Document downloaded from:

http://hdl.handle.net/10251/107340

This paper must be cited as:
Kakol, J.; López Pellicer, M. (2017). On Valdivia strong version of Nikodym boundedness property. Journal of Mathematical Analysis and Applications. 446(1):1-17.
doi:10.1016/j.jmaa.2016.08.032

The final publication is available at
http://dx.doi.org/10.1016/j.jmaa.2016.08.032

Copyright Elsevier

Additional Information

On Valdivia strong version of Nikodym boundedness property ${ }^{\boldsymbol{4}}$

Dedicated to the memory of Professor Manuel Valdivia (1928-2014)

J. Ka̧kol ${ }^{\text {a }}$, M. López-Pellicer ${ }^{\text {b }}$
${ }^{a}$ Adam Mickiewicz University, Poznań, Poland and Institute of Mathematics, Czech Academy of Sciences, Czech Republic
${ }^{b}$ Department of Applied Mathematics and IUMPA. Universitat Politècnica de València, València, Spain

Abstract

Following Schachermayer, a subset \mathcal{B} of an algebra \mathcal{A} of subsets of Ω is said to have the N-property if a \mathcal{B}-pointwise bounded subset M of $b a(\mathcal{A})$ is uniformly bounded on \mathcal{A}, where $b a(\mathcal{A})$ is the Banach space of the real (or complex) finitely additive measures of bounded variation defined on \mathcal{A}. Moreover \mathcal{B} is said to have the strong N-property if for each increasing countable covering $\left(\mathcal{B}_{m}\right)_{m}$ of \mathcal{B} there exists \mathcal{B}_{n} which has the N-property. The classical Nikodym-Grothendieck's theorem says that each σ-algebra \mathcal{S} of subsets of Ω has the N-property. The Valdivia's theorem stating that each σ-algebra \mathcal{S} has the strong N-property motivated the main measure-theoretic result of this paper: We show that if $\left(\mathcal{B}_{m_{1}}\right)_{m_{1}}$ is an increasing countable covering of a σ-algebra \mathcal{S} and if $\left(\mathcal{B}_{m_{1}, m_{2}, \ldots, m_{p}, m_{p+1}}\right)_{m_{p+1}}$ is an increasing countable covering of $\mathcal{B}_{m_{1}, m_{2}, \ldots, m_{p}}$, for each $p, m_{i} \in \mathbb{N}, 1 \leqslant i \leqslant p$, then there exists a sequence $\left(n_{i}\right)_{i}$ such that each $\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{r}}, r \in \mathbb{N}$, has the strong N property. In particular, for each increasing countable covering $\left(\mathcal{B}_{m}\right)_{m}$ of a σ-algebra \mathcal{S} there exists \mathcal{B}_{n} which has the strong N-property, improving mentioned Valdivia's theorem. Some applications to localization of bounded additive vector measures are provided.

Keywords: Bounded set, finitely additive scalar measure, $(L F)$-space, Nikodym and strong Nikodym property, increasing tree, set-algebra, σ-algebra, vector measure, web
2000 MSC: 28A60, 46G10

1. Introduction

Let \mathcal{B} be a subset of an algebra \mathcal{A} of subsets of a set Ω (in brief, set-algebra \mathcal{A}). The normed space $L(\mathcal{B})$ is the $\operatorname{span}\left\{\chi_{C}: C \in \mathcal{B}\right\}$ of the characteristic functions of each set $C \in \mathcal{B}$ with the supremum norm $\|\cdot\|$ and $b a(\mathcal{A})$ is the Banach space of finitely additive measures on \mathcal{A} with bounded variation endowed with the variation norm, i.e., $|\cdot|:=|\cdot|(\Omega)$. If $\left\{C_{i}: 1 \leqslant i \leqslant n\right\}$ is a measurable partition of $C \in \mathcal{A}$ and $\mu \in b a(\mathcal{A})$ then $|\mu|(C)=\Sigma_{i}|\mu|\left(C_{i}\right)$ and, as usual, we represent also by μ the linear form in $L(\mathcal{A})$ determined by $\mu\left(\chi_{C}\right):=\mu(C)$, for each $C \in \mathcal{A}$. By this identification we get that the dual of $L(\mathcal{A})$ with the dual norm is isometric to $b a(\mathcal{A})$ (see e.g., $[2$, Theorem 1.13]).

Polar sets are considered in the dual pair $<L(\mathcal{A}), b a(\mathcal{A})>, \quad M^{\circ}$ means the polar of a set M and if $\mathcal{B} \subset \mathcal{A}$ the topology in $b a(\mathcal{A})$ of pointwise convergence in \mathcal{B} is denoted by $\tau_{s}(\mathcal{B}) .\left(E^{\prime}, \tau_{s}(E)\right)$ is the vector space of all continuous linear forms defined on a locally convex space E endowed with the topology $\tau_{s}(E)$ of the pointwise convergence in E. In particular, the topology $\tau_{s}(L(\mathcal{A}))$ in $b a(\mathcal{A})$ is $\tau_{s}(\mathcal{A})$.

The convex (absolutely convex) hull of a subset M of a topological vector space is denoted by $\operatorname{co}(M)$ $(\operatorname{absco}(M))$ and $\operatorname{absco}(M)=\operatorname{co}(\cup\{r M:|r|=1\})$. An equivalent norm to the supremum norm in $L(\mathcal{A})$

[^0]is the Minkowski functional of $\operatorname{absco}\left(\left\{\chi_{C}: C \in \mathcal{A}\right\}\right)([14$, Propositions 1 and 2$])$ and its dual norm is the \mathcal{A}-supremum norm, i.e., $\|\mu\|:=\sup \{|\mu(C)|: C \in \mathcal{A}\}, \quad \mu \in b a(\mathcal{A})$. The closure of a set is marked by an overline, hence if $P \subset L(\mathcal{A})$ then $\overline{\operatorname{span}(P)}$ is the closure in $L(\mathcal{A})$ of the linear hull of $P . \mathbb{N}$ is the set $\{1,2, \ldots\}$ of positive integers.

Recall the classical Nikodym-Dieudonné-Grothendieck theorem (see [1, page 80, named as NikodymGrothendieck boundedness theorem]): If \mathcal{S} is a σ-algebra of subsets of a set Ω and M is a \mathcal{S}-pointwise bounded subset of ba (\mathcal{S}) then M is a bounded subset of ba (\mathcal{S}) (i.e., $\sup \{|\mu(C)|: \mu \in M, C \in \mathcal{S}\}<\infty$, or, equivalently, $\sup \{|\mu|(\Omega): \mu \in M\}<\infty)$. This theorem was firstly obtained by Nikodym in [11] for a subset M of countably additive complex measures defined on \mathcal{S} and later on by Dieudonné for a subset M of $b a\left(2^{\Omega}\right)$, where 2^{Ω} is the σ-algebra of all subsets of Ω, see [3].

It is said that a subset \mathcal{B} of an algebra \mathcal{A} of subsets of a set Ω has the Nikodym property, N-property in brief, if the Nikodym-Dieudonné-Grothendieck theorem holds for \mathcal{B}, i.e., if each \mathcal{B}-pointwise bounded subset M of $b a(\mathcal{A})$ is bounded in $b a(\mathcal{A})$ (see [12, Definition 2.4] or [15, Definition 1]). Let us note that in this definition we may suppose that M is $\tau_{s}(\mathcal{A})$-closed and absolutely convex. If \mathcal{B} has N-property then the polar set $\left\{\chi_{C}: C \in \mathcal{B}\right\}^{\circ}$ is bounded in ba (\mathcal{A}), hence $\left\{\chi_{C}: C \in \mathcal{B}\right\}^{\circ}=\overline{a b s c o\left\{\chi_{C}: C \in \mathcal{B}\right\}}$ is a neighborhood of zero in $L(\mathcal{A})$, whence $L(\mathcal{B})$ is dense in $L(\mathcal{A})$.

It is well known that the algebra of finite and co-finite subsets of \mathbb{N} fails N-property [2, Example 5 in page 18] and that Schachermayer proved that the algebra $\mathcal{J}(I)$ of Jordan measurable subsets of $I:=[0,1]$ has N-property (see [12, Corollary 3.5] and a generalization in [4, Corollary]). A recent improvement of this result for the algebra $\mathcal{J}(K)$ of Jordan measurable subsets of a compact k-dimensional interval $K:=\Pi\left\{\left[a_{i}, b_{i}\right]: 1 \leqslant i \leqslant k\right\}$ in \mathbb{R}^{k} has been provided in [15, Theorem 2], where Valdivia proved that if $\mathcal{J}(K)$ is the increasing countable union $\cup_{m} \mathcal{B}_{m}$ there exists a positive integer n such that \mathcal{B}_{n} has N-property (see [8, Theorem 1] for a strong result in $\mathcal{J}(K)$). This fact motivated to say that a subset \mathcal{B} of a set-algebra \mathcal{A} has the strong Nikodym property, $s N$-property in brief, if for each increasing covering $\cup_{m} \mathcal{B}_{m}$ of \mathcal{B} there exists \mathcal{B}_{n} which has N-property. As far as we know this result suggested the following very interesting Valdivia's open question (2013):

Problem 1 ([15, Problem 1]). Let \mathcal{A} be an algebra of subsets of Ω. Is it true that N-property of \mathcal{A} implies $s N$-property?

Note that the Nikodym-Dieudonné-Grothendieck stating that every σ-algebra \mathcal{S} of subsets of a set Ω has property N is a particular case of the following Valdivia's theorem.

Theorem 1 ([14, Theorem 2]). Each σ-algebra \mathcal{S} of subsets of Ω has s N-property.
Following [7, Chapter 7, 35.1] a family $\left\{B_{m_{1}, m_{2}, \ldots, m_{p}}: p, m_{1}, m_{2}, \ldots, m_{p} \in \mathbb{N}\right\}$ of subsets of A is an increasing web in A if $\left(B_{m_{1}}\right)_{m_{1}}$ is an increasing covering of A and $\left(B_{m_{1}, m_{2}, \ldots, m_{p}, m_{p+1}}\right)_{m_{p+1}}$ is an increasing covering of $B_{m_{1}, m_{2}, \ldots, m_{p}}$, for each $p, m_{i} \in \mathbb{N}, 1 \leqslant i \leqslant p$. We will say that a set-algebra \mathcal{A} of subsets of Ω has the web strong N-property (web-sN-property, in brief) if for each increasing web $\left\{\mathcal{B}_{m_{1}, m_{2}, \ldots, m_{p}}\right.$: $\left.p, m_{1}, m_{2}, \ldots, m_{p} \in \mathbb{N}\right\}$ in \mathcal{A} there exists a sequence $\left(n_{i}\right)_{i}$ in \mathbb{N} such that each $\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{i}}$ has sN-property, for each $i \in \mathbb{N}$.

The main measure-theoretic result of this paper is the following theorem, motivated by Theorem 1 and covering all mentioned results for σ-algebras.

Theorem 2. Each σ-algebra \mathcal{S} of subsets of Ω has web-s N-property.
In particular, if $\mathcal{B}_{m_{1}, m_{2}, \ldots, m_{p}}=\mathcal{B}_{m_{1}}$ for each $p \in N$, we have the following improvement of Theorem 1: If $\left(\mathcal{B}_{m}\right)_{m}$ is an increasing covering of a σ-algebra \mathcal{S} of subsets of Ω there exists an index n so that \mathcal{B}_{n} has sN-property.

Next section provides properties concerning N-property of subsets of a set-algebra \mathcal{A} and unbounded subsets of $b a(\mathcal{A})$. These results will be used in Section 3 to provide necessary facts to complete the proof of our main result (Theorem 2).

Last section deals with applications of Theorem 2 to localizations of bounded finite additive vector measures.

A characterization of $s N$-property of a set-algebra \mathcal{A} by a locally convex property of $L(\mathcal{A})$ was obtained in [15, Theorem 3]. Analogously a characterization of $w e b-s N$-property of a set-algebra \mathcal{A} by a locally convex property of $L(\mathcal{A})$ may be found easily following [5] and [10].

2. Nikodym property and deep unbounded sets

To keep the paper self-contained we provided a short proof of the next (well known) proposition.
Proposition 3. Let \mathcal{A} be an algebra of subsets of Ω and let M be an absolutely convex $\tau_{s}(\mathcal{A})$-closed subset of ba (\mathcal{A}). The following properties are equivalent:

1. For each finite subset \mathcal{Q} of $\left\{\chi_{A}: A \in \mathcal{A}\right\}$ the set $M \cap \mathcal{Q}^{\circ}$ is an unbounded subset of ba($\left.\mathcal{A}\right)$.
2. For each finite subset \mathcal{Q} of $\left\{\chi_{A}: A \in \mathcal{A}\right\}$ such that $\operatorname{span}\left\{M^{\circ}\right\} \cap \operatorname{span}\{\mathcal{Q}\}=\{0\}$ the set $M \cap \mathcal{Q}^{\circ}$ is unbounded in ba (\mathcal{A}).
3. M° is not a neighborhood of zero in span $\left\{M^{\circ}\right\}$ or the codimension of $\operatorname{span}\left\{M^{\circ}\right\}$ in $L(\mathcal{A})$ is infinite.

If M is unbounded and $\overline{\operatorname{span}\left\{M^{\circ}\right\}}=L(\mathcal{A})$ then M verifies the previous properties.
Proof. To prove these equivalences recall that if M is a $\tau_{s}(\mathcal{A})$-closed and absolutely convex subset of ba (\mathcal{A}) then $M^{\circ \circ}=M$ [7, Chapter 4 20.8.5].
$(1) \Longleftrightarrow(2)$. Let $\mathcal{Q}=\left\{\chi_{Q_{i}}: Q_{i} \in \mathcal{A}, 1 \leqslant i \leqslant r\right\}$. First we prove that if there exists $m_{1} \in M^{\circ}$ such that $\chi_{Q_{1}}=h_{1} m_{1}+\Sigma_{2 \leqslant i \leqslant r} h_{i} \chi_{Q_{i}}$ and if $h:=2+\Sigma_{1 \leqslant i \leqslant r}\left|h_{i}\right|$ then

$$
\begin{equation*}
\operatorname{absco}\left(M^{\circ} \cup \mathcal{Q}\right) \subset h \operatorname{absco}\left(M^{\circ} \cup\left\{\mathcal{Q} \backslash\left\{\chi_{Q_{1}}\right\}\right\}\right) \tag{1}
\end{equation*}
$$

In fact, if $x \in \operatorname{absco}\left(M^{\circ} \cup \mathcal{Q}\right)$ then $x=\lambda_{0} m_{0}+\Sigma_{1 \leqslant i \leqslant r} \lambda_{i} \chi_{Q_{i}}$, with $m_{0} \in M^{\circ}$ and $\Sigma_{0 \leqslant i \leqslant r}\left|\lambda_{i}\right| \leqslant 1$, whence $x=\lambda_{0} m_{0}+\lambda_{1} h_{1} m_{1}+\Sigma_{2 \leqslant i \leqslant r}\left(\lambda_{1} h_{i}+\lambda_{i}\right) \chi_{Q_{i}}$. From $m_{2}:=\left(1+\left|\lambda_{0}\right|+\left|\lambda_{1} h_{1}\right|\right)^{-1}\left(\lambda_{0} m_{0}+\lambda_{1} h_{1} m_{1}\right) \in M^{\circ}$ we get the representation $x=\left(1+\left|\lambda_{0}\right|+\left|\lambda_{1} h_{1}\right|\right) m_{2}+\Sigma_{2 \leqslant i \leqslant r}\left(\lambda_{1} h_{i}+\lambda_{i}\right) \chi_{Q_{i}}$ which verifies the inequality $1+\left|\lambda_{0}\right|+\left|\lambda_{1} h_{1}\right|+\Sigma_{2 \leqslant i \leqslant r}\left|\lambda_{1} h_{i}+\lambda_{i}\right| \leqslant h$, whence $x \in h \operatorname{absco}\left(M^{\circ} \cup\left\{\mathcal{Q} \backslash\left\{\chi_{Q_{1}}\right\}\right\}\right)$. Taking polar sets in (1) we obtain that

$$
M \cap\left\{\mathcal{Q} \backslash\left\{\chi_{Q_{1}}\right\}\right\}^{\circ} \subset h\left(M \cap \mathcal{Q}^{\circ}\right)
$$

hence if $M \cap\left\{\mathcal{Q} \backslash\left\{\chi_{Q_{1}}\right\}\right\}^{\circ}$ is unbounded one gets that $M \cap \mathcal{Q}^{\circ}$ is also unbounded. The rest of this equivalence is obvious.
$(2) \Longleftrightarrow(3)$. If M° is a neighborhood of zero in $\operatorname{span}\left\{M^{\circ}\right\}$ and if $\mathcal{Q}=\left\{\chi_{Q_{i}}: Q_{i} \in \mathcal{A}, 1 \leqslant i \leqslant r\right\}$ is a cobase of $\operatorname{span}\left\{M^{\circ}\right\}$ in $L(\mathcal{A})$ then $\operatorname{absco}\left(M^{\circ} \cup \mathcal{Q}\right)$ is a neighborhood of zero in $L(\mathcal{A})$, hence

$$
\left(\operatorname{absco}\left(M^{\circ} \cup \mathcal{Q}\right)\right)^{\circ}=M \cap \mathcal{Q}^{\circ}
$$

is a bounded subset of $\mathrm{ba}(\mathcal{A})$.
If M° is not a neighborhood of zero in $\operatorname{span}\left\{M^{\circ}\right\}$ or if the codimension of $\operatorname{span}\left\{M^{\circ}\right\}$ in $L(\mathcal{A})$ is infinite, then for each finite set $\mathcal{Q}:=\left\{\chi_{Q_{i}}: Q_{i} \in \mathcal{A}, 1 \leqslant i \leqslant r\right\}$ such that $\operatorname{span}\left\{M^{\circ}\right\} \cap \operatorname{span}\{\mathcal{Q}\}=\{0\}$ the set $\operatorname{absco}\left(M^{\circ} \cup \mathcal{Q}\right)$ is not a neighborhood of zero in $L(\mathcal{A})$, whence the set $\left(\operatorname{absco}\left(M^{\circ} \cup \mathcal{Q}\right)\right)^{\circ}=M \cap \mathcal{Q}^{\circ}$ is unbounded in $\mathrm{ba}(\mathcal{A})$.

If M is an unbounded subset of $\mathrm{ba}(\mathcal{A})$ then M° is not a neighborhood of zero in $L(\mathcal{A})$. If, additionally, $\overline{\operatorname{span}\left\{M^{\circ}\right\}}=L(\mathcal{A})$ we have, by denseness, that M° is not a neighborhood of zero in $\operatorname{span}\left\{M^{\circ}\right\}$ and we obtain that M verifies (3).

The fact that if a subset M of $b a(\mathcal{A})$ verifies (1) in Proposition 3 then its subsets $M \cap \mathcal{Q}^{\circ}$ are unbounded, for each finite subset \mathcal{Q} of $\left\{\chi_{A}: A \in \mathcal{A}\right\}$, motivates the following definition.

Definition 1. Let B be an element of the algebra \mathcal{A} of subsets of Ω. A subset M of $\mathrm{ba}(\mathcal{A})$ is deep B unbounded if each finite subset \mathcal{Q} of $\left\{\chi_{A}: A \in \mathcal{A}\right\}$ verifies that

$$
\begin{equation*}
\sup \left\{|\mu(C)|: \mu \in M \cap \mathcal{Q}^{\circ}, C \in \mathcal{A}, C \subset B\right\}=\infty \tag{2}
\end{equation*}
$$

or, equivalently, $\sup \left\{|\mu|(B): \mu \in M \cap \mathcal{Q}^{\circ}\right\}=\infty$.

In particular, a subset M of $b a(\mathcal{A})$ is deep Ω-unbounded if $M \cap \mathcal{Q}^{\circ}$ is an unbounded subset of $b a(\mathcal{A})$, for each finite subset \mathcal{Q} of $\left\{\chi_{A}: A \in \mathcal{A}\right\}$. Therefore an absolutely convex $\tau_{s}(\mathcal{A})$-closed subset M of $b a(\mathcal{A})$ is deep Ω-unbounded if and only if M verifies condition (2) or (3) in Proposition 3. If, additionally, $\overline{\operatorname{span}\left\{M^{\circ}\right\}}=L(\mathcal{A})$ then M is deep Ω-unbounded if and only if it is unbounded.

Next proposition furnishes sequences of deep Ω-unbounded subsets of $b a(\mathcal{A})$. The particular case $\cup_{m} \mathcal{B}_{m}=\mathcal{A}$ is Theorem 1 in [15].

Proposition 4. Let \mathcal{A} be an algebra of subsets of Ω and let $\left(\mathcal{B}_{m}\right)_{m}$ be an increasing sequence of subsets of \mathcal{A} such that each \mathcal{B}_{m} does not have N-property and $\overline{\operatorname{span}\left\{\chi_{C}: C \in \cup_{m} \mathcal{B}_{m}\right\}}=L(\mathcal{A})$. There exists $n_{0} \in \mathbb{N}$ such that for each $m \geqslant n_{0}$ there exists a deep Ω-unbounded $\tau_{s}(\mathcal{A})$-closed absolutely convex subset M_{m} of $b a(\mathcal{A})$ which is pointwise bounded in \mathcal{B}_{m}, i.e., $\sup \left\{|\mu(C)|: \mu \in M_{m}\right\}<\infty$ for each $C \in \mathcal{B}_{m}$. In particular this proposition holds if $\cup_{m} \mathcal{B}_{m}=\mathcal{A}$ or if $\cup_{m} \mathcal{B}_{m}$ has N-property.

Proof. If for each $m \in \mathbb{N}$ the subspace $H_{m}:=\overline{\operatorname{span}\left\{\chi_{C}: C \in \mathcal{B}_{m}\right\}}$ has infinite codimension in $L(\mathcal{A})$ then, by (3) in Proposition 3, the polar set of $P_{m}:=\overline{\operatorname{absco}\left\{\chi_{C}: C \in \mathcal{B}_{m}\right\}}$ is the deep Ω-unbounded set $M_{m}:=P_{m}^{\circ}$. The definition of polar set implies that $\sup \left\{|\mu(C)|: \mu \in M_{m}\right\} \leqslant 1$, for each $C \in \mathcal{B}_{m}$. Whence we get the proposition with $n_{0}=1$.

If there exists p such that the codimension of $F:=\overline{\operatorname{span}\left\{\chi_{C}: C \in \mathcal{B}_{p}\right\}}$ in $L(\mathcal{A})=\operatorname{span}\left\{\chi_{C}: C \in \cup_{m} \mathcal{B}_{m}\right\}$ is the finite positive number q then $\left\{\chi_{C}: C \in \cup_{m} \mathcal{B}_{m}\right\} \not \subset F$, whence there exists $m_{1} \in \mathbb{N}$ and $D \in \mathcal{B}_{p+m_{1}}$ such that $\chi_{D} \notin F$ and then the codimension of $\overline{\operatorname{span}\left\{\chi_{C}: C \in \mathcal{B}_{p+m_{1}}\right\}}$ in $L(\mathcal{A})$ is less or equal than $q-1$. Therefore there exists n_{0} such that $\overline{\operatorname{span}\left\{\chi_{C}: C \in \mathcal{B}_{m}\right\}}=L(\mathcal{A})$, for each $m \geqslant n_{0}$. As for each $m \geqslant n_{0}$ the set \mathcal{B}_{m} does not have N-property there exists an absolutely convex $\tau_{s}(\mathcal{A})$-closed unbounded subset M_{m} of $\operatorname{ba}(\mathcal{A})$ such that $\sup \left\{|\mu(C)|: \mu \in M_{m}\right\}<k_{C}<\infty$, for each $C \in \mathcal{B}_{m}$, and then it follows that $\left\{k_{C}^{-1} \chi_{C}: C \in \mathcal{B}_{m}\right\} \subset M_{m}^{\circ}$. This inclusion implies that $\operatorname{span}\left\{\chi_{C}: C \in \mathcal{B}_{m}\right\} \subset \operatorname{span}\left\{M_{m}^{\circ}\right\}$, whence $\overline{\operatorname{span}\left\{M_{m}^{\circ}\right\}}=L(\mathcal{A})$, because $\overline{\operatorname{span}\left\{\chi_{C}: C \in \mathcal{B}_{m}\right\}}=L(\mathcal{A})$. Then, by Proposition 3, the unbounded set M_{m} is deep Ω-unbounded for each $m \geqslant n_{0}$.

If $\cup_{m} \mathcal{B}_{m}=\mathcal{A}$ or if $\cup_{m} \mathcal{B}_{m}$ has N-property then $\overline{\operatorname{span}\left\{\chi_{C}: C \in \cup_{m} \mathcal{B}_{m}\right\}}=L(\mathcal{A})$ and this proposition holds.

Next Proposition 5 it follows from [15, Proposition 1]. We give a simplified proof according to our current notation.

Proposition 5. Let B be an element of an algebra \mathcal{A} and $\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$ a finite partition of B by elements of \mathcal{A}. If M is a deep B-unbounded subset of $b a(\mathcal{A})$ there exists $C_{i}, 1 \leqslant i \leqslant q$, such that M is deep C_{i}-unbounded.

Proof. If for each $i, 1 \leqslant i \leqslant q$, there exists a finite set \mathcal{Q}^{i} of characteristic functions of elements of \mathcal{A} such that $\sup \left\{|\mu|\left(C_{i}\right): \mu \in M \cap\left(\mathcal{Q}^{i}\right)^{\circ}\right\}<H_{i}, i \in\{1,2, \ldots, q\}$, then we get the contradiction that the set $\mathcal{Q}=\cup_{1 \leqslant i \leqslant q} \mathcal{Q}^{i}$ verifies that $\sup \left\{|\mu|(B): \mu \in M \cap \mathcal{Q}^{\circ}\right\}<\Sigma_{1 \leqslant i \leqslant q} H_{i}$.

If $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right), s=\left(s_{1}, s_{2}, \ldots, s_{q}\right), T$ and U are two elements and two subsets of $\cup_{s} \mathbb{N}^{s}$ we define $t(i):=\left(t_{1}, t_{2}, \ldots, t_{i}\right)$ if $1 \leqslant i \leqslant p, t(i):=\emptyset$ if $i>p, T(m):=\{t(m): t \in T\}$, for each $m \in \mathbb{N}, t \times s:=$ $\left(t_{1}, t_{2}, \ldots, t_{p}, t_{p+1}, t_{p+2}, \ldots, t_{p+q}\right)$, with $t_{p+j}:=s_{j}$, for $1 \leqslant j \leqslant q$, and $T \times U:=\{t \times u: t \in T, u \in U\}$. We simplify $\left(t_{1}\right),(n)$ and $T \times\{(n)\}$ by t_{1}, n and $T \times n$. The length of $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ is p and the cardinal of a set C is denoted by $|C|$.

If $v \in \cup_{s} \mathbb{N}^{s}$ and $t \times v \in U$ then $t \times v$ is an extension of t in U. A sequence $\left(t^{n}\right)_{n}$ of elements $t^{n}=\left(t_{1}^{n}, t_{2}^{n}, \ldots, t_{n}^{n}, \ldots\right) \in \cup_{s} \mathbb{N}^{s}$ is an infinite chain if for each $n \in \mathbb{N}$ the element t^{n+1} is an extension of the section $t^{n}(n)$, i.e., $\emptyset \neq t^{n}(n)=t^{n+1}(n)$.

A subset U of $\cup_{n} \mathbb{N}^{n}$ is increasing at $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in \cup_{s} \mathbb{N}^{s}$ if U contains p elements $t^{1}=\left(t_{1}^{1}, t_{2}^{1}, \ldots\right)$ and $t^{i}=\left(t_{1}, t_{2}, \ldots, t_{i-1}, t_{i}^{i}, t_{i+1}^{i}, \ldots\right), 1<i \leqslant p$, such that $t_{i}<t_{i}^{i}$, for each $1 \leqslant i \leqslant p$. A non-void subset U of $\cup_{s} \mathbb{N}^{s}$ is increasing (increasing respect to a subset V of $\cup_{s} \mathbb{N}^{s}$) if U is increasing at each $t \in U$ (at each $t \in V$), hence U is increasing if $|U(1)|=\infty$ and $|\{n \in \mathbb{N}: t(i) \times n \in U(i+1)\}|=\infty$, for each $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in U$ and $1 \leqslant i<p$.

If $\left\{B_{u}: u \in \cup_{s} \mathbb{N}^{s}\right\}$ is an increasing web in A and U is an increasing subset of $\cup_{s \in \mathbb{N}} \mathbb{N}^{s}$ then $\mathcal{B}:=$ $\left\{B_{u(i)}: u \in U, 1 \leqslant i \leqslant\right.$ length $\left.u\right\}$ verifies that $\left(B_{u(1)}\right)_{u \in U}$ is an increasing covering of A and for each $u=\left(u_{1}, u_{2}, \ldots, u_{p}\right) \in U$ and each $i<p$ the sequence $\left(B_{u(i) \times n}\right)_{u(i) \times n \in U(i+1)}$ is an increasing covering of $B_{u(i)}$. If, additionally, each element $u \in U$ has an extension in U then renumbering the indexes in the elements of \mathcal{B} we get an increasing web.

The Definition 2 deals with increasing subsets of $\cup_{s \in \mathbb{N}} \mathbb{N}^{s}$ and it is motivated by the technical Example 1 which will be used onwards to complete the proof of Theorem 2. A particular class of increasing trees, named $N V$-trees -surely reminding Nikodym and Valdivia-, is considered in [9, Definition 1].

Definition 2. An increasing tree T is an increasing subset of $\cup_{s \in \mathbb{N}} \mathbb{N}^{s}$ without infinite chains.
An increasing tree T is trivial if $T=T(1)$; then T is an infinite subset of \mathbb{N}. The sets $\mathbb{N}^{i}, i \in \mathbb{N} \backslash\{1\}$, and the set $\cup\left\{(i) \times \mathbb{N}^{i}: i \in \mathbb{N}\right\}$ are non trivial increasing trees.

An increasing subset S of an increasing tree T is an increasing tree. From this observation it follows the Claim 6.

Claim 6. If $\left(S_{n}\right)_{n}$ is a sequence of non-void subsets of an increasing tree T such that for each $n \in \mathbb{N}$ the set S_{n+1} is increasing respect to S_{n}, then $S:=\cup_{n} S_{n}$ is an increasing tree.

Proof. It is enough to notice that S is an increasing subset of T.
Example 1. Let $\mathcal{B}:=\left\{\mathcal{B}_{m_{1}, m_{2}, \ldots, m_{p}}: p, m_{1}, m_{2}, \ldots, m_{p} \in \mathbb{N}\right\}$ be an increasing web in an algebra \mathcal{A} of subsets of Ω with the property that for each sequence $\left(m_{i}\right)_{i} \in \mathbb{N}^{\mathbb{N}}$ there exists $q \in \mathbb{N}$ such that $\mathcal{B}_{m_{1}, m_{2}, \ldots, m_{q}}$ does not have $s N$-property. Then there exists an increasing web $\mathcal{C}:=\left\{\mathcal{C}_{m_{1}, m_{2}, \ldots, m_{p}}: p, m_{1}, m_{2}, \ldots, m_{p} \in \mathbb{N}\right\}$ in \mathcal{A} and an increasing tree T such that for each $\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in T$ there exists a deep Ω-unbounded $\tau_{s}(\mathcal{A})$ closed absolutely convex subset $M_{t_{1}, t_{2}, \ldots, t_{p}}$ of ba (\mathcal{A}) which is pointwise bounded in $\mathcal{C}_{t_{1}, t_{2}, \ldots, t_{p}}$, i.e.,

$$
\begin{equation*}
\sup \left\{|\mu(C)|: \mu \in M_{t_{1}, t_{2}, \ldots, t_{p}}\right\}<\infty \tag{3}
\end{equation*}
$$

for each $C \in \mathcal{C}_{t_{1}, t_{2}, \ldots, t_{p}}$.
Proof. If each $\mathcal{B}_{m_{1}}, m_{1} \in \mathbb{N}$, does not have N-property then the example is given by $\mathcal{C}:=\mathcal{B}$ and $T:=$ $\mathbb{N} \backslash\left\{1,2, \ldots, n_{0}-1\right\}$, where n_{0} is the natural number obtained in Proposition 4 applied to the increasing covering $\left(\mathcal{B}_{m_{1}}\right)_{m_{1}}$ of \mathcal{A}. Hence we may suppose that there exists $m_{1} \in \mathbb{N}$ such that $\mathcal{B}_{t_{1}}$ has N-property for each $t_{1} \geqslant m_{1}$ and then:
(i_{1}) Either $\mathcal{B}_{t_{1}}$ does not have $s N$-property for each $t_{1} \in \mathbb{N}$ and the inductive process finish defining $T_{0}:=$ $\left\{t_{1} \in \mathbb{N}: t_{1} \geqslant m_{1}\right\}$.
(iii) Or there exists $m_{1}^{\prime} \in \mathbb{N}$ such that $\mathcal{B}_{t_{1}}$ has $s N$-property for each $t_{1} \geqslant m_{1}^{\prime}$. Then we write $Q_{1}:=\emptyset$ and $Q_{1}^{\prime}:=\left\{t_{1} \in \mathbb{N}: t_{1} \geqslant m_{1}^{\prime}\right\}$.

Let us assume that for each j, with $2 \leqslant j \leqslant i$, we have obtained by induction two disjoint subsets Q_{j} and Q_{j}^{\prime} of \mathbb{N}^{j} such that each $t=\left(t_{1}, t_{2}, \ldots, t_{j}\right) \in Q_{j} \cup Q_{j}^{\prime}$ verifies:

1. $t(j-1)=\left(t_{1}, t_{2}, \ldots, t_{j-1}\right) \in Q_{j-1}^{\prime}$.
2. If $t \in Q_{j}$ the set \mathcal{B}_{t} has N-property but it does not have $s N$-property and $S_{t(j-1)}:=\{n \in \mathbb{N}$: $\left.t(j-1) \times n \in Q_{j} \cup Q_{j}^{\prime}\right\}$ is a cofinite subset of \mathbb{N} such that $t(j-1) \times S_{t(j-1)} \subset Q_{j}$.
3. If $t \in Q_{j}^{\prime}$ the set \mathcal{B}_{t} has $s N$-property and $S_{t(j-1)}^{\prime}:=\left\{n \in \mathbb{N}: t(j-1) \times n \in Q_{j} \cup Q_{j}^{\prime}\right\}$ is a cofinite subset of \mathbb{N} such that $t(j-1) \times S_{t(j-1)}^{\prime} \subset Q_{j}^{\prime}$.
If $t:=\left(t_{1}, t_{2}, \ldots, t_{i}\right) \in Q_{i}^{\prime}$ then $\mathcal{B}_{t_{1}, t_{2}, \ldots, t_{i}}$ has $s N$-property and $\left(\mathcal{B}_{t_{1}, t_{2}, \ldots, t_{i}, n}\right)_{n}$ is an increasing covering of $\mathcal{B}_{t_{1}, t_{2}, \ldots, t_{i}}$, hence there exists m_{i+1} such that $\mathcal{B}_{t_{1}, t_{2}, \ldots, t_{i}, n}$ has N-property for each $n \geqslant m_{i+1}$. Then we may have two possible cases:
$\left(i_{i+1}\right)$ Either $\mathcal{B}_{t_{1}, t_{2}, \ldots, t_{i}, n}$ does not have $s N$-property for each $n \in \mathbb{N}$ and we define $S_{t_{1}, t_{2}, \ldots, t_{i}}:=\{n \in \mathbb{N}$: $\left.m_{i+1} \leqslant n\right\}$ and $S_{t_{1}, t_{2}, \ldots, t_{i}}^{\prime}:=\emptyset$,
($i i_{i+1}$) or there exists $m_{i+1}^{\prime} \in \mathbb{N}$ such that $\mathcal{B}_{t_{1}, t_{2}, \ldots, t_{i}, n}$ has $s N$-property for each $n \geqslant m_{i+1}^{\prime}$. In this case let $S_{t_{1}, t_{2}, \ldots, t_{i}}:=\emptyset$ and $S_{t_{1}, t_{2}, \ldots, t_{i}}^{\prime}:=\left\{n \in \mathbb{N}: m_{i+1}^{\prime} \leqslant n\right\}$.

We finish this induction procedure by setting $Q_{i+1}:=\cup\left\{t \times S_{t}: t \in Q_{i}^{\prime}\right\}$ and $Q_{i+1}^{\prime}:=\cup\left\{t \times S_{t}^{\prime}: t \in Q_{i}^{\prime}\right\}$. By construction Q_{i+1} and Q_{i+1}^{\prime} verify the properties 1., 2 . and 3 . with $j=i+1$.

The fact that for each sequence $\left(m_{i}\right)_{i} \in \mathbb{N}^{\mathbb{N}}$ there exists $j \in \mathbb{N}$ such that $\mathcal{B}_{m_{1}, m_{2}, \ldots, m_{j}}$ does not have $s N$-property imply that $T_{0}:=\cup\left\{Q_{i}: i \in \mathbb{N}\right\}$ does not contain infinite chains, because if $\left(m_{1}, m_{2}, \ldots, m_{p}\right) \in$ Q_{p} then $\mathcal{B}_{m_{1}, m_{2}, \ldots, m_{p-1}}$ has $s N$-property, whence for each $\left(t_{1}, t_{2}, \ldots, t_{k}\right) \in Q_{k}^{\prime}$ there exists $q \in \mathbb{N}$ and $\left(t_{k+1}, \ldots, t_{k+q}\right) \in \mathbb{N}^{q}$ such that $\left(t_{1}, t_{2}, \ldots, t_{k}, t_{k+1}, \ldots, t_{k+q}\right) \in Q_{k+q}$ and then $T_{0}(k)=Q_{k} \cup Q_{k}^{\prime}$, for each $k \in \mathbb{N}$. These equalities imply that T_{0} is increasing, because $\left|T_{0}(1)\right|=\left|Q_{1}^{\prime}\right|=\infty$ and if $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in T_{0}$ the the sets $S_{t(i-1)}^{\prime}, 1<i<p$, and $S_{t(p-1)}$ are cofinite subsets of \mathbb{N}.

This increasing tree T_{0} as well as the trivial increasing tree obtained in $\left(i_{1}\right)$, also named T_{0}, verify that for each $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in T_{0}$ the family $\mathcal{B}_{t_{1}, t_{2}, \ldots, t_{p}}$ has N-property and it does not have $s N$-property, whence $\mathcal{B}_{t_{1}, t_{2}, \ldots, t_{p}}$ has an increasing covering $\left(\mathcal{B}_{t_{1}, t_{2}, \ldots, t_{p}, n}^{\prime}\right)_{n}$ such that each $\mathcal{B}_{t_{1}, t_{2}, \ldots, t_{p}, n}^{\prime}$ does not have N property. By Proposition 4 there exist $n_{0} \in \mathbb{N}$ such that for each $n \geqslant n_{0}$ there exists a deep Ω-unbounded $\tau_{s}(\mathcal{A})$-closed absolutely convex subset $M_{t_{1}, t_{2}, \ldots, t_{p}, n}$ of $\operatorname{ba}(\mathcal{A})$ which is $\mathcal{B}_{t_{1}, t_{2}, \ldots, t_{p}, n}^{\prime}$ pointwise bounded, i.e., $\sup \left\{|\mu(C)|: \mu \in M_{t_{1}, t_{2}, \ldots, t_{p}, n}\right\}<\infty$, for each $C \in \mathcal{B}_{t_{1}, t_{2}, \ldots, t_{p}, n}^{\prime}$. We assume $n_{0}=1$, removing $\mathcal{B}_{t_{1}, t_{2}, \ldots, t_{p}, n}^{\prime}$ when $n<n_{0}$ and changing n by $n-n_{0}+1$.

Then we get the example with the increasing tree $T:=T_{0} \times \mathbb{N}$ and with the increasing web $\mathcal{C}:=\left\{\mathcal{C}_{t}: t \in\right.$ $\left.\cup_{s} \mathbb{N}^{s}\right\}$ in the algebra \mathcal{A} such that for each $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in \cup_{s} \mathbb{N}^{s}$ either $\mathcal{C}_{t}:=\mathcal{B}_{t(i)}^{\prime}$ if $i \leqslant p$ and $t(i) \in T$ or $\mathcal{C}_{t}:=\mathcal{B}_{t}$ if $\{t(i): 1 \leqslant i \leqslant p\} \cap T=\emptyset$.

Let U be a subset of $\cup_{s} \mathbb{N}^{s}$. An element $t \in \cup_{s} \mathbb{N}^{s}$ admits increasing extension in U if the set of $\left\{v \in \cup_{s} \mathbb{N}^{s}: t \times v \in U\right\}$ contains an increasing subset. We need the following obvious properties $(a),\left(b_{1}\right)$ and $\left(b_{2}\right)$ to prove Proposition 7, stating that if a subset U of an increasing tree T does not contain an increasing tree then $T \backslash U$ contains an increasing tree.
(a) If U is a subset of $\cup_{s} \mathbb{N}^{s}$ and U does not contain an increasing tree then there exists $m_{1} \in \mathbb{N}$ such that each $n \in \mathbb{N} \backslash\left\{1,2, \ldots, m_{1}\right\}$ does not admit increasing extension in U.
(b) Let $t \in \cup_{s} \mathbb{N}^{s}$ and let U be a subset of the increasing tree T. Suppose that t does not admit increasing extension in U and that $T_{t}:=\left\{v \in \cup_{s} \mathbb{N}^{s}: t \times v \in T\right\} \neq \emptyset$. Then
$\left(b_{1}\right)$ if the increasing tree T_{t} is trivial there exists $m_{i+1} \in \mathbb{N}$ such that the set

$$
\left(t \times\left\{\mathbb{N} \backslash\left\{1,2, \ldots, m_{i+1}\right\}\right) \cap T\right.
$$

is an infinite subset of $T \backslash U$,
$\left(b_{2}\right)$ if T_{t} is non-trivial there exists $m_{i+1}^{\prime} \in \mathbb{N}$ such that each element of

$$
\left(t \times\left\{\mathbb{N} \backslash\left\{1,2, \ldots, m_{i+1}^{\prime}\right\}\right) \cap T(i+1)\right.
$$

does not admit increasing extension in U.
Proposition 7. Let U be a subset of an increasing tree T. If U does not contain an increasing tree then $T \backslash U$ contains an increasing tree.

Proof. It is enough to prove that $T \backslash U$ contains an increasing subset W. Now we follow the scheme of the proof in Example 1. In fact, if T is a trivial increasing tree the proposition is obvious. Hence we may suppose that T is a non-trivial increasing tree. Then we define $Q_{1}:=\emptyset$ and by (a) there exists $m_{1}^{\prime} \in \mathbb{N}$ such that each element of the set $Q_{1}^{\prime}:=\left\{n \in T(1): m_{1}^{\prime} \leqslant n\right\}$ does not admit increasing extension in U. Notice that $Q_{1}^{\prime} \subset T(1) \backslash T$.

Let us suppose that we have obtained for each j, with $2 \leqslant j \leqslant i$, two disjoint subsets Q_{j} and Q_{j}^{\prime} such that $Q_{j} \subset T(j) \cap(T \backslash U), Q_{j}^{\prime} \subset T(j) \backslash T$ and each $t \in Q_{j} \cup Q_{j}^{\prime}$ verifies the following properties:

1. $t(j-1) \in Q_{j-1}^{\prime}$.
2. If $t \in Q_{j}$ then the cardinal of $S_{t(j-1)}:=\left\{n \in \mathbb{N}: t(j-1) \times n \in Q_{j} \cup Q_{j}^{\prime}\right\}$ is infinite and $t(j-1) \times S_{t(j-1)} \subset$ Q_{j}.
3. If $t \in Q_{j}^{\prime}$ then t does not admit increasing extension in U, the cardinal of $S_{t(j-1)}^{\prime}:=\{n \in \mathbb{N}$: $\left.t(j-1) \times n \in Q_{j} \cup Q_{j}^{\prime}\right\}$ is infinite and $t(j-1) \times S_{t(j-1)}^{\prime} \subset Q_{j}^{\prime}$.
If $t \in Q_{i}^{\prime}$ then $t \in T(i) \backslash T$ and it does not admit increasing extension in U. If $T_{t}=\left\{v \in \cup_{s} \mathbb{N}^{s}: t \times v \in T\right\}$ then, by $\left(b_{1}\right)$ and $\left(b_{2}\right)$, it follows that the following two cases may happen:
i. If T_{t} is trivial then there exists $m_{i+1} \in \mathbb{N}$ such that the infinite set $S_{t}:=\left\{n \in \mathbb{N}: m_{i+1} \leqslant n, t \times n \in\right.$ $T(i+1)\}$ verifies that $t \times S_{t} \subset T \backslash U$ and we define $S_{t}^{\prime}:=\emptyset$.
ii. If T_{t} is non-trivial then there exists $m_{i+1}^{\prime} \in \mathbb{N}$ such that the infinite set $S_{t}^{\prime}:=\left\{n \in \mathbb{N}: m_{i+1}^{\prime}<\right.$ $n, t \times n \in T(i+1)\}$ verifies that $t \times S_{t}^{\prime} \subset T(i+1) \backslash T$ and each element of $t \times S_{t}^{\prime}$ does not admit increasing extension in U. Now we define $S_{t}:=\emptyset$.
We finish this induction procedure by setting $Q_{i+1}:=\cup\left\{t \times S_{t}: t \in Q_{i}^{\prime}\right\}$ and $Q_{i+1}^{\prime}:=\cup\left\{t \times S_{t}^{\prime}: t \in Q_{i}^{\prime}\right\}$.
By construction $Q_{i+1} \subset T(i+1) \cap(T \backslash U), Q_{i+1}^{\prime} \subset T(i+1) \backslash T$, and each $t \in Q_{i+1} \cup Q_{i+1}^{\prime}$ verifies the properties 1 ., 2 . and 3 . changing j by $i+1$.

As T does not contain infinite chains we deduce from 1. that for each $\left(t_{1}, t_{2}, \ldots, t_{i}\right) \in Q_{i}^{\prime}$ there exists $q \in \mathbb{N}$ and $\left(t_{i+1}, \ldots, t_{i+q}\right) \in \mathbb{N}^{q}$ such that $\left(t_{1}, t_{2}, \ldots, t_{i}, t_{i+1}, \ldots, t_{i+q}\right) \in Q_{i+q}$. Whence, for each $i \in \mathbb{N}$, $\left(\cup_{j>i} Q_{j}\right)(i)=Q_{i}^{\prime}$ and then $W:=\cup\left\{Q_{j}: j \in \mathbb{N}\right\}$ is a subset of $T \backslash U$.
W has the increasing property because from $W(k)=Q_{k} \cup Q_{k}^{\prime}$, for each $k \in \mathbb{N}$, it follows that $|W(1)|=$ $\left|Q_{1}^{\prime}\right|=\infty$ and if $t=\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in W$ then $\left(t_{1}, t_{2}, \ldots, t_{i}\right) \in Q_{i}^{\prime}$, if $1<i<p$, and $\left(t_{1}, t_{2}, \ldots, t_{p}\right) \in Q_{p}$, hence the infinite subsets $S_{t(i-1)}^{\prime}$ and $S_{t(p-1)}$ of \mathbb{N} verify that $t(i-1) \times S_{t(i-1)}^{\prime} \subset Q_{i}^{\prime} \subset W(i)$ and $t(p-1) \times S_{t(p-1)} \subset$ $Q_{p} \subset W$.

Next Proposition 8 follows from [15, Propositions 2 and 3] and we give a simplified proof according to our current notation for the sake of completeness.
Proposition 8. Let $\left\{B, Q_{1}, \ldots, Q_{r}\right\}$ be a subset of the algebra \mathcal{A} of subsets of Ω and let M be a deep B-unbounded absolutely convex subset of ba (\mathcal{A}). Then given a positive real number α and a natural number $q>1$ there exists a finite partition $\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$ of B by elements of \mathcal{A} and a subset $\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{q}\right\}$ of M such that $\left|\mu_{i}\left(C_{i}\right)\right|>\alpha$ and $\Sigma_{1 \leqslant j \leqslant r}\left|\mu_{i}\left(Q_{j}\right)\right| \leqslant 1$, for $i=1,2, \ldots, q$.
Proof. Let $\mathcal{Q}=\left\{\chi_{B}, \chi_{Q_{1}}, \chi_{Q_{2}}, \ldots, \chi_{Q_{r}}\right\}$. The deep B-unboundedness of M and the inclusion $M \subset r M$ imply that

$$
\sup \left\{|\mu(D)|: \mu \in r M \cap \mathcal{Q}^{\circ}, D \subset B, D \in \mathcal{A}\right\}=\infty
$$

Hence there exists $P_{1} \subset B$, with $P_{1} \in \mathcal{A}$, and $\mu \in r M \cap \mathcal{Q}^{\circ}$ such that $\left|\mu\left(P_{1}\right)\right|>r(1+\alpha)$. Clearly $\mu_{1}=r^{-1} \mu \in M,\left|\mu_{1}\left(P_{1}\right)\right|>1+\alpha$ and $\left|\mu_{1}(f)\right|=r^{-1}|\mu(f)| \leqslant r^{-1}$ for each $f \in \mathcal{Q}$, hence $\left|\mu_{1}(B)\right| \leqslant r^{-1} \leqslant 1$ and $\Sigma_{1 \leqslant j \leqslant r}\left|\mu_{1}\left(Q_{j}\right)\right| \leqslant r^{-1} r=1$. The set $P_{2}:=B \backslash P_{1}$ verifies that

$$
\left|\mu_{1}\left(P_{2}\right)\right| \geqslant\left|\mu_{1}\left(P_{1}\right)\right|-\left|\mu_{1}(B)\right|>1+\alpha-1=\alpha .
$$

From Proposition 5 there exists $i \in\{1,2\}$ such that M is deep P_{i}-unbounded. To finish the first step of the proof let $C_{1}:=P_{1}$ if M is deep P_{2}-unbounded and let $C_{1}:=P_{2}$ if M is deep P_{1}-unbounded. Then M is deep $B \backslash C_{1}$-unbounded.

Apply the same argument in $B \backslash C_{1}$ to obtain a measurable set $C_{2} \subset B \backslash C_{1}$ and a measure $\mu_{2} \in M$ such that $\left|\mu_{2}\left(C_{2}\right)\right|>\alpha,\left|\mu_{2}\left(B \backslash\left(C_{1} \cup C_{2}\right)\right)\right|>\alpha$ and $\Sigma\left\{\left|\mu_{2}\left(Q_{j}\right)\right|: 1 \leqslant j \leqslant r\right\} \leqslant 1$, being M deep $B \backslash\left(C_{1} \cup C_{2}\right)$ unbounded. Hence the proof is provided by applying $q-1$ times this argument. In the last step we define $\mu_{q}:=\mu_{q-1}$ and $C_{q}=B \backslash\left(C_{1} \cup \cdots \cup C_{q-1}\right)$.
Proposition 9. Let B be an element of an algebra \mathcal{A} and $\left\{M_{t}: t \in T\right\}$ a family of deep B-unbounded subsets of ba (\mathcal{A}) indexed by an increasing tree T. If $t^{j}:=\left(t_{1}^{j}, t_{2}^{j}, \ldots, t_{p_{j}}^{j}\right) \in T$, for each $1 \leqslant j \leqslant k$, and $q=2+\Sigma\left\{p_{j}: 1 \leqslant j \leqslant k\right\}$ then for each finite partition $\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$ of B by elements of \mathcal{A} there exists $h \in\{1,2, \cdots, q\}$ and an increasing tree T_{1} such that $\left\{t^{1}, t^{2}, \ldots, t^{k}\right\} \subset T_{1} \subset T$ and $\left\{M_{t}: t \in T_{1}\right\}$ is a family of deep $B \backslash C_{h}$-unbounded subsets.

Proof. Let $\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$ be a finite partition of B by elements of \mathcal{A} with $q=2+\Sigma\left\{p_{j}: 1 \leqslant j \leqslant k\right\}$. From Proposition 5 it follows that if $\left\{M_{u}: u \in U\right\}$ is a family of deep B-unbounded subsets of ba (\mathcal{A}) indexed by an increasing tree U and $V_{i}:=\left\{u \in U: M_{u}\right.$ is deep C_{i}-unbounded $\}, 1 \leqslant i \leqslant q$, then $U=\cup_{1 \leqslant i \leqslant q} V_{i}$ and, by Proposition 7, there exists l, with $1 \leqslant l \leqslant q$, such that V_{l} contains an increasing tree U_{l}. Therefore
(a) If $\left\{M_{u}: u \in U\right\}$ is a family of deep B-unbounded subsets indexed by an increasing tree U there exists $l \in\{1,2, \ldots, q\}$ and an increasing tree U_{l} contained in U such that $\left\{M_{u}: u \in U_{l}\right\}$ is a family of deep C_{l}-unbounded subsets.

In particular, for the increasing tree T and for each element $t^{j} \in T$, with $1 \leqslant j \leqslant k$, there exist by (a) and Proposition 5:
(1) $i_{0} \in\{1,2, \ldots, q\}$ and an increasing tree $T_{i_{0}}$ contained in T such that $\left\{M_{t}: t \in T_{i_{0}}\right\}$ is a family of deep $C_{i_{0}}$-unbounded subsets,
(2) $i^{j} \in\{1,2, \ldots, q\}$ such that $M_{t^{j}}$ is deep $C_{i^{j}}$-unbounded.

Let $S:=\left\{j: 1 \leqslant j \leqslant k, t^{j} \notin T_{i_{0}}\right\}$. For each $j \in S$ and each section $t^{j}(m-1)$ of $t^{j}=\left(t_{1}^{j}, t_{2}^{j}, \ldots, t_{p_{j}}^{j}\right)$, with $2 \leqslant m \leqslant p_{j}$, the set $W_{m}^{j}:=\left\{v \in \cup_{s} \mathbb{N}^{s}: t^{j}(m-1) \times v \in T\right\}$ is an increasing tree such that $\left\{M_{\left(t_{1}^{j}, t_{2}^{j}, \ldots, t_{m-1}^{j}\right) \times w}: w \in W_{m}^{j}\right\}$ is a family of deep B-unbounded subsets. By (a) there exists:
(3) $i_{m}^{j} \in\{1,2, \ldots, q\}$ and an increasing tree V_{m}^{j} contained in W_{m}^{j} such that

$$
\left\{M_{\left(t_{1}^{j}, t_{2}^{j}, \ldots, t_{m-1}^{j}\right) \times v}: v \in V_{m}^{j}\right\}
$$

is a family of deep $C_{i_{m}^{j}}$-unbounded subsets. Clearly $\left(t_{1}^{j}, t_{2}^{j}, \ldots, t_{m-1}^{j}\right) \times V_{m}^{j} \subset T$.
As the number of sets $C_{i_{0}}, C_{i^{j}}, C_{i_{m}^{j}}$, with $j \in S$ and $2 \leqslant m \leqslant p_{j}$, is less or equal than $q-1$, there exists $h \in\{1,2, \cdots, q\}$ such that

$$
D:=C_{i_{0}} \cup\left(\cup\left\{C_{i^{j}} \cup C_{i_{m}^{j}}: j \in S, 2 \leqslant m \leqslant p_{j}\right\}\right) \subset B \backslash C_{h}
$$

Let T_{1} be the union of the sets $T_{i_{0}},\left\{t^{j}: j \in S\right\}$ and $\left\{\left(t_{1}^{j}, t_{2}^{j}, \ldots, t_{m-1}^{j}\right)\right\} \times V_{m}^{j}$, with $j \in S$ and $2 \leqslant m \leqslant p_{j}$. Clearly for each $t \in T_{1}$ the set M_{t} is deep D-unbounded, whence M_{t} is also deep $B \backslash C_{h}$-unbounded. By construction $\left\{t^{1}, t^{2}, \ldots, t^{k}\right\} \subset T_{1}$ and T_{1} has the increasing property and it is a subset of the increasing tree T. Whence T_{1} is an increasing tree.

We finish this section with a combination of Propositions 8 and 9. The obtained Proposition 10 is a fundamental tool for the next section.
Proposition 10. Let $\left\{B, Q_{1}, \ldots, Q_{r}\right\}$ be a subset of an algebra \mathcal{A} of subsets of Ω, and let $\left\{M_{t}: t \in T\right\}$ be a family of deep B-unbounded absolutely convex subsets of ba (\mathcal{A}), indexed by an increasing tree T. Then for each positive real number α and each finite subset $\left\{t^{j}: 1 \leqslant j \leqslant k\right\}$ of T there exist $\left\{B_{j} \in \mathcal{A}: 1 \leqslant j \leqslant k\right\}$, formed by k pairwise disjoint subsets B_{j} of $B, 1 \leqslant j \leqslant k$, a set $\left\{\mu_{j} \in M_{t^{j}}, 1 \leqslant j \leqslant k\right\}$ and an increasing tree T^{*} such that:

1. $\left|\mu_{j}\left(B_{j}\right)\right|>\alpha$ and $\Sigma\left\{\left|\mu_{j}\left(Q_{i}\right)\right|: 1 \leqslant i \leqslant r\right\} \leqslant 1$, for $j=1,2, \ldots, k$,
2. $\left\{t^{j}: 1 \leqslant j \leqslant k\right\} \subset T^{*} \subset T$ and $\left\{M_{t}: t \in T^{*}\right\}$ is a family of deep $\left(B \backslash \cup_{1 \leqslant j \leqslant k} B_{j}\right)$-unbounded sets.

Proof. Let $t^{j}:=\left(t_{1}^{j}, t_{2}^{j}, \ldots, t_{p_{j}}^{j}\right)$, for $1 \leqslant j \leqslant k$. By Proposition 8 applied to $B, \alpha, q:=2+\Sigma_{1 \leqslant j \leqslant k} p_{j}$ and $M_{t^{1}}$ there exist a partition $\left\{C_{1}^{1}, C_{2}^{1}, \ldots, C_{q}^{1}\right\}$ of B by elements of \mathcal{A} and $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{q}\right\} \subset M_{t^{1}}$ such that:

$$
\begin{equation*}
\left|\lambda_{k}\left(C_{k}^{1}\right)\right|>\alpha \quad \text { and } \quad \Sigma_{1 \leqslant i \leqslant r}\left|\lambda_{k}\left(Q_{i}\right)\right| \leqslant 1, \quad \text { for } k=1,2, \ldots, q \tag{4}
\end{equation*}
$$

hence Proposition 9 applied to the sets $\left\{C_{1}^{1}, C_{2}^{1}, \cdots, C_{q}^{1}\right\},\left\{M_{t}: t \in T\right\}$ and $\left\{t^{j}: 1 \leqslant j \leqslant k\right\}$ gives $h \in\{1,2, \cdots, q\}$ and a family $\left\{M_{t}: t \in T_{1}\right\}$ of deep $B \backslash C_{h}^{1}$-unbounded subsets indexed by an increasing tree
T_{1} such that $\left\{t^{1}, t^{2}, \ldots, t^{k}\right\} \subset T_{1} \subset T$. If $B_{1}:=C_{h}^{1}$ and $\mu_{1}:=\lambda_{h}$ then (4) holds with $\lambda_{k}=\mu_{1}$ and $C_{k}^{1}=B_{1}$. Clearly $\left\{M_{t}: t \in T_{1}\right\}$ is a family of deep $B \backslash B_{1}$-unbounded subsets.

If we apply again Proposition 8 to $B \backslash B_{1}, \alpha, q$ and $M_{t^{2}}$ we obtain a partition $\left\{C_{1}^{2}, C_{2}^{2}, \cdots, C_{q}^{2}\right\}$ of $B \backslash B_{1}$ by elements of \mathcal{A} and $\left\{\zeta_{1}, \zeta_{2}, \cdots, \zeta_{q}\right\} \subset M_{t^{2}}$ such that

$$
\left|\zeta_{k}\left(C_{k}^{2}\right)\right|>\alpha \quad \text { and } \quad \Sigma_{1 \leqslant i \leqslant r}\left|\zeta_{k}\left(Q_{i}\right)\right| \leqslant 1, \quad \text { for } k=1,2, \ldots, q,
$$

and then by Proposition 9 (applied to $\left\{C_{1}^{2}, C_{2}^{2}, \cdots, C_{q}^{2}\right\},\left\{M_{t}: t \in T_{1}\right\}$ and $\left\{t^{j}: 1 \leqslant j \leqslant k\right\}$ there exists $l \in\{1,2, \cdots, q\}$ and a family $\left\{M_{t}: t \in T_{2}\right\}$ of deep $\left(B \backslash B_{1}\right) \backslash C_{l}^{2}$-unbounded subsets indexed by an increasing tree T_{2} such that $\left\{t^{1}, t^{2}, \ldots, t^{k}\right\} \subset T_{2} \subset T$. Now if $B_{2}:=C_{l}^{2}$ and $\mu_{2}:=\zeta_{l}$ then $\left|\mu_{2}\left(B_{2}\right)\right|>\alpha$, $\Sigma\left\{\left|\mu_{2}\left(Q_{i}\right)\right|: 1 \leqslant i \leqslant r\right\} \leqslant 1$ and $\left\{M_{t}: t \in T_{2}\right\}$ is a family of deep $B \backslash\left(B_{1} \cup B_{2}\right)$-unbounded subsets. With $k-2$ new repetitions of this procedure we get the proof with $T^{*}:=T_{k}$.

3. Proof of Theorem 2

With a induction procedure based in Proposition 10 we obtain Proposition 12 that together with the next elementary covering property for families indexed by increasing trees enable to prove Theorem 2.

Proposition 11. If $\mathcal{Y}=\left\{Y_{m_{1}, m_{2}, \ldots, m_{p}}: p, m_{1}, m_{2}, \ldots, m_{p} \in \mathbb{N}\right\}$ is an increasing web in Y and T is an increasing tree then $Y=\cup\left\{Y_{y}: y \in T\right\}$.

Proof. Let us suppose that $y \in Y \backslash\left(\cup\left\{Y_{t}: t \in T\right\}\right)$. As \mathcal{Y} is an increasing web and T is an increasing tree then $Y=\cup\left\{Y_{t(1)}: t \in T\right\}$, whence there exists $u^{1}=\left(u_{1}^{1}, u_{2}^{1}, \ldots\right) \in T$ such that

$$
y \in Y_{u_{1}^{1}} \backslash\left(\cup\left\{Y_{t}: t \in T\right\}\right)
$$

Assume that there exists $\left\{u^{2}, u^{3}, \ldots, u^{n}\right\} \subset T$ such that $\emptyset \neq u^{j-1}(j-1)=u^{j}(j-1)$ and $y \in Y_{u^{j}(j)} \backslash \cup\left\{Y_{t}\right.$: $t \in T\}$, for $2 \leqslant j \leqslant n$. Then $y \in Y_{u^{n}(n)} \backslash \cup\left\{Y_{t}: t \in T\right\}$, with $u^{n}(n)=\left(u_{1}^{n}, u_{2}^{n}, \ldots, u_{n}^{n}\right)$. As \mathcal{Y} is an increasing web and T is an increasing tree then $Y_{u^{n}(n)}=\cup\left\{Y_{u^{n}(n) \times s}: u^{n}(n) \times s \in T(n+1)\right\}$, hence there exists $u^{n+1} \in T$ such that $u^{n}(n)=u^{n+1}(n)$ and

$$
y \in Y_{u^{n+1}(n+1)} \backslash\left(\cup\left\{Y_{t}: t \in T\right\}\right)
$$

This induction procedure gives the contradiction that T contains the infinite chain $\left(u^{n}\right)_{n}$. Therefore $Y=\cup\left\{Y_{u}: u \in T\right\}$.

In Proposition 12 we refer to the sequence $\left(i_{n}\right)_{n}=(1,1,2,1,2,3, \ldots)$, obtained with the first components of \mathbb{N}^{2} ordered by the diagonal order, i.e., $i_{n}=n-2^{-1} h(h+1)$, if $\left.\left.n \in\right] 2^{-1} h(h+1), 2^{-1}(h+1)(h+2)\right]$ and $h=0,1,2, \ldots$. Let us note that $i_{n} \leqslant n$, for each $n \in \mathbb{N}$.

Proposition 12. Let $\left\{\mathcal{B}_{m_{1}, m_{2}, \ldots, m_{p}}: p, m_{1}, m_{2}, \ldots, m_{p} \in \mathbb{N}\right\}$ be an increasing web in a σ-algebra \mathcal{S} of subsets of Ω with the property that for each sequence $\left(m_{i}\right)_{i} \in \mathbb{N}^{\mathbb{N}}$ there exists $h \in \mathbb{N}$ such that $\mathcal{B}_{m_{1}, m_{2}, \ldots, m_{h}}$ does not have sN-property and let $\left(i_{n}\right)_{n}=(1,1,2,1,2,3, \ldots)$. Then there exist a strictly increasing sequence $\left(j_{n}\right)_{n}$ in \mathbb{N}, a sequence $\left(B_{i_{n} j_{n}}\right)_{n}$ of pairwise disjoints elements of \mathcal{S}, a sequence $\left(\mu_{i_{n} j_{n}}\right)_{n}$ in ba (\mathcal{S}) and a covering $\left(\mathcal{C}_{r}\right)_{r}$ of \mathcal{S} such that for each $n \in \mathbb{N}$

$$
\begin{gather*}
\left.\Sigma_{s}\left\{\left|\mu_{i_{n+1} j_{n+1}}\left(B_{i_{s} j_{s}}\right)\right|: 1 \leqslant s \leqslant n\right\}\right)<1, \tag{5}\\
\left|\mu_{i_{n} j_{n}}\left(B_{i_{n} j_{n}}\right)\right|>j_{n}, \tag{6}\\
\left|\mu_{i_{n} j_{n}}\left(\cup_{s}\left\{B_{i_{s} j_{s}}: n<s\right\}\right)\right|<1, \tag{7}
\end{gather*}
$$

and for each $r \in \mathbb{N}$ and each strictly increasing sequence $\left(n_{p}\right)_{p}$ such that $i_{n_{p}}=r$, for each $p \in \mathbb{N}$, the set $\left\{\mu_{i_{n_{p}} j_{n_{p}}}: p \in \mathbb{N}\right\}$ is \mathcal{C}_{r}-pointwise bounded, i.e., for each $H \in \mathcal{C}_{r}$ we have that

$$
\begin{equation*}
\sup \left\{\left|\mu_{i_{n_{p}} j_{n_{p}}}(H)\right|: p \in \mathbb{N}\right\}<\infty \tag{8}
\end{equation*}
$$

Proof. Let $\left\{\mathcal{C}_{t}: t \in \cup_{s} \mathbb{N}^{s}\right\}$ and T be the increasing web in \mathcal{S} and the increasing tree determined in Example 1 such that for each $t \in T$ there exists a deep Ω-unbounded $\tau_{s}(\mathcal{S})$-closed absolutely convex subset M_{t} of $\mathrm{ba}(\mathcal{S})$ which is \mathcal{C}_{t}-pointwise bounded, i.e.,

$$
\begin{equation*}
\sup \left\{|\mu(H)|: \mu \in M_{t}\right\}<\infty \tag{9}
\end{equation*}
$$

for each $H \in \mathcal{C}_{t}$.
Then, by induction, we prove that there exist a countable increasing tree $\left\{t^{i}: i \in \mathbb{N}\right\}$ contained in T, a strictly increasing sequence of natural numbers $\left(k_{j}\right)_{j}$, a set $\left\{B_{i j}:(i, j) \in \mathbb{N}^{2}, i \leqslant k_{j}\right\}$ of pairwise disjoint elements of \mathcal{S} and a set $\left\{\mu_{i j} \in M_{t^{i}}:(i, j) \in \mathbb{N}^{2}, i \leqslant k_{j}\right\}$ such that if $(i, j) \in \mathbb{N}^{2}$ and $i \leqslant k_{j}$ then

$$
\begin{gather*}
\Sigma_{s, v}\left\{\left|\mu_{i j}\left(B_{s v}\right)\right|: s \leqslant k_{v}, 1 \leqslant v<j\right\}<1 \tag{10}\\
\left|\mu_{i j}\left(B_{i j}\right)\right|>j \tag{11}
\end{gather*}
$$

and for each $i \in \mathbb{N}$ and each $H \in \mathcal{C}_{t^{i}}$ we have

$$
\begin{equation*}
\sup _{j}\left\{\left|\mu_{i j}(H)\right|: i \leqslant j\right\}<\infty \tag{12}
\end{equation*}
$$

Fix $t^{1} \in T$. By Proposition 10 with $B:=\Omega, \alpha=1,\left\{Q_{1}, \ldots, Q_{r}\right\}:=\emptyset$ and $\left\{t^{i}: 1 \leqslant i \leqslant k\right\}:=\left\{t^{1}\right\}$ there exist $B_{11} \in \mathcal{S}, \mu_{11} \in M_{t^{1}}$ and an increasing tree T_{1} such that

1. $\left|\mu_{11}\left(B_{11}\right)\right|>1,\left\{M_{t}: t \in T_{1}\right\}$ is a family of deep $\Omega \backslash B_{11}$-unbounded subsets and
2. $t^{1} \in T_{1} \subset T$.

We define $k_{1}:=1, S^{1}:=\left\{t^{1}\right\}$ and $B^{1}:=B_{11}$.
Suppose that in the following $n-1$ steps of the inductive process we have obtained the finite sequence $k_{2}<k_{3}<\cdots<k_{n}$ in $\mathbb{N} \backslash\{1\}$, the increasing trees $T_{2} \supset T_{3} \supset \cdots \supset T_{n}$ contained in T_{1}, the subset $\left\{t^{1}, t^{2}, \ldots, t^{k_{n}}\right\}$ of T_{n}, the set $\left\{B_{i j}: i \leqslant k_{j}, j \leqslant n\right\}$ formed by pairwise disjoint elements of \mathcal{S} and the set $\left\{\mu_{i j} \in M_{t^{i}}: i \leqslant k_{j}, j \leqslant n\right\}$ such that, for each $1<j \leqslant n$ and each $i \leqslant k_{j}$:

1. $\left|\mu_{i j}\left(B_{i j}\right)\right|>j, \Sigma_{s, v}\left\{\left|\mu_{i j}\left(B_{s v}\right)\right|: s \leqslant k_{v}, 1 \leqslant v<j\right\}<1$, the union $B^{j}:=\cup\left\{B_{s v}: s \leqslant k_{v}, 1 \leqslant v \leqslant j\right\}$ verifies that $\left\{M_{t}: t \in T_{j}\right\}$ is a family of deep $\Omega \backslash B^{j}$-unbounded subsets,
2. $S^{j}:=\left\{t^{i}: i \leqslant k_{j}\right\} \subset T_{j}$ and S^{j} has the increasing property respect to S^{j-1}.

To finish the induction procedure let $\left\{t^{k_{n}+1}, \ldots, t^{k_{n+1}}\right\}$ be a subset of $T_{n} \backslash\left\{t^{i}: i \leqslant k_{n}\right\}$ that verifies the increasing property with respect to S^{n}. Then applying Proposition 10 to $\Omega \backslash B^{n},\left\{B_{s v}: s \leqslant k_{v}, 1 \leqslant v \leqslant n\right\}$, T_{n}, the finite subset $S^{n+1}:=\left\{t^{i}: i \leqslant k_{n+1}\right\}$ of T_{n} and $n+1$ we obtain a family $\left\{B_{i n+1}: i \leqslant k_{n+1}\right\}$ of pairwise disjoint elements of \mathcal{S} contained in $\Omega \backslash B^{n}$, a subset $\left\{\mu_{i n+1} \in M_{t^{i}}: i \leqslant k_{n+1}\right\}$ of $\mathrm{ba}(\mathcal{S})$ and an increasing tree T_{n+1} contained in T_{n} such that for each $i \leqslant k_{n+1}$,

1. $\left|\mu_{i n+1}\left(B_{i n+1}\right)\right|>n+1, \Sigma_{s, v}\left\{\left|\mu_{i n+1}\left(B_{s v}\right)\right|: s \leqslant k_{v}, 1 \leqslant v \leqslant n\right\}<1$, the union $B^{n+1}:=\cup\left\{B_{s v}: s \leqslant\right.$ $\left.k_{s}, 1 \leqslant v \leqslant n+1\right\}$ has the property that $\left\{M_{t}: t \in T_{n+1}\right\}$ is a family of deep $\Omega \backslash B^{n+1}$-unbounded subsets,
2. $S^{n+1} \subset T_{n+1}$ and S^{n+1} has the increasing property respect to S^{n}.

By Claim 6, $\cup_{n} S_{n}=\left\{t^{i}: i \in \mathbb{N}\right\}$ is an increasing tree, whence, by Proposition 11, the sequence $\left(\mathcal{C}_{t^{i}}\right)_{i}$ is a countable covering of the σ-algebra \mathcal{S}. As $\left(k_{j}\right)_{j}$ is increasing then $(i, j) \in \mathbb{N}^{2}$ and $i \leqslant j$ imply that $i \leqslant k_{j}$, whence $\left\{\mu_{i j}: j \in \mathbb{N} \backslash\{1,2, \ldots, i-1\}\right\} \subset M_{t^{i}}$ and from this inclusion and (9) with $t=t^{i}$ it follows (12), i.e., $\sup _{j}\left\{\left|\mu_{i j}(H)\right|: i \leqslant j\right\}<\infty$, for each $i \in \mathbb{N}$ and each $H \in \mathcal{C}_{t^{i}}$.

With a new induction procedure we determine the increasing sequence $\left(j_{n}\right)_{n}$ such that together with the sequence $\left(i_{n}\right)_{n}=(1,1,2,1,2,3, \ldots)$ verifies (5), (6), (7) and (8).

Let $j_{1}:=1$ and suppose that $\left|\mu_{i_{1} j_{1}}\right|(\Omega)<s_{1}$, with $s_{1} \in \mathbb{N}$. Let $\left\{N_{u}^{1}, 1 \leqslant u \leqslant s_{1}\right\}$ be a partition of $\left\{m \in \mathbb{N}: m>j_{1}\right\}$ in s_{1} infinite subsets and define $B_{u}^{1}:=\cup\left\{B_{s t}:(s, t) \in \mathbb{N} \times N_{u}^{1}, s \leqslant k_{t}\right\}, 1 \leqslant u \leqslant s_{1}$. From
$\Sigma\left\{\left|\mu_{i_{1} j_{1}}\right|\left(B_{u}^{1}\right): 1 \leqslant u \leqslant s_{1}\right\}<s_{1}$ it follows that there exists u^{\prime}, with $1 \leqslant u^{\prime} \leqslant s_{1}$, such that $\left|\mu_{i_{1} j_{1}}\right|\left(B_{u^{\prime}}^{1}\right)<1$, whence the sets $N^{(1)}:=N_{u^{\prime}}^{1}$ and $B^{1}:=B_{u^{\prime}}^{1}$ verify that $N^{(1)} \subset\left\{m \in \mathbb{N}: m>j_{1}\right\}$ and

$$
\left|\mu_{i_{1} j_{1}}\right|\left(B^{1}\right)<1
$$

Assume that in the first l steps of this induction we have obtained a finite sequence $j_{1}<j_{2}<\cdots<j_{l}$ in \mathbb{N} and a decreasing finite sequence $N^{(1)} \supset N^{(2)} \supset \cdots \supset N^{(l)}$ of infinite subsets of \mathbb{N} such that for each $w \in \mathbb{N}, 1 \leqslant w \leqslant l, N^{(w)} \subset\left\{n \in \mathbb{N}: n>j_{w}\right\}$ and the variation of the measure $\mu_{i_{w} j_{w}}$ in the set $B^{w}:=\cup\left\{B_{s t}:(s, t) \in \mathbb{N} \times N^{(w)}, s \leqslant k_{t}\right\}$ verifies the inequality

$$
\left|\mu_{i_{w} j_{w}}\right|\left(B^{w}\right)<1
$$

Let j_{l+1} be the first element in $N^{(l)}$ and suppose that $\left|\mu_{i_{l+1} j_{l+1}}\right|(\Omega)<s_{l+1}$, with $s_{l+1} \in \mathbb{N}$. Then $j_{l}<j_{l+1}$ and if $\left\{N_{r}^{l+1}, 1 \leqslant r \leqslant s_{l+1}\right\}$ is a partition of $\left\{m \in \mathbb{N}^{(l)}: m>j_{l+1}\right\}$ in s_{l+1} infinite disjoint subfamilies then the subsets $B_{r}^{l+1}:=\cup\left\{B_{s t}:(s, t) \in \mathbb{N} \times N_{r}^{l+1}, s \leqslant k_{t}\right\}, 1 \leqslant r \leqslant s_{l+1}$, verify that $\Sigma\left\{\left|\mu_{i_{l+1} j_{l+1}}\right|\left(B_{r}^{l+1}\right): 1 \leqslant r \leqslant s_{l+1}\right\}<s_{l+1}$, whence it follows that there exists r^{\prime}, with $1 \leqslant r^{\prime} \leqslant s_{l+1}$, such that the set $B^{l+1}:=\cup\left\{B_{s t}:(s, t) \in \mathbb{N} \times N_{r^{\prime}}^{l+1}, s \leqslant k_{t}\right\}$ verifies that

$$
\left|\mu_{i_{l+1} j_{l+1}}\right|\left(B^{l+1}\right)<1
$$

Set $N^{(l+1)}:=N_{r^{\prime}}^{l+1}$. Then, by induction, we get a strictly increasing sequence $\left(j_{n}\right)_{n}$ in \mathbb{N} and a decreasing sequence $\left(N^{(n)}\right)_{n}$ of infinite subsets of \mathbb{N}, with $j_{2} \in N^{(1)} \subset\left\{m \in \mathbb{N}: m>j_{1}\right\}$ and $j_{n+1} \in N^{(n)} \subset\{m \in$ $\left.N^{(n-1)}: m>j_{n}\right\}$, for each $n>1$, such that the measurable sets $B^{n}:=\cup\left\{B_{s t}:(s, t) \in \mathbb{N} \times N^{(n)}, s \leqslant k_{t}\right\}$, $n \in \mathbb{N}$, verify that

$$
\begin{equation*}
\left|\mu_{i_{n} j_{n}}\right|\left(B^{n}\right)<1 \tag{13}
\end{equation*}
$$

The inclusion $j_{s} \in N^{(s-1)} \subset N^{(n)}$ when $n<s$ and the trivial inequalities $i_{s} \leqslant s \leqslant k_{s} \leqslant k_{j_{s}}$ imply that $\cup\left\{B_{i_{s} j_{s}}: s \in \mathbb{N}, n<s\right\} \subset B^{n}$, hence from (13) it follows that

$$
\left|\mu_{i_{n} j_{n}}\right|\left(\cup_{s}\left\{B_{i_{s} j_{s}}: n<s\right\}\right)<1
$$

for each $n \in \mathbb{N}$, and this inequality imply (7) because the variation $|\mu|(B)$ of μ in a set $B \in \mathcal{S}$ verifies that $|\mu(B)| \leqslant|\mu|(B)$.

From the proved relation $i_{s} \leqslant k_{j_{s}}$ and the trivial fact that $s \leqslant n$ implies that $j_{s} \leqslant j_{n}<j_{n+1}$ it follows that (10) implies (5). The inequality (6) is a particular case of (11). Finally from (12) with $i=r$ we get (8) because each $\left(i_{n_{p}}, j_{n_{p}}\right)$ verifies that $r=i_{n_{p}} \leqslant n_{p} \leqslant j_{n_{p}}$.

To finish the proposition define $\mathcal{C}_{r}:=\mathcal{C}_{t^{r}}$, for each $r \in \mathbb{N}$.
We are at the position to present the proof of Theorem 2. Recall again that $\left(i_{n}\right)_{n}=(1,1,2,1,2,3, \ldots)$.
Proof of Theorem 2. Assume Theorem 2 fails. Then by Proposition 12 there exist a strictly increasing sequence $\left(j_{n}\right)_{n}$ in \mathbb{N}, a sequence $\left(B_{i_{n} j_{n}}\right)_{n}$ of pairwise disjoints elements of the σ-algebra \mathcal{S}, a sequence $\left(\mu_{i_{n} j_{n}}\right)_{n}$ in $\mathrm{ba}(\mathcal{S})$ and a covering $\left(\mathcal{C}_{r}\right)_{r}$ of \mathcal{S} such that for each $n \in \mathbb{N}$

$$
\begin{gather*}
\left.\Sigma_{s}\left\{\left|\mu_{i_{n} j_{n}}\left(B_{i_{s} j_{s}}\right)\right|: s<n\right\}\right)<1, \tag{14}\\
\left|\mu_{i_{n} j_{n}}\left(B_{i_{n} j_{n}}\right)\right|>j_{n} \tag{15}\\
\left|\mu_{i_{n} j_{n}}\left(\cup_{s}\left\{B_{i_{s} j_{s}}: n<s\right\}\right)\right|<1, \tag{16}
\end{gather*}
$$

and for each strictly increasing sequence $\left(n_{p}\right)_{p}$ such that $i_{n_{p}}=r$ for each $p \in \mathbb{N}$ we have that the sequence $\left(\mu_{i_{n_{p}} j_{n_{p}}}\right)_{p}=\left(\mu_{r j_{n_{p}}}\right)_{p}$ is pointwise bounded in \mathcal{C}_{r}, i.e., for each $H \in \mathcal{C}_{r}$ we have that

$$
\begin{equation*}
\sup \left\{\left|\mu_{i_{n_{p}} j_{n_{p}}}(H)\right|: p \in \mathbb{N}\right\}<\infty \tag{17}
\end{equation*}
$$

As $H_{0}:=\cup\left\{B_{i_{s} j_{s}}: s=1,2, \ldots\right\} \in \mathcal{S}$ and $\left(\mathcal{C}_{r}\right)_{r}$ is a covering of the σ-algebra \mathcal{S} there exists $r^{\prime} \in \mathbb{N}$ such that $H_{0} \in \mathcal{C}_{r^{\prime}}$. Fix a strictly increasing sequence $\left(n_{q}\right)_{q}$ in $\mathbb{N} \backslash\{1\}$ such that $i_{n_{q}}=r^{\prime}$, for each $q \in \mathbb{N}$. Then, by (17),

$$
\begin{equation*}
\sup \left\{\left|\mu_{i_{n_{q}} j_{n_{q}}}\left(H_{0}\right)\right|: q \in \mathbb{N}\right\}<\infty \tag{18}
\end{equation*}
$$

The sets $C_{q}:=\cup_{s}\left\{B_{i_{s} j_{s}}: s<n_{q}\right\}, B_{i_{n_{q}} j_{n_{q}}}$ and $D_{q}:=\cup_{s}\left\{B_{i_{s} j_{s}}: n_{q}<s\right\}$ are a partition of the set H_{0}. By (14), (15) and (16), $\left|\mu_{i_{n_{q}} j_{n_{q}}}(C)\right|<1, \mu_{i_{n_{q}} j_{n_{q}}}\left(B_{i_{n_{q}} j_{n_{q}}}\right)>j_{n_{q}}>n_{q}$ and $\left|\mu_{i_{n_{q}} j_{n_{q}}}(D)\right|<1$, for each $q \in \mathbb{N} \backslash\{1\}$. Therefore the inequality

$$
\left|\mu_{i_{n_{q}} j_{n_{q}}}\left(H_{0}\right)\right|>-\left|\mu_{i_{n_{q}} j_{n_{q}}}(C)\right|+\mu_{i_{n_{q}} j_{n_{q}}}\left(B_{i_{n_{q}} j_{n_{q}}}\right)-\left|\mu_{i_{n_{q}} j_{n_{q}}}\right|(D)>n_{q}-2,
$$

implies that

$$
\lim _{p}\left|\mu_{i_{n_{p}} j_{n_{p}}}\left(H_{0}\right)\right|=\infty
$$

contradicting (18).
The following corollary extends Theorems 2 and 3 in [14]. Again following [7, 7 Chapter 7, 35.1] a family $\left\{B_{m_{1} m_{2} \ldots m_{i}}: i, m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant p\right\}$ of subsets of A is an increasing p-web in A if $\left(B_{m_{1}}\right)_{m_{1}}$ is an increasing covering of A and $\left(B_{m_{1} m_{2} \ldots m_{i+1}}\right)_{m_{i+1}}$ is an increasing covering of $B_{m_{1} m_{2} \ldots m_{i}}$, for each $m_{j} \in \mathbb{N}$, $1 \leqslant j \leqslant i<p$.
Corollary 13. Let \mathcal{S} be a σ-algebra of subsets of Ω and let $\left\{\mathcal{B}_{m_{1} m_{2} \ldots m_{i}}: i, m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant p\right\}$ be an increasing p-web in \mathcal{S}. Then there exists $\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p}}$ such that if $\left(\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p} s_{p+1}}\right)_{s_{p+1}}$ is an increasing covering of $\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p}}$ there exists $n_{p+1} \in \mathbb{N}$ such that each $\tau_{s}\left(\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p} n_{p+1}}\right)$-Cauchy sequence $\left(\mu_{n}\right)_{n}$ in $b a(\mathcal{S})$ is $\tau_{s}(\mathcal{S})$-convergent.

Proof. By Theorem 2 there exists $\mathcal{B}_{n_{1} n_{2} \ldots n_{p}}$ which has $s N$-property. Hence there exists $\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p} n_{p+1}}$ which has N-property. Then a $\tau_{s}\left(\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p} n_{p+1}}\right)$-Cauchy sequence $\left(\mu_{n}\right)_{n}$ is $\tau_{s}(\mathcal{A})$-relatively compact. As $\overline{L\left(\mathcal{B}_{\left.n_{1}, n_{2}, \ldots, n_{p} n_{p+1}\right)}\right.}=L(\mathcal{S})$ the sequence $\left(\mu_{n}\right)_{n}$ has no more than one $\tau_{s}(\mathcal{A})$-adherent point, whence $\left(\mu_{n}\right)_{n}$ is $\tau_{s}(\mathcal{A})$-convergent.

4. Applications

We present some applications of Theorem 2 concerning localizations of bounded finitely additive vector measures.

A finitely additive vector measure, or simply a vector measure, μ defined in an algebra \mathcal{A} of subsets of Ω with values in a topological vector space E is a map $\mu: \mathcal{A} \rightarrow E$ such that $\mu(B \cup C)=\mu(B)+\mu(C)$, for each pairwise disjoint subsets $B, C \in \mathcal{A}$. The vector measure μ is bounded if $\mu(\mathcal{A})$ is a bounded subset of E, or, equivalently, if the E-valued linear map $\mu: L(\mathcal{A}) \rightarrow E$ defined by $\mu\left(\chi_{B}\right):=\mu(B)$, for each $B \in \mathcal{A}$, is continuous.

A locally convex space $E(\tau)$ is an $(L F)$ - or $(L B)$-space if it is, respectively, the inductive limit of an increasing sequence $\left(E_{m}\left(\tau_{m}\right)\right)_{m}$ of Fréchet or Banach spaces where the relative topology $\left.\tau_{m+1}\right|_{E_{m}}$ induced on E_{m} is coarser than τ_{m}, for each $m \in \mathbb{N}$. $\left(E_{m}\left(\tau_{m}\right)\right)_{m}$ is a defining sequence for $E(\tau)$ with steps $E_{m}\left(\tau_{m}\right)$, $m \in \mathbb{N}$, and we write $E(\tau)=\Sigma_{m} E_{m}\left(\tau_{m}\right)$. If $\left.\tau_{m+1}\right|_{E_{m}}=\tau_{m}$, for each $m \in \mathbb{N}$, then $E(\tau)$ is a $\operatorname{strict}(L F)$-, or $(L B)$-space. From $[7,19.4(4)]$ it follows that if $\mu: \mathcal{A} \rightarrow E(\tau)$ is a vector bounded measure with values in a strict $(L F)$-space $E(\tau)=\Sigma_{m} E_{m}\left(\tau_{m}\right)$ then there exists $n \in \mathbb{N}$ such that $\mu(\mathcal{A})$ is a bounded subset of the step $E_{n}\left(\tau_{n}\right)$. For σ-algebras the following extension of this result is contained in [14, Theorem 4].

Theorem 14. Let μ be a bounded vector measure defined in a σ-algebra \mathcal{S} of subsets of Ω with values in an (LF)-space $E(\tau)=\Sigma_{m} E_{m}\left(\tau_{m}\right)$. Then there exists $n \in \mathbb{N}$ such that $\mu(\mathcal{S})$ is a bounded subset of $E_{n}\left(\tau_{n}\right)$.

Theorem 2 provides the following proposition that contains Theorem 14 as a particular case.

Proposition 15. Let μ be a bounded vector measure defined in a σ-algebra \mathcal{S} of subsets of Ω with values in a topological vector space $E(\tau)$. Suppose that $\left\{E_{m_{1}, m_{2}, \cdots, m_{i}}: m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant p\right\}$ is an increasing p-web in E. Then there exists $E_{n_{1}, n_{2}, \cdots, n_{p}}$ such that if $E_{n_{1}, n_{2}, \cdots, n_{p}}\left(\tau_{n_{1}, n_{2}, \cdots, n_{p}}\right)$ is an (LF)-space, the topology $\tau_{n_{1}, n_{2}, \cdots, n_{p}}$ is finer than the relative topology $\left.\tau\right|_{E_{n_{1}, n_{2}}, \cdots, n_{p}}$ and if $\left(E_{n_{1}, n_{2}, \cdots, n_{p}, s_{p+1}}\left(\tau_{n_{1}, n_{2}, \cdots, n_{p}, s_{p+1}}\right)\right)_{s_{p+1}}$ is a defining sequence for $E_{n_{1}, n_{2}, \cdots, n_{p}}\left(\tau_{n_{1}, n_{2}, \cdots, n_{p}}\right)$ there exists $n_{p+1} \in \mathbb{N}$ such that $\mu(\mathcal{S})$ is a bounded subset of $E_{n_{1}, n_{2}, \cdots, n_{p}, n_{p+1}}\left(\tau_{n_{1}, n_{2}, \cdots, n_{p}, n_{p+1}}\right)$.

Proof. Let $\mathcal{B}_{m_{1}, m_{2}, \ldots, m_{i}}:=\mu^{-1}\left(E_{m_{1}, m_{2}, \ldots, m_{i}}\right)$ for each $m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant p$. By Theorem 2 there exists $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in \mathbb{N}^{p}$ such that $\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p}}$ has $s N$-property. Let $\left(E_{n_{1}, n_{2}, \ldots, n_{p}, s_{p+1}}\left(\tau_{n_{1} n_{2} \ldots n_{p} s_{p+1}}\right)\right)_{s_{p+1}}$ be a defining sequence for $E_{n_{1}, n_{2}, \ldots, n_{p}}\left(\tau_{n_{1}, n_{2}, \ldots, n_{p}}\right)$ and let $\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p}, s_{p+1}}:=\mu^{-1}\left(E_{n_{1}, n_{2}, \ldots, n_{p}, s_{p+1}}\right)$.

As $\left(\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p}, s_{p+1}}\right)_{s_{p+1}}$ is an increasing covering of $\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p}}$ there exists n_{p+1} such that $\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}$ has N-property, whence $L\left(\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}\right)$ is a dense subspace of $L(\mathcal{S})$ and then the map with closed graph

$$
\left.\mu\right|_{L\left(\mathcal{B}_{n_{1}, n_{2}}, \ldots, n_{p}, n_{p+1}\right)}: L\left(\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}\right) \rightarrow E_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}\left(\tau_{n_{1}, n_{2}, \ldots n_{p}, n_{p+1}}\right)
$$

has a continuous extension $v: L(\mathcal{S}) \rightarrow E_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}\left(\tau_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}\right)$ (by [12, 2.4 Definition and (N_{2})] and [13, Theorems 1 and 14]). The continuity of $\mu: L(\mathcal{S}) \rightarrow E(\tau)$ implies that $v(A)=\mu(A)$, for each $A \in \mathcal{S}$. Whence $\mu(\mathcal{S})$ is a bounded subset of $E_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}\left(\tau_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}\right)$.

Proposition 15 also holds if we replace ($L F$)-space by an inductive limit of Γ_{r}-spaces (see [13, Definition 1] and, taking into account [12, Property $\left(\mathrm{N}_{2}\right)$ after 2.4 Definition], apply again [13, Theorems 1 and 14]). A particular case of this proposition is the next corollary, which it is also a concrete generalization of Theorem 14.

Corollary 16. Let μ be a bounded vector measure defined in a σ-algebra \mathcal{S} of subsets of Ω with values in an inductive limit $E(\tau)=\Sigma_{m} E_{m}\left(\tau_{m}\right)$ of an increasing sequence $\left(E_{m}\left(\tau_{m}\right)\right)_{m}$ of $(L F)$-spaces. There exists $n_{1} \in \mathbb{N}$ such that for each defining sequence $\left(E_{n_{1}, m_{2}}\left(\tau_{n_{1}, m_{2}}\right)\right)_{m_{2}}$ of $E_{n_{1}}\left(\tau_{n_{1}}\right)$ there exists $n_{2} \in \mathbb{N}$ which verifies that $\mu(\mathcal{S})$ is a bounded subset of $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$.

A sequence $\left(x_{k}\right)_{k}$ in a locally convex space E is subseries convergent if for every infinite subset J of \mathbb{N} the series $\Sigma\left\{x_{k}: k \in J\right\}$ converges and $\left(x_{k}\right)_{k}$ is bounded multiplier if for every bounded sequence of scalars $\left(\lambda_{k}\right)_{k}$ the series $\Sigma_{k} \lambda_{k} x_{k}$ converges.

A Fréchet space E is Fréchet Montel if each bounded subset of E is relatively compact. Important classes of Montel and Fréchet Montel spaces are considered and studied while Schwartz Theory of Distributions is described, for instance, in [6, Chapter 3, Examples 3, 4, 5 and 6.].

The following corollary is a generalization of [14, Corollary 1.4] and it follows partially from Corollary 16.

Corollary 17. Let $\left(x_{k}\right)_{k}$ be a subseries convergent sequence in an inductive limit $E(\tau)=\Sigma_{m} E_{m}\left(\tau_{m}\right)$ of an increasing sequence $\left(E_{m}\left(\tau_{m}\right)\right)_{m}$ of $(L F)$-spaces. Then there exists $n_{1} \in \mathbb{N}$ such that for each defining sequence $\left(E_{n_{1}, m_{2}}\left(\tau_{n_{1}, m_{2}}\right)\right)_{m_{2}}$ for $E_{n_{1}}\left(\tau_{n_{1}}\right)$ there exists $n_{2} \in \mathbb{N}$ such that $\left\{x_{k}: k \in \mathbb{N}\right\}$ is a bounded subset of $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$. If, additionally, $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$ is a Fréchet Montel space then the sequence $\left(x_{k}\right)_{k}$ is bounded multiplier in $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$.

Proof. As the sequence $\left(x_{k}\right)_{k}$ is subseries convergent then the additive vector measure $\mu: 2^{\mathbb{N}} \rightarrow E(\tau)$ defined by $\mu(J):=\Sigma_{k \in J} x_{k}$, for each $J \in 2^{\mathbb{N}}$, is bounded, because as $\left(f\left(x_{k}\right)\right)_{k}$ is subseries convergent for each $f \in E^{\prime}$ we get that $\sum_{k=1}^{\infty}\left|f\left(x_{k}\right)\right|<\infty$.

By Corollary 16 there exists $n_{1} \in \mathbb{N}$ such that for each defining sequence $\left(E_{n_{1}, m_{2}}\left(\tau_{n_{1}, m_{2}}\right)\right)_{m_{2}}$ for $E_{n_{1}}\left(\tau_{n_{1}}\right)$ there exists $n_{2} \in \mathbb{N}$ with the property that $\mu\left(2^{\mathbb{N}}\right)=\left\{\Sigma_{k \in J} x_{k}: J \in 2^{\mathbb{N}}\right\}$ is a bounded subset of $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$. Then $\Sigma_{k}\left|\lambda_{k} f\left(x_{k}\right)\right|<\infty$ for each continuous linear form f defined on $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$ and each bounded sequence $\left(\lambda_{k}\right)_{k}$ of scalars, whence $\left(\sum_{j=1}^{k} \lambda_{j} x_{j}\right)_{k}$ is a bounded sequence in $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$ which has at most one adherent point, because $\Sigma_{k} \lambda_{k} f\left(x_{k}\right)$ converges for each $f \in\left(E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)\right)^{\prime}$. If $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$ is a Montel space then the bounded subset $\left\{\Sigma_{j=1}^{k} \lambda_{j} x_{j}: k \in \mathbb{N}\right\}$ is relatively compact and then the series $\Sigma_{k} \lambda_{k} x_{k}$ converges in $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$.

Recall that a vector measure μ defined in an algebra \mathcal{A} of subsets of Ω with values in a Banach space E is strongly additive whenever given a sequence $\left(B_{n}\right)_{n}$ of pairwise disjoint elements of \mathcal{A} the series $\Sigma_{n} \mu\left(B_{n}\right)$ converges in norm [2, I.1. Definition 14]. Each strongly additive vector measure μ is bounded [2, I.1. Corollary 19].

Corollary 18. Let μ be a bounded vector measure defined in a σ-algebra \mathcal{S} of subsets of Ω with values in an inductive limit $E(\tau)=\Sigma_{m} E_{m}\left(\tau_{m}\right)$ of an increasing sequence $\left(E_{m}\left(\tau_{m}\right)\right)_{m}$ of $(L B)$-spaces such that each $E_{m}\left(\tau_{m}\right)$ admit a defining sequence $\left(E_{m, m_{2}}\left(\tau_{m, m_{2}}\right)\right)_{m_{2}}$ of Banach spaces which does not contain a copy of l^{∞}. If H is a dense subset of $E^{\prime}\left(\tau_{s}(E)\right)$ such that $f \mu$ is countably additive for each $f \in H$, then there exists $\left(n_{1}, n_{2}\right) \in \mathbb{N}^{2}$ such that μ is a $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$-valued countably additive vector measure.
Proof. By Corollary 16 there exists $\left(n_{1}, n_{2}\right) \in \mathbb{N}^{2}$ such that $\mu(\mathcal{S})$ is a bounded subset of $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$. As $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$ does not contain a copy of l^{∞} then, by ([2, I.4. Theorem 2]), the measure μ is strongly additive, hence if $\left(B_{n}: n \in \mathbb{N}\right)$ is a sequence of pairwise disjoint subsets of \mathcal{S} then $\Sigma_{n} \mu\left(B_{n}\right)$ converges to the vector x in $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$. Therefore $f(x)=\Sigma_{n} f \mu\left(B_{n}\right)$ for each $f \in E^{\prime}$ and, by countably additivity of $f \mu$ when $f \in H$, we have that $f(x)=\Sigma_{n} f \mu\left(B_{n}\right)=f \mu\left(\cup_{n} B_{n}\right)$ for each $f \in H$. By density $x=\mu\left(\cup_{n} B_{n}\right)$, whence $\Sigma_{n} \mu\left(B_{n}\right)=\mu\left(\cup_{n} B_{n}\right)$ in $E_{n_{1}, n_{2}}\left(\tau_{n_{1}, n_{2}}\right)$.

Proposition 19. Let μ be a bounded vector measure defined in a σ-algebra \mathcal{S} of subsets of Ω with values in a topological vector space $E(\tau)$. Suppose that $\left\{E_{m_{1}, m_{2}, \ldots, m_{i}}: m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant p\right\}$ is an increasing p-web in E. There exists $E_{n_{1}, n_{2}, \ldots, n_{p}}$ such that if $\left(E_{n_{1}, n_{2}, \ldots, n_{p}, m_{p+1}}\right)_{m_{p+1}}$ is an increasing covering of $E_{n_{1}, n_{2}, \ldots, n_{p}}$ with the property that each relative topology $\left.\tau\right|_{E_{n_{1}, n_{2}}, \ldots, n_{p}, m_{p+1}}, m_{p+1} \in \mathbb{N}$, is sequentially complete then there exists $n_{p+1} \in \mathbb{N}^{p}$ such that $\mu(\mathcal{S}) \subset E_{n_{1}, n_{2}, \cdots, n_{p}, n_{p+1}}$.
Proof. Let $\mathcal{B}_{m_{1}, m_{2}, \ldots, m_{i}}:=\mu^{-1}\left(E_{m_{1}, m_{2}, \ldots, m_{i}}\right)$ for each $m_{j} \in \mathbb{N}, \quad 1 \leqslant j \leqslant i \leqslant p+1$. By Theorem 2 there exists $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in \mathbb{N}^{p}$ such that $\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p}}$ has $s N$-property, whence there exists $n_{p+1} \in \mathbb{N}^{p}$ such that $\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}$ has N-property, therefore $E_{n_{1}, n_{2}, \ldots, n_{p} n_{p+1}}\left(\left.\tau\right|_{E_{n_{1}, n_{2}}, \ldots, n_{p}, n_{p+1}}\right)$ is a dense subspace of $E(\tau)$, hence density and sequential completeness imply that the continuous restriction of μ to $L\left(\mathcal{B}_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}\right)$ has a continuous extension v to $L(\mathcal{S})$ with values in the space $E_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}\left(\left.\tau\right|_{E_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}}\right)$. As $\mu: L(\mathcal{S}) \rightarrow E(\tau)$ is continuous then $v=\mu$ and we get that $\mu(\mathcal{S}) \subset E_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}$.

Corollary 20. Let μ be a bounded additive vector measure defined in a σ-algebra \mathcal{S} of subsets of Ω with values in an inductive limit $E(\tau)=\Sigma_{m_{1}} E_{m_{1}}\left(\tau_{m_{1}}\right)$ of an increasing sequence $\left(E_{m_{1}}\left(\tau_{m_{1}}\right)\right)_{m_{1}}$ of countable dimensional topological vector spaces. Then there exists n_{1} such that $\operatorname{span}\{\mu(\mathcal{S})\}$ is a finite dimensional subspace of $E_{n_{1}}\left(\tau_{n_{1}}\right)$.
Proof. For each $m_{1} \in \mathbb{N}$ let $\left(E_{m_{1}, m_{2}}\right)_{m_{2}}$ be an increasing covering of $E_{m_{1}}$ by finite dimensional vector subspaces. $\left\{E_{m_{1}, m_{2}}: m_{j} \in \mathbb{N}, 1 \leqslant j \leqslant i \leqslant 2\right\}$ is an increasing 2-web in E. As the relative topology $\left.\tau\right|_{E_{m_{1}, m_{2}}}$ induced on $E_{m_{1}, m_{2}}$ is complete then, by Proposition 19, there exists $\left(n_{1}, n_{2}\right) \in \mathbb{N}^{2}$ such that $\mu(\mathcal{S}) \subset E_{n_{1}, n_{2}}$.

Acknowledgement

Our warmest thanks to Professor Manuel Valdivia (1928-2014) for his friendship and his mathematical work.

Without his wonderful paper On Nikodym boundedness property, RACSAM 2013, this article would never have been written.

The authors are grateful to the referee for her/his comments that have improved this paper.
[1] J. Diestel. Sequences and Series in Banach Spaces. Springer, New York, Berlin, Heidelberg, 1984.
[2] J. Diestel and J.J. Uhl. Vector Measures. Number 15 in Mathematical Surveys and Monographs. American Mathematical Society, Providence, 1977.
[3] J. Dieudonné. Sur la convergence de suites de measures de Radon. An. Acad. Brasi. Ciên, 23:277-282, 1951.
[4] J.C. Ferrando. Strong barrelledness properties in certain $l_{0}^{\infty}(\mathcal{A})$ spaces. J. Math. Anal. Appl., pages 194-202, 1995.
[5] J.C. Ferrando and M. López-Pellicer. Strong barrelledness properties in $l_{0}^{\infty}(x, \mathcal{A})$ and bounded finite additive measures. Math. Ann., 287:727-736, 1990.
[6] J. Horváth. Topological Vector Spaces and Distibutions. Dover Publications, Mineola, New York, 2012.
[7] G. Köthe. Topological Vector Spaces, I and II. Springer, 1969, 1979.
[8] S. López-Alfonso. On Schachermayer and Valdivia results in algebras of Jordan measurable sets. RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 110:DOI 10.1007/s13398-015-0267-x, 2016.
[9] S. López-Alfonso, J. Mas and S. Moll. Nikodym boundedness property for webs in σ-algebras. RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 110:DOI 10.1007/s13398-015-0260-4, 2016.
[10] M. López-Pellicer. Webs and bounded finitely additive measures. J. Math. Anal. Appl., 210:257-267, 1997.
[11] O.M. Nikodym. Sur les familles bornées de fonctions parfaitement additives d'ensembles abstrait. Monatsh. Math. U. Phys., 40:418-426, 1933.
[12] W. Schachermayer. On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. Dissertationes Math. (Rozprawy Mat.), 214:33 pp., 1982.
[13] M. Valdivia. On the closed graph theorem. Collect. Math., 22:51-72, 1971.
[14] M. Valdivia. On certain barrelled normed spaces. Ann. Inst. Fourier (Grenoble), 29:39-56, 1979.
[15] M. Valdivia. On Nikodym boundedness property. RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 107:355-372, 2013.

[^0]: तhis research was supported for the first named author by the GAČR project 16-34860L and RVO: 67985840. It was also supported for the first and second named authors by Generalitat Valenciana, Conselleria d'Educació i Esport, Spain, Grant PROMETEO/2013/058.

 Email addresses: kakol@amu.edu.pl (J. Ka̧kol), mlopezpe@mat.upv.es (M. López-Pellicer)

