
Pascual proposed as initial guess 𝑠

0𝑗
= −𝜉

𝑗
𝜔
𝑗
+ 𝑖𝜔

𝑗√
1 − 𝜉

2

𝑗
,

where 𝜉
𝑗

= lim
𝑠→0

Γ
𝑗𝑗
(𝑠)/2𝜔

𝑗
, provided that this limit
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Figure 8: Relative error in the computation of eigenvalues: proposed (solid lines) and Adhikari-Pascual [18] (dashed lines). (a) Moderate
damping. (b) High damping.

exists. However, when the viscoelastic function is based on
fractional derivatives, this limit effectively is not a finite
number. In fact, Adhikari and Pascual developed the method
for Biot’s model with multiple exponential kernels. This
mathematical singularity can be avoided just taking 𝑠

0𝑗
=

𝑖𝜔
𝑗
, that is, the undamped natural frequency, something that

additionally helps us in the comparison with ILS and IQS
approaches, since both of them also have the undamped
eigenfrequency as initial point.

As shown in the mathematical results, the accuracy of
the proposed approach depends directly on the distance
between the damping parameter and its initial value. If this
latter leads to the undamped problem, it is expected that the
higher the parameter the more damped the system. For this
reason, in the current example, two levels of damping will
be considered separately: moderate damping (MD) and high
damping (HD). Thus, the values of the damping parameters
are chosen to represent both cases on the basis of the concept
of loss factor peak, 𝜂

𝑚
, which can be used as a measure of

the level of damping [42–45]. According to the experimental
evidence [44], values within the range 0.1 < 𝜂

𝑚
< 0.50

can be considered as moderate damping, while a loss factor
0.5 < 𝜂

𝑚
< 1 is representative of high damping materials,

used for vibration control. According to this reasoning, we
chose for the two cases the values of the parameters shown in
Table 2.

The complex eigenvalues are computed using both meth-
ods (current and that of Adhikari-Pascual [18], in advance
“AP”) for each mode and for each level of damping. In
order to arrange adequately the obtained results, the relative
error (in percentage, %) with the exact solution of the modal
characteristic equation is graphically represented in Figure 8.

Table 2: Viscoelastic model based on fractional derivatives. Values
of the damping parameters for the two considered damping cases.

Damping level 𝑐 𝛼 𝑇
𝑟
(sec.) 𝜂

𝑚

Moderate damping (MD) 10 0,50 10
−6 0,45

High damping (HD) 500 0,50 10
−6 0,90

Moderate and high damping cases are shown in Figures 8(a)
and 8(b), respectively. Within each plot, the type of solution
(linear or quadratic) has been also included. Thus, the ILS
and IQS have been calculated from (91) and (92) and the
1st- and 2nd-order solutions of AP method from (94) and
(95), respectively. Both methods show very good agreement
with the exact values for moderate damping. In fact, the
relative error for every mode is always less than 0.01%. It
seems logical to compare the ILS with the AP (1st-order
approach) and IQSwith the AP (2nd-order approach). In this
regard, note that the proposed ILS method presents a relative
error of the same order of magnitude as that of solutions
based on the 2nd-order approximation and therefore can
be considered as very good approximation. Additionally, the
IQS exhibits the same level of accuracy as AP (2nd order),
something that also occurs for high damping. Furthermore,
for this particular case, ILS shows better results than AP (2nd
order), but after several numerical examples with different
damping parameters (not shown here) this does not always
hold, although the order of magnitude of both approaches is
the same. Another highlight is the loss of accuracy suffered by
the AD (1st order), showing errors between 5% and 30% for
high damping. Note that the relative error for all approaches
increaseswith themode; this is also in agreementwith the fact
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that higher modes of proportional or lightly nonproportional
systems become more damped than lower modes. Further
research is currently being developed to cover with this
method highly nonproportional systems.

6. Conclusions

A novel numerical method to compute the eigenvalues of vis-
coelastic oscillators is developed. The damping is introduced
via a convolution integral with kernel functions which ensure
that the dissipative forces depend on the history of the degree-
of-freedom velocities. Each damping model is controlled
by a kernel involving a set of parameters; the eigenvalues
can be considered single-variable functions of some of these
damping parameters. The application of the method requires
finding only a particular value of the damping parameter and
its corresponding eigenvalue. Under certain conditions, the
eigenvalue can be expanded in its Taylor series and explicit
expressions of the first and second derivatives are calculated.

The main contribution of this paper is the development
of a numerical approach that improves the solution given
by the Taylor series expansion. For that, it is shown that
the characteristic equation can always be transformed into
an ordinary differential equation with separated variables,
so that the eigenvalue can be estimated by direct numerical
integration. In addition, the order error of the proposed
method is analyzed; while the 𝑘th order Taylor series expan-
sion presents O(ℎ𝑘+1), it is demonstrated that the current
method presents O(ℎ𝑘+2).

To illustrate the results, the method is applied to the
most commonly used damping models: viscous damping,
nonviscous damping with exponential kernels, and fractional
derivatives based models. For the first one, the method
obtains approximated eigenvalues as analytical solutions of
the proposed differential equation. For the second one,
several forms of the damping parameters are presented,
finding again analytical solutions for the Taylor expansions
for all forms. The third one has been included as part of
the viscoelastic constraints in a multiple degrees-of-freedom
example. The numerical examples show that the lower the
damping level is the better the accuracy of the proposed
solutions is. The best results are always obtained when the
parameter value is close to the considered initial point.
Current research is being developed in two directions: (a)
the implementation of the proposed method within systems
with several damping functions of different nature and (b) the
extension for nonproportionally damped multiple degrees-
of-freedom systems.

Appendices

A. Proof of Property 1

The function Ψ(𝑠, 𝜃) is well defined, provided that the
denominator

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Γ (𝑠, 𝜃) + 𝑠 (2 +

𝜕Γ

𝜕𝑠

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

> 0, ∀𝑠, 𝜃 ∈ 𝐵 × 𝐼. (A.1)

Hence, let 𝐿
0
be a positive real number such that

𝐿
−1

0
= min{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Γ (𝑠, 𝜃) + 𝑠 (2 +

𝜕Γ

𝜕𝑠

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

: 𝑠, 𝜃 ∈ 𝐵 × 𝐼} . (A.2)

In addition, according to hypothesis (H2), the function
𝐺(𝑠, 𝜃) = 𝑚Γ(𝑠, 𝜃) and its derivatives with respect to 𝜃 are
bounded in the set𝐵×𝐼.Thus, a positive real number 𝑟

0
exists

such that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
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󵄨

𝜕Γ
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󵄨
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󵄨
󵄨

≤ 𝑟
0
, ∀ (𝑠, 𝜃) ∈ 𝐵 × 𝐼. (A.3)

Therefore, taking into account (A.2) and (A.3), the function
Ψ(𝑠, 𝜃) can be bounded by the positive real number 𝑝 = 𝑟

0
𝐿
0
:

|Ψ (𝑠, 𝜃)| =
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󸀠
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󸀠
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≤ 𝑟
0
𝐿
0
= 𝑝,

∀𝑠, 𝜃 ∈ 𝐵 × 𝐼.

(A.4)

B. Proof of Property 2

The function 𝜆(𝜃) is solution of the characteristic equation;
therefore the following expression is verified:

𝜎
2
(𝜃) + 𝜎 (𝜃)

𝐺 (𝜆 (𝜃) , 𝜃)

𝑚𝜔
𝑛

+ 1 = 0, (B.1)

where the function 𝜎(𝜃) = 𝜆(𝜃)/𝜔
𝑛
. By hypothesis, the

function𝐺(𝑠, 𝜃) is bounded in the set𝐵×𝐼. Hence, there exists
a real positive number 𝛼 > 0 such that |𝐺(𝑠, 𝜃)| ≤ 2𝛼𝑚𝜔

𝑛
,

∀𝑠, 𝜃 ∈ 𝐵 × 𝐼. Reordering (B.1) and taking absolute values,

|𝜎 (𝜃)|
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+ 1 ≤ 2𝛼 |𝜎 (𝜃)| + 1.

(B.2)

As a consequence, the function 𝜎(𝜃) verifies the inequality

|𝜎 (𝜃)|
2
− 2𝛼 |𝜎 (𝜃)| − 1 ≤ 0. (B.3)

The roots of the second-order polynomial 𝑥2−2𝛼𝑥−1 = 0 are
the real numbers 𝛼 ± √1 + 𝛼

2. Therefore, the function |𝜎(𝜃)|

is bounded by the interval

0 ≤ |𝜎 (𝜃)| ≤ 𝛼 + √1 + 𝛼
2 (B.4)

because 𝛼 − √1 + 𝛼
2

< 0. Finally, the expression of the
eigenvalue bound leads to

|𝜆 (𝜃)| ≤ 𝜔
𝑛
(𝛼 + √1 + 𝛼

2
) = 𝜌

0
, ∀𝜃 ∈ 𝐼. (B.5)

In order to bound the derivatives |𝜆𝑘(𝜃)|, 𝑘 ≥ 1, (20)
relates the first with functions 𝜆(𝜃) andΨ(𝑠, 𝜃)whose bounds
have already been calculated by (A.4) and (B.5). Thus,

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
󸀠
(𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ |𝜆 (𝜃)| |Ψ (𝜆 (𝜃) , 𝜃)| ≤ 𝜌

0
𝑝 = 𝜌

1
, ∀𝜃 ∈ 𝐼. (B.6)
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Higher derivatives ofΨ(𝜆(𝜃), 𝜃)with respect to the parameter
𝜃 will be expressions function of the successive derivatives of
the viscoelastic function Γ(𝜆(𝜃), 𝜃) which, from hypothesis
(H2), are bounded in the interval 𝐼. Consequently, once 𝜌

0

and 𝜌
1
are calculated, the numbers 𝜌

𝑘
, for 𝑘 = 2, 3, . . ., can be

obtained by induction.
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