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Resum
En Engiyneria de Software, el concepte de contracte està relacionat amb l’especificació

del comportament d’un programa emprant termes formals com precondicions, postcon-
dicions i invariants. L’estat de l’art actual permet derivar propietats concisses que poden
ser usades com entrada per analitzadors de codi. No obstant això, aquests contractes au-
tomàticament derivats poden no ser completament concissos o correctes, el que ens porta
a el que coneixem com “contractes abstractes“, que poden contindre axiomes candidats.

En aquest document proposem dos mètodes per al refinament de dits contractes, els
quals en el nostre cas estàn generats per la ferramenta d’inferència automàtica d’espe-
cificacions denominada KindSpec 2.0. La primera proposta es basa en la realització de
proves amb la ferramenta de generació automàtica de dades QuickCheck. La segona
proposta, traduix els axiomes candidats a fòmules E-ACSL que son dinàmicament ve-
rificades per Frama-C. Explotant la sinergia dels mètodes, el contracte abstracte pot ser
refinat i generar contractes software correctes (i sovint complets).

Paraules clau: Proves software automàtiques, Verificació dinàmica, Descobriment d’es-
pecificacions, Propietats d’un programa, Mètodes formals en Enginyeria Informàtica

Resumen
En Ingeniería de Software, el concepto de contrato está relacionado con la especifica-

ción del comportamiento de un programa utilizando axiomas formales como precondi-
ciones, postcondiciones e invariantes. El estado del arte actual permite derivar propie-
dades concisas que pueden ser usadas como entrada para analizadores de código con
funcionalidad creciente. Sin embargo, estos contratos derivados automáticamente pue-
den no ser completamente precisos o correctos, correspondiendo a lo que se conoce como
“contratos abstractos“ que contienen axiomas candidatos.

En este documento proponemos dos métodos para el refinamiento de dichos contra-
tos, los cuales en nuestro caso están generados por la herramienta de inferencia automáti-
ca de especificaciones para código C llamada KindSpec 2.0. La primera técnica propuesta
se basa en la realización de pruebas con la herramienta de generación automática de
juegos de datos QuickCheck. La segunda técnica propuesta traduce los axiomas candi-
datos a fórmulas E-ACSL que son verificadas dinámicamente por Frama-C. Gracias a la
sinergia entre las dos técnicas es posible refinar contratos abstractos para derivar de ellos
contratos correctos y, en muchas ocasiones, completos.

Palabras clave: Pruebas software automáticas, Verificación dinámica, Descubrimiento de
especificaciones, Propiedades de un programa, Métodos formales en Ingeniería Informá-
tica

Abstract
In Software Engineering, software contracts allow the program behavior to be speci-

fied using formal axioms such as preconditions, postconditions and invariants. The cur-
rent state of the art makes it possible to derive, from the program code, concise properties
that can be then used as an input for program analyzers. However, such automatically
derived contracts might not be fully precise and/or correct, leading to what is known as
"abstract contracts", which may contain candidate axioms.

In this project we propose two methods for the refinement of automatically inferred
contracts, which in our case are generated by the automatic inference tool KindSpec 2.0.
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The first proposed technique is based on testing by using the automatic data generation
tool QuickCheck. The second proposed technique translates candidate axioms into E-
ACSL formulas that are dynamically verified by Frama-C. By exploting the synergy of
the two methods, the abstract contract can be refined into correct (and often complete)
software contracts.

Key words: Automated Software Testing, Dynamic verification, Specification Discovery,
Program Properties, Formal Methods in Computer Science
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CHAPTER 1

Introduction

Over the last years, the software development industry has grown at unexampled rate.
It has developed tools and applications for almost every aspect of our lives, thus is not a
surprise we can find computer systems almost anywhere.

Such a rise should have been controlled in order to ensure the delivery of qual-
ity products that fit the purpose they have been created for and on which depend not
only user’s satisfaction, but also quotidian activities, from commercial flights to stock
exchange transactions.

Software engineering has evolved in parallel with this grow in order to control the
craft of Software development, which covers from the analysis of needs a software prod-
uct must satisfy to the software deployment and maintenance. Software development
is composed by many activities that work together to mature a concept into a software
product: requirement analysis, ellicitation, design, implementation, testing, and product
development.

However, nowadays development teams tend to work separately and remotely, often
on small components of a complex product. This fact increases the probability (high per
se even in experimented programmers) of introducing a bug in the code. For this reason,
tools that are able to analyze the implemented code and to check the correct performance
of the software product are of great importance. They not only help to obtain a quality
product that can be exploited in a real-life context, but also help to reduce the mainte-
nance time required to solve potential/future errors.

One of the main challenges in software development is to guarantee that the product
is correct and free of errors. Correctness is an essential but extremely difficult property
to ensure. Past failures in software history already caused fatal consequences. One of
them is the well-known case of the Therac-25 radiotherapy machine [Por12] that emitted
100 times higher beta radiation doses to the patients due to a problem in data validation.
Particularly, the machine had two operative modes, one using electrons and one using
photons. The amount of radiation needed for photons to produce the same levels of
output as the electrons is much higher. As there were no explicit security boundaries
nor validation steps for the input data, a mistake made when inserting the values in the
interface, using the electron mode, had been fatal for the patients.

As we can see, defects in software development can cause all kind of negative con-
sequences, from core system breakdowns that eventually derive in losses of billions of
dollars, to the fatal case that may harm human lives.

It is thus very important to use methods that that are able to remove or prevent mis-
takes in the code before its deployment. One of the best established approaches to accom-
plish this is to use formal methods, a collection of notations and techniques for describing,
analyzing and ensuring system’s properties. They are based on mathematical theories
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2 Introduction

and their main aim is to enhance software quality by verifying whether a system satisfies
its specification, which significantly reduces the eventual damage caused by uncaught
errors.

Nevertheless, even assuming we can use techniques based on formal artifacts that
can assure a program is correct, yet the mathematical development to formalize the re-
quiered intended specifications is often laborious. A challenghing solution relies on the
possibility to automate the process.

In program analysis and verification, the user intent is expressed by some sort of
specification (e.g. logical assertions, functional specifications, reference implementations,
program contracts, summaries, models, passing and failing tests, etc.)

This project focuses on the process of analysing and verifying software contracts
that assert some properties and are automatically generated from a C program. This
is achieved in two ways: 1) By using the automatic test case generation tool QuickCheck
to refine the contracts by getting rid of falsified axioms , and 2) by using the runtime veri-
fication plug-in E-ACSL that is based on program annotations of the Frama C framework
to get confidence by dynamically verifying the assertions. By combining these two tech-
niques, we are able to check that the generated contracts are reliable by using exhaustive
test cases, and furthermore, we can check the corresponding E-ACSL assertions do not
fail at runtime.

1.1 State of Art

One of the main applications of formal methods is finding bugs that cause a program
not to meet its specification. The problem we might face occurs when we do not have
any specification for the program or when the existing ones do not define it completely.
Both issues make the task of locating bugs harder.

To address these challenges, specification mining techniques have been developed.
They essentially consist of examining execution traces of a program in order to infer mod-
els or properties that the program satisfies. This term has been first used by Ammons et
al. in [ABL02] and one of the first papers describing this topic is Cook and Wolf [CW95].
This technique solves the problem of writing program specifications and developing the
software in accordance with it, and allows integration with other tools that may enhance
its capabilities.

To infer properties from a software piece, some specification discovery systems such
as KindSpec 2.0 [APV15, APV16] employ symbolic execution, yet other approaches ea-
gerly search for frequent patterns using finite state machines. As well, CLIPER [LKL07]
searches for common patterns through single and multiple program traces, including
algorithms that increase the effectiveness of the pruning strategy. Other authors like
Shoham et al. propose an inferring method that uses intreprocedural static analysis and
abstract interpretation [SYFP08].

Finally, also related to this work is Daikon1, a dynamic invariant-detection tool. The
generation of invariants at runtime allows one to describe data structures and algorithms,
helping their design and future maintenance. Nowadays, this kind of formal specifica-
tions is missing in most software applications due to the resources needed to invest in
its generation. Moreover, manually translating properties to annotations might become a
hard task. Daikon’s approach is very attractive as inverts the task, inferring the property
from the data structure instead of asking for a manual implementation.

1https://plse.cs.washington.edu/daikon/
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On the other hand, formal methods are a rising trend nowadays as more and more
industries include it to shield their software against failures. An example of this inclusion
in the industry world is SPARK Pro 2, a tool designed to analyze software architectural
requirements using formalisms. This kind of tools ease developer’s tasks of preventing
errors like incorrect input, integer overflow, improper initialization, array out-of-bounds
errors and other unforeseen leaks that make the product vulnerable.

Also, platforms like Cardano3 and Tezos4 were built using formal specification which
allows them to specify smart contracts, protocols that facilitates contracts negotiation on
the web.

1.2 Objectives of this work

A program contract specifies the meaning of the program methods or subroutines,
that is, the task that methods perform. It is defined in a formal, accurate and verifiable
way.

The program contracts are automatically generated by the contract synthesis tool
KindSpec 2.0 that relies on symbolic execution [Oak79] and abstract subsumption [ASV08].
This is done for programs written in a non-trivial subset of C that supports functions,
pointer-based structures and heap manipulation. Due to the abstraction process that is
applied in order to ensure termination of the symbolic inference of contracts in KindSpec
2.0, some inferred axioms cannot be guaranteed to be correct and are simply delivered as
candidate axioms to be falsified or validated subsequently.

The main objective of this project is to develop a software system that can help to
refine and validate program contracts that are automatically inferred at runtime.

1.3 Proposal

We aim to generate refined and verified contracts by taking advantage of two testing
tools for C. First, candidate axioms generated by KindSpec 2.0 are tested by randomly
generating automatic test cases that are aimed to falsify them. To accomplish this, a suit-
able translation is given between the assertion output language of the contract generation
tool KindSpec 2.0 and the input property language of the testing tool QuickCheck. This
translation is done automatically by using our first tool, and yields a set of tests so that,
if any axiom is falsified by a given test, it is ruled out.

The remaining non-falsified axioms can be subsequently translated into the E-ACSL
notation, a subset of the ACSL language, for runtime verification by using our second
tool. Finally, those candidate axioms that cannot be either falsified or verified using the
E-ACSL plug-in from Frama-C are kept as candidate or are simply discarded.

1.4 Project Structure

After this introduction, Chapter 2 analyzes the problem and state of the technology
from which this project starts, which is the output of the KindSpec 2.0 tool. To this goal,
first a running example is described. Chapter 3 presents QuickCheck approach for C
programs and the automated tool AutoQCC, which is the tool we use to falsify axioms
together with the translation from KindSpec axioms into QuickCheck properties. Chap-
ter 4 is devoted to the verification of non-falsified axioms. We first present the Frama-C
project then describe the translation from KindSpec axioms to E-ACSL formulas in order

2https://www.adacore.com/sparkpro
3https://www.cardano.org/en/home/
4https://tezos.com
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to be verified by Frama-C, and finally present the automatic tool AutoEACSL. Next, in
Chapter 5 we describe the full system which is used in final Chapter 7 to test the experi-
ment.



CHAPTER 2

KindSpec 2.0: Inference of
contracts by automated synthesis

2.1 Automatic discovery of program properties

In this chapter we analyze the problem we are addressing, taking in account all the
factors that may influence our strategy and describing the terms needed to comprehend
the flow of the project.

Assertion checking techniques are an effective method for program validation, which
is why they are making their way in Software Industry. Essentially, a contract, in terms of
well-known software notions, consists of a set of requisites that are imposed to arguments
and results when functions are defined.

Due to its interest, recently a great effort has been invested to endow programs with
exhaustive contracts, although current contract inference tools are still immature in prac-
tice.

KindSpec 2.0 (KS2 f.n.o) is a tool that allows automatic contract generation for a pro-
gram that is written in a non-trivial fragment of C, called KERNEL-C, which includes
functions, input/output pointers, dynamic memory allocation and pointer manipula-
tion. Contract generation in KS2 is based on a distinction between modifier methods
that change the program state (in terms of a finite-state machine or FSM), and observer
methods that only monitor it without doing any changes.

Starting from a Kernel-C program and a modifier method of interest, KS2 computes
a suitable contract for the method which consists of a precondition (required for a correct
behaviour of the program) and a postcondition that is expressed as a set of axioms (that
form a declaration or a postulate which is supposed to be true in the program’s context).
Said axioms possess a great relevance for program analysis, since they completely define
the method behaviour.

For the axiom generation, KS2 relies on symbolic execution [Kin76], bounded by abstract
subsumption. Information loss associated to abstraction causes KS2 to generate two types
of axioms: axioms that are correct by construction, when abstraction is not needed, and
candidate axioms whose correction can not be guaranteed because of abstraction.

If an exhaustive checking were performed, candidate axiom correctness could be
eventually either proved or falsified, and the latter might lead to a refinement process
guided by counterexample generation. Although exhaustive checking is unaffordable
in general, in order to acquire more confidence on the (non-falsified) candidate axioms,
some ex-post verification can also be performed.

5



6 KindSpec 2.0: Inference of contracts by automated synthesis

2.2 The contract synthesis tool KindSpec 2.0

KindSpec 2.0 is a tool that can help mitigate the specification effort as it implements
a specification inference technique for heap-manipulating programs that are written in a
non-trivial fragment of C. It relies on the rewriting logic semantic Framework K which
facilitates the development of executable semantics of programming languages and also
allows formal analysis tools for the defined languages to be derived with minimal effort.

Specification inference consists in discovering high-level specifications that closely
describe the program behavior. Given a program P, any function m (called a modifier)
in P that uses I/O primitives and/or modifies the state of encapsulated dynamic data
structures defined in the program is likely to be included in the property synthesis. The
intended specification for m is to be cleanly expressed by using any combination of the
non-modifier functions of P (i.e., functions, called observers), which inspect the program
state and return values expressing some information about the encapsulated data.

The key idea behind the inference procedure is that, given a modifier procedure for
which we desire to obtain a specification, KS2 starts from an initial symbolic state s and
symbolically evaluates m on s to obtain as a result a set of pairs (s,s’) of initial and final
symbolic states, respectively. Then, the observer methods in the program are used to ex-
plain the computed final symbolic states. More precisely, for each pair (s,s’) of initial and
final states, a pre/post statement is synthesized where the precondition is expressed in
terms of the observers that explain the initial state s, whereas the postcondition contains
the observers that explain the final state s’. This is the final form of an axiom, which we
illustrate in Figure 2.4.

In order to describe how the specification extraction technique works, let us consider
a C program which implements the insertion of an element x in a set s, according to the
Listings 2.1, 2.2 and 2.3.

On one side, listing 2.1 contains the two necessary structures to build an arraylist data
set that has a custom size and capacity:

1. arraylist: Contains the attributes of the data structure that indicate the current size
of the set and its capacity. Also has a pointer to the array that stores the data.

2. lnode*: Structure that stores an integer item and the pointer to the next node. If the
node is the last one in the list, it points to null.

The main idea of the arraylist is that the list grows in elements as long as there is enough
capacity in the data structure, i.e., capacity < sizze.

1 struct arraylist {
2 int sizze;
3 int capacity;
4 struct lnode* body;
5 };
6

7 struct lnode {
8 int data;
9 struct lnode* next;

10 };

Listing 2.1: Data structures of arraylist_insert.c

On the other side, Listing 2.2 contains the modifier method of interest arraylist_insert.
The method starts checking the validity of the main pointer. If the pointer is not null and
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the element item has not already been inserted in the structure the flow of the execution
continues. Then, the next condition checks if the structure has enough space for a new
element. If this results true, the new item is added at the end of the structure.

11 int arraylist_insert(struct arraylist* l, int item)
12 {
13 struct lnode* n;
14

15 if(!l) {
16 return 0;
17 }
18

19 if(arraylist_find(l, item)) {
20 return 0;
21 }
22

23 if(l->capacity > l-> sizze && l -> body) {
24 n = l->body;
25 while(n->next) {
26 n = n->next;
27 }
28 n->next = (struct lnode*)malloc(sizeof(struct lnode));
29 n->next->data = item;
30 n->next->next = NULL;
31 (l->sizze)++;
32 return 1;
33 } else {
34 return 0;
35 }
36 }

Listing 2.2: Modifier method of arraylist_insert.c

Last, in Listing 2.3 we can find the observer methods of the running example:

• arraylist_find(list, element): Searches the element ‘element‘ in the list ‘list‘.

• arraylist_isFull(list): Checks if list ‘list‘ has reached full capacity.

• arraylist_isNull(list): Checks if list ‘list‘ is initialised.

• arraylist_isEmpty(list): Checks if list ‘list‘ has no elements inserted.

• arraylist_size(list): Returns the length of the list ‘list‘.

37 /* Finds element in list list */
38 int arraylist_find(struct arraylist* list, int element)
39 {
40 struct lnode* n;
41 int found = 0;
42

43 if(!list) return 0;
44 n = list->body;
45

46 while(n) {
47 if(n->data == element) {
48 found = 1;
49 }
50 n = n->next;
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51 }
52 return found;
53 }
54

55 int arraylist_isFull(struct arraylist* list) {
56 if(!list) return 0;
57 return list->capacity <= list-> sizze;
58 }
59

60 int arraylist_isNull(struct arraylist* list) {
61 if(!list) return 1;
62 return 0;
63 }
64

65 int arraylist_isEmpty(struct arraylist* list) {
66 if(!list) {
67 return 0;
68 } else {
69 return !list->body;
70 }
71 }
72

73 int arraylist_size(struct arraylist* list) {
74 if(!list) {
75 return 0;
76 } else {
77 return list->sizze;
78 }
79 }

Listing 2.3: Observer methods of arraylist_insert.c

In Figure 2.4 we show a fragment of the KS2 output for the insert method of our run-
ning example. More specifically, although the output is more extensive, we only show an
excerpt, a precondition and two axioms that are part of the the inferred method Postcon-
dition:

80 PRECONDITION P:
81 (arraylist_isEmpty(l)=0 ^ arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze ^

arraylist_find(l,item)=0 ^ arraylist_isFull(l)=1) ||
82 ...
83 ----------------------------------------------------------------------------------
84 ----------------------------------------------------------------------------------
85 POSTCONDITION Q:
86 AXIOMS:
87 A1: (arraylist_isEmpty(l)=0 ^ arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze

^ arraylist_find(l,item)=0 ^ arraylist_isFull(l)=1) =>
88 (arraylist_isEmpty(l)=0 ^ arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze ^

arraylist_find(l,item)=0 ^ arraylist_isFull(l)=1 ^ ret=0) ^
89

90 A2: (arraylist_isEmpty(l)=0 ^ arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze
^ arraylist_find(l,item)=0 ^ arraylist_isFull(l)=0) =>

91 (arraylist_isEmpty(l)=0 ^ arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze + 1
^ arraylist_find(l,item)=1 ^ ret=1) ^

92 ...

Listing 2.4: KindSpec 2.0 output for the running example insert.c
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The first axiom (A1) specifies that, provided the set l is not empty or uninitialized, is
full, and the element item is not originally contained in l, then after the insertion the set is
not empty nor uninitialized, the size of the set is the same, the element x is not contained
in the set and the modifier function returns 0. Roughly speaking, the set is full and we
cannot add any other element into it.

The second axiom (A2) in Listing 2.4 corresponds to the case when the list is not full,
not empty, has length i1 and does not contain the element x. Then, after the execution of
the modifier, the length is incremented by one and the element is in the list.

As we anticipated, the synthesis of such a specification is done by combining symbolic
execution [KaaV76], lazy initialisation [KaaV03], and abstract subsumption [KsaV08] tech-
niques. Informally, symbolic execution analyses the program’s execution by using sym-
bolic variables (with no value assigned). Lazy initialisation, in turn, is based on delaying
dynamic memory allocation for object initialisation until the first moment it is accessed,
either for reading its value or for setting a new one. Finally, abstract subsumption is used
to reduce the total computation space of the program (frequently used in loops to avoid
termination problems associated to symbolic execution).

In this way, for each pair (s, s’) of initial and final states in the symbolic execution
tree for a modifier method, a p =⇒ q implication is generated, where both p and q are
expressed in terms of observer methods from the program. The axiom p =⇒ q can be
thought of as the s and s’ explanation.

2.3 The correctness problem due to abstraction

In Computer Science, abstraction is a technique frequently used to hide the complex-
ity of a system, so that the user that needs to interact with it can focus on the higher or
more abstract layer rather than the implementation of the underlying layers. For exam-
ple, a programmer does not need to know how the data representation works at machine
level to write code because the level of abstraction has been raised in order to ease the
coding task.

When it comes to Software Engineering, abstraction is really helpful in analysis and
verification tasks. When we use symbolic execution, we may encounter loops and recur-
sion in the analyzed code, that cause infinite branches in the execution path. However,
not exploring all the generated branches leads to a lack of correctness in the analysis.

One solution to mitigate this problem is employing subsumption techniques that detect
if a particular path or a similar one have been already executed. If so, the symbolic execu-
tion is halted, assuming that the given branch is covered. Nevertheless, when recursive
data structures are present, this subsumption checking technique might lead to infinite
loops. This is why abstract subsumption is proposed as a solution that can ensure termina-
tion even with complex data structures by calculating an approximation of the generated
data structures, easing the subsumption task whose aim is to stop the symbolic run.

In our project, using abstraction and subsumption techniques to stop the symbolic
runs involve loosing the ability to ensure the axioms inferred by KS2 are correct. In the
next chapters we propose two refinement techniques that aim to obtain more precise and
complete contracts.





CHAPTER 3

Contract refinement by using
QuickCheck

QuickCheck (QC f.n.o.) is a software tool that automatically provides random test cases
for program properties. It can be used to test the veracity and consistency of the given
properties thanks to the the libraries that it offers for different data types. While it was
originally defined for Haskell, it has been lately adapted to a multitude of programming
languages, which includes C, Java, Prolog, Ruby, etc.

When one works with QC, the first step is to define the properties that must be
checked. For example, Listing 3.1 contains the integer multiplication commutativity
property in QuickCheck syntax for C.

93 QCC_TestStatus mulCommutativity(QCC_GenValue **vals, int len, QCC_Stamp **stamp)
94 {
95 int a = *QCC_getValue(vals, 0, int*);
96 int b = *QCC_getValue(vals, 1, int*);
97

98 return a*b == b*a;
99 }

Listing 3.1: QuickCheck for C - Property Example

In this code multCommutativity receives 3 parameters: vals is a double pointer that
contains all the integer random values that are automatically generated by QC libraries,
len indicates how many values were generated, and stamp contains information about the
test outcome (passed, failed or unknown).

Thanks to the *QCC_getValue() macro1, the random value can be extracted, indicating
the source, position and expected type of data. In this case, the first two random integers
are extracted from the vals structure that is received as a parameter. Finally, the commu-
tativity property is checked in terms of a boolean expresion and the result is retuned in
terms of QCC_TestStatus which is detailed later.

QC is able to infer from the heading of the properties which data must be generated
and then executes the tests and informs if tests have succeeded or not. If any of the
tests fails, we conclude the program does not fulfill the property. The generated output
reports how many tests were performed and its outcome. Besides, if it returns a negative
result, a counterexample is generated. Figure 3.2 shows the result for the commutativity
of multiplication example.

1A macro is a fragment of code which has been given a name. Whenever the name is used, it is replaced
by the contents of the macro

11
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100 multCommutativity Testing: 1000 test passed (Failed 0) - Not sure 0!

Listing 3.2: Axiom test result

It must be mentioned that, given that QC is coupled with the developed systems we
must respect the syntax and semantics of the source language. For this reason, depending
on the considered language, the syntax for specifying properties varies.

In this project, we focus on QuickCheck for C (QCC f.n.o.), and for its proper use
we proceeded to a thorough study of its capabilities. Its understanding is relatively easy
with basic knowledge about pointers, memory allocation and other common features of
imperative programming languages.

The QCC system provides random value generators for all the existing primitive
types in C (int, long, float, double, char and boolean), and also generators for
arrays that contain primitive type values. In both cases, a range of values can be estab-
lished for the desired tests, e.g., generate an array of integers which values range between
20 and 250. On the other hand, the main ability of the system is automatic test generation
and execution, which allows eventual axiom falsification (up to the given tests) by using
data generators. The result of the tests is a tag (declared as "Stamp") which indicates if
the test has been passed (QCC_OK), if it has failed (QCC_FAIL) or if it has an unknown
result (QCC_NOTHING). Additionally, the system supports logic operators (AND, OR,
NOT and XOR) for these tags that allow defining more complex properties by combining
individual test results.

The execution of all the tests admits as a parameter the number of times we want the
tests to be executed, and each time it is carried out with independent random sets.

3.1 From KindSpec 2.0 contracts into QuickCheck program
properties

As shown in Figure 3.1 the contract synthesis performed by KS2 returns a plain text
and a Java object. This output must be transformed into testing structures, which later
are being executed alongside QCC libraries (that include the random generators). In later
sections the method for completing the translation task properly is described.

We illustrate the process by means of our running example. First, at “POSTCONDI-
TION Q:“ headline of Figure 2.4 we see all the implications the program must satisfy, so
we can deduce which tests QCC must generate.

In Listing 2.3 we can appreciate the anatomy of each method, that is to say, its name,
its call and the return result when executed. Said result is just a boolean indicator flag
(‘0‘ = false, ‘1‘ = true) that informs if the consulted property, characterized by observer
methods, is true or false or if the operation execution has been correctly done (or any error
may have arisen) in the case of modifier methods. I also retrieves relevant information in
cases like length.

The test generation for any axiom (which needs a C function for each of them) is then
carried out step-wisely as follows:

1. First, we create a testing structure in QCC by defining the name of the checking
function, the number of arguments (resources it needs) and the type of data of these.
For example, for an axiom A we could create a checking function that uses three
arguments - two Integers and one Character.

2. Then, we extract the generated data from where QCC stored them.
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Figure 3.1: QCC translation flow

3. Finally, we translate the KS2 output into QCC syntax to proceed with the checking
step. Each axiom corresponds to a QCC property. We note that the axiom contains
an implication, which divides the clause in two parts: an antecedent, which must be
satisfied before running the program method, and a consequent, which specifies the
correct behavior of the execution.

In order to illustrate the proposed methodology, we analyze the following axiom:

101 arraylist_isFull(list)=0 ^ arraylist_size(list)=0 ^ arraylist_find(list,
element)=0 ^ arraylist_isNull(list)=0 ^ arraylist_isEmpty(list)=1)

102 =>
103 (arraylist_size(list)=1 ^ arraylist_find(list, element)=1 ^

arraylist_isNull(list)=0 ^ arraylist_isEmpty(list)=0 ^ ret=1)

Program Listing 3.3 exemplifies the result of the procedure we have just explained
for our example. First we define axiom1 as the check function with the following default
arguments in the header:

1. len: Indicates the size of the automatically generated test set.

2. **vals: Contains the automatically generated random data.

3. **stamp: Specifies the tags for returning the function result. It is used for other
purposes not related to our work that we will not describe in this document.

Then, we extract the generated Integer value with *QCC_getValue from the **vals ar-
gument. Finally, we write the following correspondence between the axiom and the code:
The first conditional block“IF“ corresponds to the antecedent of the implication, calling
all the necessary observer methods. For example, if the axiom indicates the structure
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is not full yet, with isfull(s)=0, in the QCC implementation a call to the method which
verifies said condition must be done, in this case, arraylist_isfull(l), being l the given data
structure.

1 QCC_TestStatus axiom1(QCC_GenValue **vals, int len, QCC_Stamp **stamp) {
2 arraylist* l = arraylist_create();
3 int elementToContain = *QCC_getValue(vals, 1, int*); int ret; int length = 1;
4

5 // Antecedent
6 if(!arraylist_isfull(l) &&
7 size(l) == 0 &&
8 !contains(&elementToContain, l) &&
9 !isnull(l) &&

10 isempty(l)) {
11 ret = insert(l, &elementToContain);
12

13 // Consequent
14 return (size(l) == 1 &&
15 contains(l, &elementToContain) &&
16 !isnull(l) &&
17 !isempty(l) && ret);
18 } else {
19 return QCC_NOTHING;
20 }
21 }

Listing 3.3: Running example translation

If the condition is true (the antecedent is satisfied), the “IF“ block content, which is
essentially the execution of the target method, is executed. For this example, a random
data has been added to the structure. If the addition has been done correctly, a boolean
indicator flag “1“ is returned, or a “0“ otherwise. This returned value is stored to use it
in the consequent for the QCC property.

The consequent of the axiom is represented in the return block of the QCC code.
Again, observer calls from the data structure are used to check if the implication holds. If
all goes as expected, the test is passed, and QCC returns an affirmative stamp QCC_OK,
or a QCC_FAIL otherwise. It should be mentioned a special case that arises when the
property cannot be checked because the guard in the conditional is not satisfied and a
conclusive result cannot be inferred, which is identified by QCC_NOTHING and does
not contribute to QCC statistics when analyzing the test results. This corresponds to the
case when the antecedent is not satisfied for the test case that is run, and corresponds
to the “ELSE“ block. All the stamps are collected by QCC and the global result of the
execution is returned, indicating the number of successful results and the failures (Figure
3.5).

The last part of the methodology requires a main function to call the QCC library,
which executes the above generated axiom test constructions. As well as each axiom has
its own function defined, it also has its own function call in the main.

Listing 3.4 shows the function call for our running example. The first step to build
it is to initialize the random() function for C, as it is the top function of QC. QCC_init(0)
performs the initialization using an integer parameter. Then, the QCC_testForAll starts
the automatic random test generator for the specified axiom. It requires a minimum of 5
arguments:

1. Number of tests to perform. The higher the value, the more security we win.
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2. Number of maximum failures. If the number of errors reaches this value, the exe-
cution halts. In our particular case, if one error arises, the axiom can be ruled out
immediately.

3. Name of the function to test. References the function to be tested with random
values.

4. Number of generator(s) needed. It is related to the next argument.

5. Name of at least one generator. This is a variable arguments list which allows to
specify as many generators as the User needs.

104 int main(int argc, char **argv) {
105 QCC_init(0);
106 printf("Axiom 1 Testing: ");
107 QCC_testForAll(1000, 10, axiom1, 2, QCC_genArrayIntLRD, QCC_genInt);
108 }

Listing 3.4: Main function for the running example

In this example, the axiom defined in Listing 3.3 named "axiom1" is tested with 1000
test cases, allows 10 errors and calls 2 generators: an array of integers generator and an
integer value generator. After compiling and linking the C file, the execution of the test
can be carried out:

109 Axiom 1 Testing: 1000 test passed (Failed 0) - Not sure 0!

Listing 3.5: Results of the running example

To conclude the example, the candidate axiom has passed all the tests with no failures
so, in terms of the massive random testing performed by QCC, this can be considered a
reasonable warranty of correctness.

Let us show an example of the output provided by QCC when a property does not
hold. Assume that we modify Listing 3.3 at "arraylist_size(l) == 0" with "arraylist_size(l)
== 1", so that we obtain a negative result, which indicates how many tests must have
been carried out to find the error, and the data set which made it fail. In this case, the
axiom is false as witnessed by the following input data (showed in square brackets) and
the value "454578811" that is inserted in the given test.

110 Axiom 1 Testing: Falsifiable after 1 test
111 [596, 658, 451, 540, 655, 53, 210, 180, 645, 91, 703, 905, 269, 593, 367, 164,

825, 935, 712, 450, 526, 271, 47, 554, 222, 876, 768, 965, 348, 190, 514,
917, 820, 961, 434, 452, 986]

112 454578811

Listing 3.6: Running example fail test

3.2 Automatic translation to QCC - AutoQCC Tool

The main objective of this module is to automatically generate a new file written
in C which contains QCC structures and which the user is able to execute in order to
verify candidate axioms. We named this tool AutoQCC, which stands for "Automatic
QuickCheck for C".

Our starting point is the automatic inference tool KS2 output, which issues a file con-
taining all the inferred axioms in a TXT format and a Java Object. At first sight, the
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information the TXT file provides is not helpful for our translators, so we must search for
a greater source of knowledge. We know the KS2 tool had been build in Java, and it has a
complex open-source structure we are going to describe in the following sections. Know-
ing the inner formations of the program, a method to extract all the information about
the result of the execution on a test program helps us to build our testing structures.

The solution applied in this project is to use the standard file returned as a Java Object.
As the translation language to perform the automatic translation is also Java, the common
standard object which serves as source of knowledge for the translator has a SER format.
Among the many advantages of this format, we find how simple is for the majority of
software to process it. In particular, in Java, if a class A implements the Serializable class,
the generated objects of this A class can be easily exported to a file formated as SER.

In this way, KS2 exports a SER formated file each time it infers properties for a new
program, and this contains all the objects created to automatically generate structures for
QCC and EACSL. As anticipated, we need to perform an automatic translation from the
SER file to generate C executable files.

The automatic inference tool KS2 is composed by many modules which work together
with K framework to generate a program contract. In this project study a part of these
modules in order to understand its functioning and to be able to explore the classes prop-
erly. The module shown in Figure 3.2, called "Inference" contains a library of tools KS2
uses to build the full inferred contract.

Figure 3.2: Inference module in KindSpec 2.0

We can consider Specification class is our starting node for our translation. It has two
attributes that are used to separate the automatically generated properties: CONTRACT
(from Contract class), which describes the inferred contract of a program, and candidateAx-
ioms, a Java List of Axioms that contain the inferred candidate axiom.

On one hand, a CONTRACT object contains the preconditions and the postconditions
similar to the ones we could see in Listing 2.4 stored as Lists of Axioms. Since the content
of this attribute is a list of verified axioms, we do not include them in the translation.
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On the other hand, candidateAxioms is also a List of axioms, so the analysis of this list
is not different from the one applied on the Postcondition.

Figure 3.3: Axiom Structure

The structure of an Axiom object is simple: it contains one right side and one left
side separated by an implication (⇒), which we call the antecedent and the consequent,
respectively. In KS2 implementation, each of these attributes is a List of Constraints. We
can see their structure in Figure 3.3.

A Constraint is also easy to describe, as we can see in Figure 3.4. It is formed by:

• leftTag: the name of the observer method.

• constraintOperator: the operator that relates both sides.

• rightValue: the expected returned value of the observer method.

Figure 3.4: Constraint object structure

The second item we focus on is SymbolicExecution. Its task during the automatic prop-
erty infer is to store all the methods (observers and modifier) analyzed for purposes not
related to this project. They are saved in a Java List as FunctionProfile objects, class that
collects all the parameters that define a method:

• name: indicates the name of the method.

• returnType: specifies the type of data the function returns.

• arguments: stores all the arguments the method needs to operate as Argument ob-
jects.

For example, if we consider "int isFull(struct set *s)", name would be "isFull", return
type is an integer, and there is only a user defined struct as argument.

A fragment of the second module we are studying is shown in Figure 3.5, and it is
tagged as "symbolic". It contains all the classes needed to perform the symbolic execution,
but for this project we are only considering the ones displayed in the Figure.

FunctionProfile class helps us define all the attributes a method has, like its name,
return types and a list of arguments. Using this class, a SymbolicExecution object can
completely define all the attributes of a modifier method, and all the observer methods
stored in its "programFunctions" attribute.

Knowing this information about the structure we can deduce both SymbolicExecution
and Specification contain all the necessary information for us to generate the testing files.
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Figure 3.5: Symbolic module in KindSpec 2.0

Now, all we have to do is, once the KS2 tool has inferred a program contract, to export
these two Java objects as SER formatted files and start the translation. The SER file is the
necessary input file for our tools, and serves as a link of both with KS2.

The full source code of AutoQCC tool has been attached to this document as Ap-
pendix file A. The following is a step by step explanation of the program execution flow.

To perform the translation we first must create an output file where to print the result.
Then, the writing can begin.

The initial step in all programs written in C is to declare the #include tags at the begin-
ning of the file. By default, we import stdio.h, string.h and the QC library quickcheck4c.h.

Next, we import the SER formatted file and extract the object contained in it. Specifi-
cation and SymbolicExecution classes contain all the information needed for the translators
to perform their tasks, therefore its necessary to recover them before starting the candidate
axiom translation.

SymbolicExecution object stores all the functions present in the contract and AutoQCC
tool use it as source. Generally, as we build a translation, we only need the method’s
name, its symbolic parameter and its expected return value, all of them recoverable from
Specification.

To begin the candidate axiom translation, we first need to declare variables for different
purposes:

• Counters: We need to iterate over Java Lists and, although we use the efficient
version of the For clause (For Each), we still need to enhance the output information,
for example, return to the user the number of axioms and candidate axioms present
in the contract. Other variables are used to count the number of types, the number
of tests to be performed, etc.

113 int axiomCounter = 1;
114 int typesCounter = 0;
115 int numberOfTests = args[0];
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• Data Structures: According to Listing 3.3, all the needed used in the QCC structure
must be declared at the beginning of each generated method. Besides, the main
method of the program needs to know which types of data QC needs to gener-
ate. Both variablesToDeclare and typesOfData lists are stored in a Java ArrayList data
structure.

116 List<List<FunctionType>> typesOfData = new ArrayList();
117 List<Argument> variablesToDeclare = new ArrayList();

• Auxiliary Data Structures: KS2 uses Java List or classes that implement Java List
to store information and perform its tasks. When recovering the data from either
Specification or SymbolicExecution, the same data structures are used.

118 List<FunctionProfile> functions = se.getProgramFunctions();
119 List<Axiom> post = spec.getContract().getPostcondition();
120 List<Axiom> candidateAxioms = spec.getCandidateAxioms();

• Strings: As reading the recovered data from the SER file, the information is stored
in plain text in order to be printed in the final file. To accomplish this, many String
variables keep this data until the end of the iterations. Along the described code the
String values include escape sequences which add tabulations (\t) and line breaks
(\n) to the final code in order to improve readability.

121 String finalString = "";
122 String main = "";

In order to perform the candidate axiom translation, the tool needs to iterate over the
lists containing the axioms of the postcondition and the candidate axioms. On each iter-
ation it follows the same steps:

1. Sets the header of the method including the type of axiom (candidate or not), the
number of the axiom (based on a counter variable we declared at the beginning)
and the arguments, explained above the Listing 3.3.

123 // Start of the For Each iteration
124 for (Axiom a: candidateAxioms) {
125 String headerString = "QCC_TestStatus axiom" + axiomCounter +

"(QCC_GenValue **vals, int len, QCC_Stamp **stamp) {\n";

2. Stores the left hand side and the right hand side of the axiom, namely, the an-
tecedent and the consequent, which correspond to the IF clause and the Return
clause from 3.3. They are both lists of Constraint objects, so it needs to iterate over
them using a For Each clause too.

126 List<Constraint> left = a.getLeftHandSide();
127 List<Constraint> right = a.getRightHandSide();
128

129 //Nested For Each loop start
130 for (Constraint c : left) {

3. For the antecedent part (IF clause):
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(a) On each of the inner iteration the tool saves the name, the operator and the
value of each Constraint object. If the value of the observer method is not
an integer (which is usually a boolean indicator 0 or 1, except for observer
methods like length() or size()), it means KS2 set a symbolic variable during the
inferring task, and it must add it to the variablesToDeclare list as an Argument
object. In such case, it need further information about the function it is adding
to the data structure, so it searches for it in the functions the SymbolicExecution
object provides. As depicted function when calling “findFunction(...)” from
Listing 3.7, doing this query returns a FunctionProfile object which contains the
full data about it. The required argument for this query are a list of all the
available observer methods and the name of the method we need to find.

131 String name = c.getLeftTag();
132 String value = c.getRightValue();
133 String co = c.getConstraintOperator();
134 counter++;
135

136 try {
137 int newValue = Integer.parseInt(value);
138

139 body += name + " " + co + "= " + newValue;
140 if(counter < left.size()-1) body+= " &&\n\t\t";
141 if(counter == left.size()-1) body+= ")";
142 }
143 catch(Exception e) {
144 FunctionProfile fpaux = findFunction(functions, name);
145 variablesToDeclare.add(new

Argument(fpaux.getReturnType(), value));
146

147 body += name + " " + co + "= " + value;
148 if(counter <= left.size()) {
149 body+= " &&\n\t\t";
150 } else body+= ")\n";
151 }

152 public static FunctionProfile findFunction(List<FunctionProfile>
funcs, String functionName) {

153 for (FunctionProfile fp: funcs) {
154 if(functionName.contains(fp.getName())) return fp;
155 }
156 return null;
157 }

Listing 3.7: Auxiliary method to enhance observer method information

(b) Finally, the type of data the observer method returns is read and is added to the
typesOfData list according to QCC types. Remember QCC has its own types of
data, for example "QCC_Int" corresponds to the int type of C.

158 List<String> tys = getFunctionTypes(functions, name);
159 List<FunctionType> aux = new ArrayList();
160 for (String s: tys) {
161 aux.add(new FunctionType(s, counter));
162 }
163 types.add(typesCounter, aux);
164 typesCounter++;
165 } // End of the nested For Each
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4. Includes the modifier method. Again, the SymbolicExecution object is used to en-
hance the data to be printed on the file, such as, the name of the function and its
arguments. The latter are stored into the variablesToDeclare list unless they have not
been already added.

166 body += " {\n\t\t\tret = " + se.getModifierProfile().getName() + "(";
167

168 List<Argument> ars = se.getModifierProfile().getArguments();
169 int arsCount = 0;
170 for (Argument ar : ars) {
171 variablesToDeclare.add(ar);
172 body += ar.getName();
173

174 if(arsCount <= ars.size()) body += ",";
175 }
176 body += "); //Modifier function\n";
177

178 initArgs = addArgsToBegining(variablesToDeclare);

5. For the consequent part (RETURN clause) the tools repeats the same steps as in 3.

6. Adds all the gathered info to a String variable whose content is printed in the file at
the end of all iterations.

179 writer.println(finalString);

Last, the only remaining part to generate is the main function of the program. Its aim
is to call all the created test functions using "QCC_testForAll" (responsible for the tests
execution in QCC) indicating:

• The number of tests to be performed. This is passed as an argument by the User
when executes the tool.

• The number of allowed errors. This value is set by default to "1" because with one
failure we can abort the testing as there is at least one case when the axiom is not
correct.

• The types of generated data needed. To do so we shall retrieve the information
from the typesOfData list and pretty print the variables that must be declared, i.e,
build a correct declaration following C syntax of all the variables stored in the vari-
ablesToDeclare list. This function, which is shown in Listing 3.8, has been declared
outside the main one in order to keep the readability of the axiom building process.

180 public static String prettyPrintTypes(List<FunctionType> types) {
181 String returnString = "";
182 int counter = types.size();
183

184 for (FunctionType ft: types) {
185 returnString += ft.getQCCtype();
186 if(counter-1 > 0) returnString += ",";
187 counter--;
188 }
189 return returnString;
190 }

Listing 3.8: Pretty print function for variables needed in the testing structure



22 Contract refinement by using QuickCheck

Again, as we need a call function for each axiom individually, an iteration must be
carried out.

191 String main = "int main(int argc, char **argv) {\n\tQCC_init(0);\n";
192 main += "\tprintf(\"QCC is testing AXIOMS... \");\n\n";
193

194 int i = 0;
195 while(axiomCounter >= i) {
196 main += "\tprintf(\"Axiom " + i + ": \");\n";
197 main += "\tQCC_testForAll(" + numberOfTests + ", 10, axiom" + i + ",

" + types.get(i).size() + ", " + prettyPrintTypes(types.get(i)) +
");\n\n";

198 i++;
199 }
200 main += "\n}";

Listing 3.9: main function of the QCC testing structure

To complete the translation, the main function and all the method calls are printed
into the file.

201 writer.println(main);
202 writer.close();

At this point we obtain a C file with all the axioms translated. The last step to complete
the testing structure must be performed by the user. Since the structures in C offer such
a vast variety of possible constructions, the automatically generated data QCC delivers
needs to be adapted to said structures. A full example to depict this is shown in the
Section ?? of this document.



CHAPTER 4

Property checking with E-ACSL

Frama-C is a suite of tools devoted to the analysis of the source code of software written
in C. It offers a static analysis (a computation of the code without executing it) which aim
to perform a more in-depth look at the source code.

The C analysis platform Frama-C has wide range of extensions which broaden the
capabilities of the tool and allow deeper understanding and control of the code. The
E-ACSL plug-in is one of these extensions, which supports runtime verification of the
C code. This task is done by translating the annotated C source code program p into
another program p’ that will be verified once is run with a test case and which will fail at
runtime if any of the assertions defined by the annotations is violated. If no annotation is
violated, it concludes that p has the same functional behaviour as p’. We can consider this
tool as an expansion of the Frama-C code analyzer as it performs dynamic verification
aside from the static one.

The E-ACSL plug-in works with a subset of the ACSL 1 notation, which can express
a wide range of functional properties thus, in order to take advantage of the tool, we
first need to translate into E-ACSL syntax the output from KindSpec 2.0. ACSL is a for-
mal specification language designed expressly to write program properties following a
function contract template. Besides, it can be used to express complete or partial specifi-
cations, from a low level ("the function expects an integer as return") to high level ("the
linked list returns the mean of the values stored in the odd positions"). This fact makes it
a perfect candidate to use in this project.

The E-ACSL plug-in uses first-order logic to create inner annotations. First-order logic
can use quantified variables over non-logical objects to express existence (∃ - exists sym-
bol) and universality (∀ - forall symbol) and also allows the use of sentences that contain
variables. For example, we can express "Toby is a dog" as "∃ a dog X, and X is a dog".

The source code of the program follows C syntax and its annotations can be written
at any point of the program as long as is delimited by a comment block and start with the
"@" symbol, i.e, "/*@ ... */". Also, E-ACSL provides a set of built-in predicates and logic
functions that may be handy for complex asserts.

Let us introduce an example whose annotations aim to check that the value of x is
equal to zero during the execution. Evidently, the code in Listing 4.1 does not fail at
runtime as the value assigned to x is 0, while the code in Listing 4.2 causes an execution
abort:

1http://www.frama-c.com/acsl.html
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203 int main(void) {
204 int x = 0;
205 /*@ assert x == 0; */
206 return 0;
207 }

Listing 4.1: E-ACSL correct example

208 int main(void) {
209 int x = 0;
210 /*@ assert x == 1; */
211 return 0;
212 }

Listing 4.2: E-ACSL error example

When annotating a program using E-ACSL language, we must compile the program
using Frama-C, and specify the E-ACSL plug-in has to be included, otherwise the annota-
tion is ignored because the GCC compiler does not consider comment blocks. However,
the compiler used by Frama-C is an extension of GCC which has been enhanced to read
the comment blocks tagged with an "@" symbol.

4.1 Translating KindSpec 2.0 contracts into EACSL program
specifications

The ACSL notation has a paramount notion among its functional properties, which
is the ability to define function contracts. These contracts express the behaviour of a
function in formal terms, following Hoare’s style [Hoa69] where preconditions, postcon-
ditions and/or invariants can be defined using clauses like requires, ensures and invariant,
respectively.

Remember that we are working with axioms that express a program property, and
our main objective is to eventually ensure its correctness.

Figure 4.1: E-ACSL translation flow

Following the diagram from Figure 4.1 we can see the translation flow is similar to
the QCC one except for two reasons: First, the libraries used come from Frama-C tool
and the expansion plug-in E-ACSL. Then, the generated executable file takes the source
code as input too because the system is performing an annotation into this code.



4.1 Translating KindSpec 2.0 contracts into EACSL program specifications 25

If we take as starting point the output generated by the refinement process described
in Section 3.1, we have seen the final form of axioms correspond to an implication that
relates preconditions p and postconditions q. Now, a translation from the KS2 output to
ACSL notation is needed in order to be able to use the E-ACSL plug-in. This annotation is
placed above the modifier method for readability purposes, but it could be put anywhere
in the code as is typed inside a comment block.

The notation offers a syntax based on formal assertions, where properties are easy to
define. Besides, it has built-in predicates and logic functions, most of them based in C
pointers, all of them marked with a backslash, both to indicate they are already defined
and to prevent them to be overwritten. As an example consider \valid(p) that checks if
pointer p has a valid memory allocation, and \result, that retrieves a function result.

Let us assume one of the previous axioms generated by KS2:

213 arraylist_isFull(list)=0 ^ arraylist_size(list)=0 ^ arraylist_find(list,
element)=0 ^ arraylist_isNull(list)=0 ^ arraylist_isEmpty(list)=1)

214 =>
215 (arraylist_size(list)=1 ^ arraylist_find(list, element)=1 ^

arraylist_isNull(list)=0 ^ arraylist_isEmpty(list)=0 ^ ret=1)

The translation from KS2 axiom to ACSL formulas is quite immediate as we only
need to adapt the logic connectors (change ""̂ by "&&" and the boolean values (the plug-
in does not interpret 0’s and 1’s as boolean values as C does). Also, if we are working with
pointers, the clause \valid(s) is needed to check the validity of the argument’s memory
allocation. The ACSL annotation obtained from the previous KS2 axiom is the following:

216 /*@\valid(list);
217 ensures
218 (arraylist_isFull(list)==\false && arraylist_size(list)==\false &&

arraylist_find(list, element)==\false && arraylist_isNull(list)==\false &&
arraylist_isEmpty(list)==\true)

219 ==>
220 (arraylist_size(list)==\true && arraylist_find(list, element)==\true &&

arraylist_isNull(list)==\false && arraylist_isEmpty(list)==\false &&
\result==1);

221 */

Listing 4.3: E-ACSL Example Translation

Note a one-to-one correspondence of the implication seen in the KS2 output and the
translation in Listing 4.3. The ensures clause encompass all commands until it finds a
semicolon. In this case the clause is used because we want to guarantee that, provided
the precondition is satisfied, the postcondition holds in runtime.

It is possible that the result of the used functions is stored in a variable for which we
do not know its value. For example, if the list’s length was x before the element insertion
and the process is not successful (\result == 0), after performing the operation, the length
will be the same. In this case we have to introduce universal quantifiers in order to ensure
this property. Besides, we use built-in functions from E-ACSL which save the variables
values before the ensures implication (\old) and after it (\at(variable_name, Post)):
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222 /*@\valid(list);
223 ensures \forall integer i1, i2, i3;
224 i1 >= 0 && (i2 == 1 || i2 == 0) && (i3 == 1 || i3 == 0) ==>
225 (arraylist_isFull(list)==\false && arraylist_size(list)==\false &&

arraylist_find(list, element)==\false && arraylist_isNull(list)==\false &&
arraylist_isEmpty(list)==\true)

226 ==>
227 (arraylist_size(list)==\true && arraylist_find(list, element)==\true &&

arraylist_isNull(list)==\false && arraylist_isEmpty(list)==\false &&
\result==1);

228 ==>
229 \old(i1) == \at(i1, Post) &&
230 \old(i2) == \at(i2, Post) &&
231 \old(i3) == \at(i3, Post)
232 */

Listing 4.4: EACSL Example Translation

Remember the KS2 output consists of a set of axioms that describe the program’s
behavior as independent axioms, that capture the method behavior for one particular
case (the structure is empty, or has already the element contained, is null...). To express
individual cases, E-ACSL allows defining function contracts based on behaviors using
the keyword \behavior. We already know how to translate an axiom, so all boils down to
structure them in the following way:

233 /*@ \valid(list)
234 behavior ListEmpty:
235 <ensures axiom1 applied on list>;
236

237 behavior ElementIncluded:
238 <ensures axiom2 applied on list>;
239 ...
240 behavior ListNull:
241 <ensures axiomN applied on list>;
242

243 complete behaviors
244 disjoint behaviors
245 */

Listing 4.5: Set of axioms in ACSL

When the contract is structured in behaviors, it is not required to express a "complete"
set of behaviors, that is, some cases might not be covered. Similarly, it is not required that
two distinct behaviors do not overlap. If any of these conditions are desirable they can
be specified at the end of the annotation block and become an extra check of the contract:

• Complete behaviors: Specifies that a set of behaviors covers all the possible con-
ducts the program might have. The clause can depict which behaviors from the
specified set are the one that make this condition true. If none is specified, the
plug-in concludes all do.

• Disjoint behaviors: Specifies that a set of behaviors are pairwise disjoint, that is, the
possible conducts the program might have are expressed individually and do not
overlap. Similarly to the previous one, the clause can depict which behaviors make
this condition true and if none is specified, all of them are considered.

Finally, in the same way as in previous sections, the elements used to define the prop-
erty are observer functions from the analyzed code. For the current version of E-ACSL
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this usage is not available, so a translation of these must be performed, according to the
ACSL notation.

All user-defined functions in this formal language need a header declaration, where
the return type, arguments (and their type) and function call are indicated. Then, E-ACSL
axioms (different from the ones we are generating) must be defined as rules the function
must follow to perform the function task.

Here is an example of the isFull(s) ACSL function:

246 /*@ axiomatic IsFull {
247 logic boolean isFull(struct arraylist *list) = isFull(list);
248

249 axiom NotFull:
250 \forall struct arraylist *list;
251 list->size == list->capacity ==> \true;
252

253 axiom Full:
254 \forall struct arraylist *list;
255 list->size < list->capacity ==> \ false;
256 }*/

Listing 4.6: Translation to EACSL

It should be mentioned that the created axiomatic structure is used to include and or-
ganize the axioms and functions, but should not be used to call the user-defined function
body as is not recognized by the compiler.

4.2 Translated ACSL specification for the running example

In our running example described in Section 2.2 we started with the following axioms:

257 A1: (arraylist_isEmpty(l)=0 ^ arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze
^ arraylist_find(l,item)=0 ^ arraylist_isFull(l)=1) => (arraylist_isEmpty(l)=0 ^
arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze ^ arraylist_find(l,item)=0 ^
arraylist_isFull(l)=1 ^ ret=0) ^

258

259

260 A2: (arraylist_isEmpty(l)=0 ^ arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze
^ arraylist_find(l,item)=0 ^ arraylist_isFull(l)=0) => (arraylist_isEmpty(l)=0 ^
arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze + 1 ^
arraylist_find(l,item)=1 ^ ret=1) ^

261

262

263 A3: (arraylist_isEmpty(l)=0 ^ arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze
^ arraylist_find(l,item)=1) => (arraylist_isEmpty(l)=0 ^ arraylist_isNull(l)=0 ^
arraylist_size(l)=?l_sizze ^ arraylist_find(l,item)=1 ^ ret=0) ^

264

265

266 A4: (arraylist_isEmpty(l)=1 ^ arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze
^ arraylist_find(l,item)=0 ^ arraylist_isFull(l)=1) => (arraylist_isEmpty(l)=1 ^
arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze ^ arraylist_find(l,item)=0 ^
arraylist_isFull(l)=1 ^ ret=0) ^

267

268

269 A5: (arraylist_isEmpty(l)=1 ^ arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze
^ arraylist_find(l,item)=0 ^ arraylist_isFull(l)=0) => (arraylist_isEmpty(l)=1 ^
arraylist_isNull(l)=0 ^ arraylist_size(l)=?l_sizze ^ arraylist_find(l,item)=0 ^
arraylist_isFull(l)=0 ^ ret=0) ^
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270

271

272 A6: (arraylist_isEmpty(l)=0 ^ arraylist_isNull(l)=1 ^ arraylist_size(l)=0 ^
arraylist_find(l,item)=0 ^ arraylist_isFull(l)=0) => (arraylist_isEmpty(l)=0 ^
arraylist_isNull(l)=1 ^ arraylist_size(l)=0 ^ arraylist_find(l,item)=0 ^
arraylist_isFull(l)=0 ^ ret=0)

Listing 4.7: Start axioms

After translating them into QCC properties, we ran the tests with the automatic test
case generator QuickCheck, and none of them had been falsified.

Then, for their dynamic verification we proceeded to translate them into E-ACSL for-
mulas following the methodology described in the previous section. In Listing ?? we
show the final ACSL specification, where the annotation is depicted in a big comment
block placed before the insert method. First, user defined logic functions that are needed
for constructing the properties are described in structures tagged as axiomatic. Each of
these are part of the manual implementation the user needs to due to the impossibility
to generate automatic mathematical specifications. Then, each axiom is defined as a be-
havior. In some cases, as we mentioned before, we might need to introduce the universal
quantifiers forall to build a correct assertion. The code from Listing 4.8 shows a fragment
from the final contract written in E-ACSL. Appendix C contains the full:

273 /*@
274 // ------- USER DEFINED LOGIC FUNCTIONS -------
275 axiomatic IsNull {
276 logic boolean isnull(struct arraylist *l) = isNull(l);
277 axiom Null:
278 \forall struct arraylist *l;
279 l->body == \null ==> \false;
280 axiom NotNull:
281 \forall struct arraylist *l;
282 l->body != \null ==> \true;
283 }*/
284

285 /*@ axiomatic IsEmpty {
286 logic boolean isempty(struct arraylist *l) = isEmpty(s);
287 axiom Empty:
288 \forall struct arraylist *l;
289 l->size == 0 ==> \true;
290 axiom NotEmpty:
291 \forall struct arraylist *l;
292 l->size > 0 ==> \false;
293 }*/
294

295 /*@ axiomatic IsFull {
296 logic boolean isfull(struct arraylist *l) = isFull(s);
297 axiom NotFull:
298 \forall struct arraylist *l;
299 l->size == l->capacity ==> \true;
300 axiom Full:
301 \forall struct arraylist *l;
302 l->size < l->capacity ==> \false;
303 }*/
304

305 /*@ axiomatic Size{
306 logic boolean size{L}(struct arraylist *l, integer a) = length{L}(s, a);
307 axiom True:
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308 \forall struct arraylist *l, integer a;
309 l->size == a ==> \true;
310 axiom False:
311 \forall struct arraylist *l, integer a;
312 l->size !=a ==> \false;
313 }*/
314

315

316 /*@ axiomatic Contains {
317 logic integer contains(integer x, struct arraylist *l) = contains(l, x);
318 axiom Found:
319 \exists struct arraylist *l, integer i, integer x;
320 l[i] == x ==> \true
321

322 axiom NotFound:
323 \forall struct arraylist *l, integer i, integer x;
324 l[i] != x ==> \false;
325 }*/
326

327 // ------- BEHAVIOURS DEFINITION -------
328 /*
329 requires \valid(l);
330 behavior A:
331 ensures \forall integer ?l_sizze;
332 (?l_sizze >= 0) ==>
333 arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze && arraylist_find(l,item) == 0 && arraylist_isFull(l) == 1) ==>
334 arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze && arraylist_find(l,item) == 0 && arraylist_isFull(l) == 1 &&
\result) ==>

335 \old(?l_sizze) == \at(?l_sizze, Post)
336

337

338 behavior B:
339 ensures \forall integer ?l_sizze;
340 (?l_sizze >= 0) ==>
341 arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze && arraylist_find(l,item) == 0 && arraylist_isFull(l) == 0) ==>
342 arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze + 1 && arraylist_find(l,item) == 1 && \result) ==>
343 \old(?l_sizze) == \at(?l_sizze, Post)
344 ...
345 behavior F:
346 ensures arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 1 &&

arraylist_size(l) == 0 && arraylist_find(l,item) == 0 && arraylist_isFull(l)
== 0) ==>

347 arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 1 && arraylist_size(l) ==
0 && arraylist_find(l,item) == 0 && arraylist_isFull(l) == 0 && \result)

348

349

350 complete behaviors
351 disjoint behaviors
352 */
353 int arraylist_insert(arraylist* l, void* item) {...}

Listing 4.8: Final contract for arraylist_insert.c

To check whether the candidate axioms generated by KS2 are correct or not, one must
run this code with the E-ACSL plug-in from Frama-C. As stated before, the whole pro-
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gram is compiled by an extension of GCC and outputs an execution file if the syntax is
correct. During execution, if no assert clause is violated and no error is returned, it does
not fail at runtime, and we can assure the contract is correct. Otherwise, the assert clause
that does not hold during execution is identified.

After performing both tests we can conclude the following based on the results:

1. If all the tests for all the inferred candidate axioms pass the QCC tool, the checking
of the axioms can go through the second tool. One single error here would mean
there is one case where the property does not hold, and the axiom is not correct.

2. If the program is successfully executed with using the Frama-C plug-in E-ACSL, it
would mean the added annotation is correct. Therefore, we can consider the axiom
as correct and include it in the final axiom list that swell the contract

Last, it should be mentioned that the user-defined logic functions are defined by the
tester. For the running project, we manually inserted the functions. This task requires an
in-depth knowledge and skill in Mathematics and Logic as one have to express in formal
terms the methods declaration. The result of the second checking tool using E-ACSL
plug-in tells us the inferred candidate axioms hold using the User-defined logic functions,
but it cannot assure their definition has been done in a proper way. For example, "IsFull"
logic function from Listing 4.6 checks if a struct member, namely "size" is equal to or less
than another member called "capacity". If this logic function had been incorrectly defined
and had made the test pass by chance (not failing at runtime), it would have resulted in
a false negative, that is, asserting the program is error free when in fact contains an error.

Also, it can be even the opposite and deliver a false positive: abort the execution
because it fails at runtime when the axiom is correct. In this case it might be the logic
function definition the one not being accurate.

4.3 Automatic translation to EACSL - AutoEACSL Tool

Similarly to the previous tool AutoQCC described in Section 3.2, the main objective of
this module is to automatically generate a new file written in C. It uses exactly the same
structures shown in 3.2 and 3.5. Again, the source code is displayed in Appendix B.

Now, the file contains the source code KS2 analyses and a ACSL annotation is added
to it. Remember EACSL is printed in the original program as a comment block "/*@...*/".
The execution performance results unaffected as the comment block is ignored by the C
compiler and is only readable by the EACSL plug-in.

The strategy followed is almost the same as in AutoQCC, except this time we read
two objects instead: The SER file to gather the execution information, and the source
code we are analyzing (whose contract we are verifying) is needed in order to merge the
existing code and the annotation.

An overview of the generated annotation which results in a code similar to Listing
?? would be: First the user-defined methods (tagged as "axiomatic") to use in the ensure
clauses are created. Then, "behaviors" are defined, described in Listing 4.5 according
to the number of axioms. Each behavior includes an ensures clause which checks the
implication specified in the axiom. Finally, if any of the items specified either in the
antecedent or the consequent is a variable, a forall clause is added at the beginning of the
ensures clause.

Our starting point for this second tool is the source code. For readability purposes,
the ACSL annotation should be placed right above the modifier function of the analyzed
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program. To do so, first the source code has to be read and then printed to the new file
the tool is going to generate until it reaches the modifier function.

Then, the SER file is imported and both Specification and SymbolicExecution objects are
extracted.

After this the building of the user-defined functions of the annotation starts. As we
mentioned in Section 4.1, these functions are required by the annotation as E-ACSL does
not support already-defined program methods call yet. To read all the observer meth-
ods used in the contract, SymbolicExecution object is used. As it iterates over the list of
methods, it builds the structure of the method in terms of logic functions. It should be
mentioned that this functions cannot be automatically generated, since each of them de-
pends on the original observer method definition. The tester must manually complete
this part in order to make this logic functions available.

To generate the ensures clauses we follow the same strategy as in AutoQCC. This part
also requires auxiliary variables line counters, data structures and Lists. At each iteration
over the list of axioms the tool:

1. Stores the Constraint methods that form its antecedent and its consequent.

2. Builds both the antecedent and the consequent by concatenating the Constraint con-
tent using "&&".

3. Detects if any of the expected results of the previous two constructions includes a
variable. If so, it is stored in an auxiliary structure which collects the variables we
need to add to the forall clause.

4. If there is at least one variable stored in the auxiliary structure (else clause from
Listing 4.9, it builds the forall clause, specifying that any variable must be equal
or greater than zero, as the expected results are 0 and 1 (when the observer meth-
ods return a boolean value) or a positive integer number (in observer methods like
"length"). Also, if the variable relates the antecedent and the consequent, an extra
check which tests if the value before (\old ) and after (\post) the program execution
is the same is needed. For example, consider the running example of this project. If
an element is successfully inserted in the data structure, the length before the exe-
cution is "x" and after it is "x+1". Assuming "x" is the Integer number 4, "x+1" would
be equal to 5. This part starts after the comment block "OLD-POST" in Listing 4.9.

5. Builds the final structure of each behavior adding the ensures clause, the forall clause
(if applicable), the antecedent and the consequent, and the \old / \post clause.

354 if (variablesToEnsure.isEmpty()) {
355 finalAxiomsBehaviors += header + axiomBehavior + "\n\n";
356 } else {
357 int varSize = variablesToEnsure.size();
358

359 pre += "\\forall integer ";
360 for (int i = 0; i < varSize; i++) {
361 pre += variablesToEnsure.get(i);
362 if (i < varSize-1) pre += ",";
363 }
364 pre += ";\n\t\t";
365

366

367 for (int i = 0; i < varSize; i++) {
368 pre += "(" + variablesToEnsure.get(i) + " >= 0)";
369 if (i < varSize-1) pre += " && ";
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370 }
371 pre += " ==>\n";
372

373 /*
374 OLD-POST: Final ensures clause that makes sure the variables have

the same value before and after the execution
375 */
376 for (int i = 0; i < varSize; i++) {
377 post += "\\old(" + variablesToEnsure.get(i) + ") ==

\\at(" + variablesToEnsure.get(i) + ", Post)";
378 if (i < varSize-1) pre += "&&";
379 }
380 post += "\n";
381

382 finalAxiomsBehaviors += header + pre + "\t" + axiomBehavior
+ "==>\n" + "\t" + post + "\n\n";

383 }

Listing 4.9: \forall constraint building for variables

After the automatic generation of each behavior per axiom, the final step is to print
the remaining part of the original source code into the final generated file.



CHAPTER 5

Full System Integration

In this chapter we show the final system structure where we integrate the two software
artifacts into the contract synthesis methodology.

Figure 5.1 shows the full system integration, where the merge between AutoQCC and
AutoEACSL systems are described.

Figure 5.1: Full system translation flow

5.1 Automatica.sh - Shell script for tool execution

Both tools have been built in Java language so, in order to execute them we can export
them individually to JAR format. In this way, we only need to execute the JAR file with
the right arguments.

To ease the use of these tools the system uses command-line interface (CLI) which
allows the User to execute each tool from the terminal. The script has been developed

33
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in Shell language for Unix machines. It has a simple structure as it only has to call the
JAR files and pass them the necessary arguments. Most of the work done for the script
is to normalize the input and show detailed errors when the requirements are not met.
Listing 5.1 contains an example of the variables used for the check: numberFormat is used
to assure an argument is an integer value, while fileFormat trims the input file name in
two parts1, the name and the extension, keeping only the second one.

384 #!/bin/bash
385 numberFormat=’^[0-9]+$’
386 inputFileFormat=$(echo "$1" |cut -d"." -f2);

Listing 5.1: "Automatica" script for AutoQCC and AutoEACSL

To execute the translators the User needs to:

1. Indicate the name of the script and the input serialized file (SER format).

2. Choose the tool wanted to use by indicating a flag.

• "-quickcheckforc" or "-qcc" selects the AutoQCC tool.
• "-eacsl" selects the AutoEACSL tool.
• "-full" or "-f" uses both tools to perform the two translations.

3. Pass one argument, depending on the selected tool. AutoQCC needs to know the
number of tests it must perform. AutoEACSL asks for the source file into which it
has to add the annotation. If both tools are called with the "-full" flag, these two
arguments have to be passed, first the number of tests and then the source code file.

The Automatica.sh script from checks in its first block if the file input format is a SER
formatted file (KSS2 is also allowed) that contains a Java Serializable object. As the input
file is the first argument of the script call, we have to analyze the $1 variable extension
name (remember in Shell $0 is the name of the script).

Then, the second block checks the number and type of arguments it has been passed.
Taking into account we need at least 4 options and the maximum allowed arguments to
properly call the script is 5, this block returns detailed instructions of the script call if the
constraints are violated. Also, whenever the AutoQCC tool is called, we use the $re to
check it is an integer value.

387 case $2 in
388 -qcc | -quickcheckforc)
389 if [[ $3 =~ $re ]]; then
390 java -jar AutomaticaQCC.jar $file $3
391 fi ;;
392 -eacsl)
393 java -jar AutomaticaEACSL.jar $file $3 ;;
394 -f | -full) if [[ $3 =~ $re ]]; then
395 java -jar AutomaticaQCC.jar $file $3
396 java -jar AutomaticaEACSL.jar $file $4
397 else
398 exit
399 fi ;;
400 esac

Listing 5.2: "Automatica" script for AutoQCC and AutoEACSL

1-d flag for cut command splits the name of the file by the indicated delimiter. -fN collects the Nth frag-
ment generated by the splitter

2The KSS file type is primarily associated with ’FabTrol MRP’ by FabTrol Systems, Inc.
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Finally, a case command is used in Listing 5.2 to execute the proper translator. As
stated in the above list, the tools can be used individually, if we only want to perform
a verification part, or together, which is the purpose of this methodology. Each of them
generates a C file that contains the translations which is saved in the same directory as
the JAR file.

We must mention that this script returns useful information when the input is not
correct, but this part has not been included in this Chapter. Appendix D contains the full
script content.

5.2 Towards completely automated translators

The created tools automatically generate files whose purpose are testing the contract’s
candidate axioms. The translation from candidate axioms to testing structures is mostly
automated but, as the libraries QC offers only produce test cases for primitive variables,
the translation is not executable. We invite the tester to check in depth the generated
clauses and complete parts considered defective or unsound.

For the AutoQCC tool, the IF-RETURN-ELSE clause is built starting from the list of
axioms provided by the SER file. This part is completely automatic. Remember this struc-
ture declares variables at the top of each function whose value come from the automatic
random test generator QC. In most of the cases, the needed values are primitive, but if
we find a user-defined structures (very common in C due to the language’s versatility),
QC does not generate a suitable test case for it. During the axiom list analysis on the Au-
toQCC execution we may encounter a non-primitive variable, and this will not be added
to the QC functions call (described in Section 3.1) located in the main function.

A good solution, which we reserve for future work is to expand QC’s libraries in
order to obtain suitable generators for any kind of structures. Adding this capability to
our system, we can develop a fully automated tool.





CHAPTER 6

Experiment

In this chapter we test the tools we have developed in order to assure they can be used
to fulfill the objective we established. Beside, we aim to prove the project has not been
developed to fit the necessities of one single program. The AutoQCC can translate any
SER file generated by the automatic inferring process KS2 into C code. Remember this
translation needs thorough checking and might need improvements which are up to the
tester to perform.

To check the proper functioning of the tool, in the next section we expose the results
for a linked list data structure example.

6.1 Testing linked list data structure - Insert.c

This experiment tests the candidate axioms of the linked list data structure shown in
Listing 6.1. The program includes one modifier method called insert and observer meth-
ods related to the set.

401 struct lnode {
402 int value;
403 struct lnode *next;
404 };
405

406 struct set {
407 int capacity;
408 int sizze;
409 struct lnode *elems;
410 };
411

412 //Modifier method
413 int insert(struct set *s, int x) {...}
414

415 //Observer methods
416 int isnull(struct set *s) {...}
417

418 int isempty(struct set *s) {...}
419

420 int isfull(struct set *s) {...}
421

422 int contains(struct set *s, int x) {...}
423

424 int length(struct set *s) {...}

After automatically performing the contract inference by using the KS2 tool, we ob-
tain the following candidate axioms list which we aim to falsify with AutoQCC:

37
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425 POSTCONDITION Q:
426 AXIOMS:
427 A1: (isfull(s) = 0 ^ length(s) = ?l0 ^ contains(s,x) = 0 ^ isnull(s) = 0 ^

isempty(s) = 0 ^ ?l0 >= 2) => (length(s) = l0 + 1 ^ contains(s,x) = 1 ^
isnull(s) = 0 ^ isempty(s) = 0 ^ l0 >= 2 ^ ret))

428

429 A2: (isfull(s) = 0 ^ length(s) = ?l0 + 1 ^ contains(s,x) = 1 ^ isnull(s) = 0 ^
isempty(s) = 0 ^ ?l0 >= 2) => (isfull(s) = 0 ^ length(s) = ?l0 + 1 ^
contains(s,x) = 1 ^ isnull(s) = 0 ^ isempty(s) = 0 ^ ?l0 >= 2 ^ ret)

430

431 A3: (isfull(s) = 0 ^ length(s) = ?l0 + 1 ^ contains(s,x) = ?c ^ isnull(s) = 0 ^
isempty(s) = 0 ^ ?l0 >= 2) => (isfull(s) = 0 ^ length(s) = ?l0 + 1 ^
contains(s,x) = ?c ^ isnull(s) = 0 ^ isempty(s) = 0 ^ ?l0 >= 2 ^ ret);

Listing 6.1: KindSpec 2.0 output for the running insert.c

Following the strategy described in previous chapters, we analyze the SER file and
translate it to C language. Let us show an example of the generated code by AutoQCC.
The first axiom (A1) has been translated in he following way:

432 int ret = 0;
433 int ?l0 + 1 = *QCC_getValue(vals, 0, int*);
434 struct set * s = *QCC_getValue(vals, 1, int*);
435 int x = *QCC_getValue(vals, 2, int*);
436

437 //Left Hand Side - Antecedent of the Axiom
438 if (isfull(s) == 0 &&
439 length(s) == ?l0 + 1 &&
440 contains(s,x) == 0 &&
441 isnull(s) == 0 &&
442 isempty(s) == 0 &&
443 ?l0 >== 2) {
444 ret = insert(s,x); //Modifier function
445

446 //Right Hand Side - Consequent of the Axiom
447 return (length(s) == ?l0 + 2 &&
448 contains(s,x) == 1 &&
449 isnull(s) == 0 &&
450 isempty(s) == 0 &&
451 ?l0 >== 2 &&
452 ret == 1);
453 } else {
454 return QCC_NOTHING;
455 }

Next we must check the code for possible mistakes in order to create an executable C
file. This step is necessary to avoid both small and big errors that might alter the normal
execution. Also, we can add some improvements to the code that can prevent errors. For
example, Listing 6.1 has the following errors:

1. The antecedent shown in describes the result of the length observer method as ’?l0
+ 1’, while the consequent says ’?l0 + 2’. ’?l0’ variable stores the length of the list ’s’.
It is obvious then that executing this version of the code results in an error, because
the execution path never satisfies the guard of the IF clause.

2. Variables in C only allow letters, digits and underscores, so ’?l0’ has to be redefined.
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3. As described in Section 3.2, a Constraint object allows to store the constraintOperator,
which relates the function’s name and its expected value. Normally it only includes
an equal sign (=), but sometimes can specify other relation, like greater or equal
than (>=). The AutoQCC’s parser cannot infer when this happens, so it adds an
extra equal sign (resulting in a ’>==’) every time, because in C syntax comparisons
are expressed as ’==’.

Finally, as we are working with a data structure which has no generator in QC li-
braries. As QC can generate arrays of random numbers we can manually add this data.
Listing 6.1 shows the final state of the translation, which is fully executable:

456 int ret = 0;
457 int* items = *QCC_getValue(vals, 0, int*);
458 int x = *QCC_getValue(vals, 1, int*);
459

460 struct set *s = new(50);
461

462 int i;
463

464 for (i = 0; i < vals[1]->n; i++) {
465 insert(s, ((uint8_t *)items) + (i*sizeof(int)));
466 }
467

468 int l0 = length(s);
469 //Left Hand Side - Antecedent of the Axiom
470 if (isfull(s) == 0 &&
471 length(s) == l0 &&
472 contains(s,x) == 0 &&
473 isnull(s) == 0 &&
474 isempty(s) == 0 &&
475 l0 >= 2) {
476 ret = insert(s,x); //Modifier function
477

478 //Right Hand Side - Consequent of the Axiom
479 return (length(s) == l0 + 1 &&
480 contains(s,x) == 1 &&
481 isnull(s) == 0 &&
482 isempty(s) == 0 &&
483 l0 >= 2 &&
484 ret == 1);
485 } else {
486 return QCC_NOTHING;
487 }

The result of the execution for the testing procedure of the inferred candidate axioms
of the linked list data structure is depicted in Table 6.1:

Structure Tested #Tests #QCC_OK #QCC_FAIL #QCC_NOTHING Test passed?
axiom1 1000 1000 0 42 Yes
axiom2 1000 1000 0 20 Yes
axiom3 1000 1000 0 14 Yes

Table 6.1: Insert.c candidate axioms test results

Analyzing the obtained outcome, we can see the number of positive results (#QCC_OK)
matches the number of tests performed, thus we can conclude the candidate axioms have
passed the first checking test. Remember that if the candidate axiom is falsified by one
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single test, that is, if we find one case when the axiom is not true for a valid input, it
can be ruled out. This is tagged by the #QCC_FAIL flag. Also we observe each test had
several #QCC_NOTHING flags. These are the cases when QC generated random data
which was considered not valid by the IF clause.

Finally, the last step to fully determine if these axioms can be promoted to solid ax-
ioms is to dynamically check the axioms by executing the AutoEACSL annotated pro-
gram using the Frama C E-ACSL plug-in. The generated program, as mentioned in Sec-
tion4.2, also needs user modification to define the logic functions the plug-in needs to
run. Unfortunately, the current version of E-ACSL does not support user-defined logic
function call, fact that makes impossible for us to perform the final check. For this reason,
we look forward to fully complete the checking procedure once the plug-in supports the
mentioned feature.



CHAPTER 7

Conclusions

To conclude, this project develops a double methodology to refine automatically syn-
thesized contracts generated by the discovery tool KindSpec2.0, and accomplishes a dy-
namic verification of the properties of the considered C program. These are the objectives
we met:

• Translation of KindSpec’s output to a form QuickCheck can formally analyze.

• Testing and static verification of candidate axioms to obtain a refined list of final
axioms.

• Translation of KS2 axioms to ACSL annotations that are integrated into the consid-
ered code to be dynamically verified with the E-ACSL plug-in.

• Coupling and partial automation of the translation tools.

Let us mention that the developed system enhances and refines the capabilities of an
existing software, and also relies on external libraries by delegating some core tasks. This
prevents us from dealing with complex data structures such as graphs, which are not
supported by the external coupled systems.

Automatic techniques are a key factor for reducing the laborious tasks of both speci-
fying contracts and creating test cases that check the sound behavior of the program. The
combination of automatic systems like KS2 and and the tools developed in this project
can help to this cause. Also, as for the future of Software Testing, collaboration between
automatic tools can result in an efficient way of performing automatic tests, either be-
cause a partitioning of the task among the collaborators is produced or because of the
synergy among several complementary tools.

Along the project development, we had to face some challenges. Both tools required
previous comprehension of the environment where they were built. QCC has been de-
veloped in C language and its source code has been made efficient by using all the ex-
pressive power of the language, fact that enlarged its study time. During the testing part
of this module problems related with C language arose. As mentioned in this document,
the AutoQCC tool is not fully automated, and may require modifications, which are not
trivial to make if the knowledge of the C language is not very extensive (mainly related
to pointer access and macro usage). For this reason we strongly recommend the user to
acquire some skill in C language.

The E-ACSL tool, on the other hand, required learning both the coupling between
Frama-C and the E-ACSL plug-in and the ACSL notation needed to perform transla-
tions. In this part, knowledge related to Logics and Mathematics is required in order
to correctly complete the structures (skeletons) from the annotations which AutoEACSL
automatically adds to the source file.
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One of the biggest problems we encountered also comes from the Frama C plug-
in. User-defined logic functions are needed to adapt the testing structures to the source
code. Not supporting this ability prevented us from fully check the candidate axioms of
an inferred contract. The issue itself could not have been avoided, but if had arose earlier,
we might have had time to change our strategy in other direction.

Finally, in relation to the Computer Science this project combines several skills ob-
tained during the four-year training. Developing code and adapting to any programming
language are the top two abilities among a Computer Scientist basic competences, and
they have been widely applied, both in developing the tools (AutoQCC and AutoEACSL)
and in generating the proper translations for the final testing files (written in C and ACSL
notation).

Regarding the Software Engineering field, many other abilities have been exploited.
All the training related to logical and mathematical terms was needed to understand in
first place the objective of the project, and also to develop a suitable strategy to accom-
plish such approach. Another principal task of the project was to build a software formed
by coupled modules which, at the same time, must communicate with other tools.

Overall, the project required many different yet complementary transversal compe-
tences. Analyzing the problem related to Software testing we are facing is crucial to offer
a practical (and suitable) solution (CT_02, CT_03). Besides, since the field of study is
reserved to the research environment in Software Engineering, manipulation of specific
tools (CT_13) is needed.



CHAPTER 8

Future work

As already mentioned in Chapter 7, the developed tools are not considered fully auto-
mated as the generated files result of their execution are not directly executable. This is
because the required extended library is not available for QC, which would allow us to
offer automatic random testing for C structures.

In the future, we plan to develop a general test generator for C that can develop test
cases for any C structure by using the already defined primitive type generators. We
are based on the principle that, eventually, every struct will have a primitive type for its
members, that is, each element of the composite data type can be a primitive type or a
User-defined type, which in turn will have primitive types or more similar structures.

Taking this into account, QCC libraries could be expanded and include general auto-
matic random test generators that come handy when the C source code includes complex
structures. Besides, as this approach takes advantage of the already built generators the
efficiency would only depend on the depth and breadth of the pointers, that is, as more
complex a struct grows, pointers reference more and more values (memory locations),
which need a random value to generate a test case.

However, the presented idea could not result efficient enough to work with complex
data structures like linked lists or hash tables. A second extension of the AutoQCC tool
could be including libraries that generate random values for this kind of structures.

If a general generator were integrated to the AutoQCC tool, we can fully automate it,
as we will be able to create automatic random test cases for any C data type.

On the other hand, even though AutoEACSL has not the same potentiality, we still
can provide a library for the most common user-defined functions. With an intermedi-
ate interface, the User can select which functions work best to substitute the observer
methods, and add them automatically to the annotation. However, this library has to
be checked and probably modified by the tester as each data structure can be developed
following a different strategy each time.

Besides, as we mentioned at the end of the Chapter 6, E-ACSL plug-in does not sup-
port user-defined logic functions call yet, but their documentation concludes saying it is
coming soon. We look forward to complete our testing procedure when the capabilities
of the plug-in are enhanced.
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APPENDIX A

AutoQCC source code

488 import gui.InferenceData;
489 import inference.Axiom;
490 import inference.Constraint;
491 import inference.Specification;
492 import symbolic.Argument;
493 import symbolic.FunctionProfile;
494 import symbolic.SymbolicExecution;
495

496 import java.io.*;
497 import java.util.ArrayList;
498 import java.util.List;
499

500 public class AutoQCC {
501 public static void main(String args[]) {
502

503 /*
504 Collect KindSpec information
505 */
506 InferenceData inferenceData = getObject(args);
507 if (inferenceData == null) return; // Refactor
508 SymbolicExecution se = inferenceData.getExecutionInfo();
509 Specification spec = inferenceData.getSpecification();
510

511 System.out.println("Serialized file read!");
512

513 /*
514 Declaration of necessary structures
515 */
516 List<List<FunctionType>> typesOfData = new ArrayList(); // Position ’x’

of the arraylist contains a list with the types for the ’x’th axiom
517 List<Argument> variablesToDeclare = new ArrayList(); // Contains all the

variables that must be declared at the beginning of an axiom structure
518

519 List<FunctionProfile> functions = se.getProgramFunctions();
520 List<Axiom> post = spec.getContract().getPostcondition();
521 List<Axiom> candidateAxioms = spec.getCandidateAxioms();
522

523

524 /*
525 Program variables
526 */
527 String finalString = "";
528 int axiomCounter = 1;
529 int typesCounter = 0;

47
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530 int numberOfTests = 0;
531 if (args.length > 1) numberOfTests = Integer.valueOf(args[1]);
532

533

534

535 /*
536 Starting to write on the file
537 */
538 PrintWriter writer = null;
539 try {
540 writer = new PrintWriter(se.getModifierProfile().getName() +

"_QCCTest.c", "UTF-8");
541 } catch (FileNotFoundException e) {
542 e.printStackTrace();
543 } catch (UnsupportedEncodingException e) {
544 e.printStackTrace();
545 }
546

547 System.out.print("Creating automated file...");
548 System.out.println("Done!");
549

550 writer.println("#include \"quickcheck4c.h\"\n#include <stdio.h>\n#include
<string.h>");

551 writer.println("// Include HERE all the necessary .h references to
correctly link this file \n\n");

552 writer.println("/* SMALL API");
553 writer.println(" - Arguments for each function are the following:\n");
554 writer.println(" 1. ’**vals’ is an array that includes all the

generated values. Use the following syntax to retrieve the value:");
555 writer.println(" > *QCC_getValue(vals_argument,

POSITION_IN_ARRAY, C_TYPE_OF_VALUE*);");
556 writer.println(" 2. ’len’ tells us how many data has been generated");
557 writer.println(" 3. ’**stamp’ is used to manage the flags QCC_OK,

QCC_FAIL and QCC_NOTHING\n*/\n\n\n");
558

559

560 System.out.print("Reading axioms...");
561 /*
562 Iteration for each Axiom on the Postcondition list
563 */
564 for (Axiom a : candidateAxioms) {
565 String headerString = "QCC_TestStatus axiom" + axiomCounter +

"(QCC_GenValue **vals, int len, QCC_Stamp **stamp) {\n";
566 String initArgs = "";
567 String body = "\n\t//Left Hand Side - Antecedent of the Axiom\n\tif

(";
568

569 ///////////////////////////////////////////////////////
570 /* IF_RETURN Clauses - Axiom definition */
571 ///////////////////////////////////////////////////////
572

573 List<Constraint> left = a.getLeftHandSide();
574 List<Constraint> right = a.getRightHandSide();
575

576 int counter = -1;
577

578 // IF Clause - LeftHandSide
579 for (Constraint c : left) {
580 String name = c.getLeftTag();
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581 String value = c.getRightValue();
582 String co = c.getConstraintOperator();
583 counter++;
584

585 // If ’value’ is a variable, it adds it to the declaration list
586 try {
587 int newValue = Integer.parseInt(value);
588

589 body += name + " " + co + "= " + newValue;
590 if (counter < left.size() - 1) {
591 body += " &&\n\t\t";
592 }
593

594 if (counter == left.size() - 1) {
595 body += ")";
596 }
597 } catch (Exception e) {
598 FunctionProfile fpaux = findFunction(functions, name);
599 if (fpaux == null) System.out.print("Function Profile not

found");
600

601 variablesToDeclare.add(new Argument(fpaux.getReturnType(),
value));

602

603 // Writes in the body part
604 body += name + " " + co + "= " + value;
605 if (counter <= left.size()) {
606 body += " &&\n\t\t";
607 } else {
608 System.out.println("B" + counter);
609 body += ")\n";
610 }
611 }
612

613 //Adds types
614 List<String> tys = getFunctionTypes(functions, name);
615 List<FunctionType> aux = new ArrayList();
616 for (String s : tys) {
617 aux.add(new FunctionType(s, counter));
618 }
619 typesOfData.add(typesCounter, aux);
620 typesCounter++;
621 }
622

623

624 ///////////////////////////////////////////////////////
625 /* MODIFIER Function */
626 ///////////////////////////////////////////////////////
627

628 body += " {\n\t\t\tret = " + se.getModifierProfile().getName() + "(";
629

630 //Adding all arguments
631 List<Argument> ars = se.getModifierProfile().getArguments();
632 int arsCount = 0;
633 for (Argument ar : ars) {
634 variablesToDeclare.add(ar);
635 body += ar.getName();
636

637 if (arsCount <= ars.size()) {
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638 body += ",";
639 }
640 }
641 body += "); //Modifier function\n";
642

643 initArgs = addArgsToBegining(variablesToDeclare);
644

645

646 ///////////////////////////////////////////////////////
647 /* RETURN Clause - RightHandSide */
648 ///////////////////////////////////////////////////////
649

650 body += "\n\t\t\t//Right Hand Side - Consequent of the
Axiom\n\t\t\treturn (";

651

652 for (Constraint c : right) {
653 String name = c.getLeftTag();
654 String value = c.getRightValue();
655 String co = c.getConstraintOperator();
656

657 body += name + " " + co + "= " + value + " &&\n\t\t\t\t\t";
658

659 //Adds types
660 List<String> tys = getFunctionTypes(functions, name);
661 List<FunctionType> aux = new ArrayList();
662 for (String s : tys) {
663 aux.add(new FunctionType(s, counter));
664 }
665 typesOfData.add(typesCounter, aux);
666 typesCounter++;
667 }
668

669 body += "ret == " + a.getReturnValue() + "); \n\t} else {\n\t\treturn
QCC_NOTHING;\n\t}\n}\n\n\n";

670

671 axiomCounter++;
672 finalString += headerString + initArgs + body;
673 variablesToDeclare.clear();
674

675 } // END of the FORE axiom iterator
676

677 writer.println(finalString);
678

679 System.out.println("Done! " + axiomCounter + " axioms found.");
680

681

682 ///////////////////////////////////////////////////////
683 /* MAIN - Testing Structures */
684 ///////////////////////////////////////////////////////
685

686 writer.println("/* MAIN API");
687 writer.println("\tThe testing structure has the following parameters:");
688 writer.println("\t\tQCC_testForAll(NUMBER_OF_TESTS,

NUMBER_OF_SUPPORTED_ERRORS, FUNCTION_TO_TEST, NUMBER_OF_GENERATORS,
GENERATORS...)");

689 writer.println("These are the available generators:");
690 writer.println("\t\t’QCC_genInt’ - Generates an Integer value");
691 writer.println("\t\t’QCC_genDouble’ - Generates a Double value");
692 writer.println("\t\t’QCC_genFloat’ - Generates a Float value");
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693 writer.println("\t\t’QCC_genBool’ - Generates a Boolean value");
694 writer.println("\t\t’QCC_genChar’ - Generates a Character");
695 writer.println("\t\t’QCC_genString’ - Generates a String");
696 writer.println("\t\t’QCC_genArray’ - Generates an Array");
697

698 writer.println("\n\tATTENTION! The automatically generated testing
structures might be incomplete. Feel free to add,");

699 writer.println("\treplace or delete the generators.");
700 writer.println("*/");
701

702 String main = "int gui(int argc, char **argv) {\n\tQCC_init(0);\n";
703 main += "\tprintf(\"QCC is testing AXIOMS... \");\n\n";
704

705

706 int i = 0;
707 while (axiomCounter >= i) {
708 main += "\tprintf(\"Axiom " + i + ": \");\n";
709 main += "\tQCC_testForAll(" + numberOfTests + ", 100, axiom" + i + ",

" + typesOfData.get(i).size() + ", " +
prettyPrintTypes(typesOfData.get(i)) + ");\n\n";

710 i++;
711 }
712 main += "\n}";
713

714 writer.println(main);
715 writer.close();
716 }
717

718

719 /*
720 *
721 *
722 * HELPER METHODS
723 *
724 *
725 * */
726

727 /*
728 Adds types to the gui call of QCC.
729 */
730 public static String prettyPrintTypes(List<FunctionType> types) {
731 String returnString = "";
732 int counter = types.size();
733

734 for (FunctionType ft : types) {
735 returnString += ft.getQCCtype();
736

737 if (counter - 1 > 0) {
738 returnString += ",";
739 }
740 counter--;
741 }
742 return returnString;
743 }
744

745 /*
746 Changes normal types to QCC Types
747 */
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748 public static List<String> getFunctionTypes(List<FunctionProfile>
programFunctions, String functionName) {

749 List<String> finalReturn = new ArrayList();
750

751 for (FunctionProfile fp : programFunctions) {
752

753 if (functionName.contains(fp.getName())) {
754 List<String> args = fp.getArgumentTypes();
755

756 for (String s : args) {
757 if (s.equals("int")) {
758 finalReturn.add("QCC_genInt");
759

760 } else if (s.equals("Integer")) {
761 finalReturn.add("QCC_genInt");
762

763 } else if (s.equals("double")) {
764 finalReturn.add("QCC_genDouble");
765

766 } else if (s.equals("float")) {
767 finalReturn.add("QCC_genFloat");
768

769 } else if (s.equals("boolean")) {
770 finalReturn.add("QCC_genBool");
771

772 } else if (s.equals("char")) {
773 finalReturn.add("QCC_genChar");
774

775 } else if (s.equals("String")) {
776 finalReturn.add("QCC_genString");
777

778 } else {
779 finalReturn.add("Custom Type" + s);
780 }
781 } // 2nd FOR
782

783 } // IF
784 } // 1st FOR
785

786 if (finalReturn.isEmpty()) {
787 finalReturn.add("//Add here all the custom data generator you may

need. Separate them by commas");
788 return finalReturn;
789 } else {
790 return finalReturn;
791 }
792 }
793

794

795 /*
796 * Prepares variables declaration at the beginning of the file. Uses the

arguments collected from modifier function.
797 * */
798 private static String addArgsToBegining(List<Argument> argumentsToAdd) {
799 String stringToComplete = "\tint ret = 0;\n";
800 int counter = 0;
801

802 for (Argument a : argumentsToAdd) {
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803 stringToComplete += "\t" + a.getType() + " " + a.getName() + " =
*QCC_getValue(vals, " + counter + ", int*);\n";

804 counter++;
805 }
806 return stringToComplete;
807 }
808

809 /*
810 * Finds FunctionProfile by its name and returns it.
811 * */
812 private static FunctionProfile findFunction(List<FunctionProfile> funcs,

String functionName) {
813 for (FunctionProfile fp : funcs) {
814 if (functionName.contains(fp.getName())) return fp;
815 }
816 return null;
817 }
818

819 /*
820 * Retrieves the .ser file to start the axiom translation
821 * */
822 private static InferenceData getObject(String[] args) {
823 ObjectInputStream in = null;
824 try {
825 in = new ObjectInputStream(new FileInputStream(args[0]));
826 } catch (IOException e) {
827 e.printStackTrace();
828 }
829

830 try {
831 try {
832 InferenceData obj = (InferenceData) in.readObject();
833 return obj;
834 } catch (IOException e) {
835 e.printStackTrace();
836 }
837

838 } catch (ClassNotFoundException e) {
839 System.out.println("Can’t read object: " + e);
840 }
841

842 return null;
843 }
844

845 }





APPENDIX B

AutoEACSL source code

846 import main.InferenceData;
847 import inference.Specification;
848 import symbolic.Argument;
849

850 import java.io.FileInputStream;
851 import java.io.IOException;
852 import java.io.ObjectInputStream;
853

854 import inference.Axiom;
855 import inference.Constraint;
856 import symbolic.FunctionProfile;
857 import symbolic.SymbolicExecution;
858

859

860 import java.io.*;
861 import java.util.ArrayList;
862 import java.util.List;
863

864

865 public class AutoEACSL {
866

867 public static void main(String args[]) {
868

869 /*
870 Collect KindSpec information
871 */
872 InferenceData inferenceData = getObject(args);
873 if (inferenceData == null) return; // Refactor
874 SymbolicExecution se = inferenceData.getExecutionInfo();
875 Specification spec = inferenceData.getSpecification();
876

877 System.out.println("Serialized file read!");
878

879

880 /*
881 Declaration of necessary structures
882 */
883 List<String> variablesToEnsure = new ArrayList();
884

885 List<FunctionProfile> functions = se.getProgramFunctions();
886 List<Axiom> postcondition = spec.getContract().getPostcondition();
887

888 /*
889 Program variables

55
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890 */
891 int axiomCounter = 0;
892 char[] AXIOM_NAMES = {’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’,

’K’, ’L’, ’M’, ’N’, ’O’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’, ’X’,
’Y’, ’Z’};

893 String finalAxiomsBehaviors = "";
894 String fileLinesBefore = "";
895 String fileLinesAfter = "";
896

897

898

899 /*
900 Starting to write on the file
901 */
902 PrintWriter writer = null;
903 try {
904 writer = new PrintWriter(se.getModifierProfile().getName() +

"_EACSL.c", "UTF-8");
905 } catch (FileNotFoundException e) {
906 e.printStackTrace();
907 } catch (UnsupportedEncodingException e) {
908 e.printStackTrace();
909 }
910

911 /*
912 Read C file
913 */
914 try {
915 FileReader fileReader = new FileReader(args[1]);
916 BufferedReader bufferedReader = new BufferedReader(fileReader);
917

918 while((fileLinesBefore = bufferedReader.readLine()) != null) {
919 if (!fileLinesBefore.contains(se.getModifierProfile().getName()))

{
920 writer.println(fileLinesBefore);
921 } else {
922 fileLinesAfter += fileLinesBefore + "\n";
923 break;
924 }
925 }
926 while((fileLinesBefore = bufferedReader.readLine()) != null) {
927 fileLinesAfter += fileLinesBefore + "\n";
928 }
929

930 }
931 catch(FileNotFoundException ex) {
932 System.out.println("Unable to open file");
933 }
934 catch(IOException ex) {
935 System.out.println("Error reading file ");
936 }
937

938 writer.print("/*@ ");
939

940

941 //------------------------------------------------------------------------------------------------------------------------------------
942 /* AXIOMATIC */
943 //------------------------------------------------------------------------------------------------------------------------------------
944 for (FunctionProfile f : functions) {
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945 List<Argument> profileArguments = f.getArguments();
946 String head = "axiomatic " +

Character.toUpperCase(f.getName().charAt(0)) +
f.getName().substring(1) + " {\n";

947 String axiomArgs = "";
948 String axiomArgsNames = "";
949

950 int axiomArgsCounter = 0;
951

952 head += "\tlogic " + f.getReturnType() + " " + f.getName() + "(";
953

954 for(Argument argument : profileArguments) {
955 axiomArgs += argument.getType() + " " + argument.getName();
956 axiomArgsNames += argument.getName();
957

958 if (axiomArgsCounter < profileArguments.size()-1) {
959 axiomArgs += ",";
960 axiomArgsNames += ",";
961 }
962 axiomArgsCounter++;
963 }
964 axiomArgs += ") = " + f.getName() + "(" + axiomArgsNames + ");\n";
965 writer.print(head + axiomArgs + "\t\t//Enter here your axiom

declaration\n}\n\n");
966

967 }
968

969 //------------------------------------------------------------------------------------------------------------------------------------
970 /* ENSURES */
971 //------------------------------------------------------------------------------------------------------------------------------------
972

973 for (Axiom a : postcondition) {
974 String header = "behavior " + AXIOM_NAMES[axiomCounter] +

":\n\tensures ";
975 String axiomBehavior = "";
976 String pre = "";
977 String post = "";
978

979 List<Constraint> left = a.getLeftHandSide();
980 List<Constraint> right = a.getRightHandSide();
981

982 int counter = -1;
983

984 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
985 /* Building the precedent */
986 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
987 for (Constraint c : left) {
988 String name = c.getLeftTag();
989 String value = c.getRightValue();
990 String co = c.getConstraintOperator();
991 counter++;
992

993 // If ’value’ is a variable, it adds it to the forall list
994 try {
995 int newValue = Integer.parseInt(value);
996 axiomBehavior += name + " " + co + "= " + newValue;
997 } catch (Exception e) {
998 variablesToEnsure.add(value);
999 axiomBehavior += name + " " + co + "= " + value;
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1000 }
1001

1002 if (counter < left.size()-1) axiomBehavior += " && ";
1003 if (counter == left.size()-1) axiomBehavior += ")";
1004 }
1005

1006

1007 axiomBehavior += " ==> \n \t";
1008

1009

1010 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1011 /* Building the consequent */
1012 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1013

1014 for (Constraint c : right) {
1015 String name = c.getLeftTag();
1016 String value = c.getRightValue();
1017 String co = c.getConstraintOperator();
1018

1019 axiomBehavior += name + " " + co + "= " + value + " && ";
1020 }
1021

1022 axiomBehavior += "\\result) ";
1023

1024

1025 /*
1026 If any variable is found, it must be added to the formal spec at the

beginning and at the end, using a
1027 forall clause and old-post clause, respectively
1028 */
1029 if (variablesToEnsure.isEmpty()) {
1030 finalAxiomsBehaviors += header + axiomBehavior + "\n\n";
1031 } else {
1032 /*
1033 FORALL: Ensures all the variables are boolean indicators
1034 */
1035 int varSize = variablesToEnsure.size();
1036 //Adds items to forall
1037 pre += "\\forall integer ";
1038 for (int i = 0; i < varSize; i++) {
1039 pre += variablesToEnsure.get(i);
1040 if (i < varSize-1) pre += ",";
1041 }
1042 pre += ";\n\t\t";
1043

1044 //Declare forall bounds
1045 for (int i = 0; i < varSize; i++) {
1046 pre += "(" + variablesToEnsure.get(i) + " >= 0)";
1047 if (i < varSize-1) pre += " && ";
1048 }
1049 pre += " ==>\n";
1050

1051 /*
1052 OLD-POST: Final ensures clause that makes sure the variables have the

same value before and after the execution
1053 */
1054 for (int i = 0; i < varSize; i++) {
1055 post += "\\old(" + variablesToEnsure.get(i) + ") == \\at(" +

variablesToEnsure.get(i) + ", Post)";
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1056 if (i < varSize-1) pre += "&&";
1057 }
1058 post += "\n";
1059

1060 finalAxiomsBehaviors += header + pre + "\t" + axiomBehavior +
"==>\n" + "\t" + post + "\n\n";

1061 }
1062

1063 variablesToEnsure.clear();
1064 axiomCounter++;
1065 }
1066

1067 writer.println(finalAxiomsBehaviors);
1068 writer.println("complete behaviors\ndisjoint behaviors");
1069 writer.println("*/\n");
1070 writer.print(fileLinesAfter);
1071 writer.close();
1072

1073

1074 }
1075

1076 /*
1077 * Finds FunctionProfile by its name and returns it.
1078 * */
1079 public static FunctionProfile findFunction(List<FunctionProfile> funcs,

String functionName) {
1080 for (FunctionProfile fp: funcs) {
1081 if(functionName.contains(fp.getName())) return fp;
1082 }
1083 return null;
1084 }
1085

1086 /*
1087 * Retrieves the .ser file to start the axiom translation
1088 * */
1089 private static InferenceData getObject(String[] args) {
1090 ObjectInputStream in = null;
1091 try {
1092 in = new ObjectInputStream(new FileInputStream(args[0]));
1093 } catch (IOException e) {
1094 e.printStackTrace();
1095 }
1096

1097 try {
1098 InferenceData obj = (InferenceData) in.readObject();
1099 return obj;
1100 } catch (IOException e) {
1101 e.printStackTrace();
1102 } catch (ClassNotFoundException e) {
1103 e.printStackTrace();
1104 }
1105

1106 return null;
1107 }
1108 }
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AutoEACSL inference result

The following Listing contains testing file E-ACSL aims to test at runtime. Since the logic
functions cannot be fully translated to ACSL notation, the ones appearing in this code
have been implemented by our team.

1109 /*@
1110 // ------- USER DEFINED LOGIC FUNCTIONS -------
1111 axiomatic IsNull {
1112 logic boolean isnull(struct arraylist *l) = isNull(l);
1113 axiom Null:
1114 \forall struct arraylist *l;
1115 l->body == \null ==> \false;
1116 axiom NotNull:
1117 \forall struct arraylist *l;
1118 l->body != \null ==> \true;
1119 }*/
1120

1121 /*@ axiomatic IsEmpty {
1122 logic boolean isempty(struct arraylist *l) = isEmpty(s);
1123 axiom Empty:
1124 \forall struct arraylist *l;
1125 l->size == 0 ==> \true;
1126 axiom NotEmpty:
1127 \forall struct arraylist *l;
1128 l->size > 0 ==> \false;
1129 }*/
1130

1131 /*@ axiomatic IsFull {
1132 logic boolean isfull(struct arraylist *l) = isFull(s);
1133 axiom NotFull:
1134 \forall struct arraylist *l;
1135 l->size == l->capacity ==> \true;
1136 axiom Full:
1137 \forall struct arraylist *l;
1138 l->size < l->capacity ==> \false;
1139 }*/
1140

1141 /*@ axiomatic Size{
1142 logic boolean size{L}(struct arraylist *l, integer a) = length{L}(s, a);
1143 axiom True:
1144 \forall struct arraylist *l, integer a;
1145 l->size == a ==> \true;
1146 axiom False:
1147 \forall struct arraylist *l, integer a;
1148 l->size !=a ==> \false;

61



62 AutoEACSL inference result

1149 }*/
1150

1151

1152 /*@ axiomatic Contains {
1153 logic integer contains(integer x, struct arraylist *l) = contains(l, x);
1154 axiom Found:
1155 \exists struct arraylist *l, integer i, integer x;
1156 l[i] == x ==> \true
1157

1158 axiom NotFound:
1159 \forall struct arraylist *l, integer i, integer x;
1160 l[i] != x ==> \false;
1161 }*/
1162

1163 // ------- BEHAVIOURS DEFINITION -------
1164 /*
1165 requires \valid(l);
1166 behavior A:
1167 ensures \forall integer ?l_sizze;
1168 (?l_sizze >= 0) ==>
1169 arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze && arraylist_find(l,item) == 0 && arraylist_isFull(l) == 1) ==>
1170 arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze && arraylist_find(l,item) == 0 && arraylist_isFull(l) == 1 &&
\result) ==>

1171 \old(?l_sizze) == \at(?l_sizze, Post)
1172

1173

1174 behavior B:
1175 ensures \forall integer ?l_sizze;
1176 (?l_sizze >= 0) ==>
1177 arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze && arraylist_find(l,item) == 0 && arraylist_isFull(l) == 0) ==>
1178 arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze + 1 && arraylist_find(l,item) == 1 && \result) ==>
1179 \old(?l_sizze) == \at(?l_sizze, Post)
1180

1181

1182 behavior C:
1183 ensures \forall integer ?l_sizze;
1184 (?l_sizze >= 0) ==>
1185 arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze && arraylist_find(l,item) == 1) ==>
1186 arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze && arraylist_find(l,item) == 1 && \result) ==>
1187 \old(?l_sizze) == \at(?l_sizze, Post)
1188

1189

1190 behavior D:
1191 ensures \forall integer ?l_sizze;
1192 (?l_sizze >= 0) ==>
1193 arraylist_isEmpty(l) == 1 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze && arraylist_find(l,item) == 0 && arraylist_isFull(l) == 1) ==>
1194 arraylist_isEmpty(l) == 1 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze && arraylist_find(l,item) == 0 && arraylist_isFull(l) == 1 &&
\result) ==>

1195 \old(?l_sizze) == \at(?l_sizze, Post)
1196

1197
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1198 behavior E:
1199 ensures \forall integer ?l_sizze;
1200 (?l_sizze >= 0) ==>
1201 arraylist_isEmpty(l) == 1 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze && arraylist_find(l,item) == 0 && arraylist_isFull(l) == 0) ==>
1202 arraylist_isEmpty(l) == 1 && arraylist_isNull(l) == 0 && arraylist_size(l) ==

?l_sizze && arraylist_find(l,item) == 0 && arraylist_isFull(l) == 0 &&
\result) ==>

1203 \old(?l_sizze) == \at(?l_sizze, Post)
1204

1205

1206 behavior F:
1207 ensures arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 1 &&

arraylist_size(l) == 0 && arraylist_find(l,item) == 0 && arraylist_isFull(l)
== 0) ==>

1208 arraylist_isEmpty(l) == 0 && arraylist_isNull(l) == 1 && arraylist_size(l) ==
0 && arraylist_find(l,item) == 0 && arraylist_isFull(l) == 0 && \result)

1209

1210

1211 complete behaviors
1212 disjoint behaviors
1213 */

Listing C.1: Final contract for arraylist_insert.c
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Automatica.sh Script

1214 #!/bin/bash
1215 re=’^[0-9]+$’
1216 file=$1;
1217 format=$(echo "$1" |cut -d"." -f2);
1218

1219 if [[ $format != "ser" ]] || [[ $format != "kss" ]]; then
1220 echo "------------- File Format Error -------------"
1221 echo "Please, select a file with a serialized object. These tend to have

’.ser’ or ’.kss’ formats."
1222 echo "The selected file has a ’."$format"’ format"
1223 echo ""
1224 exit
1225 fi
1226

1227 if [[ $# -lt 3 ]] || [[ $# -gt 5 ]]; then
1228 echo "------------- Input Error -------------"
1229 echo "Please use the following call of the tool:"
1230 echo " ./Automatics.sh input_file [-qcc #tests | -eacsl source_code | -full

#tests source_code]"
1231 echo ""
1232 echo " -qcc Calls ’AutoQCC’ tool. Its only argument is

#number_of_tests"
1233 echo " -eacsl Calls ’AutoEACSL’ tool. Its argument is the name of the

’source_code’ file"
1234 echo " -full Calls both ’AutoQCC’ and ’AutoEACSL’. It needs both

arguments #number_of_tests and ’source_code’"
1235 echo ""
1236 else
1237 case $2 in
1238 -qcc | -quickcheckforc)
1239 if [[ $3 =~ $re ]]; then
1240 echo "------------------ Starting translation to

QuickCheck... -----------------"
1241 java -jar AutomaticaQCC.jar $file $3
1242 echo "Translation successful. C file has been

generated, please check it."
1243 else
1244 echo "Please provide a correct number for the #tests

parameter of QCC"
1245 fi
1246 ;;
1247 -eacsl)
1248 echo "------------------ Starting translation to

EACSL... -----------------"

65
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1249 java -jar AutomaticaEACSL.jar $file $3
1250 echo "Translation successful. EACSL file has been

generated, please check it."
1251 ;;
1252

1253 -f | -full) if [[ $3 =~ $re ]]; then
1254 java -jar AutomaticaQCC.jar $file $3
1255 sleep 2
1256 java -jar AutomaticaEACSL.jar $file $4
1257 echo "Translation successful. EACSL and QCC files

have been generated, please check them."
1258 else
1259 echo "Please provide a correct number for the #tests

parameter of QCC"
1260 fi
1261 ;;
1262 *)
1263 echo "Please select one of the following options:"
1264 echo " -qcc | -quickcheckforc Calls ’AutoQCC’ tool.

Its only argument is #number_of_tests"
1265 echo " -eacsl Calls ’AutoEACSL’ tool. Its

argument is the name of the ’source_code’ file"
1266 echo " -f | -full Calls both ’AutoQCC’ and

’AutoEACSL’. It needs both arguments
#number_of_tests and ’source_code’"

1267 echo ""
1268

1269 esac
1270 fi
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