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Abstract

The brain is considered to be the most complex system in the known universe.
It is composed of massively connected elements arranged into modules that
form hierarchical networks. Experimental evidence reveals a well-defined
connectivity design, characterized by the presence of strategically connected
core nodes that critically contribute to resilience and maintain stability in
interacting brain networks. Certain brain pathologies, such as Alzheimer’s
disease and alcohol use disorder, are thought to be a consequence of cascading
maladaptive processes that alter normal connectivity. These findings have
greatly contributed to the development of network neuroscience to understand
the macroscopic organization of the brain.

This thesis focuses on the application of network science tools to investigate
structural and functional brain networks in health and disease. To accomplish
this goal, three specific studies are conducted using human and rodent data
recorded with magnetic resonance imaging (MRI) and tracing technologies.

Connectomics data from animal models provide an invaluable opportunity
to reveal the complex interplay between structure and function in the
mammalian brain. In the first study, we examine the relationship between
structural and functional connectivity in the rat cortical network. Using a
detailed cortical structural matrix obtained from published histological tracing
data, we first compare structural connections in the rat cortex with their
corresponding spontaneous correlations extracted empirically from functional
MRI (fMRI) data. We then show the results of this comparison by relating
structural properties of brain connectivity to the functional modularity of
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Abstract

resting-state networks. Specifically, we study link reciprocity in both intra- and
inter-modular connections as well as the structural motif frequency spectrum
within functionally defined modules. Overall, our results provide further
evidence that structural connectivity is coupled to and shapes functional
connectivity in cortical networks.

The pathophysiological process of Alzheimer’s disease is thought to begin
years before clinical decline, with evidence suggesting pahtogenic seeding and
subsequent prion-like spreading processes of neurofibrillary tangles and amyloid
plaques. In the second study of this thesis, we investigate whether structural
brain networks as measured with diffusion-weighted MRI (dMRI) could serve
as a complementary diagnostic tool in prodromal dementia. Using imaging
data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
we first aim to implement machine learning techniques to extract centrality
features that are altered in Alzheimer’s dementia. We then incorporate data
from the Nathan Kline Institute-Rockland Sample (NKI) database and create
dynamical models of normal aging and Alzheimer’s disease to estimate the
earliest detectable stage associated with dementia in the simulated disease
progression. Our model results suggest that changes associated with dementia
begin to manifest structurally at early stages.

Statistical dependence measures computed between blood oxygen level
dependent (BOLD) signals can inform about brain functional states in studies
of neurological and psychiatric disorders. Furthermore, its non-invasive
nature allows comparable measurements between clinical and animal studies,
providing excellent translational capabilities. In the last study, we apply
the network-based statistic (NBS) method to investigate alterations in the
resting-state functional connectivity of the rat brain in a postdependent
(PD) state, an established animal model of clinical relevant features in
alcoholism. The analysis reveal statistically significant differences in a
connected subnetwork of structures with known relevance for addictive
behaviors, hence suggesting potential targets for therapy.

This thesis provides three novel contributions to understand the healthy and
pathological brain connectivity under the perspective of network science. The
results obtained in this thesis underscore that brain network models offer
further insights into the structure-function coupling in the brain. More
importantly, this network perspective provides potential applications for the
diagnosis and treatment of neurological and psychiatric disorders.
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Resumen

El cerebro se considera el sistema más complejo de todo el universo conocido.
Está constituido por numerosos elementos que se encuentran interconectados
de forma masiva y organizados en módulos que forman redes jerárquicas.
Resultados recientes revelan la existencia de un diseño de conectividad cerebral
donde regiones estratégicamente conectadas (core nodes) contribuyen de forma
crítica a la capacidad de adaptación de las redes cerebrales, y a la estabilidad
de las mismas. Ciertas patologías cerebrales, como la enfermedad de Alzheimer
y el trastorno por consumo de alcohol, se consideran el resultado de efectos
en cascada que alteran la conectividad cerebral. Estos descubrimientos
han contribuido sustancialmente al desarrollo de la neurociencia basada en
redes como un marco de trabajo para explicar y entender la organización
macroscópica del cerebro.

La presente tesis tiene como objetivo principal la aplicación de las técnicas
de análisis de la ciencia de redes para el estudio de las redes estructurales
y funcionales en el cerebro, tanto en un estado control como en un estado
patológico. Así, se han llevado a cabo tres estudios específicos que cubren el
análisis de datos cerebrales adquiridos en humanos y ratas mediante las técnicas
de imagen de resonancia magnética (magnetic resonance imaging, MRI ) y de
trazado neuronal.

La información aportada por el conectoma de animales de experimentación
es clave para entender la compleja relación entre la estructura y la función
en el cerebro. Así, en el primer estudio de la presente tesis se examina la
relación entre la conectividad estructural y funcional en la corteza cerebral
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de la rata. En primer lugar, se lleva a cabo un análisis comparativo entre
las conexiones estructurales en la corteza cerebral de la rata y los valores de
correlación calculados sobre las mismas regiones. La información acerca de la
conectividad estructural se ha obtenido a partir de estudios previos, mientras
que la conectividad funcional se ha calculado a partir de imágenes de resonancia
magnética funcional. A continuación, determinadas propiedades topológicas,
y extraídas de la conectividad estructural, se relacionan con la organización
modular de las redes funcionales en estado de reposo. En particular, se
estudia la reciprocidad de las conexiones estructurales entre regiones del mismo
módulo funcional, así como entre regiones localizadas en diferentes módulos
funcionales. Por otro lado, también se analizan las diferentes configuraciones
(network motifs) en las que pueden relacionarse estructuralmente tres regiones
cerebrales del mismo módulo funcional. Siguiendo la línea de investigaciones
previas, los resultados obtenidos en este primer estudio demuestran que la
conectividad estructural y funcional cortical están altamente relacionadas entre
sí. Además, la conectividad estructural condiciona las relaciones funcionales
que suceden entre las diferentes regiones cerebrales.

El proceso patofisiológico de la enfermedad de Alzheimer tiene lugar antes
de que se produzca el deterioro cognitivo. Estudios recientes sugieren que
el origen de esta enfermedad reside en un mecanismo en el cual depósitos de
ovillos neurofibrilares y placas de beta-amiloide se acumulan en ciertas regiones
cerebrales, y tienen la capacidad de diseminarse por el cerebro actuando como
priones. En el segundo estudio de la presente tesis se investiga si las redes
estructurales que se generan con la técnica de resonancia magnética ponderada
en difusión podrían ser de utilidad para el diagnóstico de la pre-demencia
causada por la enfermedad de Alzheimer. Mediante el uso de imágenes
procedentes de la base de datos ADNI (Alzheimer’s Disease Neuroimaging
Initiative), se aplican técnicas de aprendizaje máquina con el fin de identificar
medidas de centralidad que se encuentran alteradas en la demencia. En
la segunda parte del estudio, se utilizan imágenes procedentes de la base
de datos NKI (Nathan Kline Institute-Rockland Sample) para construir un
modelo matemático que simule el proceso de envejecimiento normal, así como
otro modelo que simule el proceso de desarrollo de la enfermedad. Con
este modelado matemático, se pretende estimar la etapa más temprana que
está asociada con la demencia. Los resultados obtenidos de las simulaciones
sugieren que en etapas tempranas de la enfermedad de Alzheimer se producen
alteraciones estructurales relacionados con la demencia.

La cuantificación de la relación estadística entre las señales BOLD (blood
oxygen level dependent) de diferentes regiones puede informar sobre el estado
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funcional cerebral característico de enfermedades neurológicas y psiquiátricas.
Además, debido a su naturaleza no invasiva, es posible comparar los resultados
obtenidos entre estudios clínicos y estudios con animales de experimentación.
En el tercer y último estudio de la presente tesis se estudian las alteraciones en
la conectividad funcional que tienen lugar en ratas dependientes del consumo
de alcohol cuando se encuentran en estado de reposo. Para ello, se ha aplicado
el método NBS (network-based statistic). El análisis de este modelo de rata
revela diferencias estadísticamente significativas en una subred de regiones
cerebrales que están implicadas en comportamientos adictivos. Por lo tanto,
estas estructuras cerebrales podrían ser el foco de posibles dianas terapéuticas.

En resumen, la presente tesis aporta tres innovadoras contribuciones para
entender la conectividad cerebral bajo la perspectiva de la ciencia de redes,
tanto en un estado control como en un estado patológico. Los resultados
destacan que los modelos basados en las redes cerebrales permiten esclarecer la
relación entre la estructura y la función en el cerebro. Y quizás más importante,
esta perspectiva de red tiene aplicaciones que se podrían trasladar a la práctica
clínica, tanto para el diagnóstico como para el tratamiento de enfermedades
neurológicas y psiquiátricas.
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Resum

El cervell es considera el sistema més complex de tot l’univers conegut. Està
constituït per nombrosos elements que es troben interconnectats de forma
massiva i organitzats en mòduls que formen xarxes jeràrquiques. Resultats
recents revelen l’existència d’un disseny de connectivitat cerebral on regions
estratègicament connectades (core nodes) contribueixen de forma crítica a la
capacitat d’adaptació de les xarxes cerebrals, i a l’estabilitat de les mateixes.
Certes patologies cerebrals, com la malaltia d’Alzheimer i el trastorn per
consum d’alcohol, es consideren el resultat d’efectes en cascada que alteren
la connectivitat cerebral. Estos descobriments han contribuït substancialment
al desenrotllament de la neurociència basada en xarxes com un marc de treball
per a explicar i entendre l’organització macroscòpica del cervell.

La present tesi té com a objectiu principal l’aplicació de les tècniques d’anàlisi
de la ciència de xarxes per a l’estudi de les xarxes estructurals i funcionals
en el cervell, tant en un estat control com en un estat patològic. De manera
que, s’han dut a terme tres estudis específics que cobreixin l’anàlisi de dades
cerebrals adquirits en humans i rates per mitjà de les tècniques d’imatge
de ressonància magnètica (magnetic resonance imaging, MRI ) i de traçat
neuronal.

La informació aportada pel conectoma d’animals d’experimentació és clau per
entendre la complexa relació entre l’estructura i la funció en el cervell. Així,
en el primer estudi de la present tesi s’examina la relació entre la connectivitat
estructural i funcional en l’escorça cerebral de la rata. En primer lloc, es du
a terme una anàlisi comparativa entre les connexions estructurals en l’escorça
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cerebral de la rata i els valors de correlació calculats sobre les mateixes regions.
La informació sobre la connectivitat estructural s’ha obtingut a partir d’estudis
previs, mentre que la connectivitat funcional s’ha calculat a partir d’imatges
de ressonància magnètica funcional. A continuació, determinades propietats
topològiques, i extretes de la connectivitat estructural, es relacionen amb
l’organització modular de les xarxes funcionals en estat de repòs. En particular,
s’estudia la reciprocitat de les connexions estructurals entre regions del mateix
mòdul funcional, així com entre regions localitzades en diferents mòduls
funcionals. D’altra banda, també s’analitzen les diferents configuracions
(network motifs) en les que poden relacionar-se estructuralment tres regions
cerebrals del mateix mòdul funcional. Seguint la línia d’investigacions prèvies,
els resultats obtinguts en este primer estudi demostren que la connectivitat
estructural i funcional cortical estan altament relacionades entre si. A més,
la connectivitat estructural condiciona les relacions funcionals que succeeixen
entre les diferents regions cerebrals.

El procés patofisiològic de la malaltia d’Alzheimer té lloc abans de que
es produeisca el deteriorament cognitiu. Estudis recents suggereixen que
l’origen d’esta malaltia resideix en un mecanisme en el qual depòsits d’ovulets
neurofibrilars i plaques de beta-amiloide s’acumulen en certes regions cerebrals,
i tenen la capacitat de disseminar-se pel cervell actuant com a prions. En el
segon estudi de la present tesi s’investiga si les xarxes estructurals que es
generen amb la tècnica de la imatge per ressonància magnètica ponderada
en difusió podrien ser d’utilitat per al diagnòstic de la predemència causada
per la malaltia d’Alzheimer. Per mitjà de l’ús d’imatges procedents de la
base de dades ADNI (Alzheimer’s Disease Neuroimaging Initiative), s’apliquen
tècniques d’aprenentatge màquina a fi d’identificar mesures de centralitat que
es troben alterades en la demència. En la segona part de l’estudi, s’utilitzen
imatges procedents de la base de dades NKI (Nathan Kline Institute-Rockland
Sample) per a construir un model matemàtic que simule el procés d’envelliment
normal, així com un altre model que simule el procés de desenrotllament de
la malaltia. Amb este modelatge matemàtic, es pretén estimar l’etapa més
primerenca que està associada amb la demència. Els resultats obtinguts de les
simulacions suggereixen que en etapes primerenques de la malaltia d’Alzheimer
es produeixen alteracions estructurals relacionats amb la demència.

La quantificació de la relació estadística entre els senyals BOLD (blood oxygen
level dependent) de diferents regions pot informar sobre l’estat funcional
cerebral característic de malalties neurològiques i psiquiàtriques. A més, a
causa de la seua naturalesa no invasiva, és possible comparar els resultats
obtinguts entre estudis clínics i estudis amb animals d’experimentació. En
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el tercer i últim estudi de la present tesi s’estudien les alteracions en la
connectivitat funcional que tenen lloc en rates dependents del consum d’alcohol
quan es troben en estat de repòs. Per a realitzar-ho, s’ha aplicat el mètode NBS
(network-based statistic). L’anàlisi d’aquest model de rata revela diferències
estadísticament significatives en una subxarxa de regions cerebrals que estan
implicades en comportaments addictius. Per tant, estes estructures cerebrals
podrien ser el focus de possibles dianes terapèutiques.

En resum, la present tesi aporta tres innovadores contribucions per a entendre
la connectivitat cerebral davall la perspectiva de la ciència de xarxes, tant en un
estat control com en un estat patològic. Els resultats destaquen que els models
basats en les xarxes cerebrals permeten aclarir la relació entre l’estructura i
la funció en el cervell. I potser més important, esta perspectiva de xarxa té
aplicacions que es podrien traslladar a la pràctica clínica, tant per al diagnòstic
com per al tractament de malalties neurològiques i psiquiàtriques.
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Chapter 1

Introduction

1.1 Motivation

The brain is composed of massively connected elements arranged into modules
that form hierarchical networks. The different modules do not operate in
isolation; on the contrary, interactions at multiple levels occur giving rise to
the characteristic fluctuations of brain activity. Theory shows that connecting
networks yield an infrastructure in which small and local perturbations can be
amplified in cascade, resulting in frequent catastrophic failures and wide-range
alterations (Reis et al., 2014). Experimental evidence from humans and rodents
reveals a well-defined connectivity design, characterized by the presence of
strategically connected core nodes that critically contribute to resilience and
maintain stability in interacting brain networks (Gallos et al., 2012; van den
Heuvel and Sporns, 2011, 2013). These findings predict that modifying activity
in this set of core nodes could drastically alter global patterns of brain activity;
which, in turn, raises the possibility that certain brain pathologies might be a
consequence of cascading maladaptive processes that alter normal connectivity
(Aerts et al., 2016; Fornito et al., 2015; Stam, 2014). Interestingly, this network
perspective of the brain is greatly contributing to our understanding of the
mechanisms behind different neurological and psychiatric disorders, such as
Alzheimer’s disease and alcohol use disorder (Deco and Kringelbach, 2014).
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Theoretical advancement in the knowledge of the healthy and pathological
brain connectivity has been accompanied by the development of non-invasive
brain imaging technologies, largely magnetic resonance imaging (MRI) (Jbabdi
et al., 2015). MRI provides a variety of contrast or modalities that have
the capacity to sense different properties of brain tissues. For instance,
diffusion-weighted MRI (dMRI) is a MRI modality based on the mobility of
water molecules and is widely employed for the mapping of the structural
connectome (i.e., the comprehensive network map of the structural neural
connections of a nervous system) (Sporns et al., 2005). On the other hand,
functional MRI (fMRI) measures changes in blood oxygenation associated
with brain activity. In contrast to dMRI, fMRI enables the mapping of the
functional connectome (i.e., the comprehensive network map of the functional
neural connections of a nervous system) (Smith et al., 2013)1.

The use of rodents and other animals provides further advantages for mapping
brain-wide networks and investigating brain connectivity (Díaz-Parra et al.,
2017b; Gozzi and Schwarz, 2016; Jonckers et al., 2015; Sethi et al., 2017).
Specifically, animal models can be examined in-depth to extract a highly
detailed structural connectome through histological procedures (van den
Heuvel et al., 2016b) and offer the possibility to complete imaging data with
a wealth of neurophysiological techniques to measure and manipulate brain
function (Grayson et al., 2016).

Over the last decade, analytic methods adopted from network science have
gained prominence in neuroscientific applications (Bullmore and Bassett, 2011;
Craddock et al., 2013; Fornito et al., 2013; Rubinov and Sporns, 2010).
These tools provide an elegant framework to formally investigate the network
organization of the brain. Network tools can be applied for the analysis
of individual connections between single neurons. Nevertheless, most of
the present research is being held at the macroscopic level due to technical
limitations in current MRI technology (Jbabdi et al., 2015). More specifically,
the macroscopic organization of the brain is modeled as a complex network of
areas or regions that interact with each other. Whilst this representation of
the brain might seem simplistic at first sight, numerous neural phenomena can
be effectively addressed by means of whole-brain network models; to mention
a few: how does the abundant repertoire of functional states emerge from a

1Although the term “connectome” refers to the network map comprising a whole nervous system,
it is commonly used as synonymous with “brain connectivity” to refer to the interactions between
a particular set of brain regions. On the other hand, even though a brain network comprises both
regions and connectivity between them, the terms "brain connectivity" and "brain network" are
sometimes used interchangeably. This is essentially because connectivity makes the brain a system
composed of hierarchical networks (more about this in chapter 2).
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relatively fixed structure? What can brain connectivity tell us about the status
of a subject? How robust is the brain against lesions? (Aerts et al., 2016;
Bassett and Sporns, 2017; Ebadi et al., 2017; Park and Friston, 2013).

The great expectations raised in the field of network neuroscience motivated
the development of this thesis. Specifically, this field has been able to explain
the existence of interacting networks through highly connected core nodes
that critically shape neural response to damage or insult. Additionally, MRI
technology possess the ability to gather data as to brain structure and function
from both humans and rodents, hence establishing an important tool for
translational neuroimaging.

1.2 Objectives

The main objective of this thesis is the application of network science tools
to uncover organizational principles governing structural and functional brain
networks in health and their disruption in pathological states. Three specific
objectives are aimed:

1. To investigate the relationship between the topology of structural and
functional brain networks in health.

2. To investigate whether structural brain networks could serve as a
complementary diagnostic tool in prodromal dementia caused by
Alzheimer’s disease.

3. To evaluate the impact of alcohol use disorder on brain dynamics by
identifying alterations in functional brain networks.

1.3 Contributions to knowledge

This thesis provides three novel contributions to understand the healthy and
pathological brain connectivity under the perspective of network science. The
results obtained in this thesis underscore that brain network models offer
valuable insights into the principles underlying brain structure and function
and that this network perspective have potential clinical applications.

The first contribution is that resting-state fMRI (rs-fMRI) networks based on
the fluctuations in blood oxygen level dependent (BOLD) signals extracted
from the cerebral cortex of the rat are greatly constrained by the underlying
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structural connections (Díaz-Parra et al., 2017b). To the best of our knowledge,
this is the first work aimed to compare experimental rat functional connectivity
with the rat cortical connectome, which provides information as to the
directionality of structural interactions. The knowledge of this information
enables characterizing the topology of structural networks using measures that
are currently impracticable in human studies.

The second contribution is that structural brain networks as measured with
dMRI can yield a complementary tool to detect Alzheimer’s disease at early
stages (Díaz-Parra et al., 2018). Based on emergent evidence pointing toward
prion-like spreading processes and failure of hubs, we model the propagation
of a disease factor and the associated degradation in connectivity. This work
provides further evidence that network centrality is disrupted in Alzheimer’s
disease. Importantly, our model simulations suggest that network centrality is
also disrupted at early stages, presumably before meeting diagnostic criteria
for clinical dementia, hence serving as a potential biomarker before the onset
of symptoms.

Finally, the third contribution is that intrinsic interactions occurring in
functional brain networks are decreased after alcohol consumption (Díaz-Parra
et al., 2017a). Taking advantage of rodent models to faithfully investigate drug
dependence-related disorders, this analysis reveals a set of interacting brain
areas that could potentially serve as targets in the development of therapeutic
strategies in alcohol use disorder.

1.4 Thesis structure

This thesis is structured in 6 chapters. Chapter 1 has focused on the research
motivation behind this thesis and summarized the potential of network science
for brain connectivity analysis. Additionally, this introductory chapter has
established the specific objectives addressed in this thesis, as well as the
resulting contributions to the field of network neuroscience.

Chapter 2 provides an overview as to the main techniques and procedures
involved in brain network analysis. This chapter begins presenting biological
details regarding the multiscale organization of the brain and the different
types of brain connectivity. General concepts about network science are next
introduced and a network framework to explain brain connectivity is presented.
The chapter continues introducing a typical workflow for brain network analysis
and surveying the methods involved in each step. The ideas introduced in this
chapter are required for a deeper comprehension of the rest of the manuscript.
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Chapter 3 carries out comparisons between the structural and functional
brain connectivity in the cerebral cortex of the rat in a healthy state.
This analysis is performed at a connection-level, but also using measures of
complex networks (in particular, modularity, reciprocity and network motifs).
The latter comparison reveals the importance of considering the brain as a
networked system. This chapter further covers the most common frameworks
for localization of brain structures in rodents (i.e., the Swanson space (SwS)
and Paxinos&Watson space (PWS)), the effect of global signal regression on
data preprocessing, as well as the impact of anesthesia on functional brain
networks extracted from rodents.

Chapter 4 explains the emerging hypothesis as to Alzheimer’s disease,
which is characterized by the progressive degradation of brain connections.
Leveraging machine learning algorithms (for feature selection, classification
and model evaluation) and a computational model simulating the spreading
dynamics of a disease agent, this chapter extracts predictive brain signatures
of dementia caused by Alzheimer’s disease and estimates how early network
alterations associated with dementia begin to manifest structurally.

Chapter 5 highlights the advantages of considering rodent models when
investigating the effects of alcohol use disorder on functional brain connectivity
and performs a comparative analysis between a group of control rats and
a cohort of rats in a postdependent (PD) state. This analysis is based
on a recently proposed method named network-based statistic (NBS), which
accounts for the connected nature of the brain. This chapter finally touches
upon the current issues regarding the interpretation of negative (anticorrelated)
correlations between BOLD signals.

Chapter 6 provides an overall conclusion and future prospects.

Finally, this mansucript ends with a brief CV and a listing of references.
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Chapter 2

Approaching the brain as a
complex network

2.1 Brain connectivity

The brain is the most complex organ in the human body, allowing and
coordinating processes related to perception, cognition and action (Park and
Friston, 2013). Underlying these high-order processes, functional segregation
and integration occur in the brain as a result of the neural synchronous
activity (Friston, 2011). Functional segregation suggests that a cortical
area is specialized for some aspects of perceptual or motor processing,
whereas functional integration refers to the capacity of anatomically
segregated areas to cooperate. Likewise that cognition is supported by these
operational principles, functional integration between neural elements is in
turn constrained by structural connections (Sporns et al., 2005). Therefore,
it is possible to conceive cognition as the ultimate product emerging from the
interplay between the way neurons are structurally connected to each other
(i.e., structure) and the dynamical activity (i.e., function) occurring in neural
circuits (Honey et al., 2010).
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Brain structure and function can be examined at different scales due to the
hierarchical organization of the brain (Friston, 2011; Sporns et al., 2005). At
the microscale, single neurons represent the basic element for information
processing and synapses enable communication. At the mesoscale, individual
neurons are arranged into minicolumns and macrocolumns and message
passing between them is mediated by their connection patterns. Finally, the
macroscale is characterized by the aggregation of neural columns into brain
regions that are connected by inter-regional fiber pathways. Advancement in
the knowledge of brain structure and function across scales relies critically
on the available recording techniques for brain mapping. In particular, the
development of MRI has greatly influenced the study of the brain and provided
mechanistic insights into its macroscopic organization (Power et al., 2011;
Thomas Yeo et al., 2011).

A critical concept is that of brain connectivity. Understanding the
mechanisms underlying brain function without accounting for its circuitry and
connectivity would be imprecise and meaningless at present (Razi and Friston,
2016). The concept of brain connectivity has generated some debates along
the history (Horwitz, 2003); however, it is widely recognized that interactions
between brain areas can be described using three different, but related,
perspectives (Friston, 2011). Anatomical or structural connectivity
refers to patterns of anatomical connections linking brain areas. Functional
connectivity is defined as the statistical dependence between recorded
activity time series. Finally, effective connectivity refers to the causal
influence that one neural system exerts over another. Whilst the former
describes brain structure, functional connectivity and effective connectivity
describe brain function, and more specifically, functional integration.

Differentiating between functional and effective connectivity entails important
conceptual and methodological issues. The functional connectivity between
region A and region B is estimated using some measure of statistical
dependence (e.g., the Pearson correlation coefficient) computed from the
observed time series. By contrast, the estimation of the effective connectivity
between the same regions relies on a biophysical generative model attempting
to explain the observed dependencies (i.e., the functional connectivity)
(Friston, 2011). This is critical when using fMRI data because what we are
actually measuring through this technique are variations in blood oxygenation
associated with brain activity and thereby the BOLD signal is an indirect
measure of neural dynamics (Buxton, 2010). In other words, the fMRI
signal is a measurable (observable) variable whereas the underlying neural
activity is a latent (unobserved) variable. Thus, methods to estimate the
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effective connectivity between regions, such as dynamic causal modeling
(DCM) (Friston et al., 2003), rely on sophisticated mathematical and statistical
modeling approaches to infer the latent causal influence (Valdes-Sosa et al.,
2011). How does the structural connectivity come into play in this context?
Structural connections establish a pathway through which neural information
can flow. Therefore, the structural connectivity restricts, although does
not determine, the causal interactions between neural elements (i.e., the
effective connectivity) and, ultimately, the observed dependencies (i.e., the
functional connectivity). Functional integration can be further measured
in both task-evoked and resting-state experiments (Cole et al., 2014; Fox
and Raichle, 2007; Smith et al., 2009). In task-evoked experiments
subjects are engaged in performing a particular task, whereas in resting-state
experiments subjects are scanned “at rest” to assess spontaneous or intrinsic
BOLD fluctuations.

2.2 Network science

Network science is the scientific field that deals with the formal study of
complex networks (e.g., social networks) or any system that can be modeled
as such (e.g., air transport networks) (Newman, 2003, 2010; Strogatz, 2001).
In essence, a network represents a system constituted of nodes (also called
vertices) that are somehow related (or connected) to each other through links
(also called edges). A network is commonly represented by means of a graph
and a connectivity matrix, W , with rows and columns encoding nodes, and
matrix entries quantifying the connectivity between nodes. Different types of
graphs (or networks) can be defined1:

Binary, Weighted: A binary network consists in a network in which wi,j ∈
{0, 1}, with wi,j = 1 indicating the existence of interaction from node i
to j. The connectivity matrix in a binary network is commonly named
adjacency matrix, A, to explicitly indicate that matrix entries merely
provide information about which nodes are inter-related. By contrast,
edges connecting any pair of nodes in a weighted network can take values
that are real numbers, reflecting connection strengths.

Undirected, Directed: An undirected network (Figure 2.1) consists in a
network in which the edges do not provide information about the
directionality of interaction, that is, wi,j = wj,i. In a directed network

1Multitude of graphs can be defined according to different criteria. However, we here restrict the
classification to those types that are more relevant in the context of brain networks.
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(Figure 2.2), the edges have directionality. Thus, connectivity matrices
of undirected networks are always symmetric.

1

2

3

4

5

W =


0 7 0 1 0
7 0 2 0 5
0 2 0 0 8.3
1 0 0 0 10.1
0 5 8.3 10.1 0



A =


0 1 0 1 0
1 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 1 1 1 0


(a) (b)

Figure 2.1. Toy example of an undirected network composed of five nodes.
(a) Graph representing an undirected network composed of five nodes. (b) In its weighted
version, the element wi,j = wj,i, with i, j ∈ [1, . . . , 5], quantifies the relationship between
node i and j. In its binary version, the element ai,j = aj,i is equal to unity when node i and
j are connected, and zero otherwise.

Graph theory offers a formal language to describe the topology (also
called structure) of complex networks (Boccaletti et al., 2006). The term
“complex” is used to underline that the network is characterized by a series of
topological properties (explained in subsection 2.3.4), such as small-worldness,
the presence of hubs, modularity and hierarchy, that are not typical of null
network models or reference models (e.g., random graphs and regular graphs)
(Bullmore and Sporns, 2009).

Whilst graph theoretical analysis of network topology is a fundamental
aspect in the study of real-world networks, network science also encompasses
dynamics (also called function) (Boccaletti et al., 2006). Dynamical
processes are highly affected by network topology. For example, the spread
of ideas in a social network relies on how users are inter-connected (Pei and
Makse, 2013). How activity can change on top of network topology is referred
to as dynamics on networks. On the other hand, edges themselves can also
change. For example, when two coupled neurons fire together repeatedly, the
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connection between them is strengthened. How network edges can reconfigure
is referred to as dynamics of networks. Therefore, the topology of the
network affects its dynamics but the reverse is also possible (Bassett and
Sporns, 2017; Strogatz, 2001). As a result, several useful modeling approaches
within network science have recently emerged to attempt to explain physical
phenomena as those just described; specifically, multilayer networks (Boccaletti
et al., 2014) and temporal networks (Holme and Saramäki, 2012).

1

2

3

4

5

W =


0 0 0 5 0

1.4 0 0 0 1
0 0.6 0 0 −4.8

0.6 0 0 0 10
0 1 −2 0 0



A =


0 0 0 1 0
1 0 0 0 1
0 1 0 0 1
1 0 0 0 1
0 1 1 0 0


(a) (b)

Figure 2.2. Toy example of a directed network composed of five nodes. (a) Graph
representing a directed network composed of five nodes. (b) In its weighted version, the
element wi,j , with i, j ∈ [1, . . . , 5], quantifies the relationship from node i to j. In its binary
version, the element ai,j is equal to unity when an interaction from node i to j occurs, and
zero otherwise.

Given the potential of network science to study complex systems composed
of many actors or elements that are related to each other, how can we adopt
these ideas to explain and understand brain connectivity in health and disease?
In network neuroscience, nodes and edges represent brain regions2 and brain
connectivity, respectively (Bassett and Sporns, 2017; Telesford et al., 2011).
Brain networks usually fall into one of the following categories (Bullmore and
Bassett, 2011; Fornito et al., 2013): binary undirected networks, weighted
undirected networks, binary directed networks or weighted directed networks.
Note that one can easily obtain a binary network from its weighted version by

2In this manuscript the terms “area”, “region”, “node”, and “ROI” (introduced in subsection 2.3.2)
are used interchangeably.
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applying a threshold. In addition, self-connections (the main diagonal in W
and A) are not usually considered in brain network analysis.

Consider that we gather data to estimate the brain connectivity among three
brain areas (Figure 2.3). Assume that we measure the structural connectivity
from a rodent model by using tracing technology and reconstruct the
structural brain network illustrated in Figure 2.3a. Furthermore, assume
for simplicity binary links. In human research, structural brain networks
are undirected since dMRI does not allow estimating link directionality
(Figure 2.3b). Either way, these structural connections offer potential fibers
through which neural populations can cooperate and transmit dynamical code
(like a road map providing potential pathways to traffic). For example, region 1
could transmit information to region 3 through the direct, afferent link a1,3, but
also indirectly via region 2 through a1,2 and a2,3. Assume the latter scenario,
so after estimating the effective connectivity between each pair of areas, the
resulting effective brain network is represented in Figure 2.3c. Finally,
we could potentially obtain a functional brain network as that shown in
Figure 2.3d, as time series from region 1 and region 3 could be statistically
dependent by means of, precisely, region 2.

In the previous illustrative example, we have implicitly assumed that the
three areas are isolated and do not interact with others, but the reality
is that they can also communicate with other areas (as well as with other
parts of the nervous system, or even with the environment). How can this
influence our insights into the brain connectivity among areas? Now suppose
that region 1 is not directly structurally connected to region 2, but are
polysinaptically structurally inter-related via a missing region 4 (Figure 2.4a
and Figure 2.4b) that has not been considered in the analysis because, for
example, data from this region have not been recorded. Assume further that
region 1 sends a neural message to region 2 through this structural path (i.e.,
1 → 4 → 2). In this situation, we could still reconstruct the same effective
brain network as before (Figure 2.4c). In this way, one is limited to investigate
interactions between pairs of regions that are included in the analysis. Note
that this is a different problem from that of latent and measurable variables
introduced in section 2.1 when distinguishing between functional and effective
connectivity. Additionally, the same reasoning is valid for undirected structural
brain networks. Although we were not able to estimate the directionality of
structural connections (Figure 2.4d), it would be possible to reconstruct the
effective connections of Figure 2.4c. Nevertheless, knowing link directionality
and incorporating this information into effective connection estimates would
probably enable recovering the effective brain network more accurately.
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(a) (b)
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3

(c) (d)

Figure 2.3. The brain from a network perspective. (a) Structural brain network
represented by a directed graph. (b) Structural brain network represented by an undirected
graph. (c) Effective brain network represented by a directed graph. (d) Functional brain
network represented by an undirected graph.

Regardless of the type of connectivity employed to describe interactions
between regions, one can interpret the resulting brain graph as a complex
network with topology and dynamics. The study of effective brain networks
as measured with MRI is restricted to graphs of small size due to the
computational complexity associated with inferring latent states (Fornito et al.,
2013; Valdes-Sosa et al., 2011). As a result, network science approaches have
been widely applied to examine structural and functional, but not effective
brain networks. Recent methodological advances have brought effective
connectivity into the context of network science, and it is probably that in
the future effective brain networks will reach a greater prominence (Razi et al.,
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2017). Nevertheless, most of the current research copes with the analysis of
whole-brain structural and functional graphs, which is the theme of this thesis.

1

2

34

1

2

3

(a) (b)

1

2

3

1

2

3

(c) (d)

Figure 2.4. Brain networks and missing regions. (a) Data from region 4 are not
recorded. (b) The resulting structural brain network does not have a direct structural
connection from region 1 to 2. (c) Even so, one could potentially estimate a direct causal
influence from the former to the latter. (d) Using dMRI, one would see the structural brain
network as an undirected graph.

Although it is possible to characterize the topology of functional brain
networks, neurobiological interpretation should be made with caution. For
example, paths are sequences of nodes and links that in structural brain
networks represent potential routes of information flow, whereas paths in
functional networks represent sequences of statistical associations and may not
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correspond to information flow on structural connections. Therefore, network
measures based on functional paths are less straightforward to interpret
(Rubinov and Sporns, 2010; Zalesky et al., 2012). On the other hand,
functional brain networks are commonly seen as the dynamical component
of structural brain networks. For example, when neural dynamical models are
applied on top of structural brain networks to reproduce the organization of
resting-state patterns in the brain (Deco et al., 2011; Nakagawa et al., 2013).
However, it is also possible to incorporate dynamical process in functional
brain networks themselves (Reis et al., 2014; Sinha et al., 2017). Likewise,
previous studies have also incorporated dynamics in structural brain networks
without calling for neural activity directly (Raj et al., 2012). In summary, both
the topology and dynamics of structural and functional brain networks can be
analyzed using network science tools, and the choice of the analytic methods
relies critically on the research goal.

2.3 The brain network analysis process based on MRI

So far, we have been given a network describing structural or functional
interactions between areas. In practice, there are a series of steps that
one has to take until brain networks are reconstructed and subsequently
analyzed (Figure 2.5). Basically, the process begins by gathering MRI
data (subsection 2.3.1), which are then preprocessed (subsection 2.3.2) with
the aim of correcting image distortions and preconditioning data for brain
network reconstruction. Brain network reconstruction (subsection 2.3.3)
mainly involves two processes: brain parcellation and brain connectivity
estimation. Brain parcellation consists in dividing the brain into different
areas, which will act as network nodes. Brain connectivity between pairs of
nodes is then estimated, producing a connectivity matrix. This connectivity
matrix encodes the topology of the corresponding structural or functional brain
network from which a variety of analytic techniques (subsection 2.3.4) can be
applied to extracts insights into the network organization of the brain.

2.3.1 MRI data acquisition

MRI technology enables the estimation of structural and functional
whole-brain networks using dMRI and fMRI, respectively (Craddock et
al., 2013; Schirner et al., 2015). Additionally, its non-invasive nature
allows comparable measurements between clinical and animal studies,
providing excellent translational capabilities (Gozzi and Schwarz, 2016).
The fundamental physical principle underlying the estimation of structural
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connectivity is that water molecules in whiter matter diffuse mainly along the
path of axons, phenomenon known as anisotropic diffusion. On the contrary,
diffusion of water molecules in gray matter and cerebral spinal fluids occurs
approximately equally in all directions, which is known as isotropic diffusion.
During acquisition, a series of images (or volumes) are acquired, each sensitive
to diffusion along a specific direction (Craddock et al., 2013). Thus, by the
controlled application of gradient magnetic fields across different directions,
it is possible to map the orientations of fibers passing through each voxel
(Figure 2.6a). This information is then used to reconstruct large-scale tracts
of white matter, process known as tractography (Figure 2.6b) (Abhinav et al.,
2014; Sotiropoulos and Zalesky, 2017).

MRI Data 
Acquisition

MRI Data 
Preprocessing

Brain Network 
Reconstruction

Brain Network 
Analysis

Figure 2.5. Common workflow for brain network analysis. Once the researcher has
formulate the hypothesis to be tested and decided the experiment accordingly, the main steps
involved in the process of brain network analysis are: acquisition of MRI data, preprocessing
of MRI data, reconstruction of brain networks by dividing the brain into discrete nodes and
estimating the brain connectivity between pairs of nodes and, finally, application of a variety
of techniques to examine the brain from a network perspective.

Although brain function can be measured using different indices related to
physiological function, such as cerebral blood flow and glucose metabolism,
as well as by means of other neuroimaging modalities, such as positron
emission tomography (PET), fMRI based on BOLD contrast is the most widely
technique employed for estimating functional interactions3 (Craddock et al.,
2013). This modality is based on the paramagnetic nature of deoxygenated
hemoglobin and the overcompensation of blood supply in response to neural
activity that produces a net increase in oxygenated hemoglobin. While the
physical origin of the BOLD signal is clear, both the triggering mechanisms
and its relation to neural activity remain unclear (Buxton, 2010; Logothetis,
2008; Moreno et al., 2013). In this modality, a sequence of images is acquired
during the course of an experiment. The BOLD signal contained in each voxel
reflects oxygenating changes in the brain as a result of brain activity across
time (Figure 2.7).

3In this manuscript fMRI modality always refers to fMRI based on BOLD contrast.
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(a) (b)

Figure 2.6. Structural brain networks are typically investigated using dMRI.
(a) Examples of fiber orientation patterns that can result within a particular voxel.
Reproduced from Sotiropoulos and Zalesky (2017). (b) Reconstruction of large-scale tracts
of white-matter extracted from fiber orientation patterns within voxels. Reproduced from
O’Donnell and Westin (2011).
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Figure 2.7. Functional brain networks are typically investigated using fMRI.
Functional interactions are estimated from BOLD signals recorded through each voxel.
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The aforementioned modalities are commonly acquired along with a structural
MRI (sMRI) image. This structural image is employed during data
preprocessing for normalization of dMRI and fMRI images (subsection 2.3.2),
as well as for node definition during brain network reconstruction
(subsection 2.3.3). Therefore, a typical MRI experiment for brain network
analysis rests upon dMRI, fMRI and sMRI modalities. Furthermore, each
subject can undergo several runs (also called trials) within the same session
(Figure 2.8).

Experiment

Subject 

Session 

Run 

Structural MRI

...

Functional MRI

...

Diffusion-weighted MRI

Figure 2.8. Data required for brain network analysis based on MRI technology.
An experiment examines many subjects, who can be scanned in multiple sessions. A sMRI
image is acquired in each session, which consists of several runs. For each run, dMRI and
fMRI images are acquired to examine structural and functional brain networks, respectively.
Experimenters could be interested in acquiring only one modality or both, according to
their scientific goals. A structural and a functional brain network result from each run, so
connectivity matrices of the same type can be averaged across runs.

2.3.2 MRI data preprocessing

To extract meaningful neurological insights from connectivity matrices, raw
MRI data must be adapted and preconditioned. This is a crucial step that
has generated a lot of debate, especially in rs-fMRI research (Ciric et al., 2017;
Power et al., 2015). Nevertheless, a series of standard preprocessing steps are
applied across studies.
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Diffusion-weighted MRI data preprocessing

Magnetic field inhomogeneities in areas with materials that differ with respect
to magnetic susceptibility are a major contribution to spatial distortions of
dMRI (Craddock et al., 2013). Image registration, or spatial alignment of
brain scans, is used in dMRI data preprocessing pipelines to correct for subject
head motion and eddy-current distortions (Andersson and Sotiropoulos, 2016),
which are caused by the interaction between the static magnetic field and the
currents induced by rapid switching of gradients with the magnetic field. Brain
extraction (a.k.a., skull stripping) methods are applied to extract the brain
and remove non-interest tissues such as bone and air (Smith, 2002). Recent
research has also reported effects of signal drift as a result of temporal scanner
instability on dMRI. Therefore, algorithms to correct for this artifact have
emerged (Vos et al., 2017).

Before estimating the structural connectivity between pairs of nodes
(subsection 2.3.3), large-scale fiber tracts of whiter matter must be
reconstructed (Figure 2.6b). This process involves two main steps: fiber
orientation estimation within each voxel and whole-brain tractography. There
are a large quantity of methods for mapping fiber orientations. The simplest
method is the diffusion tensor model (O’Donnell and Westin, 2011). Diffusion
tensor imaging (DTI) provides an abstract ellipsoid representation of the
water-diffusion profile for a given voxel. The direction of maximal diffusion,
referred to as the principal diffusion direction, is used as the best estimate
of fiber orientation within a voxel. A more accurate model in the case of
complex fiber patterns (Figure 2.6a) is the fiber orientation density function
(fODF), which characterizes the fiber distribution in each voxel (Sotiropoulos
and Zalesky, 2017). Numerous methods, such as deconvolution methods,
parametric, non-parametric, q-ball imaging and diffusion spectrum imaging,
are aimed to provide estimates of this fODF.

Regarding tractography methods, it is possible to categorize them into two
main groups: local approaches, which in a step-by-step fashion propagate
curves (or streamlines) that are tangent to vector fields extracted from the
fODF; and global methods, which estimate streamlines that are optimal
according to a global criterion. Local methods can be in turn categorized
into deterministic and probabilistic, depending on whether they perform a
deterministic or stochastic estimation. Note that individual streamlines do
not represent actual axons. Instead, they represent estimates of the average
trajectories of axon bundles (Craddock et al., 2013; Sotiropoulos and Zalesky,
2017).
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Functional MRI data preprocessing in resting-state experiments

Functional MRI data are associated with brain activity, but variations in
BOLD signals come from other sources of non-interest including subject head
motion, cardiac and respiratory physiological noise, blood pressure and cerebral
autoregulation, and vasomotion (Murphy et al., 2013). These confounds, added
to the origins of BOLD signals as being a indirect measure of brain activity,
have given rise to a plethora of approaches and pipelines for rs-fMRI data
preprocessing (Ciric et al., 2017; Pruim et al., 2015). In addition to spatial
alignment of brain scans, the variance associated with signals of non-interest
is removed through each voxel by applying a general linear model (GLM) that
attempts to explain the corresponding BOLD signal. This preprocessing step
is known as nuisance regression. A subject of intense interest in the fMRI
community is that of global signal. The global signal is the spatial mean of all
signals in the brain (Power et al., 2017). Whether or not the variance of this
regressor4 should be removed from BOLD signals is controversial, as artificial
negative (or anti-correlated) correlations between time series mathematically
arise when it is included in the GLM (Murphy et al., 2009). Band-pass filtering
is usually applied to remove frequencies between 0.01 and 0.1 Hz. Slice-timing
correction and spatial smoothing are two preprocessing steps commonly applied
for fMRI data preprocessing. However, it is not clear that the former provide
benefices in resting-state experiments (Wu et al., 2011), whereas the latter can
introduce spurious high functional interactions between a node an its neighbors
when constructing functional brain networks (Fornito et al., 2010).

MRI data normalization

To perform comparisons within and between groups, one must ensure that
the brain is divided into discrete regions (subsection 2.3.3) consistently across
subjects. To this end, dMRI and fMRI data must be co-registered or aligned
to the sMRI image, which is in turn normalized5 to a reference image. This
reference image or template is another sMRI image that typically is associated
with a digital atlas that contains a set of labels, with each label identifying a
particular brain area or region of interest (ROI). Figure 2.9 presents a typical
scheme for MRI data normalization.

4In the nuisance regression framework the terms “signal”, “variable”, “regressor” and “covariate”
are used interchangeably.

5The term “co-registration” is used in the neuroimaging literature to refer to the alignment or
image registration between dMRI or fMRI images and the sMRI. On the other hand, the term
“normalization” is reserved to refer to the process of aligning or registering subject-specific images
to a reference image or template for group studies. In both cases, algorithms for image registration
are applied.
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Figure 2.9. Normalization of MRI data for group studies. First, dMRI and fMRI
data are spatially aligned to the subject-specific sMRI image. This sMRI image is then
aligned to the template. This process generates a set of transformation matrices from which
it is possible to move data between different spaces. For example, one could decide to take the
template to the native spatial space defined by fMRI images or the other way around. After
normalization, the subject-specific sMRI image can be fairly divided into discrete ares, as
well as dMRI and fMRI data accordingly, for brain network reconstruction (subsection 2.3.3).
Adapted from Schirner et al. (2015).

21



Chapter 2. Approaching the brain as a complex network

2.3.3 Brain network reconstruction: defining nodes and edges

The validity of a brain graph model significantly depends on to what extent its
nodes and edges represent true subsystems and their interactions, respectively.
Whereas in some applications this definition can be straightforward (e.g., in a
social network each node represents a person and edges indicate whether two
nodes are “friends” or connected), accurate identification of nodes and edges
in brain networks can be a tricky task (Fornito et al., 2013).

Defining nodes in brain networks

Depending on the goal of the research, the specific subsystems represented
by nodes can range from small patches of the brain cortex to larger brain
areas (Craddock et al., 2013). Ideally, a brain parcellation should satisfy
three criteria: define functionally homogeneous nodes, represent functional
heterogeneity across nodes, and account for spatial relationships (Fornito et
al., 2013). As a result, diverse brain parcellation schemes based on both
anatomical and functional criteria have been produced to attempt to achieve
such requirements (Figure 2.10). Note that brain parcellations are depicted
through a digital atlas with ROI labels and an associated template to be used
in the normalization process (Figure 2.9).

Defining edges in structural brain networks

Tractography provides an estimate of the trajectories followed by fiber bundles,
which are represented by “artificial” streamlines (subsection 2.3.2). Although
dMRI modality cannot offer biophysical properties (e.g., axonal densities
and myelination) about the structural connectivity between areas, does allow
computing measures that indirectly reflect these properties (Sotiropoulos and
Zalesky, 2017). Edges in weighted structural brain networks are typically
quantified by using the number of streamlines intersecting each pair of regions
(i.e., streamline counts) or a function of this value. Indeed, streamline counts
are sometimes normalized by the size of the nodes to account for volume/area
variability since, for example, larger brain regions are more likely to be more
strongly connected with the rest of nodes. Other measures that do not make
use of streamlines counts are also available. For example, it is possible to
compute voxel-specific measures reflecting microstructural properties (e.g.,
fractional anisotropy and mean diffusivity), and define edge weights as the
average of these measures over all voxels traversed by those streamlines
connecting two regions in question. Whereas it is questionable the ability of
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Figure 2.10. Some examples of brain parcellations for brain networks analysis.
There are multitude of schemes to divide the brain into discrete areas, which represent
network nodes. This figure includes six particular examples, but others are also available.
The top four brain parcellations are based on anatomical criteria, whereas the bottom two
are based on functional criteria. Reproduced from Craddock et al. (2013).
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microstructural properties in reflecting true axonal strengths as measured with
tracers, functions of streamlines can be more useful in quantifying structural
connectivity (Fornito et al., 2013; Sotiropoulos and Zalesky, 2017).

Defining edges in functional brain networks

Functional connectivity is estimated from activity time series recorded in
different brain areas. Several measures can be used to define functional
interactions. The simplest measure is the Pearson correlation coefficient. This
measure quantifies the linear relationship between signals. However, other
more sophisticated measures capturing linear and nonlinear relationships (e.g.,
mutual information) can be employed. A previous investigation has applied
realistic simulations to assess the ability of different functional connectivity
measures in reconstructing the true underlying network architecture generating
fMRI data (i.e., the effective brain network) (Smith et al., 2011). In particular,
the authors computed a variety of metrics including, but not restricted
to, correlation, partial correlation, regularized inverse covariance, mutual
information, Granger causality, Patel’s conditional dependency measures,
and methods based on Bayesian networks. They concluded that partial
correlation, regularized inverse covariance and Bayesian net methods offered
high sensitivity to detect true network connections. Although accurate
estimate of connection directionality is more tricky, Patel’s conditional
dependency measures gave reasonable results. Eventually, one can generate
a connectivity matrix encoding the interactions between pairs of nodes
(Figure 2.11).

2.3.4 Brain network analysis

Once structural and functional connectivity matrices have been produced from
preprocessed dMRI and fMRI data, respectively, complex network analysis
methods can be applied in a variety of neuroscientific applications. Whereas
many of the analytic techniques have been adopted from network science,
others have been exclusively proposed for brain network research, for example,
the NBS approach (Zalesky et al., 2010).
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Figure 2.11. Construction of structural and functional brain networks. Structural
connectivity is commonly inferred from the number of streamlines intersecting pairs of
regions, although voxel-specific measures (e.g., fractional anisotropy) can be used too. On
the other hand, functional connectivity is estimated using measures of statistical dependence
between time series recorded in brain areas. The time series from a particular ROI is
computed as the average BOLD signal of those voxels composing the region. Adapted from
Schirner et al. (2015).
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Topological description of brain networks

Graph theoretical analyses have revealed that real-world networks, with brain
networks being a particular instance, share common organizational principles.
For example, earlier studies support that virtually all networks found in natural
and technological systems have small-world attributes (Figure 2.12) (Bullmore
and Sporns, 2009; Newman, 2003; Watts and Strogatz, 1998). Small-worldness
indicates that a network combines high levels of local clustering among nodes,
which is characteristic of regular networks, and short paths that globally link
all nodes of the network, which is characteristic of Erdös-Rényi networks
(commonly referred to as random networks). Thus, all nodes are linked
through relatively few intermediate steps, despite the fact that most nodes
maintain only a few direct connections. It is thought that this organization
may constitute an optimal solution to the conflicting constrains of reducing
wiring cost and facilitating information flow at the same time. Wiring cost is
critical because the brain is a spatial network, that is, it is embedded in the
real space wherein nodes occupy a precise location in a Euclidean space, and
edges in structural brain networks are real physical connections (Barthélemy,
2011).

Figure 2.12. Small-world organization. Real-world networks are neither regular nor
random, so they are characterized by both high levels of local clustering and short paths.
Reproduced from Fornito et al. (2016).

Complex network measures can capture the topological organization at
different levels, ranging from measures computed at node-level, to measures
describing groups of nodes as well as aggregated measures computed at
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network-level (Kaiser, 2011; Rubinov and Sporns, 2010; Stam, 2014). A
basic measure is the degree (Figure 2.13a). The degree of a particular node is
defined as the number of links connected to that node. In directed networks
(Figure 2.13b), one can differentiate between the in-degree and the out-degree,
which accounts for those links ending at and originating from an individual
node, respectively. The degree does not make use of the weights, so the
weighted version of the degree is the strength, which is defined as the sum of all
neighboring edge weights. These metrics can be calculated at network-level by
aggregating individual node values. More generally, measurement values of all
individual elements provide a distribution, for example, the degree distribution
of the network. Many real-world networks have degree distributions in the form
of a power law, that is, the probability P (k) that a node has k connections
is given by P (k) ∼ k−γ . The exponent γ can vary depending on the network
under study, although in most power-law systems, 2 < γ < 3. Complex
network with a degree distribution in this form are also known as scale-free
networks. Scale-free networks are characterized by the presence of a subset
of nodes with high centrality. Centrality quantifies the importance of a node
relative to other nodes in the network. Degree is a centrality measure, but
there are others such as closeness centrality and eigenvector centrality. Nodes
with high centrality are also named hubs (van den Heuvel and Sporns, 2013).

In the brain, high-degree and topologically central hub regions tend to be
highly interconnected. In fact, a central core of these hubs form a organization
named rich-club (van den Heuvel and Sporns, 2011), which facilitates efficient
communication between neural systems. The rich-club organization is also
related to the modular organization of brain networks. The nodes of
many real-world networks aggregate into densely connected subgroups called
modules or communities (Figure 2.13c) (Fortunato, 2010; Fortunato and Hric,
2016; Sporns and Betzel, 2016). Nodes within these subgroups are more
strongly connected to each other than with other parts of the network. In
addition, modules possess a hierarchical organization, with subnetworks within
networks. Interestingly, rich-club hubs are densely interconnected, facilitating
intermodular organization and global integration (Figure 2.13d) (Park and
Friston, 2013).
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(a) (b)

(c) (d)

Figure 2.13. Some illustrative measures that quantifies the topology of complex
networks. (a) The degree of a node is defined as the number of edges connected to that node.
Reproduced from Sporns and Betzel (2016). (b) In directed network, one can compute both
the in-degree (number of links going into a node) and out-degree (number of links leaving a
node). Degree is a centrality measure and nodes with high centrality are called hub nodes or
hubs. Network motifs are subgraphs with a particular topological configuration. Reproduced
from Rubinov and Sporns (2010). (c) Brain networks possess a modular structure. Provincial
hubs link primarily to other nodes in the same module, whereas connector hubs have links
that are distributed across multiple different modules. Reproduced from Sporns and Betzel
(2016). (d) Brain networks are also characterized by a rich-club organization, where a subset
of hub nodes are highly interconnected, facilitating global communication. Reproduced from
Fornito et al. (2015).
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Dynamics in brain networks

A emergent trend in the study of brain networks is that of incorporating
dynamics. As noted in section 2.2, network dynamics involve at least two
dimensions (Bassett and Sporns, 2017): dynamics on networks and dynamics of
networks. A clear example of the former is that of spreading process. Spreading
describes many activities in real world, ranging from the spread of news and
ideas in a social network, or the spread of contagious agents in a population (Pei
and Makse, 2013). The position of a node in the network usually determines the
spreading capabilities of that node. In neuroscience, spreading processes have
been used to investigate how structural brain networks shape and constrain
global dynamics of resting-state networks (Mišić et al., 2015), as well as to
explain the progression to Alzheimer’s disease (Iturria-Medina et al., 2014;
Raj et al., 2012, 2015).

On the other hand, dynamics of networks build upon how changes in dynamics
or function can produce changes in topology or structure. A particular
application in neuroscience involves how connectivity between brain regions
changes over the life span (Collin and van den Heuvel, 2013; Lim et al., 2015;
Zhao et al., 2015). Indeed, changes in the connectome take place throughout
prenatal development, early postnatal development, childhood, adolescence
and adulthood. It has been suggested that connectome organization follows
an inverted U-shape pattern, with a increasingly integrated topology during
development, a plateau lasting for the majority of adulthood, and an
increasingly localized topology in late life.

Measuring differences in brain networks

Whilst a quantitative description of healthy brain networks is an intriguing
and necessary labor in and of itself in neuroscience, network science
tools also provide a mean to investigate network alterations caused by
distinct neurological and psychiatric disorders. For example, empirical and
computational studies have revealed that lesion effects are critically dependent
on the topological position of the lesion (Aerts et al., 2016). More concretely,
damage to hubs causes the largest disturbances in network organization. In
fact, neurodegenerative diseases, such as Alzheimer’s disease, are characterized
by the alteration of those nodes occupying a central role in the network (Tijms
et al., 2013).

When investigating disruptions in brain networks between different conditions,
one can compare complex network measures (e.g., centrality and modularity),
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but also edge weights themselves (Varoquaux and Craddock, 2013). The main
drawback of the latter approach is the inherent massive number of multiple
comparisons to be performed. Put simply, an undirected brain network with
N = 50 nodes would imply to perform a total of N(N − 1)/2 = 1225
comparisons (as much as the number of connections). If N = 90, the number
of different connections to be compared would rise to 4005. With such a
large number of multiple comparisons, mass-univariate testing may not offer
sufficient power. In response to this limitation, alternative approaches have
arisen. In particular, the NBS method attempts to take advantage of the
connected nature of the brain under the premise that effects of interest are not
confined to a single connection and node (Zalesky et al., 2010). Rather, changes
on brain networks caused by pathology are likely to encompass multiple
connections and nodes.

Machine learning methods, such as random forest (RF) (Breiman, 2001) and
support vector machine (SVM) (Lemm et al., 2011) algorithms, offer an
alternative and promising approach to investigate differences in brain networks.
They rely on the extraction of distinctive features, which can represent
topological properties as well as connection strengths. The power of these
multivariate methods to decode brain signatures and predict clinical outcomes
enable their application in a subject-specific manner for clinical applications
(Woo et al., 2017). A plethora of studies have been published with the aim of
predicting different disorders, including mild cognitive impairment (MCI) and
Alzheimer’s disease (Ebadi et al., 2017; Zhan et al., 2015), and autism spectrum
disease (Yahata et al., 2016), among others. Additionally, feature selection
algorithms (Guyon and Elisseeff, 2003; Saeys et al., 2007) can be wisely
applied to extract potential biomarkers based on network measures. Note that
predictive modelling does not suffer from the problem of multiple comparisons,
although has to deal with other issues. Specifically, the proper application of
resampling techniques (e.g., cross-validation) to evaluate whether the resulting
models generalize well across samples (Breiman, 2001; James et al., 2013;
Pereira et al., 2009).

2.4 Summary

In this chapter, we have provided an overview about how network models
can be applied to understand brain connectivity. In particular, we
have discussed the network organization of the brain and surveyed the
principal methodological aspects involved in the preprocessing, reconstruction
and analysis of brain networks. Although we have focused on graphs
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reconstructed from MRI data, network analysis tools themselves also apply
to brain networks recorded with other techniques such as tracing technology,
electroencephalography (EEG) and magnetoencephalography (MEG).

Brain connectivity can be described across three different dimensions (i.e.,
structural, functional and effective) and represented by the corresponding
connectivity matrix. The topology and dynamics of these matrices can
be then investigated in health and disease. Depending on how brain
connectivity is estimated, brain networks can encode binary/weighted and
undirected/directed interactions. For example, the use of dMRI data enables
investigating binary/weighted and undirected structural brain networks. By
contrast, tracing data also provide information about the directionality of
edges; although its application is limited to animal models due to its invasive
nature. Functional and effective brain networks are estimated by using fMRI
modality. Effective brain networks can be binary/weighted but are always
directed by definition, as they represent causal influences between neural
populations. Functional brain networks can be binary/weighted as well as
directed/undirected, depending on how connectivity is estimated. For example,
measures such correlation and mutual information offer undirected edges (the
correlation between x and y is the same as the correlation between y and x),
whereas other measures including Granger causality and transfer entropy allow
estimating directed interactions. It is important to highlight that some authors
consider the directed functional connectivity as being effective connectivity.
Some measures based on Granger causality compute interactions directly
from observable time series and do not make use of a biophysical generative
model that accounts for the latent neural activity underlying BOLD signals
(section 2.1). Therefore, strictly speaking, directed functional connectivity is
not effective connectivity (Valdes-Sosa et al., 2011).

In the next three chapters we will conduct three different experiments based
on the concepts introduced in this chapter. More concretely:

� Chapter 3 examines the community structure of undirected functional
brain networks in health and its relationship with network measures of
reciprocity and motifs calculated from a directed structural brain network
(Díaz-Parra et al., 2017b).

� Chapter 4 makes use of machine learning algorithms based on centrality
measures extracted from undirected structural brain networks to predict
dementia caused by Alzheimer’s disease (Díaz-Parra et al., 2018).
Additionally, this chapter incorporates processes related to dynamics on
networks as well as dynamics of networks.
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� Chapter 5 investigates alterations in edge weights of undirected functional
brain networks in the context of alcohol use disorder by using the NBS
approach (Díaz-Parra et al., 2017a).
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Chapter 3

Structural and functional brain
networks in the cerebral cortex

of the rat

Connectomics data from animal models provide an invaluable
opportunity to reveal the complex interplay between structure and
function in the mammalian brain. In this chapter, we investigate
the relationship between structural and functional connectivity in
the rat brain cortex using a directed anatomical network generated
from a carefully curated meta-analysis of published tracing data,
along with rs-fMRI data obtained from a group of anesthetized
Wistar rats.

The content presented in this chapter has been adapted from the following
publication:

Díaz-Parra, A., Osborn, Z., Canals, S., Moratal, D., and Sporns, O. (2017).
“Structural and functional, empirical and modeled connectivity in the
cerebral cortex of the rat”. NeuroImage 159, pp. 170–184.
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3.1 Introduction

The study of brain connectivity from a network perspective (Newman, 2003;
Strogatz, 2001) has become a promising framework to understand how action,
perception, and cognition emerge from a dense ensemble of neural elements
(Park and Friston, 2013). Leveraging advances in brain imaging and network
science (Sporns, 2013; Sporns et al., 2005), recent approaches have focused
on the topology and dynamics of large-scale projections linking anatomically
distinct and functionally specialized brain regions (Bullmore and Bassett,
2011). The structure of these large-scale networks is thought to shape and
constrain inter-regional interactions and computations.

Interactions between neuronal populations spanning brain-wide networks
can be described using the structural, functional and effective connectivity.
Whereas the interplay of these three modes of brain connectivity is not
completely understood, some progress has been made by combining anatomy
with both resting-state and task-based functional connectivity (Hermundstad
et al., 2013). The analysis of spontaneous or intrinsic neural activity (Cole
et al., 2010; Fox and Raichle, 2007) through using fluctuations in the BOLD
signals of rs-fMRI enable examining the extent to which structural patterns
shape functional interactions between neural assemblies (Honey et al., 2010).
Previous studies have shown that the presence of strong structural connectivity,
as measured with dMRI, between two areas increases the probability and
strength of the corresponding functional connectivity. Nevertheless, it has also
been reported that strong functional connectivity may exist between areas
with no (direct) anatomical connections (Bowman et al., 2012; Damoiseaux
and Greicius, 2009; Skudlarski et al., 2008), suggesting that indirect signaling
and emergent dynamic processes make an additional strong contribution.
For example, a study carried out in macaque cortex supports the idea that
functional interactions are strongly influenced by network-wide effects (Adachi
et al., 2012).

Connectomics data from animal models based on tract-tracing procedures
allows in-depth characterization of structural brain networks. In contrast to
MRI-based tractography, which provides coarse-grained undirected structural
connectivity matrices, histological tracing technology yields highly resolved
and directed connectivity information, hence providing important additional
information (van den Heuvel et al., 2016a). For instance, recent work
relating the structural connectome of the mouse brain and the intrinsic BOLD
signal dynamics within individual brain regions has shown the importance of
considering both the weight and directionality of structural connections (Sethi
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et al., 2017). In addition, the mapping of functional brain networks in rodents
provides an invaluable tool to understand the mechanisms behind neurological
and psychiatric disorders for translational research (Gozzi and Schwarz, 2016;
Pan et al., 2015). These experimental possibilities together with theoretical
developments in network science are extending systems neuroscience from
unimodal investigations of brain connectivity to a network-level understanding
of structure-function interactions (Adachi et al., 2012; Diez et al., 2015; Goñi
et al., 2014; Hsu et al., 2016; Mišić et al., 2016; Skudlarski et al., 2016; Stafford
et al., 2014; Wang et al., 2015; Wirsich et al., 2016).

In this work, we examine the relationship between structural and functional
connectivity in the rat cortical network. Using a detailed cortical structural
connectivity matrix obtained from a carefully curated meta-analysis of
published histological tracing data in rats (Bota et al., 2015), we first compare
structural connections with their corresponding spontaneous correlations
extracted empirically from rs-fMRI data collected in a group of 14 Wistar rats.
We then show the results of this comparison taking into account network-level
effects by relating structural properties of brain connectivity to the functional
modularity of rs-fMRI networks. Specifically, we study link reciprocity in both
intra- and inter-modular connections as well as the structural motif frequency
spectrum within functionally defined modules. Overall, our results provide
further evidence that rs-fMRI BOLD signal correlations are constrained and
shaped by the underlying structural connectivity patterns.

3.2 Materials and methods

3.2.1 Animals and MRI acquisition protocol

Experiments were carried out in a horizontal 7 Tesla scanner with a 30 cm
diameter bore (Biospec 70/30v, Bruker Medical, Ettlingen, Germany). The
system had a 675mT/m actively shielded gradient coil (Bruker, BGA 12-S)
of 11.4 cm inner diameter. A 1H rat brain receive-only phase array coil
with integrated combiner and preamplifier, no tune/no match, in combination
with the actively detuned transmit-only resonator (BrukerBioSpin MRI
GmbH, Germany) was employed. Data were acquired and processed with
a Hewlett-Packard console running Paravision 5.1 software (Bruker Medical
GmbH, Ettlingen, Germany) operating on a Linux platform.

For the rs-fMRI experiments, 14 Wistar rats were anesthetized with urethane
(1.2 g/Kg). Anesthetized animals were placed in a custom-made animal holder
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with adjustable bite and ear bars, and positioned on the magnet bed. The
animals were constantly supplied with 0.8L/m O2 with a face mask and
temperature was kept between 36.5 and 37.5 ◦C through a water heat-pad. The
temperature, heart rate, SpO2, and breathing rate were monitored throughout
the session (MouseOx, Starr Life Sciences, Oakmont, US).

T2-weighted anatomical images were collected using a rapid acquisition with
relaxation enhanced (RARE) sequence, applying the following parameters:
field of view (FOV) = 40 × 40 mm2; 15 slices; slice thickness = 1mm; matrix
size = 128 × 128; effective echo time (TEeff) = 56 ms; repetition time (TR)
= 2 s; RARE factor = 8. The B0 field distribution in a large voxel (40 ×
40 × 40 mm3) containing the whole head was acquired. Briefly, the brain was
localized with T2-weighted RARE sequence, and first- and second-order shims
adjusted with MAPSHIM application in a sufficiently large voxel containing the
whole brain. Functional MRI acquisition was performed using a gradient-echo
(GRE)-echo-planar imaging (EPI) sequence in 30 coronal slices applying the
following parameters: FOV = 25 × 25 mm2; slice thickness = 0.5 mm; matrix
size = 50 × 50; segments = 1; FA = 60◦; echo time (TE) = 15 ms; TR =
2000 ms (300 samples per run, 10 min), rendering an isotropic voxel of 0.5 ×
0.5 × 0.5 mm3. Between one and three runs were acquired from each animal.
T2-weighted anatomical images with exactly the same geometry were collected
using a RARE sequence using the following parameters: FOV = 25 × 25 mm2;
30 slices; slice thickness = 0.5 mm; matrix size = 200 × 200; TEeff = 56 ms;
TR = 2 s; RARE factor = 8.

3.2.2 Preprocessing of MRI data

Data preprocessing within runs was carried out using FSL v5.0 (FMRIB
Software Library, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Jenkinson
et al., 2012) and Matlab 2014a (The MathWorks, Inc., Natick, MA, United
States, https://www.mathworks.com/). Once images were converted to NIfTI
(Neuroimaging Informatics Technology Initiative, https://nifti.nimh.nih.
gov/) data format, the original voxel size, (x, y, z), was scaled up by a factor
of 10. This step is very common when analyzing rodent data to accurately
apply the same algorithms (largely those involving spatial transformations) as
in human analyses (Kalthoff et al., 2013; Pan et al., 2015).

The very first volume of fMRI data was used as reference across runs of the
same subject for head motion correction, brain extraction and co-registration.
As suggested by Kalthoff et al. (2011), head motion correction was applied to
each individual slice and restricted to (coronal) in-plane translations (x, y) and
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rotation (z) to reduce signal fluctuations related to respiration in anesthetized
rats. After applying motion correction and brain extraction (Smith, 2002),
global intensity normalization was set to 1000 and spike detection was
performed through using DVARS measure (Power et al., 2012). Note that
DVARS is highly dependent on the particular dataset (Power et al., 2014), we
therefore did not select an absolute threshold and instead considered as outliers
those temporal points exceeding the 75th percentile + 1.5 · IQR (interquartile
range). None of the runs were discarded since the number of spikes was below
30 (out of 300 samples) in all cases (15 ± 4.6 spikes per run, mean ± SD),
hence ensuring a minimum length of 9 min to estimate functional interactions.
By using a nuisance regression model, each voxel was corrected for:

� The three rigid body parameters (translation in x and y, and rotation in
z) previously computed and their derivatives (backward difference).

� A single regressor per spike with a “b0, f0 ” window (Satterthwaite et al.,
2013) (i.e., neither preceding nor following samples were used).

� The global signal and its derivative (backward difference).

� Two regressors modelling the mean and a linear trend.

A band-pass filtering (nonlinear high-pass filter with γ = 50 s, and Gaussian
linear low-pass filter with γ = 2 s) was applied to retain those frequencies
ranging from 0.01 and at around 0.1 Hz. Spatial smoothing was not applied to
avoid introducing spurious high correlations between a node and its neighbors
(Fornito et al., 2010). Finally, filtered rs-fMRI data were co-registered to
the brain-extracted T2-weighted image using a rigid body transformation and
then normalized to a rat template described elsewhere (Schwarz et al., 2006).
Normalization was carried out through using an affine deformation (Jenkinson
et al., 2002; Jenkinson and Smith, 2001) and the template was resampled to
match the original resolution of functional images (i.e., 0.5 × 0.5 × 0.5 mm3).

3.2.3 Rat connectome and definition of brain areas

We made use of a directed anatomical network coming from a systematic
curation of the primary neuroanatomical literature for the rat (for specific
details as to annotation and collation methodology, see (Bota et al.,
2015)). In particular, the dataset was originally composed of 73 cortical
gray-matter regions that were defined according to the Swanson-04 hierarchical
nomenclature for the rat central nervous system (Swanson, 2004). Connections
in the rat cortical association macroconnections (RCAMs) matrix are encoded
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by means of eight different ordinally arranged weight categories: not present,
very weak, weak, weak/moderate, moderate, moderate/strong, strong, and very
strong.

A critical point in neuroimaging research is the use of a common framework
for localization of brain structures, which allows comparisons among results
coming from different studies. Nomenclature of the rat connectome project
is available in the SwS (Swanson, 2004) and structural connectivity between
regions is directly given in matrix form, that is, no Analyze or NIfTI images
are provided. On the other hand, to the best of our knowledge, the most
complete atlas available in Analyze format (easily converted to NIfTI format)
is that developed by Schwarz et al. (2006), where brain areas are given in the
PWS (Paxinos and Watson, 1998). Therefore, the first task before carrying out
network analysis was to establish a correspondence of brain regions between
both spaces with the aim of aligning functional correlation matrices with
the anatomical network. To this end, we carefully inspected both atlases
as follows: (1) a particular reference brain region from SwS was localized in
its corresponding coronal plane; (2) we sought the coronal slice/s in PWS
containing the previous region, and (3) by taking into account the spatial
distribution of surrounding areas as well as the relative anterior and posterior
planes, we identified which region or group of regions from PWS matched with
the reference region.

As not all of the original structures contained in the RCAMs matrix were
available in the NIfTI atlas as a single mask, some of them were grouped
to cover the whole brain cortex (Figure 3.1 schematizes the process carried
out for computing these new connections). Thus, we created a new pattern
of cortical connections for the secondary visual area (VISs), which was
composed of the original anterior laterolateral area (VISlla), anterolateral area
(VISal), rostrolateral area (VISrl), intermediolateral area (VISli), laterolateral
area (VISll), mediolateral area (VISlm), posterolateral area (VISpl), and
anteromedial area (VISam). The tenia tecta cortical region (TT) was composed
of the dorsal and ventral parts (TTd and TTv, respectively). Interactions
of the retrosplenial area ventral part (RSPv) with other areas were obtained
from the original ventral part (RSPv), ventral part zone a (RSPv-a), and
ventral part zone b/c (RSPv). The hippocampal region was partitioned into
dorsal and ventral parts as follows. The dorsal part of the hippocampal
region (HIPd) was composed of CA1 dorsal part (CA1d), CA3 dorsal part
(CA3d), CA2 dorsal part (CA2d), dentate gyrus dorsal part (DGd), and
induseum griseum (IG). Whereas the ventral part of the hippocampal region
(HIPv) was composed of CA1 ventral part (CA1v), CA3 ventral part (CA3v),
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CA2 ventral part (CA2v), and dentate gyrus ventral part (DGv). Note that
the current RCAMs matrix does not distinguish between dorsal and ventral
parts for CA2, CA3 and DG. To overcome this limitation, and with the
aim of including the whole hippocampal region in our analysis, structural
patterns contained in the rat connectome for CA2, CA3 and DG were
assumed to be equal for both ventral and dorsal parts. Categorical weight
for the same region in different parts (e.g., between CA2d and CA2v) were
assumed to be very strong. A new pattern of structural connections was also
created for the cortical amygdalar nucleus (COA), which was formed from
the anterior part (COAa), posterolateral part (COApl), and posteromedial
part (COApm). The secondary auditory areas (AUDs) was composed of the
ventral and dorsal auditory areas (AUDd and AUDv, respectively). The
medio-ventral part of the orbital area (ORBmv) included the ventral and
medial parts (ORBv and ORBm, respectively). The presubiculum (PRE)
and parasubiculum (PAR) were grouped to form the PreParaSubiculum region
(PREPAR). The basolateral amygdalar nucleus (BLA) was composed of
the anterior and posterior parts (BLAa and BLAp, respectively). Finally,
structural interactions between the basomedial amygdalar nucleus (BMA) and
the rest of nodes were obtained from the anterior and posterior parts (BMAa
and BMAp, respectively).

Figure 3.1. Illustration of the process applied for combining brain areas of the
RCAMs matrix. Ordinal weights were converted to numerical values and ranked on a linear
scale from 0 (not present) to 7 (very strong). We then calculated the mean of those links
entering to and leaving from a new aggregated gray-matter region. Finally, we rounded the
mean value to the nearest integer with the aim of keeping the original weight classification.
For instance, wAF ≈ (wAC + wAE + wAD)/3 in the figure.

39



Chapter 3. Structural and functional brain networks in the cerebral cortex of the rat

Definition of nodes is a very important step for brain network analysis. Based
on the just described procedure and the information available in the NIfTI
atlas, we generated a brain parcellation of 32 ROIs. Table 3.1 presents the
brain regions from SwS and their counterpart regions from PWS.

3.2.4 Construction of functional brain networks

The mean time courses within each of the 32 ROIs were extracted and
converted to z-scores (i.e., fMRI BOLD time series were centered and scaled to
have zero mean and unit variance). As the current RCAMs matrix (Bota et al.,
2015) does not differentiate between hemispheres, voxels within ROIs were also
combined across hemispheres (Figure 3.2 presents a seed-based correlational
analysis in two different brain regions uncovering bilateral networks in the
dataset). That is, the time course from a given region, say the primary
somatosensory area, was obtained as the average between signals from right
and left primary somatosensory areas. Importantly, to create a homogeneous
parcellation by ensuring that all regions had the same size, we adopted the
procedure carried out by Alexander-Bloch et al. (2012), where ROIs were
eroded until all of them had exactly the same volume, 1 mm3 here (0.5 mm3

in each hemisphere). Before computing functional interactions, time samples
marked during preprocessing were “scrubbed”. Functional networks were
then estimated for each single run by computing the Pearson correlation
coefficient. Next, raw correlations were converted to Fisher’s z-values and
connectivity matrices of each run were averaged within subject. Finally,
functional connectivity matrices across the 14 subjects were averaged and a
group network was obtained and then used for comparative analysis with the
RCAMs matrix.

3.2.5 Modularity

Community structure detection involves the partition of a network into
“modules” or “clusters” wherein nodes are highly connected to each other and
only sparsely connected with nodes of different modules (Newman and Girvan,
2004). In neuroscience applications, community detection allows the grouping
of neural elements (e.g., brain regions) of both anatomical and functional
networks into distinct modules (Figure 2.13c) (Sporns and Betzel, 2016).
Despite the fact that community detection is conceptually straightforward, its
application is methodologically challenging as indicated by the large number
of algorithms and approaches dealing with it (Fortunato, 2010; Fortunato
and Hric, 2016). Whereas it is also possible to perform graph partition
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Table 3.1. Cortical brain regions from SwS and their counterpart regions from PWS used
as network nodes.

Swanson structure Abbreviation Paxinos&Watson structure Abbreviation

Primary somatomotor area MOp Primary motor cortex M1
Secondary somatomotor areas MOs Secondary motor cortex M2

Primary somatosensory area SSp

- Primary somatosensory cortex
- Primary somatosensory cortex, barrel field
- Primary somatosensory cortex, dysgranural region
- Primary somatosensory cortex, forelimb region
- Primary somatosensory cortex, hindlimb region
- Primary somatosensory cortex, jaw region
- Primary somatosensory cortex, jaw region, oral surface
- Primary somatosensory cortex, trunk region
- Primary somatosensory cortex, upper lip region

S1
S1BF
S1DZ
S1FL
S1HL
S1J
S1JO
S1Tr
S1ULp

Supplemental somatonsensory area SSs Secondary somatosensory cortex S2
Visceral area VISC Granular insular cortex GI
Infralimbic area ILA Infralimbic cortex IL
Gustatory area GU Dysgranular insular cortex DI

Anterior olfactory nucleus AON

- Anterior olfactory nucleus, dorsal part
- Anterior olfactory nucleus, external part
- Anterior olfactory nucleus, lateral part
- Anterior olfactory nucleus, medial part
- Anterior olfactory nucleus, posterior part

AOD
AOE
AOL
AOM
AOP

Tenita tecta TT
+ Tenia tecta, layer 1
+ Tenia tecta, layer 2
+ Tenia tecta, layer 3

TT1
TT2
TT3

Piriform area PIR

- Piriform layer
- Region external to piriform layer
- Region internal to piriform layer
- Piriform cortex
- Cortex amygdala transition zone

Pir
Pir/ext
Pir/int
PirCtx
CxA

Primary auditory area AUDp Primary auditory cortex Au1

Secondary auditory areas AUDs - Secondary auditory cortex, dorsal area
- Secondary auditory cortex, ventral area

AuD
AuV

Secondary visual area VISs
+ Secondary visual cortex, lateral area
+ Secondary visual cortex, mediomedial area
+ Secondary visual cortex, mediolateral area

V2L
V2MM
V2ML

Primary visual area VISp - Primary visual cortex, binocular area
- Primary visual cortex, monocular area

V1B
V1M

Anterior cingulate area, dorsal part ACAd Cingulate cortex, area 1 Cg1
Anterior cingulate area, ventral part ACAv Cingulate cortex, area 2 Cg2
Prelimbic area PL Prelimbic cortex PrL

Orbital area, medio-ventral part ORBmv - Medial orbital cortex
- Ventral orbital cortex

MO
VO

Orbital area, ventrolateral part ORBvl Lateral orbital cortex LO
Agranular insular area, dorsal part AId Agranular insular cortex, dorsal part AID
Agranular insular area, ventral part AIv Agranular insular cortex, ventral part AIV
Agranular insular area, posterior part AIp Agranular insular cortex, posterior part AIP
Retrosplenial area, dorsal part RSPd Retrosplenial granular B cortex RSGb
Retrosplenial area, lateral agranular part RSPagl Retrosplenial agranular cortex RSA
Retrosplenial area, ventral part RSPv Retrosplenial granular A cortex RSGa
Posterior parietal association areas PTLp Parietal association cortex PtA
Postsubiculum POST Postsubiculum Post
Subiculum, dorsal part SUBd Subiculum, dorsal part DS

Hippocampal region, dorsal part HIPd

- Hippocampus posterior, dorsal part
- Hippocampus fronto dorsal
- Dentate gyrus, dorsal part
- Field CA3 of hippocampus, dorsal part
- Indusium griseum

HCpd
HCfd
DGd
CA3d
IG

Hippocampal region, ventral part HIPv
+ Hippocampus posterior, ventral part
+ Field CA3 of hippocampus, ventral part
+ Dentate gyrus, ventral part

HCpv
CA3v
DGv

Claustrum CLA Claustrum Cl
Endopiriform nucleus, dorsal part EPd Dorsal endopiriform nucleus Den
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with overlapping modules, we only consider in this chapter the detection of
non-overlapping modules.

One popular approach for community detection attempts to maximize a quality
function, Q, commonly known as the modularity function. The problem of
community detection can be formalized as:

Q =
∑
i,j

[wij − pij] δ (σi, σj) . (3.1)

(a) (b)

Figure 3.2. Seed-based correlational analysis. Intrinsic functional connectivity,
as measured with Fisher’s z-values of Pearson correlations, using as seeds the primary
somatosensory area (a) and the dorsal part of the hippocampal region (b) (3 × 3 right seed
region is shown in blue). The same pipeline as explained in subsection 3.2.2 was applied.
Additionally, functional images were smoothed with a 1mm (two times voxel resolution)
full-width at half-maximum Gaussian kernel, as typically performed in voxel-wise analyses.
Functional connections were thresholded at uncorrected P < 0.01.

In the Equation (3.1), wij represents the actual weight of the connection
between node i and j, whereas pij refers to a specified null network model so
that nodes within communities are internally more connected than expected
by chance. The term σi ∈ [1, . . . , L] stands for the assignment of the node i to
the lth module, and the Kronecker function, δ(σi, σj), is equal to unity when
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node i and j belong to the same community, σi = σj, and zero otherwise.
Thus, only nodes belonging to the same community contribute to maximize Q.
The modularity function is typically modified by including a constant factor
before summation with the aim of setting the maximum of the quality function
to one. This last step has no influence on the final partition, though.

The precise value of the null model, pij, relies strongly on the nature of the
network being analyzed. Traditionally, the most popular null model is the
configuration model, represented by the following expression:

pij =
ki kj
2m

, (3.2)

with ki =
∑

j wij and 2m =
∑

i,j wij. However, it has recently been shown that
approaches using the Equation (3.2) can lead to biased results when correlation
matrices are considered (Bazzi et al., 2016; MacMahon and Garlaschelli, 2015).
We therefore made use of a different null model known as the constant Potts
model (Traag et al., 2011). This approach is named constant because the
connection weight in Equation (3.1) is compared to a tunable parameter, γ:

pij = γ. (3.3)

By varying gamma, one is able to reveal community structure at different
scales (given by the number of communities and their size), hence mitigating
the problem known as the resolution limit (Fortunato and Barthélemy, 2007).

In this work, we used 109 different gamma values ranging linearly from
−0.02 to 0.25 in increments of 0.0025 and, for each of them, we ran the
Louvain algorithm 10, 000 times (Blondel et al., 2008). After optimizing Q, we
computed the mutual similarity, as quantified by using the z-score of the Rand
index (z-Rand), over all pairs of partitions within a given setting of γ (Traud
et al., 2011). We then obtained a consensus partition for each γ (Bassett et al.,
2013; Lancichinetti and Fortunato, 2012).
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3.2.6 Reciprocity

Link reciprocity is a network measure that allow assessing the tendency of node
pairs to form mutual connections between each other, and whose definition has
been extended for weighted networks (Squartini et al., 2013). Formally, it is
possible to define the reciprocated weight between node i and j (the symmetric
part) as:

w←→ij ≡ min[wij, wji] = w←→ji , (3.4)

and the non-reciprocated weight from node i to j (the asymmetric part) as:

w−→ij ≡ wij − w←→ij . (3.5)

Figure 3.3 presents a basic decomposition of any dyadic interaction (i.e.,
between two nodes). The weighted reciprocity, r, is then computed as the ratio
between the total reciprocated weight,

∑
i,j w

←→
ij , and the total weight of the

network,
∑

i,j wij. Afterwards, this quantity is scaled relative to the average
weighted reciprocity derived from a null network model, r̄null, as follows:

λ ≡ r − r̄null

1− r̄null
, (3.6)

where λ indicates the tendency of the network to reciprocate (λ > 0) or to
avoid reciprocation (λ < 0). In this work, λ was computed by generating
5, 000 random networks preserving the in- and out-degree sequences as well as
the total strength of the real network. As our main interest was to compare
weighted intra-modular (a)symmetries compared to those taking place between
modules, the measure λ was computed separately for each type of link. Put
simply, by imposing the partition of functional modules on the weighted
anatomical matrix, we studied whether modularity obtained from rs-fMRI
data showed differences in link reciprocity between intra- and inter-modular
projections.
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Figure 3.3. Weighted reciprocity. Dyadic interactions (wij = 2 and wji = 7 in the
figure) can be decomposed into a fully reciprocated component (w←→ij = w←→ji = 2) and a fully
non-reciprocated component (w−→ji = 5,which implies w−→ij = 0). Reproduced from Squartini
et al. (2013).

3.2.7 Network motifs

The dynamic behavior of a complex system relies critically on the underlying
interconnections and how nodes are linked to form specific subgraphs or
network motifs (Milo et al., 2002). The existence of these “building blocks”
can be recognized in many directed real-world networks such as biological
and technological networks, as compared with randomized networks. Motif
analysis has been applied in a variety of brain networks to identify motifs that
are significantly increased in frequency over various null models (Sporns and
Kötter, 2004; van den Heuvel et al., 2012; Varshney et al., 2011). In contrast
to link reciprocity, which is a measure quantifying second-order topological
properties, networks motifs examine higher-order connectivity patterns.

The total number of different subgraphs or network motifs depends on
the number of nodes being considered. For instance, for structural motifs
of size M = 3 (third-order topological properties) there are 13 different
possible alternatives or classes through which three nodes can be linked
(Table 3.2). Previous studies have addressed the problem of modularity
by clustering subgraphs or higher-order connectivity patterns (Arenas et
al., 2008; Benson et al., 2016), rather than considering dyadic interactions.
Interestingly, this framework, whereby community structure detection and
network motif approaches are related, can reveal new insights into the
topological organization of complex networks. In this work, we were interested
in the higher-order structural organization within functionally defined modules.
Inspired by the motif modularity (Arenas et al., 2008), we calculated the ratio
of the number of occurrences (summarized in the motif frequency spectrum)
for a given motif class i restricted to within communities, fwmi, to the motif
frequency spectrum computed over the whole network for the same class, fi:
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Table 3.2. The 13 different structural motif classes that can be obtained for motifs of size
M = 3, along with the number of functional instances that can generates.

Structural
motif class

Number of
functional motifs

Structural
motif class

Number of
functional motifs

1 10

1 9

1 10

3 10

4 24

3 54

4
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Fi =
fwmi

fi
. (3.7)

We calculated the normalized motif frequency spectrum for structural motifs
of size M = 3. In this way, we could study whether modules obtained
from functional data are associated with a specific pattern of intra-modular
anatomical connections. Binary motif analysis was performed for three
connectivity levels of structural connectivity: (1) keeping all connections, (2)
removing very weak links, and (3) removing both very weak and weak/moderate
links.

The observed value Fi was statistically compared against an ensemble of null
networks (5, 000 samples) preserving the number of incoming edges, outgoing
edges and mutual edges of each node of the actual network (Milo et al.,
2002). Generating null models preserving mutual edges allows us to ascertain
that higher-order patterns does not simply emerge as a result of lower-order
properties (e.g., link reciprocity), but the abundance of networks motifs inside
communities is a feature of real-world networks. Thus, we calculated Fi_null
for each reference network, and we eventually obtained a null distribution that
allowed us to statistically evaluate the fraction of every motif class within
communities using the z-score, zi, as follows:

zi =
Fi − F̄i_null

σFi_null

. (3.8)

with F̄i_null and σFi_null representing the average and standard deviation of the
null distribution, respectively.

3.3 Results

3.3.1 Characterization of structural connectivity and
rs-fMRI-derived functional connectivity

Categorical weights of the RCAMs matrix (Bota et al., 2015) were encoded
between 0 (not present) and 7 (very strong) (Figure 3.4a top panel). Out
of the 32 selected regions defined for the cortex, 49.8 % of the possible
pair-wise structural connections were not present, 7.2 % were very weak, 8.6 %
weak, 6.7 % weak/moderate, 10.2 % moderate, 5.9 % moderate/strong, 8.8 %
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strong, and only 2.8 % very strong (Figure 3.4a bottom panel). These values
confirmed the overall sparsity of the structural network. We next derived the
functional connectivity within the same set of brain regions, computed as the
correlation between the average BOLD signals (Figure 3.4b top panel). As
expected, pair-wise functional interactions between the 32 regions included
negative correlations, with functional connectivity values following a slightly
right skewed and unimodal distribution with a pronounced peak around zero
(Figure 3.4b bottom panel).

Although different studies have revealed that wiring minimization itself cannot
account for all topological features of structural and functional networks
(Betzel et al., 2016; Vértes et al., 2012), the essential role of physical distances
between pairs of nodes is widely recognized. We plotted the pair-wise structural
connectivity and functional connectivity values as a function of distance
(approximated through the Euclidean distance) and found that both structural
connectivity and functional connectivity values tend to be higher between brain
regions separated by short distances (Figure 3.5).

With the aim of investigating the relationship between the structural
connectivity and the rs-fMRI-measured functional connectivity in the rat
cortex, we first calculated the association between anatomical and functional
matrices (Figure 3.6). The Spearman correlation, ρ, quantified to what extent
the strength of a structural connection predicted the corresponding functional
connection between two regions. Using all possible value pairs in the structural
connectome (i.e., present and not present) and the functional matrix, we
obtained a Spearman (rank-order) correlation of ρ = 0.48 (P < 2 × 10−29)
between the structural and functional networks. The Spearman correlation did
not vary after removing all node pairs for which an anatomical connection was
found to be not present, ρ = 0.48 (P < 2× 10−19). This result reveals a strong
positive linear association between structural connectivity and functional
connectivity matrices. In addition, we also calculated the association between
both networks while controlling the effect of the Euclidean distance. In this
case, the Spearman correlation dropped to ρ = 0.35 (P < 3 × 10−15) and
ρ = 0.33 (P < 2×10−9), relative to the total or zero weight-corrected structural
matrix, respectively, supporting the role of geometric distances between region
pairs in brain network organization. Functional connectivity patterns without
global signal regression and the relationship with the structural matrix are
shown in Figure 3.7.
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Figure 3.4. Structural and empirical functional brain networks of the rat cortex.
(a) RCAMs matrix built from Bota et al. (2015) (top panel), and histogram of the weight
distribution (bottom panel). Color scale represents the categorical weights of structural links
(0, not present ; 1, very weak ; 2, weak ; 3 weak/moderate; 4, moderate; 5, moderate/strong ; 6,
strong ; 7, very strong). (b) Functional connectivity between pairs of ROI time courses (top
panel), and probability density estimate of the Fisher’s z-values (bottom panel). Color scale
represents the strength of functional interactions between pairs of nodes.
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Figure 3.5. Relationship between Euclidean distance and brain connectivity.
Pair-wise structural (a) and functional (b) connections as a function of the Euclidean distance
between pairs of ROIs. Each dot represents a particular functional connection between pairs
of nodes. Euclidean distances were measured between centers of mass.
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Figure 3.6. Pair-wise functional interactions as a function of the underlying
structural connections. Box and whiskers plots representing the median (horizontal red
line), first, Q1, and third, Q3, quartiles (blue box), as well as the lower and upper (black)
whiskers of the functional connections. Those values greater than Q3 + 1.5 · (Q3 − Q1) or
lower than Q1 − 1.5 · (Q3 −Q1) were considered as outliers (red crosses).
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Figure 3.7. Comparison between structural connectivity and functional
connectivity matrices without global signal regression. (a) Functional connectivity
between pairs of BOLD time courses. (b) Probability density estimate of the Fisher’s
z-values. (c) Pair-wise functional connections as a function of the Euclidean distance
between ROIs. (d) Pair-wise functional interactions as a function of the underlying structural
connections. We obtained a Spearman (rank-order) correlation of ρ = 0.26 (P < 5 × 10−9)
between the structural and functional brain networks. After removing all node pairs for
which an anatomical connection was found to be not present, the Spearman correlation
dropped to ρ = 0.16 (P = 0.005).
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3.3.2 Relationship between functional modules and structural
network-level patterns

Partitioning a network or graph into components offers the ability to uncover
modules at different spatial scales. Indeed, each module or component can
be interpreted as a subnetwork itself. Figure 3.8a shows the number of
communities extracted from the functional data along with the value of the
modularity function (which represents the quality of the obtained consensus
partition), and the consistency of the partitions by means of the similarity
of the modules generated in 10, 000 iterations (see subsection 3.2.5). Given
that different community structures might be equally feasible and plausible, we
investigated the distribution of motif classes within functionally define modules
at different scales of resolution, rather than targeting a unique partition.
We examined structural patterns at γ = −0.0125 (Figure 3.8b), γ = 0.005
(Figure 3.8c), and γ = 0.02 (Figure 3.8d). These parameter settings were
selected for several reasons. First, these scales were located within intervals
of γ values where the number of communities remained relatively constant,
hence yielding partitions with two (γ = −0.0125), three (γ = 0.005) and five
(γ = 0.02) communities. Second, given a number of communities, the selected
scales were the most stable partitions, as indicated by a high mean and a low
variance of the z-Rand index. Finally, we did not explore functional partitions
beyond γ = 0.02 because the resulting partitions yielded numerous modules
of very small size, which makes motif analysis impractical. For example, at
γ = 0.035, the cortex was partitioned into eight modules, with three modules
of three nodes, one module of two nodes, and another singleton module.

At the most coarse scale (γ = −0.0125), the cortex was partitioned into
two modules (Figure 3.8b). The wider module (M1) contained most regions
of the sensory-motor cortex including the primary somatomotor (MOp),
somatosensory (SSp, SSs), visceral sensory-motor (VISC, ILA), gustatory
(GU), olfactory (AON, TT, PIR), auditory (AUDp, AUDs), and visual
areas (VISs, VISp). Association areas such as orbital (ORBmv, ORBvl),
agranular insular (AId, AIv, AIp) and posterior parietal (PTLp), together
with the cortical subplate, namely, claustrum (CLA) and the dorsal part of the
endopiriform nucleus (EPd) were grouped in the same module. On the other
hand, the second module (M2) brought together all parts of the hippocampal
formation included in this analysis (HIPv, HIPd, SUBd, POST) as well as
retrosplenial (RSPv, RSPagl, RSPd), prelimbic (PL), and anterior cingulate
(ACAv, ACAd) areas. Along with these association structures, only one
sensory-motor region was included, namely, the secondary somatomotor region
(MOs). As the resolution parameter was increased (γ = 0.005), the cortex was
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Figure 3.8. Community structure of the rat cortex. (a) Different properties
were computed at various γ levels (Louvain algorithm was run 10, 000 times): number of
communities, modularity function (Q) (measuring the quality of the obtained consensus
partition), and mean and variance of the z-score of the rand indices (z-Rand) (measuring
the similarity over all pairs of partition within scales). Partitions below −0.015 and above
0.24 were unstable. For clarity, only scales in the range [−0.015, 0.08] are shown, and Q
was rescaled between 0 and 10. (b) Functional partition obtained at γ = −0.0125 (two
communities). (c) Functional partition obtained at γ = 0.005 (three communities). (d)
Functional partition obtained at γ = 0.02 (five communities).
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split into three functional modules (Figure 3.8c). The previous module M1
was divided into two different modules, whereas M2 remained largely intact,
with only the infralimbic area relocated from M1 into M2. Finally, at the finer
scale (γ = 0.02), a total of five modules were obtained (Figure 3.8d). In this
case, the original module M1 was partitioned into three communities and M2
into two. Again, the infralimbic area was relocated within module M2.

The next part of our analysis focused on investigating structural connections
and their relationship with functional modularity. Regardless of the resolution
scale, both intra- and inter-modular links showed positive reciprocity,
indicating that brain regions tend to be mutually connected within and between
modules. However, when comparing reciprocity between both types of link,
connections of the RCAMs matrix within communities showed a stronger
reciprocity compared to projections connecting nodes from different modules:
0.506 vs. 0.275, 0.534 vs. 0.304, and 0.575 vs. 0.326 when the brain cortex
was partitioned into two, three, and five modules, respectively. We next
investigated the density of each of the 13 potential motif classes associated
with structural motifs of size 3 within functionally identified modules and for
the selected scales (Figure 3.9, Figure 3.10 and Figure 3.11). We obtained a
very high z-score for motif class 13 for all partitions and for all connectivity
levels investigated (when keeping all connections, when removing very weak
links, and when removing both very weak and weak/moderate links), indicating
that this maximally densely connected structural motif is significantly enriched
within functional communities. Comparable results were obtained for motif
class 12 for scales γ = 0.005 (Figure 3.10) and γ = 0.02 (Figure 3.11), and for
γ = −0.0125 (Figure 3.9) after deletion of very weak links and of both very
weak and weak/moderate links. A few other motif classes were significant at
z > 3.7 (P < 0.0001), for example motif class 10 and 11 for scales γ = 0.005 and
γ = 0.02 and only when removing both very weak and weak/moderate links.
Regardless of the considered scale and connectivity level, the significance level
of all other motif classes was z ≤ 3.7.

3.4 Discussion

The study of structure and function at the large-scale in rodent animals
offers the possibility to understand the mechanisms underlying psychiatric
and neurological disorders for subsequent translation research (Gozzi and
Schwarz, 2016; Jonckers et al., 2015). Nevertheless, knowing and describing
the healthy rodent brain connectivity is the first step for that endeavor. The
organizational principles of the rat and mouse structural networks have been
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Figure 3.9. Network motif analysis at γ = −0.0125. (a) Functionally obtained
partition is imposed over the RCAMs matrix. (b) Statistical evaluation of each of the 13
structural motifs classes is shown for different binarized versions of the structural matrix,
namely, when keeping all connections (Threshold = 1), removing very weak links (Threshold
= 2), and removing both very weak and weak/moderate links (Threshold = 3).

previously described (Bota et al., 2015; Oh et al., 2014; Swanson et al., 2016;
van den Heuvel et al., 2016b). Comparisons between the mouse connectome
and rs-fMRI connectivity have revealed that both networks are intimately
correlated (Sethi et al., 2017; Stafford et al., 2014). In this work, we have
carried out comparisons between the cortical rat connectome (Bota et al., 2015)
and the corresponding functional network obtained from rs-fMRI data. The
main findings of this study reveal that:

1. In agreement with previous studies in humans and various animal models,
the level of functional interaction between two anatomically connected
brain areas in resting-state is significantly predicted by the strength of
the underlying structural connection.

2. BOLD signal fluctuations in the rat brain cortex can be robustly
partitioned into functional modules or clusters.

3. Reciprocity of links connecting nodes from the same functionally defined
modules is stronger than those linking regions from different modules.
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Figure 3.10. Network motif analysis at γ = 0.005. (a) Functionally obtained partition
is imposed over the RCAMs matrix. (b) Statistical evaluation of each of the 13 structural
motifs classes is shown for different binarized versions of the structural matrix, namely,
when keeping all connections (Threshold = 1), removing very weak links (Threshold = 2),
and removing both very weak and weak/moderate links (Threshold = 3).

4. Under a control condition and in resting-state, densely interconnected
structural motifs (i.e., class 12 and 13 for motif size of M = 3) are
significantly enriched within functional communities.

3.4.1 Role of higher-order patterns in shaping cortical functional
modular organization

Comparing structural connectivity and functional connectivity without taking
into account network-level effects only supplies a partial view of the inherent
complexity of the brain. Therefore, network approaches are increasingly
gaining prominence to understand the structural-functional connectivity
coupling (Wang et al., 2015). We have first shown that the 32 cortical
brain regions considered in this work disclose a distinct community structure,
partitioned into two, three and five communities, at γ = −0.0125, γ = 0.005
and γ = 0.02, respectively. Previous studies have investigated the modular
structure of functional connections over the whole rat brain under different
states of consciousness (D’Souza et al., 2014; Liang et al., 2012). Other authors
have focused on specific resting-state networks (e.g., the default mode network
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Figure 3.11. Network motif analysis at γ = 0.02. (a) Functionally obtained partition
is imposed over the RCAMs matrix. (b) Statistical evaluation of each of the 13 structural
motifs classes is shown for different binarized versions of the structural matrix, namely,
when keeping all connections (Threshold = 1), removing very weak links (Threshold = 2),
and removing both very weak and weak/moderate links (Threshold = 3).

(DMN)), revealing functional subcomponents and how interactions between
and within these submodules can be modulated in age-related neurocognitive
disorders (Hsu et al., 2016). Here, we have restricted our analysis to the
brain cortex. Future work may address additional brain regions, for example
including the association connectome of the rat cerebral nuclei (Swanson et al.,
2016).

After evaluating the modular organization of the cortex, we first observed
a stronger weighted link reciprocity within functionally defined modules
compared to inter-modular links. We then observed a high ratio of structural
motif classes 12 and 13 within functional modules. These findings are
consistent across resolution scales. In particular, whereas motif class 12 is
over-represented at scale γ = −0.0125 after removing very weak links and
both very weak and weak/moderate links, motif class 12 at scales γ = 0.005 and
γ = 0.02, and motif class 13 at all resolution scales were strongly significant
for all thresholds applied. This indicates that the coherence of functional
communities may in part reflect an underlying aggregation of densely connected
structural motifs. Note that motif analysis was carried out on three binarized
versions of rat connectome since we were interested in the count of motif classes
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rather than in the strength of the connections. Additionally, the abundance
of these anatomical subgraphs can not be trivially explained by lower-order
features because the generated network null models also preserved the number
of mutual edges of individual nodes (Milo et al., 2002). The important role
of motifs in shaping the structural-functional connectivity coupling has been
previously observed in the macaque cortex (Adachi et al., 2012). Nevertheless,
whereas these authors computed motifs over the whole network, motif analysis
in our work was restricted to within modules and to small motifs of size 3. For
graphs with a greater size, a richer repertoire of larger structural motifs could
be investigated (e.g., network motifs of size 4 and higher (Sporns and Kötter,
2004)). There has been an increasing interest in detecting coherent groups
of nodes forming specific network motifs (Arenas et al., 2008; Benson et al.,
2016). In this framework, one can specify in advance a particular motif class
of interest to guide the clustering process. When domain-specific knowledge is
not available, it is also possible to analyze which type of motif organizes and
shapes the modular structure of complex networks.

The term “motif” is widely applied for describing and understanding recurring
circuits of interactions that take place in real-world networks (Alon, 2007). For
instance, in the context of large-scale brain networks, as in the present report,
structural motifs consist of a set of nodes and potential pathways supporting
communication, whereas functional motifs refer to specific combinations of
connections that can be activated within structural motifs (Sporns and
Kötter, 2004). That is, both structural and functional motifs are defined for
directed structural networks (Table 3.2). In other settings, for example when
approaching the functioning of the brain from a computational perspective
(Turkheimer et al., 2015) or in the context of activation spreads recorded with
different modalities (Frostig et al., 2008; Mohajerani et al., 2013), the concept
of motif is related but not completely the same as that employed in this work.
The common message behind this general concept is that the brain is a highly
hierarchical and complex system wherein organizational principles are repeated
across space and time (Turkheimer et al., 2015).

3.4.2 Construction of brain graphs

A very critical step for the construction and analysis of brain network is that of
dividing the brain into discrete regions. The absence of a well-established and
accessible Swanson atlas in NIfTI format for parcellation of fMRI data required
us to perform a manual matching procedure between cortical regions of SwS
(Swanson, 2004) and PWS (Paxinos and Watson, 1998). This entails several
caveats. First, although Swanson regions can also be expressed in stereotaxic
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coordinates to correspond to Paxinos&Watson regions, coronal planes from
both spaces do not always exactly match with respect to bregma reference.
Therefore, taking into account the spatial distribution of adjacent planes
is fundamental to achieve an accurate alignment of brain regions between
different spaces. Second, a common problem when using different spaces or
atlases (not only restricted to SwS and PWS) concerns the nomenclature of
brain regions, as different spaces may use different nomenclature to label the
same brain regions. In this case, we have used the Swanson nomenclature after
carefully inspecting both SwS and PWS (see subsection 3.2.3 and Table 3.1).
Finally, some cortical regions were not available in the NIfTI atlas as a single
mask (e.g., CA1 and CA2). To overcome these limitations, several areas
from the anatomical matrix were aggregated together by averaging the original
categorical weight. In addition, some cortical regions were discarded to ensure
a representative time course in each node from functional networks. All 32
ROI signals included in our analysis were averaged across hemispheres, had
exactly the same volume (1 mm3 in total, 0.5 mm3 in each hemisphere), and
were extracted from exactly the same voxels across rats. The consequences
of these methodological steps might inevitable mask relevant features of
individual nodes. For instance, parahippocampal regions, such as perirhinal
and entorhinal cortices, were not included in our analysis and, however, these
areas have shown to be critical for cortico-hippocampal integration in mice
(Bergmann et al., 2016). Despite these considerations, the main research
goal of the present report was to assess the empirical structural-functional
connectivity coupling in the rat brain cortex with a special emphasis in
comparisons at regional scale (functional modularity and structural network
motifs), rather than the analysis at more local scale (Ferezou et al., 2007;
Kaiser, 2011).

3.4.3 Relevance of data preprocessing: global signal regression

An important issue in fMRI investigations is that of controlling for head
motion and physiological artifacts (mainly those related with respiratory and
cardiac cycles) when estimating functional interactions between brain areas,
especially in task-free paradigms (Van Dijk et al., 2012; Yan et al., 2013). Even
though anesthesia can reduce rough head movements, removing the variance
explained by motion parameters can substantially improve the specificity
of functional connectivity in anesthetized rodents (Kalthoff et al., 2011).
Numerous techniques have arisen with the aim of correcting or minimizing
variations in BOLD signals as a consequence of these artifacts, namely:

� Scrubbing (Power et al., 2012).
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� Spike regression (Satterthwaite et al., 2013).

� Motion parameter regression (Friston et al., 1996).

� Independent component analysis (ICA) (Pruim et al., 2015).

� The application of the aforementioned techniques along with global signal
regression (Ciric et al., 2017).

The inclusion of the global signal as a nuisance regressor is a widely used
but controversial preprocessing step. How negative correlations should be
interpreted after global signal regression is very challenging given the nature
of the BOLD signals (Fox et al., 2009; Murphy et al., 2009). In our dataset,
Spearman correlation coefficient demonstrated a strong linear dependence
between structural connectivity and empirical functional connectivity after
controlling for the global signal. Whether or not other preprocessing steps
would further increase the coupling between BOLD signals and the underlying
structural connectivity is an open question that would require a separate study
comparing the effects of different preprocessing pipelines (Ciric et al., 2017).
The removal of global signal variance has been also applied in a previous study
relating structure and function in the mouse brain (Stafford et al., 2014). It
is important to acknowledge that the application of global signal regression
has shown to be effective to reduce the relationship between connectivity
and motion, but accentuates distance-dependent effects. On the other hand,
temporal censoring techniques (e.g., scrubbing and spike regression) do appear
to be suitable to reduce distance-dependent effects, but using additional
degrees of freedom in turn (Ciric et al., 2017). In this work, we preprocessed
rs-fMRI data by combining these techniques and ensuring a minimum temporal
window of 9 min to estimate functional interactions between node pairs.

3.4.4 Effect of anesthesia on functional connectivity

Another very important consideration when examining fMRI data in rodents,
and other animal models, has to do with the effect of the anesthetic agent
on brain physiology (Pan et al., 2015). Due to the multi-compartmental
origin of fMRI signals (Moreno et al., 2013), interference of anesthetics on
the neural computations, as well as on the neurovascular coupling itself are
expected. Advantages and disadvantages of a number of anesthetic compounds,
as well as mixtures of them, have been reported in the literature (Paasonen
et al., 2016; Williams et al., 2010). It is well-established that the degree of
functional inter-hemispheric coupling is dose-dependent, and previous studies
have uncovered bilateral functional networks in the rodent brain using a
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variety of anesthetic agents at lower doses (Gozzi and Schwarz, 2016). For
instance, whereas the use of urethane anesthesia at higher levels (1.5 g/Kg)
has compromised functional inter-hemispheric coupling in mice, cortico-cortical
correlations improves when lower doses (1.2 g/Kg) are used (Grandjean et al.,
2014). In this work, where subjects were urethane-anesthetized at 1.2 g/Kg,
BOLD signals from homotopic ROIs were averaged across hemispheres because
bilateral networks were uncovered using different seeds (Figure 3.2). We note,
though, that for group studies where subtle inter-hemispheric differences could
be of relevance, extraction of ROIs should be performed separately. Finally,
it is important to highlight that the significant match found in our study
between structural connectivity and functional connectivity could be favored
by a decrease in the repertoire of functional configurations that the system
can visit under anesthesia, as previously reported in monkeys (Barttfeld et al.,
2015). Therefore, the remaining functional interactions under anesthesia would
most likely reflect the strongest, hard-wired, connections in the brain, this is,
the structural connectivity.

3.5 Conclusions

We have proved in this work the structure-function relationship at large-scale
of the rat by directly comparing the structural and functional connections
spanning the brain cortex (maximum Spearman rank-order correlation between
was type of networks was 0.48), and relating second-order properties
(reciprocity) and higher-order structural connectivity pattern (network motifs)
with functional communities. We highlight here the importance of densely
connected structural motifs in shaping the community structure of functional
networks in resting-state. In this way, this investigation further supports
the idea that structural connectivity is coupled to and shapes functional
connectivity in cortical networks.
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Chapter 4

Structural brain network
deterioration associated with

Alzheimer’s disease

The pathophysiological process of Alzheimer’s disease is
thought to begin years before clinical decline, with evidence
suggesting pathogenic seeding and subsequent prion-like spreading
processes of neurofibrillary tangles and amyloid plaques. In this
chapter, we first investigate network measures that are capable of
distinguishing Alzheimer’s disease patients with mild dementia from
healthy controls. In the second part, we create dynamic models
of normal aging and Alzheimer’s disease to estimate the earliest
detectable stage associated with dementia in the simulated disease
progression.

The content presented in this chapter has been adapted from the following
article submitted on May 10, 2018:

Díaz-Parra, A., Kennion, O., Moratal, D., Taylor, J.-P., Kaiser, M., Bauer,
R., and Alzheimer’s Disease Neuroimaging Initiative (2018). “Structural
connectivity centrality changes mark the path towards Alzheimer’s
disease”. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease
Monitoring (Submitted).
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4.1 Introduction

Alzheimer’s disease is the most common cause of neurodegeneration in old age
(Alzheimer’s Association, 2017). Out of the main risk factors for developing
Alzheimer’s disease, age is the most influential by far. As a result of
the change in age demographic, the number of patients will considerably
increase within the coming years (Hebert et al., 2013). Alzheimer’s disease
is characterized by a continuous degradation involving a preclinical stage,
followed by a phase of MCI, and ending with dementia in the strict sense
(Alzheimer’s Association, 2017; Sperling et al., 2011). Experimental evidence
indicates that pathophysiological alterations take place in the brain more than
a decade before clinical decline (Jack et al., 2013; Villemagne et al., 2013).
Therefore, the search for biomarkers for early diagnosis and the development
of disease modifying treatments is an ongoing and challenging endeavor (Jack
and Holtzman, 2013).

The presence of neurofibrillary tangles and amyloid plaques are the main
pathological hallmarks of Alzheimer’s disease (Brettschneider et al., 2015; Jack
et al., 2013; Jucker and Walker, 2011; Perl, 2010). The former are intracellular
structures largely composed of tau proteins and the latter are extracellular
proteolytic fragments of amyloid-β peptides. One emerging hypothesis about
the progression of Alzheimer’s disease posits that such substances originate
in a particular area and propagate throughout neural fibers in a prion-like
manner, distorting same-type proteins along the way (Frost and Diamond,
2009; Jucker and Walker, 2013; Saxena and Caroni, 2011; Warren et al., 2013).
This mechanism can target neural systems organized in large-scale networks,
giving rise to macroscopic changes such as atrophy and synaptic failures (Bruen
et al., 2008; Delbeuck et al., 2003; Palop et al., 2006), which can be measured
using MRI technology (Mak et al., 2017; Pini et al., 2016).

Network neuroscience has proven useful for understanding the impact of
psychiatric and neurological disorders on brain-wide networks (Aerts et al.,
2016; de Haan, 2017; Fornito et al., 2015; Zhou et al., 2012). There is a
considerable literature describing the topology of Alzheimer’s disease networks
using different acquisition techniques (John et al., 2017; Lo et al., 2010; Xie
and He, 2012). In particular, it has been shown that Alzheimer’s disease
strongly disturbs connections between nodes (Brier et al., 2014; Delbeuck et
al., 2003), as well as those nodes occupying a central role in the network
(hub nodes) (Stam, 2014; Tijms et al., 2013). Previous investigations have
approached Alzheimer’s disease progression by leveraging computer models
simulating the spreading dynamics of a disease factor or agent across structural
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connections measured with dMRI (Iturria-Medina et al., 2014; Raj et al., 2012,
2015). Furthermore, machine learning algorithms have gained prominence
in neuroimaging because of their ability to decode brain signatures and
predict clinical outcomes (Jie et al., 2016; Taylor et al., 2018; Woo et al.,
2017). In Alzheimer’s disease, different types of features can be extracted:
atrophy-related measures (Desikan et al., 2009; Klöppel et al., 2008; Magnin
et al., 2009); features extracted from amyloid imaging (Mathotaarachchi et al.,
2017); predictors based on functional (Chen et al., 2011) and structural brain
networks (Ebadi et al., 2017; Shao et al., 2012; Zhan et al., 2015); as well
as multimodal descriptors describing both imaging and clinical data (Moradi
et al., 2015; Young et al., 2013).

In this work, we investigate whether structural brain networks as measured
with dMRI could serve as a complementary diagnostic tool in prodromal
dementia. By using the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database, we first aim to implement machine learning techniques to extract
features that are altered in Alzheimer’s dementia. We then incorporate data
from the Nathan Kline Institute-Rockland Sample (NKI) database and create
dynamical models of normal aging and Alzheimer’s disease to estimate the
earliest detectable stage associated with dementia in the simulated diseae
progression.

4.2 Materials and methods

Figure 4.1 presents a general overview of the proposed approach, which is
described in depth in the following sections.

4.2.1 Participants and MRI acquisition protocol

We made use of two publicly available datasets widely used in neuroimaging
research: the ADNI (http://adni.loni.usc.edu/) (Petersen et al.,
2010) and NKI (http://fcon_1000.projects.nitrc.org/indi/pro/nki.
html) (Nooner et al., 2012) databases. The primary goal of ADNI has been
to test whether serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of
MCI and early Alzheimer’s disease. The primary goal of the NKI has been
to generate a large scale, extensively phenotyped dataset for the purpose of
discovery science.
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Figure 4.1. Basic schematic of the proposed approach. In the first part of the
work, we generated a predictive model based on measures of complex networks to classify
between a cohort of patients with Alzheimer’s dementia and a cohort of matched healthy
controls (top left panel). We then extracted informed brain signatures enabling diagnosis
(top right panel). In the second part, we applied dynamical models to emulate changes
in structural connectivity caused by normal aging on the one hand, and degradation of
structural connections caused by Alzheimer’s disease on the other hand (bottom left panel).
We finally explored when the relevant features and brain signatures associated with dementia
begin to be evident in the simulated progression process (bottom right panel). Significance
level represents the minimum value from which classification performance is statistically
significant. See section 4.2 for a deeper explanation about the proposed approach.

In our study, we used 39 normal controls and 39 age- and sex-matched
Alzheimer’s disease patients with mild dementia - meeting National Institute of
Neurological and Communicative Diseases and Stroke (NINCDS)/Alzheimer’s
Disease and Related Disorders Association (ADRDA) criteria for probable
Alzheimer’s disease - from ADNI2 (http://adni.loni.usc.edu/wp-content/
uploads/2008/07/adni2-procedures-manual.pdf). These cohorts were used
to generate a classifier predicting dementia caused by Alzheimer’s disease
(Figure 4.1 top left panel) and identify discriminative centrality metrics
and brain regions allowing for such diagnosis (Figure 4.1 top right panel).
Afterwards, we included 52 adults (26 male/26 female) ranging from 45 to 81
years (60.5 ± 10.41, mean ± SD) from the NKI dataset. These individuals
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are healthy with no presumed covert neuropathology. We divided the NKI
dataset into two different groups: NKI-I and NKI-II. We then simulated
an experiment over 15 years whereby one group experienced normal aging
(NKI-I group), whereas another group of age- and sex-matched individuals
developed Alzheimer’s disease over the same period (NKI-II group) (Figure 4.1
bottom left panel). This second analysis allowed us to investigate how early
structural network alterations associated with dementia take place in the
simulated progression process (Figure 4.1 bottom right panel). Table 4.1
summarizes subject characteristics of the four groups considered in this work.
For the ADNI dataset, the education variable was marginally different between
controls and patients (P = 0.047). There was a strong difference between
controls and patients in the mini mental state examination (MMSE) score
(P = 4.042× 10−13).

Table 4.1. Subjects information across groups.

ADNI NKI

Control
(n = 39)

Alzheimer
(n = 39) P -value NKI-I

(n = 26)
NKI-II
(n = 26) P -value

Agea 74.19 ± 6.29 74.45 ± 8.57 0.88 60.54 ± 11.01 60.46 ± 9.98 0.979
Sexb 20M / 19F 20M / 19F 1 13M / 13F 13M / 13F 1

Educationa 16.38 ± 2.75 15.10 ± 2.86 0.047 - - -
MMSEa 28.67 ± 1.42 22.10 ± 4.47 4.042× 10−13 - - -

Education and MMSE variables were not available for the NKI dataset.
a Values represent mean ± SD. Group differences evaluated using a two-sample t-test (two-tailed).
b Group difference evaluated using a χ2-test (two-tailed).

All subjects underwent T1-weighted sMRI and dMRI scanning. For the
ADNI dataset, MRI data were acquired on 3 Tesla GE Medical Systems
scanners (Boston, Massachusetts, USA) at different acquisition sites across
North America. Diffusion-weighted images were recorded applying the
following parameters: matrix size = 256 × 256; voxel size = 2.7 ×
2.7 × 2.7 mm3; 59 slices; 5 images with no diffusion sensitization and 41
diffusion directions with b-factor of 1000 s mm−2. More imaging details
can be found at http://adni.loni.usc.edu/wp-content/uploads/2010/05/
ADNI2_GE_3T_22.0_T2.pdf. For the NKI dataset, MRI data were measured
with a 3 Tesla Siemens MAGNETOM TrioTim syngo scanner (Erlangen,
Germany). In this case, dMRI data were recorded applying the following
parameters: matrix size = 128 × 128; voxel size = 2 × 2 × 2 mm3; 58
slices; 12 images with no diffusion sensitization and 64 diffusion directions
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with b-factor of 1000 s mm−2. More imaging details can be found at http:
//fcon_1000.projects.nitrc.org/indi/pro/nki.html.

4.2.2 Preprocessing of MRI data and construction of structural
brain networks

Data preprocessing was carried out using a combination of software libraries.
The preprocessing pipeline to extract brain graphs from the NKI dataset has
been described elsewhere (Lim et al., 2015). For the ADNI dataset, a similar
pipeline was applied to maintain consistency across datasets. First, structural
images were preprocessed using FreeSurfer v5.3 (http://surfer.nmr.mgh.
harvard.edu/) as described by Wang et al. (2016). The preprocessing stream
of FreeSurfer fundamentally performs skull stripping, intensity normalization,
subcortical region segmentation, grey and white matter segmentation, and
cortical surface extraction for subsequent labeling. The resulting subdivision
of the cerebral cortex based on the Desikan/Killinay atlas (Desikan et al.,
2006) was combined with subcortical structures to generate a brain parcellation
containing 34 cortical and 7 subcortical regions (thalamus, caudate, putamen,
pallidum, amygdala, hippocampus1 and accumbents) for each hemisphere (see
Table 4.2 for a detailed listing of the included regions). The same parcellation
have been previously used in the context of Alzheimer’s disease (Desikan et al.,
2009; Prescott et al., 2014).

Raw diffusion data were downloaded from ADNI in DICOM data format.
Images were then converted to NIfTI data format using the dcm2niix tool
available in MRIcroGL (https://www.nitrc.org/projects/dcm2nii/) and
subsequently preprocessed with FSL v5.0 (FMRIB Software Library, https:
//fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Jenkinson et al., 2012). Dcm2niix
automatically provides a table that stores the diffusion gradient vector for
each acquired volume. Using the first b0 image as reference, diffusion images
were corrected for eddy current and head motion distortions by using the
eddy_correct tool (Andersson and Sotiropoulos, 2016). Gradient vectors
were rotated accordingly by means of the fdt_rotate_bvecs function. Next,
brain extraction was performed with BET (Smith, 2002) before reconstructing
diffusion tensors at each voxel through the Diffusion Toolkit suite (http://
trackvis.org/dtk/). Deterministic fiber tracking was carried out by applying
the FACT method (Mori et al., 1999). Single seed points to reconstruct
streamlines were placed in the center of each voxel belonging to the brain
and tracking was terminated for curvatures greater than 35◦.

1Following FreeSurfer ’s nomenclature, we consider the hippocampus as being a subcortical region.
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Table 4.2. Brain regions along with their respective abbreviations.

Brain structure Abbreviation

Banks of the superior temporal sulcus BSTS
Caudal anterior division of the cingulate cortex CAC
Caudal division of the middle frontal gyrus CMF
Cuneus cortex CUN
Entorhinal cortex ENT
Fusiform gyrus FUS
Inferior parietal cortex IP
Inferior temporal gyrus IT
Isthmus division of the cingulate cortex ISTC
Lateral occipital cortex LOCC
Lateral division of the orbitofrontal cortex LOF
Lingual gyrus LING
Medial division of the orbitofrontal cortex MOF
Middle temporal gyrus MT
Parahippocampal gyrus PARH
Paracentral lobule PARC
Pars opercularis of the inferior frontal gyrus POPE
Pars orbitalis of the inferior frontal gyrus PORB
Pars triangularis of the inferior frontal gyrus PTRI
Pericalcarine cortex PCAL
Postcentral gyrus PSTC
Posterior division of the cingulate cortex PC
Precentral gyrus PREC
Precuneus cortex PCUN
Rostral anterior division of the cingulate cortex RAC
Rostral division of the middle frontal gyrus RMF
Superior frontal gyrus SF
Superior parietal cortex SP
Superior temporal gyrus ST
Supramarginal gyrus SMAR
Frontal pole FP
Temporal pole TP
Transverse temporal cortex TT
Insula INS
Thalamus THAL
Caudate CAUD
Putamen PU
Pallidum PAL
Amygdala AMYG
Hippocampus HIPP
Accumbens ACC
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For network generation, streamlines were first aligned with the brain
parcellation. The first skull-stripped b0 image was linearly registered to the
preprocessed structural image using FSL flirt with six degrees of freedom
(Jenkinson et al., 2002). Next, the resulting transformation matrix was
applied to every streamline by means of the track_transform function
included in Diffusion Toolkit software. The UCLA Multimodal Connectivity
Package (https://github.com/jbrown81/umcp) was used to obtain an 82×82
weighted connectivity matrix for each subject. Structural interactions were
quantified by counting the number of streamlines connecting two regions
(self-connections were not considered). Finally, only streamlines with either
endpoints terminating at the two regions and greater than 5 mm were included.

4.2.3 Mathematical models

Alzheimer aging model

Spreading processes have been studied in a multitude of scientific disciplines
(Pei and Makse, 2013). We implemented the susceptible-infected (SI) model
(Newman, 2010; Pastor-Satorras et al., 2015) to simulate the propagation of a
disease factor as Alzheimer’s disease progresses. In this model, nodes can be
in two possible states: infected or susceptible. Infected nodes are brain regions
wherein the probability of the disease factor burden is greater than zero. By
contrast, susceptible nodes are free of the disease factor but are susceptible to
be infected from other nodes. In a network with N nodes, for any particular
node i, the probability of being susceptible, si, and the probability of being
infected, xi, satisfy such that si + xi = 1. Thus, it is possible to express the
rate of change of xi in the SI model as (Newman, 2010):

dxi
dt

= α(1− xi)
N∑
j=1
j 6=i

aijxj, (4.1)

where aij is an element of the (binary) adjacency matrix, whereas the
parameter alpha, α > 0, controls the infection rate of node j over node i.
As we made use of weighted networks, we replaced the Equation (4.1) by:

dxi
dt

= α(1− xi)
N∑
j=1
j 6=i

wij
kj
xj. (4.2)

70

https://github.com/jbrown81/umcp


4.2 Materials and methods

In the Equation (4.2), kj stands for the strength of node j and the
influence of node j over node i is now proportional to the weight, wij. We
further incorporated another equation simulating Alzheimer’s disease-related
degradation in connectivity. Particularly, the rate of change of wij is given by:

dwij
dt

= −βADwij(xi + xj) + βNij , (4.3)

where the parameter beta, βAD > 0, controls the influence of the aggregated
disease factor present in both node i and node j on the number of streamlines
connecting them. The term βNij represents the normal aging process (see below)
to reflect the fact that patients also age. Therefore, the Alzheimer aging model
(Equations (4.2) and (4.3)) relies on three unknown parameters: α, βAD, and
an additional parameter indicating the seed region origin of the disease factor.
By varying these parameters, one can simulate different diseased trajectories
followed by NKI-II participants.

Normal aging model

We developed a mathematical model reflecting the process through which
structural connections change due to normal aging. Connectome organization
develops across the life span, with age and sex being two critical factors
during this process (Collin and van den Heuvel, 2013; Lim et al., 2015). We
created link-specific regression models to predict the number of streamlines
from age- and gender-related effects. Inspired by Lim et al. (2015), the
number of streamlines between region i and region j, wij, can be expressed
as a combination of p = 4 variables or predictors (age, gender, age gender,
age2):

wij = βij0 + βij1 age+ βij2 gender + βij3 age gender + βij4 age
2, (4.4)

where gender = 1 for males and gender = −1 for females. In the Equation
(4.4), we included an intercept term (βij0 ), the linear effect of both age (βij1 )
and gender (βij2 ), the interaction between age and gender (βij3 ), as well as the
quadratic effect of age (βij4 ). The coefficients from the Equation (4.4) were only
estimated for those connections that all NKI participants had in common (126
connections), generating a minimum grid mask (Fischi-Gómez et al., 2015).
Thus, we had 52 data points over the age range of [45, 81] years for each of the
126 common connections.
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Upon deriving the Equation (4.4) with respect the age effect, we obtained the
following differential equation attempting to mimic the process for aging:

dwij
dt

= βNij = βij1 + βij3 gender + 2βij4 age. (4.5)

It has been shown that brain connectivity evolves in such a manner that core
properties of structural networks (e.g., modular organization) remain stable
during brain maturation and adulthood (Collin and van den Heuvel, 2013;
Lim et al., 2015; Zhao et al., 2015), suggesting that rules governing neural fiber
changes over time are connection-dependent. In mathematical terms, it means
that some predictors from the Equation (4.4) can be irrelevant to predict the
number of streamlines connecting region i and region j. We therefore applied
the model selection algorithm named subset selection (James et al., 2013) to
exclude variables not related to the response wij. This approach involves
fitting a separate least squares regression for each possible combination of the
p predictors and selecting the model that is the “best” in terms of accuracy
and complexity. As p = 4, a total of 16 different models were fitted containing
all possible combinations. Next, among those models containing the same
number of variables, the one giving the greater coefficient of determination,
R2, was chosen. This step retained five different models, which contained
zero (i.e., a model predicting merely the sample mean through βij0 ), one, two,
three and four predictors. Finally, the models were compared by using the
Akaike information criterion (AIC), and the model providing the smallest
AIC was selected to predict wij. The outcome of this procedure was a set
of link-specific regression models (Equation (4.4)) and their corresponding
differential equations (Equation (4.5)), varying in complexity according to the
number of included predictors. Note that we did not compute any P -value in
this analysis, since our objective was to maximize the ability of the model to
predict the response rather than explain the association between variables and
the response.

Dynamical simulations

We applied the aforementioned normal aging model to the NKI-I group to
create a cohort of simulated healthy controls evolving over 15 years. Similarly,
we applied the Alzheimer aging model to the NKI-II group to reproduce the
process of propagation of misfolded proteins and disruption of neural pathways
throughout the same time window, creating a cohort of simulated Alzheimer’s
disease patients. To simulate diseased trajectories, we pre-specified different
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alpha values ranging from 0 to 1.5 in increments of 0.05 and beta values
ranging from 0 to 0.15 in increments of 0.005. These ranges were chosen
upon empirically testing possible parameter values to reproduce the differences
in structural connectivity between ADNI controls and ADNI patients. For
each combination of alpha and beta values, a different brain region in both
hemispheres (41 seed regions) was deemed as origin to initiate the progression.
By using matrices as input data and for each parameter combination within the
set {seed, α, βAD}, we numerically computed model solutions of the Equations
(4.2), (4.3) and (4.5) in Matlab 2016a (The MathWorks, Inc., Natick, MA,
United States, https://www.mathworks.com/), with a step size of 0.1. This
process produced a set of simulated structural networks based on the changes
in connection strength either caused by the process of normal aging or by
Alzheimer’s disease (Figure 4.1 bottom left panel).

We recorded the resulting simulated matrices in discrete points of a year and
defined a set of 16 simulated stages for further analysis (Figure 4.1 bottom
right panel). From this point on, we will be using the term “stage” rather than
“years” to account for the fact that patients can develop Alzheimer’s disease
at different rates. Thus, stage −15 represents the initial stage in which both
groups of individuals (i.e., NKI-I and NKI-II) are in a healthy condition. By
contrast, stage 0 represents the disease stage in which neural degeneration
compromises cognitive functions enough to meet criteria for dementia. To
assess the extent to which stage 0 reflects this criterion, we compared the
differences in node strength obtained at stage 0 between simulated controls
and simulated patients, with the counterpart differences measured between
ADNI controls and ADNI patients. Specifically, we selected the parameter set
{seed, α, βAD} minimizing the cost function defined by the Euclidean distance
between k0NKI and kADNI . The term k0NKI represents the size 82 vector
incorporating the differences in node strength measured between simulated
controls and simulated patients at stage 0, and the term kADNI stands for the
size 82 vector containing the differences in node strength measured between
ADNI controls and ADNI patients.

4.2.4 Feature extraction and machine learning analysis

Centrality is a measure that quantifies the relative importance of a node within
the overall architecture of a network (van den Heuvel and Sporns, 2013). We
made use of the Brain Connectivity Toolbox v2017-15-01 (https://sites.
google.com/site/bctnet/) (Rubinov and Sporns, 2010) and computed the
following centrality measures (Boccaletti et al., 2006; Pei and Makse, 2013;
Rubinov and Sporns, 2010):
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Strength: the strength centrality of a node is a basic and intuitive measure
that is defined as the sum of all neighboring link weights.

Betweenness and closeness: betweenness and closeness are centrality
measures that assume that information tends to traverse the network
through the shortest paths. First, a path from node i to node j is a
sequence of nodes and edges that begins with i and ends with j, where no
node is visited more than once. On the other hand, in weighted networks,
higher weights are commonly interpreted as shorter lengths. Thus, the
shortest path between node i and node j is the path of minimal length
connecting both nodes.

The betweenness centrality of a node is the fraction of all shortest paths
in the network that contain that specific node. Nodes with high values
of betweenness centrality participate in a large number of shortest paths.
The closeness centrality of a node is inversely proportional to the sum of
its distances to all other nodes in the network. Thus, the greater closeness
a node has, the lower its total distance to all other nodes is.

Eigenvector and pagerank: eigenvector and pagerank are centrality
measures that accounts for the importance of neighboring nodes. This is,
a node connected to central nodes turns itself to important.

The eigenvector centrality of node i is equivalent to the ith element in the
eigenvector corresponding to the largest eigenvalue of the connectivity
matrix. Pagerank is a generalization and variation of eigenvector
centrality and is defined as the stationary distribution achieved by
instantiating a Markov chain on the network.

The foregoing graph metrics were extracted at node-level, producing a feature
vector with 410 elements for each subject. Before computing this topological
properties, the fraction of streamlines connecting each pair of regions was
calculated (Batalle et al., 2017):

w′ij =
wij∑
k,l wkl

, (4.6)

where wkl represents the streamline counts connecting region k and region l.

Feature scaling is a typical data preprocessing step in machine learning (Pereira
et al., 2009). Node metrics were scaled to have zero mean and unit variance.
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For example, for the strength of node i, ki, standardization was performed
using the mean, k̄, and standard deviation, σk, of the strength distribution:

kzi =
ki − k̄
σk

. (4.7)

Another important issue in predictive modeling is that of feature selection
(Guyon and Elisseeff, 2003; Saeys et al., 2007). Feature selection methods are
widely used in machine learning community to remove irrelevant predictors,
especially when dealing with high-dimensional feature vectors (Guyon and
Elisseeff, 2003; Saeys et al., 2007). These techniques enable reducing model
complexity and improving interpretability. We applied machine learning
tools to produce relevant features and brain patterns or signatures classifying
between ADNI controls and ADNI patients with dementia (Figure 4.1
upper row). To this end, we combined different methods as implemented
in the Scikit-Learn Package v0.19.0 (http://scikit-learn.org/stable/
index.html) (Pedregosa et al., 2011).

Supervised learning

Machine learning problems can be mainly categorized as supervised or
unsupervised (James et al., 2013). In supervised learning problems, each
sample or instance in the dataset typically consists of input variables (also
called features or predictors), which characterize the sample in question, and
an output variable (also called response). The purpose of supervised learning
is basically to “learn” a function of the features with the aim of predicting the
response. By contrast, the response is not available in unsupervised learning
problems, and the main task in this setting is to model the underlying structure
in the dataset.

Supervised learning problems can be in turn divided into classification or
regression, depending on whether the response is categorical or numeric,
respectively. In classification problems, the response is also called class. Many
of the upcoming techniques can be used in both classification and regression
settings. However, we will introduce them for classification purposes, as we aim
to predict the subject’s condition (i.e., dementia vs. control) from centrality
features. Note that the normal aging model presented in subsection 4.2.3 was
approached as a regression problem.
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Feature ranking with random forest

A RF is an ensemble method that combines many decision trees (Breiman,
2001). A decision tree is a predictive model that uses a set of binary rules
to predict the class. Figure 4.2 illustrates a basic example where the class
is predicted from features A and B. Essentially, decision trees partition the
feature space into smaller and pure groups by testing feature values (Müller and
Guido, 2016). Thus, nodes (not to be confused with network nodes) in the tree
either represent groups (represented by rectangles in Figure 4.2 right panel)
or feature tests (represented by ellipses in Figure 4.2 right panel). Groups are
also called terminal nodes or leaves. The impurity of a given node can be
measured with the Gini index (Kuhn, 2013), which is defined as:

IG = 1−
C∑
i=1

p2i , (4.8)

where C is the number of classes and pi the class i probability in the node.
Therefore, the lower IG is, the more pure the node is with respect to one of
the classes.

Building, fitting or training a tree consists in recursively searching over
combinations of binary decisions to split the feature space into relatively pure
groups. During this process, it is possible to compute the reduction in impurity
prior and after testing each feature across nodes. This reduction represents the
relevance of a feature in predicting the class. The main drawback of decision
trees is that they are not able to deal well with overfitting. To overcome this
limitation, RFs combine the results of individual trees (Müller and Guido,
2016).

With the aim of ranking centrality features, we made use of the RF technique
with 1000 trees. This method returned a set of scores quantifying the
importance of each feature, which is obtained by averaging the feature
importance of individual trees. Note that the RF algorithm was employed to
generate a feature ranking and not to the classification process itself. Feature
selection methods that are built-in within some predictive models, such as
decision trees and RFs, are called embedded methods (Guyon and Elisseeff,
2003).
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Figure 4.2. Decision tree approach. Classes 1 and 2 are predicted from features A and
B (left panel) using a decision tree (right panel). Reproduced from Kuhn (2013).

Classification with support vector machines

In a two-class classification problem, a classifier can be mathematically
represented as a decision function f : RN → {−1,+1} that assigns a particular
observation x ∈ RN (where N represents the number of features) to one of
the classes, denoted by −1 and +1, respectively (Lemm et al., 2011). Now
consider the problem illustrated in Figure 4.3 left panel, where two features
are used to classify between two different types of samples (red and blue). Class
samples can be linearly separable using multitude of linear decision functions.
Each linear decision function corresponds to a separating hyperplane, the
classification boundary, that relies on its normal vector, w, and a bias term,
b. A given hyperplane represents a line in a two-dimensional space (i.e., when
using two features, as in Figure 4.3 left panel), whereas represents a plane in
a three-dimensional space (i.e., when using three features). Either way, the
class, y, can be predicted as follows (Lemm et al., 2011):

y = f(x;w, b) = sgn(wTx+ b), (4.9)

and thereby the hyperplane is given by:
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wTx+ b = 0. (4.10)

margin

Figure 4.3. Linear support vector machine approach. Many hyperplanes (lines in a
two-dimensional space) can be used to predict the class samples from features A and B (left
panel). A linear support vector machine proposes a classification boundary such that the
margin is maximized. Reproduced from Kuhn (2013).

Thus, the feature space is separated into two groups, given by the samples
that satisfy wTx + b > 0 (i.e., samples of the positive class, y = +1) and
the samples that satisfy wTx + b < 0 (i.e., samples of the negative class,
y = −1), respectively. In this case, learning consists in selecting the optimal
parameters (w, b) such that f will correctly predict the class. How optimal
a decision function (and its corresponding classification boundary) is depends
critically on the selected metric to evaluate the goodness of the classification.
The SVM technique is an approach that has gained popularity in many fields.
A linear SVM attempts to find the optimal decision function by maximizing the
distance between the separating hyperplane and the closest sample point. This
distance is called margin (Chang and Lin, 2011; Kuhn, 2013). In Figure 4.3
right panel, three samples are equally closest to the classification boundary.
Such points are called support vectors. In mathematical terms, a liner SVM
solves the following optimization problem (Chang and Lin, 2011; Lemm et al.,
2011):
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min
w,b,ξ

1

2
wTw + C

N∑
i=1

ξi

subject to yi(wTxi + b) > 1− ξi,
ξi > 0, i = 1, . . . , N.

(4.11)

In the Equation (4.11), N stands for the number of samples used to train the
model. The term ξi represents slack variables that control whether a sample
can be within the margin error (0 6 ξi 6 1) or be misclassified (ξi > 1),
whereas C > 0 is the regularization parameter that controls for the constraints
introduced by ξi.

In many real-world problems, class samples cannot be accurately separated
using a linear classification boundary. Rather, more sophisticated decision
functions are required to account for non-linearities. Support vector machines
handle this situation by mapping the original space into a higher dimensional
space via a kernel function, the kernel trick, in such a manner that the
transformed input samples can be linearly separated in the new space (Kuhn,
2013; Lemm et al., 2011).

The SVM classifier has been successfully applied in the context of diverse
pathologies (Fagerholm et al., 2015; Klöppel et al., 2008). We trained SVMs
to distinguish ADNI patients from ADNI controls. We made use of a radial
basis function kernel, which introduces an extra parameter to be optimized,
γ > 0. Here, we set γ = 1/N , where N denotes the number of features. On
the other hand, the parameter C of radial SVMs was selected within the set
{1, 10, 100} to maximize model performance.

Model evaluation with cross-validation

The main interest in supervised learning, and particularly in a classification
setting, is to fit a classifier with the ultimate goal of predicting new samples
that were not used during the training phase. To evaluate the extent to which
a predictive model generalizes across samples, the available dataset can be
divided into training and test samples. The training samples are observations
aimed to build the model, providing the training error, whereas the test
samples are observations aimed to test the resulting classifier, providing the
test error. This difference is important because one can fit a very complex
model to perfectly predict the class in the training dataset (resulting in a very
small training error), but obtain poor results in the test dataset (resulting in
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a very large test error). This problem is known as overfitting (James et al.,
2013).

In the absence of a very large dataset, splitting the data into training and test
samples is not practical, so other strategies such as resampling techniques
are applied. One popular approach to evaluate the ability of a model in
predicting the class is that known as k-fold cross-validation. In this technique,
the original dataset is randomly partitioned into k groups (also called folds)
of roughly equal size. The first fold is used to test the model and estimate the
classification performance, whereas the remaining k−1 folds are used for fitting
the model (James et al., 2013; Kuhn, 2013). The same procedure is repeated
k times; each time, a different fold is used for testing. The performance
measures generated across the k repetitions are summarized with the mean
and standard deviation. Typical values for k are 5 and 10. Additionally, the
whole procedure can be repeated a certain number of times, resulting in a
repeated k-fold cross-validation.

Regarding the measures to evaluate the classification performance, consider a
two-class classification setting, where a predictive model is fitted using k −
1 folds and tested on the remaining one. The predictions provided by the
classifier from the test fold can be compared with the actual class labels and
generate what is called the confusion matrix (Figure 4.4). From this matrix,
several performance measures can be calculated (Kuhn, 2013):

Sensitivity: the sensitivity is the rate that the positive class is correctly
predicted for all positive samples: sensitivity = TP/(TP + FN). The
sensitivity is also known as the true positive rate.

Specificity: the specificity is the rate that the negative class is correctly
predicted for all negative samples: specificity = TN/(FP + TN). The
false positive rate is defined as one minus the specificity.

Accuracy: the accuracy reflects the overall agreement between the actual
and predicted classes by accounting for positive and negative samples:
accuracy = (TP + TN)/(TP + FP + FN + TN).

Making predictions can be seen as thresholding the output of the decision
function (Equation (4.9)), where a threshold of 0 is used (Müller and Guido,
2016). In some applications, the desired outcome is a continuous valued
prediction, which is usually in the form of a probability (i.e., between
0 and 1). In this way, one can provide more informed decisions. For
example, given a feature vector x representing centrality measures, what is
the probability of this subject having dementia? Note that one can still
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Figure 4.4. Confusion matrix. Predicted class labels are compared with actual class
labels, resulting in true positives (TP), false positives (FP), false negatives (FN) and true
negatives (TN) results. Positive and negative classes could refer to dementia and control
conditions, respectively, depending on the criterion adopted by the researcher. Nevertheless,
in a medical context, the positive class is usually used for the diseased condition.

set a specific threshold, say 0.5, to provide discrete predictions, rather than
continuous predictions. Returning class probabilities further enable measuring
the classification performance using a useful device called the receiver operating
characteristic (ROC) curve. The ROC curve is constructed by evaluating
the class probabilities across different thresholds. For each threshold, the
sensitivity and false positive rate (1 − specificity) is computed (Figure 4.5).
A model that perfectly separates two classes would have unit sensitivity and
specificity (identified by a purple point in Figure 4.5). As noted, there is a
tradeoff between the sensitivity and specificity achieved in the classification. As
the threshold lowers, the true positive rate improves and the false positive rate
declines. Whereas that the opposite effect occurs when the threshold highers.
The area under the curve (AUC) yields another measure to evaluate the
classification performance. Indeed, a perfect classifier would provide an AUC
of 1, whereas that a random classifier would offer an AUC of 0.5 (represented
by the dashed red line in Figure 4.5). The AUC allows evaluating the predictive
model without fixing a specific threshold and thereby summarizes the overall
performance in a single index. Note that a different accuracy value is also
obtained for each threshold.

Some classifiers such as the SVM approach do not naturally provide probability
estimates. Rather, they potentially provide predictions in the range [−∞,+∞].
These predictions are then thresholded (Equation (4.9)). In order to transform
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Figure 4.5. Receiver operating characteristic curve. The ROC curve reflects the
sensitivity and specificity (and the accuracy accordingly) across different thresholds for
classification. In this particular example, at a probability threshold of 0.5, the sensitivity
and specificity is 0.4 and 0.929, respectively. At a probability threshold of 0.3, the sensitivity
and specificity is 0.6 and 0.786, respectively. A perfect classifier is represented by the purple
point, whereas a random classifier is represented by the dashed red line. Adapted from Kuhn
(2013).

this range into class probabilities and make use of the ROC curve accordingly,
one can apply the Platt scaling (Wu et al., 2004).

To estimate model performance, we incorporated RF and SVM methods in
a cross-validation scheme (Figure 4.6). First, the ADNI dataset was split
into training and test folds by using the 10-fold cross-validation technique,
ensuring that classes were balanced within each fold. In each iteration, a
RF was fitted by using the training folds, giving rise to a ranking encoding
the relative importance of each feature. To identify the minimum number of
features providing good predictions, radial SVMs were then trained by adding
features progressively. That is, a first radial SVM was computed using the
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most relevant feature (according to the foregoing ranking). Next, a second
radial SVM was obtained using the two most important features, sequentially
adding features until all features were considered. Each of the 410 radial SVMs
was evaluated on the test fold and the AUC of the ROC curve was recorded
as a function of the number of features, producing a performance profile.
The whole process was further repeated 10 times. Performance profiles and
feature importance scores generated across the 100 iterations of the repeated
10-fold cross-validation were averaged. To maximize model performance, we
applied this cross-validation scheme for each parameter C, and selected the
combination of parameter C and number of features providing the max AUC.
Using such number of features, we performed a ROC analysis.

Predictions in the simulated disease progression

As we were also interested in estimating when alterations associated with
dementia begin to be significantly apparent in the simulated progression
process, a final SVM based on the identified features was fitted using all ADNI
samples, and the resulting predictive model was independently tested on each
NKI simulated stage (Figure 4.1 bottom right panel). We then computed
performance measures of AUC, sensitivity, specificity and accuracy produced
throughout the modeled progression span and evaluated the significance
of these values. We applied the one-tailed binomial test to evaluate the
significance of sensitivity, specificity and accuracy (Pereira et al., 2009) and
the non-parametric Wilcoxon rank sum test to evaluate the significance of
AUC values (Hanley and McNeil, 1982). We declared results as significant
at P < 0.05. We further applied the false discovery rate (FDR)-adjustment
procedure (Yekutieli and Benjamini, 1999) with q = 0.05 to control for multiple
comparisons across stages within each performance measure. In all cases, we
reported values of sensitivity, specificity and accuracy at the threshold for
classification providing the best tradeoff between sensitivity and specificity.

4.3 Results

4.3.1 Diagnosis of dementia caused by Alzheimer’s disease

We first analyzed the ADNI dataset with machine learning tools to explore
whether structural networks inferred from dMRI predict Alzheimer’s disease.
Using the cross-validation approach, we achieved the best classification
performance when using radial SVMs with C = 100 and the first 86 most
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Figure 4.6. Cross-validation. Model evaluation was performed by a repeated 10-fold
cross-validation scheme. After partitioning the input dataset into 10 folds, data from nine
folds (in green) are used for feature ranking and model fitting. The remaining fold (in
purple) is used for model testing, hence generating a performance profile: the classification
performance (in term of AUC) as a function of the number of features, which are sorted
according to their relative importance. The whole process was repeated 10 times, producing
a total of 100 performance profiles and feature rankings, which were finally averaged.
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relevant features according to the ranking generated with the RF algorithm
(max AUC = 0.78 ± 0.16, mean ± SD) (Figure 4.7a), so the remaining
324 network features did not provide further information for diagnosis. We
then analyzed the mean ROC curve generated with the selected features
(Figure 4.7b). At the optimal threshold for classification, sensitivity was of
74.17 % (P = 1.69 × 10−3), specificity of 73.47 % (P = 1.69 × 10−3) and
accuracy of 73.82 % (P = 9.76×10−6), substantially higher than the empirical
distribution (50 %).

Next, we identified the most discriminative centrality measures and brain
regions providing such performance. Strength and closeness centrality together
account for almost half of the network features (23.25 % and 24.42 %,
respectively). Measures of eigenvector and pagerank centrality have a lesser
influence for classification, but still represent a considerable proportion of the
retained features (19.77 % in both cases). Betweenness centrality is the least
representative measure in the final set of selected features, accounting for the
remaining 12.79 % (Figure 4.8a). More specifically, the top five discriminative
features in diagnosing Alzheimer’s dementia are pagerank centrality of the
left insula, followed by closeness centrality of the left amygdala, betweenness
centrality of the right hippocampus, strength centrality of the left insula, and
closeness centrality of the left entorhinal cortex (see Table 4.3 for a detailed
listing of the selected features).

Table 4.3. Most important features in predicting dementia. Each feature consists of a brain
region (represented by its abbreviation, see Table 4.2), the hemisphere which the brain region
comes from, and the specific centrality measure associated with the region (i.e., strength,
betweenness, closeness, eigenvector or pagerank).

Position in the ranking Region Hemisphere Centrality measure

1 INS left pagerank
2 AMYG left closeness
3 HIPP right betweenness
4 INS left strength
5 ENT left closeness
6 INS left closeness
7 CAC left eigenvector
8 PC left eigenvector
9 HIPP right pagerank
10 HIPP right closeness
11 HIPP right strength
12 BSTS left strength
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Table 4.3 continued from previous page

13 AMYG left strength
14 PARC left eigenvector
15 PCAL left eigenvector
16 ISTC left eigenvector
17 ENT left strength
18 PCUN right strength
19 PCUN left eigenvector
20 PC right eigenvector
21 AMYG left pagerank
22 BSTS left closeness
23 PCAL left closeness
24 CAC right eigenvector
25 LING left strength
26 PCUN right pagerank
27 ENT left pagerank
28 AMYG right strength
29 LOCC left closeness
30 HIPP left closeness
31 PARC right eigenvector
32 PU left pagerank
33 AMYG right pagerank
34 RAC right closeness
35 HIPP left strength
36 LING right betweenness
37 INS left betweenness
38 CUN left eigenvector
39 POPE right betweenness
40 HIPP left pagerank
41 PU left strength
42 LOCC right pagerank
43 FP right betweenness
44 AMYG right closeness
45 PARH right closeness
46 THAL right closeness
47 INS right strength
48 CUN left strength
49 THAL left closeness
50 FUS right strength
51 BSTS left pagerank
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Table 4.3 continued from previous page

52 CUN left closeness
53 SP left eigenvector
54 FP left betweenness
55 RAC right strength
56 INS right pagerank
57 CUN right eigenvector
58 SF right closeness
59 PC right betweenness
60 CUN right strength
61 RAC right betweenness
62 THAL right eigenvector
63 LING left pagerank
64 RMF left pagerank
65 IT right closeness
66 ENT left betweenness
67 RMF left strength
68 SF left eigenvector
69 LOCC left strength
70 PCAL right closeness
71 RMF left closeness
72 CAC left betweenness
73 LOCC right strength
74 PC right strength
75 AMYG left eigenvector
76 LING left closeness
77 RAC right eigenvector
78 TT left pagerank
79 IP right betweenness
80 PC right closeness
81 SMAR right strength
82 ACC right pagerank
83 TP right closeness
84 PC right pagerank
85 FUS right pagerank
86 CMF left eigenvector
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Figure 4.7. Machine learning analysis to predict dementia based on centrality
metrics using the ADNI dataset. (a) Mean performance profile computed as a function
of the number of features included in the training process of radial SVMs (with C = 100).
The most relevant features are identified at smaller values of the x-axis, so features were
added progressively according to their relative importance. The max AUC, black diamond,
was achieved with the first 86 most important features. (b) Mean ROC curve generated from
the features identified in (a). Sensitivity, specificity and accuracy indices were computed at
the optimal point (red circle). Such point was identified as the closest point (in terms of
Euclidean distance) on the ROC curve to the point defined by a true positive rate of 1 and
false positive rate of 0.
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(a)

(b)

Figure 4.8. Identification of relevant centrality measures and brain regions. (a)
Bar chart representing the proportion of each centrality measure that was included in the
final set of selected features. (b) Brain map representing the most predictive regions to
classify between dementia and healthy control. Lateral and medial views are shown on the
top and bottom rows, respectively. Node size is proportional to its relative importance,
which was computed from the feature ranking. Node color encodes the number of centrality
measures included in the final set of features referring to that specific region. Abbreviations
are shown for those regions having a relative importance above the median.
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To identify the most characteristic areas of dementia, we summed the feature
importance scores of the network features referring to the same area, obtaining
the relative importance of individual areas (Figure 4.8b). The entorhinal
cortex, insula and subcortical structures, such as the hippocampus, amygdala,
putamen and thalamus, are highly discriminative in detecting Alzheimer’s
dementia, especially in the left hemisphere. Other regions playing an important
role to distinguish between controls and patients are the posterior cingulate
and precuneus cortices, with the right hemisphere showing a greater relevance.
The left occipital lobe and surrounding areas (the isthmus division of the
cingulate cortex and the banks of the superior temporal sulcus) are also critical
for diagnostic separation. The rostral anterior division of the right cingulate
cortex, along with the caudal anterior division of the left cingulate cortex,
the left paracentral lobule, and the rostral division of the left middle frontal
gyrus capture relevant effects. Other regions from frontal and parietal lobes
are further relevant for classification, although to a lesser extent.

The applied cross-validation scheme allows computing the classification
performance while controlling for overfitting, but does not provide a single
predictive model. We therefore fitted a final SVM based on the 86 selected
features using all ADNI samples and this model was tested on the NKI
simulated dataset.

4.3.2 Predictions in the simulated disease progression

We incorporated the NKI dataset to simulate 16 disease stages and their
corresponding age-matched normal phases, relative to individuals following
an AD-related pathological (NKI-II group) and healthy (NKI-I group)
pathway, respectively. For the pathological pathway, different trajectories
were simulated to identify the model parameters resembling dementia brain
patterns at simulated stage 0, as compared with the ADNI dataset. Upon
parameter optimization, the hippocampus was identified as the most likely
origin of Alzheimer’s disease (with α = 0.3 and βAD = 0.04). Other regions,
especially the amygdala and entorhinal cortex, are plausible seed candidates
wherein Alzheimer’s disease first originates (Figure 4.9).

Using the hippocampus as seed region, we produced connectivity matrices
either representing individuals normally aging or individuals developing
Alzheimer’s disease, and the ADNI classifier, which was only based on
the relevant features associated with dementia (Figure 4.8a), was evaluated
on these structural networks (Figure 4.10a). To estimate the cutoff stage
from which network alterations associated with dementia begin to manifest
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Figure 4.9. Parameter optimization of the disease progression model. Upon
applying dynamical simulations using the NKI dataset, this figure assesses which seed region
is most likely to reproduce the differences in node strength measured between ADNI control
and ADNI patients. For each region, we explored the parameter space given by α and βAD

to find the minimum of the cost function (see subsection 4.2.3). The hippocampus, which
is highlighted in red, turned out to be the very first region affected by Alzheimer’s disease.
Subcortical regions are shown in italic font.

structurally, we calculated the significance of classification performance
measures throughout the simulated progression span. Interestingly, we
observed that the selected centrality metrics still captures significant dementia
alterations at the simulated stage −7 (Figure 4.10b). Classification
performance progressively improved as Alzheimer’s disease progressed
(Figure 4.10a), achieving more accurate predictions as the effect of the disease
becomes more prominent. Note that this improvement comes from the rise
in the sensitivity index, whereas specificity remains relatively stable across
simulated stages. At very early stages, both simulated controls (NKI-I
subjects) and simulated patients (NKI-II subjects) are generally classified as
controls, when the impact of dementia on brain connectivity is yet subtle.
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Figure 4.10. Classification across simulated stages using the hippocampus as
seed region. (a) A final SVM based on the most discriminative features of dementia
(Figure 4.8a) was fitted using all ADNI subjects. This predictive model was then employed
to classify between simulated patients and simulated controls across the progression span
produced with the NKI dataset. Performance measures of AUC, sensitivity, specificity and
accuracy were computed at each stage. (b) Based on the AUC and accuracy indices, network
alterations associated with dementia begin to manifest structurally at the simulated stage
−7.
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We finally explored the evolution of predictions when the remaining 40 brain
areas served as seed region to initiate the propagation of the disease factor
(Figure 4.11). Interestingly, those regions most likely to be the origin of
the disease (Figure 4.9) offer a gradual increase in classification performance
throughout simulated stages. This effect is largely visible for the amygdala
and the entorhinal cortex. When Alzheimer’s disease simulation originated
from these areas, performance measures were comparable with the optimal
seed (i.e., the hippocampus).

AU
C

Stage

Figure 4.11. Classification performance along the disease progression when using
different seeds. The AUC index was calculated at each simulated stage when individual
regions were set as origin to initiate the propagation of the disease factor. Hippocampus,
amygdala and entorhinal cortex structures offered a similar roughly linear trend.

4.4 Discussion

The field of network neuroscience provides a compelling framework to generate
mechanistic models about brain disease and identify useful biomarkers (Bassett
and Sporns, 2017; Kaiser, 2013). In this work, we have proposed an approach
grounded on network neuroscience to assess the potential of structural brain
networks as measured with dMRI in prodromal dementia. The main findings
uncovered in this work suggest that:
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1. Centrality measures of dMRI networks are informative for Alzheimer’s
dementia diagnosis.

2. The most discriminative network features are largely associated with
medial temporal and subcortical brain regions, as well as posterior
structures of the DMN and occipital areas.

3. The hippocampus is the likely origin of Alzheimer’s disease.

4. Pathophysiological alterations associated with dementia become
significantly apparent at the simulated stage −7, presumably before
meeting diagnostic criteria for clinical dementia.

4.4.1 Prediction of Alzheimer’s disease using real-world data

It has been suggested that the pathophysiological processes in Alzheimer’s
disease largely disturb hub regions (Stam, 2014; Tijms et al., 2013). Here,
we have applied sophisticated multivariate techniques to predict dementia
based on 86 features quantifying the centrality of individual nodes, obtaining
significant classification performance: sensitivity of 74.17 % (P = 1.69×10−3),
specificity of 73.47 % (P = 1.69 × 10−3), and accuracy of 73.82 % (P =
9.76× 10−6).

Earlier investigations have developed classifiers to distinguish Alzheimer’s
disease patients in different phases or stages from healthy controls. Klöppel
et al. (2008) developed a classifier based on atrophy-realted measures and
they reported 89 % accuracy in separating patients with mild dementia from
matched controls. Based on characteristics extracted from the gray matter,
Magnin et al. (2009) achieved values of 94.5 %, 91.5 % and 96.6 % for accuracy,
sensitivity and specificity, respectively, in detecting dementia. However,
their dataset comprises a rather small number of patients (5 male / 11
female), and so it is problematic to generalize these high accuracies. Using
connection weights as features extracted from diffusion MRI, Zhan et al. (2015)
systematically compared different tractography algorithms for classification.
They concluded that the ability of classifying between dementia and control
conditions was higher than comparisons between dementia and MCI conditions.
By contrast, Ebadi et al. (2017) developed an ensemble classification module
based on graph metrics to perform classification across diagnostic groups.
These authors obtained better classification performance when classifying
between dementia and MCI conditions (accuracy of 83.3 %) than when
distinguishing patients with dementia from healthy controls (accuracy of
80 %). Based on connection weights, Shao et al. (2012) achieved classification
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accuracies greater than 95 % using data from 17 patients. Other studies have
developed predictive models to estimate which MCI individuals will develop
dementia within a certain time window. For example, a recent study using
amyloid imaging (Mathotaarachchi et al., 2017) has reported values of 84 %
and 0.91 for accuracy and AUC, respectively, when assessing the progression
to dementia within two years. Although the classification performance
demonstrated in our work appears relatively modest, a comparison across
studies is not straightforward due to variations in predictors, datasets or
patient’s disease stage.

4.4.2 Discriminative brain signatures of dementia

There is literature supporting a stereotypical pattern of neurodegeneration in
Alzheimer’s disease that is associated with tau pathology of Braak staging
(Braak et al., 2006; Whitwell et al., 2008). At early stages, atrophy largely
occurs in the entorhinal cortex, hippocampus and posterior structures of the
DMN (Buckner et al., 2009; Frisoni et al., 2010; Seeley et al., 2009; Whitwell
et al., 2008). From these regions, atrophy then extends to the lateral temporal
cortex, dorsal parietal and frontal cortex. Finally, sensorimotor and visual
cortices are affected at late stages (Frisoni et al., 2009; Pini et al., 2016). In this
work, the relevant features extracted using the ADNI dataset uncovered a set
of brain regions that are highly predictive of dementia: the entorhinal cortex,
insula, hippocampus and other subcortical structures, as well as posterior
structures of the DMN and the occipital lobe. Our results are in line with
previous literature, with medial temporal and subcortical structures having a
greater weight for classification.

4.4.3 Spreading process and Alzheimer’s disease

Our computational model is in accordance with previous work. In particular,
we model the degradation of structural connectivity (dynamics of networks)
based on the disconnection hypothesis (Brier et al., 2014; Delbeuck et al., 2003)
as the disease factor spreads (dynamics on networks). The most plausible
scenario was when the disease is initiated in the hippocampus, as well as
in the entorhinal cortex and amygdala. Numerous studies have shown levels
of atrophy and functional disruption in the hippocampus and the entorhinal
cortex at very early stages of the disease (Brier et al., 2014; Buckner et al.,
2009; Frisoni et al., 2010). The initial Braak stages are also characterized
by the presence of tau proteins in these areas, which in turn extend to the
amygdala (Braak et al., 2006).
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There is a correspondence between the Alzheimer’s disease-associated features
identified in this work and relevant patterns identified by other researchers.
When using raw streamline counts, one cannot dissociate changes due to
connectivity itself from changes emerged from spatial properties (e.g., changes
in volume) (Sotiropoulos and Zalesky, 2017; Taylor et al., 2015). Our
computational model is capturing both effects together since our objective
was not to assess their contributions separately to structural connectivity.
This might also partially explain the correspondence between the relevant
features identified in this work and the atrophy patterns identified by other
researchers using sMRI. Along these lines, eigenmodes derived from a network
diffusion model recapitulate atrophy patterns measured in Alzheimer’s disease
and behavioral frontotemporal dementia (Raj et al., 2012). This model
relies on a diffusive mechanism where a disease agent accumulates in brain
areas giving rise to atrophy. The same authors extended their approach by
predicting both atrophy and metabolism in Alzheimer’s disease (Raj et al.,
2015). Iturria-Medina et al. (2014) describe a spreading model to reproduce
regional amyloid-β patterns measured with PET imaging. Their model also
incorporates a term capturing mechanisms of amyloid-β clearance. Overall,
these brain models illustrate that both atrophy and amyloid-β patterns can be
explained by disease agents that propagate in a prion-like manner (Frost and
Diamond, 2009). These findings are further supported by recent work showing
that intrinsic functional connectivity cannot explain the tendency for strongly
connected nodes to have more tau pathology (Cope et al., 2018).

4.4.4 Network alterations in the simulated disease progression

We found that a classifier based on centrality features using the ADNI dataset
provides significant predictions in the simulated progression process. In
particular, AUC and accuracy indices becomes significant at simulated stage
−7 onwards. At this stage, clinical symptoms may not yet be detectable:
assuming that Alzheimer’s disease progresses continuously at a constant
rate, our model suggests that alterations associated with dementia could be
detected up to seven years before the diagnosis established in the ADNI
database. Hence, our model simulations suggest a valuable opportunity for
risk assessment and early diagnosis. Moreover, our simulations highlight
the possibility that neural structure may be significantly compromised before
physiological deficits become evident, possibly due to compensatory plasticity
(Savioz et al., 2009). Nevertheless, Alzheimer’s disease progresses at different
rates in actual subjects. Consequently, a direct link between simulated stages
and years of progression might be subject to large inter-subject variation.
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4.4.5 Limitations

When applying the SI model, we have assumed that once the disease agent
reaches a region, connections are always degraded. As a result, the task of
classifying simulated groups turned out to be less tricky since the disease factor
affects many structural links. Note that the classification performance obtained
at the simulated stage 0, which attempts to emulate a dementia stage, was
greater (AUC of 0.88) as compared with ADNI (actual) data (mean AUC of
0.78). Nevertheless, the fact that significant predictions are achieved when
using a classifier fitted with real-world controls and matched patients with
dementia suggests that our model could capture differences encountered in
early Alzheimer’s disease progression.

The final set of discriminative brain signatures included medial temporal and
subcortical structures, which are thought to be disrupted at early stages (Mak
et al., 2017). However, it is important to acknowledge that the relevant features
were extracted from ADNI patients with dementia, which is not a prodromal
phase. Thus, future research could incorporate data from patients at earlier
stages (e.g., before or during the MCI phase and prodromal dementia) for a
definitive validation. For instance, our model could be tested retrospectively
for patients that were scanned within the UK Biobank project (Miller et al.,
2016) before disease onset. Importantly, one should include individuals with an
age range in agreement with the simulated period, as Alzheimer’s disease is an
age-dependent disorder and brain patterns differentiating between conditions
could vary across age ranges. Moreover, subject-specific dynamics could be
included in more detailed progression models. As patients might be affected
by cerebrovascular diseases (Santos et al., 2017) and other copathologies
such as alpha synuclein (Wirths and Bayer, 2003), the diagnosis could be
enhanced by accounting for these comorbidities. On the other hand, as new
information about the selective neural vulnerability in Alzheimer’s disease
is gathered (Saxena and Caroni, 2011), more complex models could be
implemented to mimic mechanisms of degeneracy and reserve (Fornito et al.,
2015; Iturria-Medina et al., 2014). This would also enable a more mechanistic
modeling of aging, as the aggregation of misfolded proteins in the brain is part
of the normal aging process (Fjell et al., 2014). Finally, studying Alzheimer’s
disease using multimodal imaging technology will likely contribute to a more
precise identification (Teipel et al., 2015).
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4.5 Conclusions

Computational models of disease progression, based on knowledge about
structural connectome pathways for spreading, are an approach to discover
risk factors and biomarkers of brain network diseases (Kaiser, 2013). We have
used such a model to study the progression from networks of healthy controls
to networks showing features of Alzheimer’s disease patients. This highlights
centrality as an early risk factor of developing dementia. Overall, our work
identifies potential anatomical origins of Alzheimer’s disease, and suggests a
diffusion MRI-based biomarker for early diagnosis.
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Chapter 5

Functional brain network
alterations in alcohol use

disorder

Statistical dependence measures computed between BOLD
signals can inform about brain functional states in studies
of neurological and psychiatric disorders. Furthermore, its
non-invasive nature allows comparable measurements between
clinical and animal studies, providing excellent translational
capabilities. In the present chapter, we apply the NBS approach
to investigate alterations in the intrinsic functional connectivity of
the rat brain in a PD state, an established animal model of clinical
relevant features in alcoholism.

The content presented in this chapter has been adapted from the following
publication:

Díaz-Parra, A., Pérez-Ramírez, Ú., Pacheco-Torres, J., Pfarr, S., Sommer,
W. H., Moratal, D., and Canals, S. (2017). “Evaluating network
brain connectivity in alcohol postdependent state using network-based
statistic”. 39th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC 2017), pp. 533–536.
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5.1 Introduction

Functional MRI has greatly influenced the study of brain function (Friston,
2002). In particular, fluctuations in fMRI signals measured with BOLD
contrast have proved to be a potential tool to assess the impact of a variety
of neurological and psychiatric disorders on brain dynamics (Stam, 2014).
Analytic approaches developed within graph theory and network science have
been successfully applied to examine brain connectivity (Bullmore and Sporns,
2009). As a result, the field of connectomics (i.e., the mapping of structural
and functional connections in the brain) has increasingly gained prominence
(Smith et al., 2013; Sporns et al., 2005).

Functional connectivity estimates the statistical dependence between activity
time courses recorded from areas spanning the brain (Friston, 2011). Although
functional connectivity patterns can be measured in both task-evoked and
resting-state experiments (Smith et al., 2009), its use in rs-fMRI studies has
notably increased since subjects are not engaged in a particular task. In turn,
patients suffering from disorders with cognitive limitations (e.g., alcoholism
and Alzheimer’s disease) can be reliably examined and compared against a
matched control group to identify differences in functional connectivity and
imaging biomarkers (Craddock et al., 2009; Fornito et al., 2012).

Alcoholism is a drug dependence-related disorder that involves a complex
interdependence between neurological and environmental variables. The latter
includes factors such as age, gender and family as well as economic and cultural
contexts (World Health Organization, 2014). From a neuroscientific point
of view, alcohol intake has shown to disturb diverse human brain networks,
such as the DMN, the integrative executive control, the salience and the
subcortical reward networks (Chanraud et al., 2011; Müller-Oehring et al.,
2014). Nevertheless, the main limitation of assessing alcohol addiction in
humans lies in that alcohol intake is often accompanied by the consumption
of other drugs and comorbidity with other psychiatric conditions including
depression and anxiety disorders, and the difficulty to follow brain changes
along the trajectory towards the pathological state (Feldstein Ewing et al.,
2014). Thus, differences measured between groups can be due to the main
effect of other drugs or the interaction among them, rather than alcohol itself.
In this context, the use of animal models allows having a greater experimental
control and faithfully investigate the effect of interest under study (Meinhardt
and Sommer, 2015).

In this work, we examine the effect of chronic and intermittent alcohol
exposure, as usually occurs in humans, on spontaneous fluctuations in BOLD
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signals by comparing large-scale functional brain networks between control and
postdependent Wistar rats.

5.2 Materials and methods

5.2.1 Animals and MRI acquisition protocol

The PD rat model was specifically developed to test the role of negative
affect as a key driving force in a perpetuating addiction cycle (details in
Sommer et al. (2008)). In this model, rats are made dependent by chronic
intermittent exposure to alcohol, and it has been previously demonstrated
that these animals show long-lasting excessive consumption of and increased
motivation for alcohol, and evidence for loss of control over alcohol intake
(Meinhardt et al., 2013), making it a well-established and widely used animal
model of alcohol use disorder.

Experiments were carried out in a horizontal 7 Tesla scanner with a 30 cm
diameter bore (Biospec 70/30v, Bruker Medical, Ettlingen, Germany). The
system had a 675mT/m actively shielded gradient coil (Bruker, BGA 12-S)
of 11.4 cm inner diameter. A 1H rat brain receive-only phase array coil
with integrated combiner and preamplifier, no tune/no match, in combination
with the actively detuned transmit-only resonator (BrukerBioSpin MRI
GmbH, Germany) was employed. Data were acquired and processed with
a Hewlett-Packard console running Paravision 5.1 software (Bruker Medical
GmbH, Ettlingen, Germany) operating on a Linux platform.

For the rs-fMRI experiments, 14 control and 13 PD Wistar rats were
anesthetized with urethane (1.2 g/Kg). Anesthetized animals were placed in a
custom-made animal holder with adjustable bite and ear bars, and positioned
on the magnet bed. The animals were constantly supplied with 0.8L/m O2
with a face mask and temperature was kept between 36.5 and 37.5 ◦C through a
water heat-pad. The temperature, heart rate, SpO2, and breathing rate were
monitored throughout the session (MouseOx, Starr Life Sciences, Oakmont,
US).

T2-weighted anatomical images were collected using a RARE sequence,
applying the following parameters: FOV = 40 × 40 mm2; 15 slices; slice
thickness = 1mm; matrix size = 128 × 128; TEeff = 56 ms; TR = 2 s; RARE
factor = 8. The B0 field distribution in a large voxel (40 × 40 × 40 mm3)
containing the whole head was acquired. Briefly, the brain was localized with
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T2-weighted RARE sequence, and first- and second-order shims adjusted with
MAPSHIM application in a sufficiently large voxel containing the whole brain.
Functional MRI acquisition was performed using a GRE-EPI sequence in 30
coronal slices applying the following parameters: FOV = 25 × 25 mm2; slice
thickness = 0.5 mm; matrix size = 50 × 50; segments = 1; FA = 60◦; TE =
15 ms; TR = 2000 ms (300 samples per run, 10 min), rendering an isotropic
voxel of 0.5× 0.5× 0.5 mm3. Between one and three runs were acquired from
each animal. T2-weighted anatomical images with exactly the same geometry
were collected using a RARE sequence using the following parameters: FOV
= 25 × 25 mm2; 30 slices; slice thickness = 0.5 mm; matrix size = 200 × 200;
TEeff = 56 ms; TR = 2 s; RARE factor = 8.

5.2.2 Preprocessing of MRI data

Every functional run was preprocessed using FSL v5.0 (FMRIB Software
Library, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Jenkinson et al.,
2012) and Matlab 2014a (The MathWorks, Inc., Natick, MA, United States,
https://www.mathworks.com/) as follows. First, voxel size was resized
by a factor of 10 (as typically performed in rodent data (Kalthoff et al.,
2011)). Afterwards, functional volumes were realigned using a rigid body
transformation and taking the very first volume of each subject as reference. In
addition, this realignment was carried out slice by slice (translation in x and y,
and rotation in z) to reduce breathing-related variance (Kalthoff et al., 2011).
Next, we extracted the brain and set the global mean intensity to 1000. Spike
detection was then performed using DVARS measure (Power et al., 2012).
No run was discarded since none of them had more than 30 spikes (out of 300
samples). Leveraging a multilinear regression model, each individual voxel was
corrected for:

� The three rigid body parameters (translation in x and y, and rotation in
z) previously computed and their derivatives (backward difference).

� A single regressor per spike with a “b0, f0 ” window (Satterthwaite et al.,
2013) (i.e., neither preceding nor following samples were used).

� The global signal and its derivative (backward difference).

� Two regressors modelling the mean and a linear trend.

No spatial smoothing was applied to avoid a mixture of signals within ROIs,
whereas band-pass filtering was performed after ROI signal extraction (see
subsection 5.2.3). Spatial transformations were estimated to be applied during
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construction of functional networks (subsection 5.2.3). In particular, functional
data were co-registered to the brain-extracted T2-weighted image using a
rigid body transformation and then normalized to a widely used rat template
described elsewhere (Schwarz et al., 2006) using an affine transformation.

5.2.3 Construction of functional brain networks

To investigate connectivity changes over the whole brain, a total of 47 bilateral
ROIs covering most part of the rat brain were selected. Twenty-six cortical
ROIs were analyzed, including structures of the hippocampal formation,
prefrontal, insular, association, sensory and motor cortices, as well as
21 subcortical ROIs including, among others, striatal regions, amygdala,
thalamus, ventral tegmental area, and hypothalamus. These ROIs were
automatically delineated through using a 3D digital atlas referring to PWS
(Paxinos and Watson, 1998; Schwarz et al., 2006). Functional images were
kept in their native space and the mean time courses within each ROI were
extracted and converted to z-scores, that is, ROI signals were normalize to have
zero mean and unit variance. A Fast Fourier transform-based filter was applied
to retain those frequencies between 0.01 and 0.1 Hz. Afterwards, those time
samples deemed as spikes were removed and the functional interaction between
pairs of regions was estimated by using the Pearson correlation coefficient.
Correlations were converted to Fisher’s z-values. Finally, matrices across runs
were averaged within each animal to obtain a 47× 47 subject-specific functional
network.

5.2.4 Network-based statistic

When testing differences in edge weights between conditions, one must deal
with the problem of multiple comparisons to control for the family-wise error
rate (FWER). The more regions are included in the analysis, the more stringent
the statistical threshold used to declare a significant change should be. This
is especially critical when changes in functional connectivity are widely and
weakly distributed across several links and they are not limited to certain
connections (Zalesky et al., 2010). In that scenario, one would likely miss
a difference between conditions. To overcome this limitation, we made use
of the NBS Toolbox v1.2 (Zalesky et al., 2010), which assesses functional
connectivity differences by accounting for the connected structure of brain
regions (Figure 5.1), to identify differences in functional connectivity between
control and PD rats. First, a univariate test statistic is independently applied
at every network connection to compare the two groups (Figure 5.1a). For
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example, a t-test can be computed to evaluate whether functional connectivity
is greater in control condition compared to PD condition (i.e., control >
PD). This first step provides a statistic matrix (Figure 5.1b, left), which
is then thresholded by a primary threshold, tth, to identify suprathreshold
links (Figure 5.1b, middle) and subsequently the connected components1
(Figure 5.1b, right). These connected components can be treated as subgraphs
or subnetworks. The size of each identified subnetwork is then quantified by
counting the number of links forming it. A component size is compared to a null
distribution of maximal component size using permutation testing. Finally, a
subnetwork is considered to be statistically significant whether the P -value
based on its size is lower than a specific threshold, Pth.

In this work, a threshold of tth = 3.1 was selected. Differences in functional
connectivity were tested in both directions (i.e., control > PD and control
< PD) by using 10, 000 permutations. A component size was declared as
significant whether its P -value was lower than Pth = 0.05/2 (0.025). For
comparison, mass-univariate tests were also performed to identify differences
in individual connections. Individual P -values were calculated by permutation
testing (10, 000 permutations). In this case, multiple comparisons were
controlled by using the Benjamini-Hochberg FDR (Benjamini and Hochberg,
1995) procedure with q = 0.05.

5.3 Results and discussion

Figure 5.2 presents the average functional matrices in both conditions. First,
differences in functional connectivity patterns were investigated by individually
looking at each link. We did not find significant differences in any contrast
when using mass-univariate tests. The NBS method was then applied with the
aim of increasing statistical power to obtain potentially connected structures
showing differences between conditions.

When looking for subnetworks wherein the activity was greater after alcohol
exposure, we did not find significant changes. Conversely, NBS revealed a
significant subnetwork (P = 0.01) composed of 5 brain structures within
which functional connectivity values were greater in the control condition.
This subnetwork was composed of three cortical regions (the anterior and
the posterior part of the dorsal hippocampus, and the temporal cortex)
and three subcortical areas (lateral hypothalamus, central amygdala and
raphe nucleus) (Figure 5.3). This result highlights a central role of the

1In a connected component, there is a path between any pair of nodes.
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(a)

(b)

(c)

Figure 5.1. Steps comprising the NBS approach. (a) Functional brain networks from
controls (left) and patients (right) are used as input. (b) A test statistic (a t-test in this case)
is calculated for each connection (e.g., between the hippocampus and amygdala), given rise to
a statistic matrix (left). Each matrix entry is then compared to a primary threshold, tth, to
generate a thresholded and binarized statistic matrix (middle). The connected components
are identified and the size of each component (as measured with the number of links) is
calculated. A particular connected component is shown (right). (c) The significance of a
component size is evaluated (left). A component size with a P -value lower than a specific
threshold, Pth, is declared as significant, indicating that functional connectivity within that
component is greater in a condition compared to the other (depending on the hypothesis
being tested) (right). Adapted from Fornito et al. (2016).
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Control Postdependent

-0.2 -0.1 0 0.1 0.2

Figure 5.2. Group functional brain networks obtained in control and
postdependent conditions. Color scale represents the strength of functional interactions
between pairs of nodes.

hippocampus in the postdependent state, showing a disconnection of this
structure from all identified subcortical regions. In Figure 5.4, we present
the functional connectivity values in each of the links conforming the
obtained subnetwork. As shown, positive correlations decrease or become
negative (anticorrelated) after intermittent alcohol exposure, hence suggesting
a functional disconnection.

The NBS method was proposed to provide a gain in statistical power (Zalesky
et al., 2010). However, it is important to highlight that we are not able to
declare an individual link as being different between conditions, as we are
evaluating the subnetwork as a whole. Indeed, this method suffers from two
main drawbacks. First, the obtained results are very sensible to the threshold
tth, as the size of the connected structures relies critically on it. A high
enough tth was chosen to avoid large subnetworks arising from permuted data
just by chance (Zalesky et al., 2010). On the other hand, as NBS works
at subnetwork-level, it loses capacity to pinpoint which specific functional
interactions are actually disrupted. By contrast, one can argue that, due to the
connected nature of the brain, many neurological disorders tend to spread over
many regions, rather than being confined within a discrete brain structure (Raj
et al., 2012). In turn, differences in functional connectivity patterns might be
reflected across several links, and this fact is exploited by NBS.
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The interpretation of negative correlations is very challenging in the study
of brain connectivity through using fMRI, as the mechanisms governing
fluctuations of BOLD signals and their relationship with concomitant neural
activity is not completely understood (Moreno et al., 2013). This is especially
relevant when the global signal is included as a nuisance covariate during the
preprocessing stage (as performed in this work, see subsection 5.2.2) (Murphy
et al., 2009). An important choice must be made if one wants to compare

TeCtx

HC-ad

HC-pdRaphe

AmCe

LH

Figure 5.3. Significant changes obtained with the NBS approach. Functional
connectivity within this subnetwork is decreased after alcohol intake. TeCtx: temporal
cortex; HC-ad: hippocampus antero-dorsal; HC-pd: hippocampus postero-dorsal; AmCe:
amygdala central; LH: hypothalamus lateral.
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Figure 5.4. Boxplots representing the group functional connectivity values
from control and PD condition and for each link. TeCtx: temporal cortex; HC-ad:
hippocampus antero-dorsal; HC-pd: hippocampus postero-dorsal; AmCe: amygdala central;
LH: hypothalamus lateral.

correlations (or the corresponding Fisher’s z-values) between different groups.
In particular, should we take the absolute value of correlations? By doing
this, one is implicitly acknowledging that the functional interaction between
two areas quantified by a value of −0.4 is the same as a value of 0.4. On
the other hand, if one takes the raw values to carry out comparisons, a
functional connectivity value of 0 (no correlation) is deemed as being greater
than −0.4 (strong negative correlation). Until these issues are sorted out,
most likely in combined electrophysiological–fMRI experiments, the obtained
results should be interpreted with caution (Murphy et al., 2009). In this
study, the interpretation have been one of classical neurophysiology, this is,
that anticorrelated neuronal populations exchange less information.

5.4 Conclusions

In this work, we have shown that the PD state associated with alcohol use
disorder modifies functional connectivity measured in resting-state networks.
We have also shown the advantage of using the NBS method to identify
alterations in interconnected structures. The results suggest the existence of
a subnetwork of hippocampal and subcortical structures relevant to addiction
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that is disconnected in the PD state. Further research is required to evaluate
the clinical potential of the identified regions. Importantly, the effect of fMRI
data preprocessing on functional connectivity estimates should be explored
in depth to evaluate the robustness of the resulting subnetwork, as the
relationship between the BOLD signal and the concomitant neural activity
is not well understood (Buxton, 2010; Friston, 2011; Moreno et al., 2013).
Nevertheless, our results are generally supported by available molecular and
neurobiological data from this animal model (Sommer et al., 2008; Uhrig et al.,
2016), hence suggesting the relevance of the identified subnetwork as potential
target for therapeutic approaches.
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Chapter 6

Conclusion

Network science provides a lucrative framework to formally investigate
numerous neural phenomena by considering the brain as a complex system
constituted of regions or areas that are connected to each other. The main
objective of this thesis was to investigate the macroscopic organization of the
brain in health and disease under the perspective of network science. More
concretely, we have examined both structural and functional brain networks. In
order to contribute to the field of network neuroscience and further demonstrate
the potential of network science tools to understand brain structure and
function, we have conducted three specific investigations (chapters 3 to 5).

We have demonstrated that the topology of structural connections in the
healthy cerebral cortex plays a critical role in shaping functional patterns in
resting-state. The Spearman correlation between the structural weights of the
rat connectome and their counterpart functional interactions was of 0.48. This
analysis reveals that structural and functional brain networks are coupled, but
does not account for network-level effects. A distinctive characteristic of the
brain, as well as of any complex network, is its connectivity. That is, brain
regions are not isolated but are constituted part of a connected system. As a
result, it is important to consider properties emergent from the inter-relation
between regions. Brain regions that belong to the same module in functional
brain networks tend to mutually structurally interact between each other
compared to regions located in different functional modules. Additionally,
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densely connected structural motifs (i.e., classes 12 and 13 for motif size
M = 3) are enriched within functional modules. Therefore, communication
among neural elements are strongly influence by the way they are connected.

Making use of rodent models and MRI data allowed us to investigate how
brain function is influenced by the directionality of structural connections.
Interestingly, rodents can be functionally experimentally manipulated to
investigate how local perturbations impact on the global neural dynamics.
In this way, an intriguing question that might be addressed in future research
would be that of investigating the community structure of functional brain
networks derived upon manipulating specific nodes (e.g., hubs) and how the
motif frequency spectrum changes within the resulting modules.

Hub nodes facilitate efficient communication between neural systems and the
failure of central regions is thought to be a possible final common pathway in
many neurological and psychiatric disorders. Along these lines, distinguishing
Alzheimer’s disease patients with dementia from healthy controls is possible
by using dMRI networks and measures quantifying the centrality of individual
regions (AUC = 0.78 ± 0.16, mean ± SD). In particular, strength and
closeness are the most relevant measures for Alzheimer’s dementia diagnosis
(representing the 23.25 % and 24.42 % of the selected features, respectively),
followed by eigenvector and pagerank (19.77 % in both cases) and, lately,
betweenness (12.79 %). These relevant features are largely associated with
medial temporal and subcortical structures, the posterior cingulate and
precuneus cortices, and occipital regions.

Dynamical processes occur in many real-world networks. To evaluate the
potential of dMRI technology in the search for biomarkers for early diagnosis
of Alzheimer’s disease, we incorporated dynamics along with the topology of
structural brain networks. Our simulations suggest that the hippocampus is
the most likely seed region to initiate the progression of Alzheimer’s disease,
and that changes associated with dementia begin to manifest structurally at
simulated stage −7, presumably before meeting diagnostic criteria for clinical
dementia. Nevertheless, it is important to acknowledge that a definitive
validation is required at this point to translate these findings into the clinical
practice. In particular, the inclusion of actual patients before or during the
MCI phase and prodromal dementia is essential.

Precisely because the brain is a connected system, disruptions caused by
neurological and psychiatric disorders can be reflected over many regions
and connections. We have explored how alcohol use disorder impacts on
spontaneous functional brain networks by comparing connection weights
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between control and PD rats. The hippocampal formation together with the
temporal cortex and subcortical regions (the lateral hypothalamus, central
amygdala and raphe nucleus) are disrupted in alcohol use disorder. In
particular, they form a subnetwork wherein activity is decreased after alcohol
consumption, making it a potential target for therapy. A future research
line should assess in depth the effect of data preprocessing on the differences
observed between groups. And more importantly, electrophysiological-fMRI
experiments in animals models have the potential of elucidating the
relationship between the BOLD signal and the concomitant neural activity,
as they allow a greater experimental control.

These results provide further evidence that approaching the brain as a complex
network offers valuable insights into the principles underlying brain structure
and function. Brain regions are intimately connected forming networks, the
brain networks. These brain networks are characterized by the presence
of communities o modules and strategic core nodes or hubs that facilitate
intermodular organization and global integration, so brain diseases that harm
hubs can be disastrous.
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