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LOG CANONICAL THRESHOLD AND DIAGONAL IDEALS

CARLES BIVIÀ-AUSINA

Abstract. We characterize the ideals I of On of finite colength whose integral closure is

equal to the integral closure of an ideal generated by pure monomials. This characterization,

which is motivated by an inequality proven by Demailly and Pham [8], is given in terms of

the log canonical threshold of I and the sequence of mixed multiplicities of I.

1. Introduction

Let On denote the ring of analytic function germs f : (Cn, 0) → C. Let I be an ideal of On

and let g1, . . . , gr be a generating system of I. The log canonical threshold of I, denoted by

lct(I), is defined as the supremum of those s ∈ R>0 such that the function (|g1|2+· · ·+|gr|2)−s

is locally integrable around 0. This number, which does not depend on the chosen generating

system of I, is always rational and has a deep relation with other invariants (see for instance

[1], [6] or [9]). Moreover, the log canonical threshold can be characterized in several ways

and is an object of interest in algebraic geometry, commutative algebra an complex analytic

geometry. We refer to [17], [21] and [30] for properties and fundamental results about this

number. The Arnold multiplicity of I, denoted by µ(I), is defined as µ(I) = 1
lct(I)

.

If no confusion arises, we denote by m the maximal ideal of On. If i ∈ {0, . . . , n}, then ei(I)

will denote the mixed multiplicity e(I, . . . , I,m, . . . ,m), where I is repeated i times and m is

repeated n− i times (we refer to [16, §17], [25] and [31] for the definition and basic properties

of mixed multiplicities). We recall that e1(I) = ord(I), where ord(I) = max{r > 1 : I ⊆ mr},
and en(I) = e(I), where e(I) denotes the Samuel multiplicity of I.

If u is the plurisubharmonic function given by u = maxj log |gj|, then ei(I) = Li(u), where

Li(u) denotes the Lelong number of the current (ddcu)i at 0, for i = 1, . . . , n (see for instance

the proof of [24, Corollary 4.2] or [6]). Therefore, by the main result of Demailly and Pham

in [8], if I denotes any proper ideal of On of finite colength, then

(1)
1

e1(I)
+

e1(I)

e2(I)
+ · · ·+ en−1(I)

en(I)
6 lct(I).

Let us denote by DP(I) the sum that appears in the left hand side of (1).

In Section 2 we show two results relating the mixed multiplicities of I with the initial

ideals of the powers of I with respect to a specific local monomial ordering (the negative

lexicographical order). We apply these results to fill the gap existing in [8, §3.3], where

the proof of inequality (1) is reduced to the monomial case (see Remark 7). This article is

motivated by the question of characterizing when equality DP(I) = lct(I) holds.
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2 CARLES BIVIÀ-AUSINA

We recall that, for any ideal I ⊆ On, the following chain of inequalities holds

(2)
1

e1(I)
> e1(I)

e2(I)
> · · · > en−1(I)

en(I)
,

as can be seen, for instance, in [16, Theorem 17.7.2], [26] or [28, p. 41]. As a consequence of

the inequality relating the arithmetical and the geometrical means of n positive real numbers,

we immediately obtain that, if I is an ideal of On of finite colength, then

(3)
n

e(I)1/n
= n

(
1

e1(I)

e1(I)

e2(I)
· · · en−1(I)

en(I)

)1/n

6 1

e1(I)
+

e1(I)

e2(I)
+ · · ·+ en−1(I)

en(I)
6 lct(I).

Then we have that nnµ(I)n 6 e(I) and equality holds if and only if e1(I)
e2(I)

= · · · = en−1(I)
en(I)

. It

is immediate to see that this last condition is equivalent to saying that ei(I) = e1(I)
i, for all

i = 1, . . . , n, which in turn is equivalent to the condition e(I) = e1(I)
n = ord(I)n, by (2).

We have that I ⊆ mord(I). Then the condition e(I) = ord(I)n is equivalent to saying that

I = mord(I), by the Rees’ Multiplicity Theorem (see for instance [14, p. 147] or [16, p. 222]).

Therefore it follows that nnµ(I)n = e(I) if and only if I = mord(I). This last equivalence was

proven previously in [9, Theorem 1.4] by using another procedure.

Inspired by this result, we approach the problem of characterizing the equality DP(I) =

lct(I) by means of an expression for the integral closure of I. For this purpose, we introduce

a class of ideals that we call diagonal ideals (see Definition 8). We characterize this class in

Theorem 13. This theorem is supported by Corollary 11, where we show a result analogous

to Rees’ Multiplicity Theorem using DP(I) instead of e(I). As we will see (Example 15),

diagonal ideals are strictly contained in the class of ideals I ⊆ On of finite colength for which

the equality DP(I) = lct(I) holds.

2. Local monomial orderings and mixed multiplicities

Let us fix a coordinate system x1, . . . , xn ∈ Cn. If α = (α1, . . . , αn) ∈ Zn
>0, then we denote

the monomial xα1
1 · · · xαn

n by xα. Let Monn = {xα : α ∈ Zn
>0}. Here we recall some definitions

taken from [13, Section 1.2] (see also [3, Chapter 4, §3]). A monomial ordering in Monn is a

total ordering > on the set Monn such that xα > xβ implies xγxα > xγxβ, for all α, β, γ ∈ Zn
>0.

Let > be a monomial ordering in Monn. We say that > is local when 1 > xα, for all α ∈ Zn
>0,

α ̸= 0. In the sequel we will consider the local monomial ordering > given by xα > xβ if and

only if there exists some i ∈ {1, . . . , n} such that (α1, . . . , αi−1) = (β1, . . . , βi−1) and αi < βi,

where α, β ∈ Zn
>0. In particular xn > xn−1 > · · · > x1. This monomial ordering is known as

the negative lexicographical order (see [13, p. 14]).

If f ∈ On, f ̸= 0, let f =
∑

k akx
k be the Taylor expansion of f around the origin. Then

we define the support of f , denoted by supp(f), as the set of those k ∈ Zn
>0 such that ak ̸= 0.

Therefore we denote by in(f) the maximum of the monomials xk, k ∈ supp(f), with respect

to the order >. Let us remark that, by the definition of the negative lexicographical order,

in(f) exists. We will refer to in(f) as the initial monomial of f (in [3] this monomial is called

the leading monomial of f and is denoted by lm(f)).
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If I is an ideal of On, then we define the initial ideal of I, which we will denote by in(I),

as the ideal of On generated by all monomials in(f) such that f ∈ I. If I has finite colength,

then in(I) has also finite colength and in(I) satisfies the following fundamental relation:

(4) dimC
On

I
= dimC

On

in(I)
.

The above result follows from [3, Theorem 4.3, p. 177] (see also [13, Corollary 7.5.6]). However,

the ideals I and in(I) do not have the same multiplicity in general, as we see in the following

easy example.

Example 1. Let us consider the ideal I = ⟨x+ y2, y3⟩ ⊆ O2. Using Singular [5] we have that

in(I) = ⟨y2, xy, x2⟩ and therefore e(I) = 3 and e(in(I)) = 4. We also observe that e1(I) = 1

and e1(in(I)) = 2.

Proposition 2. Let I be a proper ideal of On of finite colength. Then ej(I) 6 ej(in(I)), for

all j = 1, . . . , n, and lct(in(I)) 6 lct(I).

Proof. Let us consider the coordinates (x1, . . . , xn, t) in Cn+1. Since we suppose that I has

finite colength, then I admits a generating system formed by polynomials. In particular, by

[13, Corollary 7.4.6] and [13, Corollary 7.5.2], there exists an ideal J ⊆ On+1 generated by

homogeneous polynomials verifying the following properties:

(1) J0 = in(I) and J1 = I, where we denote by Jt the ideal of On obtained by fixing the

variable t in each element of J ;

(2) On+1/J is a flat C[t]-algebra;
(3) the rings On/Jt and On/I are isomorphic, for all t ∈ Cr {0}.

By the lower semicontinuity of the log canonical threshold (see [7] or [17, Corollary 9.5.39]), we

have lct(J0) 6 lct(Jt) = lct(I), for all t small enough, t ̸= 0, where the equality lct(Jt) = lct(I)

follows by the existence of a ring isomorphism On/Jt ≃ On/I, for all t ∈ Cr {0}.
Let us fix an integer j ∈ {1, . . . , n}. We recall that ej(J0) = e(J0, . . . , J0,m, . . . ,m), where

J0 is repeated j times and m is repeated n − j times. Hence, by [16, Theorem 17.4.9] (see

also [29, Corollaire 2.2]), the mixed multiplicity ej(I) is expressed as

(5) ej(J0) = e

(
J0

On

⟨hj+1, . . . , hn⟩

)
,

for general linear forms hj+1, . . . , hn in C[x1, . . . , xn] (this set of linear forms is empty when

j = n).

Then, let us fix linear forms hj+1, . . . , hn ∈ C[x1, . . . , xn] such that relation (5) holds. By

the upper semicontinuity of Samuel multiplicity (see [11, p. 547] or [18, p. 126]) we have

(6) ej(J0) > e

(
Jt

On

⟨hj+1, . . . , hn⟩

)
> ej(Jt)

where the second inequality follows from [16, Theorem 17.4.9].



4 CARLES BIVIÀ-AUSINA

The existence of a ring isomorphism On/Jt ≃ On/I, for all t ∈ Cr {0}, implies that there

exists a biholomorphism φt : (Cn, 0) → (Cn, 0) such that φ∗
t (I) = Jt (see [10, p. 16] o [12,

p. 57]). In particular, we obtain that ej(I) = ej(Jt), for all t ̸= 0. Then, since J0 = in(I), we

have that ej(in(I)) > ej(I), for all j = 1, . . . , n, by virtue of (6). �

Let L ⊆ {1, . . . , n}, L ̸= ∅. If K = R or C, then we define Kn
L = {x ∈ Kn : xi =

0, for all i /∈ L}. Let us denote by On,L the subring of On formed by all functions germs of

On depending at most on the variables xi with i ∈ L. Let f ∈ On and let us suppose that

the Taylor expansion of f around the origin is given by f =
∑

k akx
k. Then we denote by fL

the sum of all terms akx
k such that k ∈ supp(f) ∩ Rn

L . If J is an ideal of On then we denote

by JL the ideal of On,L generated by all elements fL, where f ∈ J .

Lemma 3. Let J be a proper ideal of On of finite colength and let L = {j, . . . , n}, for some

j ∈ {1, . . . , n}. Then

in(JL) = in(J)L.

Proof. Let us suppose that L is any non-empty subset of {1, . . . , n}. Let us take a non-zero

element of in(J)L, that is, let f ∈ J , such that in(f)L ̸= 0. In particular, it follows that fL ̸= 0

and supp(in(f)) ⊆ supp(fL), which is equivalent to saying that in(f)L = in(f) = in(fL). Then

in(JL) ⊇ in(J)L.

Let us see the reverse inclusion by assuming that L = {j, . . . , n}, for some j ∈ {1, . . . , n}.
If j = 1, there is nothing to prove, so let us suppose that j > 1. Let f ∈ J such that fL ̸= 0.

By the definition of fL, there exists some element k ∈ supp(f) such that k1 = · · · = kj−1 = 0.

Hence xk > xk′ , for all k′ ∈ supp(f) such that k′
i ̸= 0, for some i /∈ L, by the definition of

the negative lexicographical order. This implies that supp(in(f)) ⊆ supp(f) ∩ Rn
L and hence

in(f) = in(fL), which means that in(fL) = in(f)L. Therefore in(JL) ⊆ in(J)L. �

If φ : Cn → Cn is a linear change of coordinates and J is an ideal of On, then we denote

by φ∗(J) the ideal of On generated by the elements g ◦ φ, where g ∈ J .

Theorem 4. Let I be a proper ideal of On of finite colength. Then, for all j ∈ {1, . . . , n},
we have

(7) ej(I) = lim
t→+∞

ej (in(φ
∗(I)t))

tj

for a general linear change of coordinates φ : Cn → Cn.

Proof. By [16, Theorem 17.4.9], there exist general linear forms h1, . . . , hn ∈ C[x1, . . . , xn]

such that

ej(I) = e

(
I

On

⟨h1, . . . , hn−j⟩

)
for all j = 0, . . . , n− 1 (where we consider that this set of linear forms is empty when j = n)

and h = (h1, . . . , hn) is a linear isomorphism. Let φ = h−1 : Cn → Cn. Let us denote by J
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the ideal φ∗(I). Then

(8) ej(I) = e

(
I

On

⟨h1, . . . , hn−j⟩

)
= e

(
J

On

⟨x1, . . . , xn−j⟩

)
= e(JL)

where L = {n− j+1, . . . , n} and e(JL) denotes the Samuel multiplicity of JL in the ring On,L.

We remark that (JL)
t = (J t)L, for all t ∈ Z>1, so we denote this ideal simply by J t

L, for all

t ∈ Z>1. By [22, Corollary 1.13] (see also [4, Theorem 1.1]) we have that

e(JL) = lim
t→+∞

e (in(J t
L))

tj

where in(J t
L) is the initial ideal of J t

L with respect to the negative lexicographical ordering in

the monomials of On,L, for all t ∈ Z>1. By Lemma 3 we have e(in(J t
L)) = e (in(J t)L). Moreover

e(in(J t)L) > ej(in(J
t)) > ej(J

t), where the first inequality follows from [16, Theorem 17.4.9]

and the second inequality is an application of Proposition 2. Putting this information together

we obtain the following chain of inequalities:

e
(
in(J t

L)
)
= e

(
in(J t)L

)
> ej

(
in(J t)

)
> ej(J

t) = tjej(J).

Then, dividing each term of the previous inequalities by tj and taking limits, we arrive to

ej(I) = e(JL) = lim
t→+∞

e (in(J t
L))

tj
= lim

t→+∞

e (in(J t)L)

tj

> lim
t→+∞

ej (in(J
t))

tj
= lim

t→+∞

ej (in(φ
∗(I)t))

tj

> lim
t→+∞

ej(φ
∗(I)t)

tj
= ej(φ

∗(I)) = ej(I).

Then the result follows. �

Remark 5. By the argument of the proof of the previous result, if we fix a linear isomorphism

h = (h1, . . . , hn) : Cn → Cn such that ej(I) coincides with the multiplicity of I in the quotient

ring On/⟨h1, . . . , hn−j⟩, for all j = 0, . . . , n − 1, then relation (7) holds, for all j = 1, . . . , n,

by taking φ : Cn → Cn as φ = h−1.

Corollary 6. Let I be a proper ideal of finite colength of On. Then

(9) DP(I) = lim
t→+∞

tDP
(
in(φ∗(I)t)

)
.

for a general linear change of coordinates φ : Cn → Cn.

Proof. Let us fix a general change of coordinates φ : Cn → Cn and let us denote the ideal

φ∗(I) by J . Then, for any t ∈ Z>1, we have

tDP
(
in(J t)

)
= t

1

e1(in(J t))
+ t

e1(in(J
t))

e2(in(J t))
+ · · ·+ t

en−1(in(J
t))

en(in(J t))

=
1

e1(in(J t))/t
+

e1(in(J
t))/t

e2(in(J t))/t2
+ · · ·+ en−1(in(J

t))/tn−1

en(in(J t))/tn

By Theorem 4 and the definition of DP(I) we immediately obtain the desired result. �
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Remark 7. Let I ⊆ On be any ideal of finite colength, I ⊆ m. Let φ : Cn → Cn be a linear

change of coordinates such that relation (9) holds for φ and I. Then, applying relation (1)

to the monomial ideal in(φ∗(I)t, for all t ∈ Z>1, we obtain that

DP
(
in(φ∗(I)t)

)
6 lct

(
in(φ∗(I)t)

)
for all t ∈ Z>1. In particular

(10) tDP
(
in(φ∗(I)t)

)
6 t lct

(
in(φ∗(I)t)

)
6 t lct(φ∗(I)t) = lct(I)

for all t ∈ Z>1, were the second inequality follows from Proposition 2. Therefore, taking limits

when t → ∞ in all parts of the previous inequalities, we obtain

(11) DP(I) 6 lct(I)

as a consequence of Corollary 6.

To the best of our knowledge, the proof of (11) as a corollary of the analogous result

for monomial ideals explained in [8, §3.3] relies on the equality ej(I) = ej(in(I)), for all

j = 1, . . . , n, where in(I) denotes the initial ideal of I with respect to any monomial order.

However, as shown in Example 1, the ideals I and in(I) do not have the same set of mixed

multiplicities in general.

Let us also point out that if DP(I) = lct(I), then relation (10) and Corollary 6 show that

lct(I) = lim
t→+∞

t lct
(
in(φ∗(I)t)

)
.

3. Mixed multiplicities and diagonal ideals

Let us fix along the remaining text a coordinate system x1, . . . , xn in Cn, unless otherwise

stated. Let I be an ideal of On. We denote the integral closure of I by I and the Newton

polyhedron of I by Γ+(I). Let us recall that Γ+(I) is the smallest convex set of Rn
+ containing

the supports of the elements of I. Therefore Γ+(I) is equal to the convex hull of the set

{k + v : k ∈ supp(f), f ∈ I, v ∈ Rn
>0}. In general it holds that Γ+(I) = Γ+(I) (see [2,

p. 399]). If I admits a generating system formed by monomials, then we say that I is a

monomial ideal.

We define the term ideal of I as the ideal generated by all the monomials xk such that

k ∈ Γ+(I). We will denote this ideal by I0. If I is a monomial ideal, then I is also monomial

and therefore I = I0 (see [16, p. 11] or [20]); however the converse is not true, as is shown

by the ideal I of O2 given by I = ⟨x2 + y2, xy⟩. The ideals I for which I is generated by

monomials are called Newton non-degenerate ideals (see [2] or [27]).

Definition 8. Let I be an ideal of On. We say that I is diagonal when there exist positive

integers a1, . . . , an such that I = ⟨xa1
1 , . . . , xan

n ⟩.

Then any power of the maximal ideal ofOn is a diagonal ideal. Moreover, any diagonal ideal

is Newton non-degenerate. As a consequence of the previous definition, if I is diagonal then I0
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is also, but the converse is not true, as is shown by the ideal ofO2 given by I = ⟨x+y, x2⟩ ⊆ O2

(in this case I0 is equal to the maximal ideal).

Let I be a proper ideal of On of finite colength. Then by virtue of (11) and the inclusion

I ⊆ I0 we have the inequalities

(12) DP(I) 6 lct(I) 6 lct(I0).

We recall the following result of Howald [15] (see also [20]), where lct(I) is characterized in

terms of a combinatorial characteristic of Γ+(I) if I is a monomial ideal.

Theorem 9. [15] Let I be a monomial ideal of On. Then

lct(I) =
1

min
{
µ > 0 : µ(1, . . . , 1) ∈ Γ+(I)

} .
Proposition 10. Let n > 2 and let D ⊆ Rn

>0 be the set defined by

(13) D = {(t1, . . . , tn) ∈ Rn
>0 : t

2
1 6 t2, t

2
j 6 tj−1tj+1, for all j = 2, . . . , n− 1}.

Let us consider the function f : Rn
>0 → R given by

f(t1, . . . , tn) =
1

t1
+

t1
t2

+ . . .
tn−1

tn
,

for all (t1, . . . , tn) ∈ Rn
>0. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ D such that ai 6 bi, for all

i = 1, . . . , n. Then f(a) > f(b) and equality holds only if and only if a = b.

Proof. Let us see first that D is convex. For all j = 1, . . . , n, we define Dj = {(t1, . . . , tn) ∈
Rn

>0 : t
2
j 6 tj−1tj+1}, where we set t0 = 1, for all t = (t1, . . . , tn) ∈ Rn

>0. Then it suffices to see

that Dj is convex, for all j = 1, . . . , n, since D = D1 ∩ · · · ∩Dn.

Let us fix an index j ∈ {1, . . . , n}. Let s = (s1, . . . , sn) and t = (t1, . . . , tn) be elements ofDj

and let λ ∈ [0, 1]. We define u = (
√

λsj−1,
√

(1− λ)tj−1) and v = (
√
λsj+1,

√
(1− λ)tj+1).

Let us denote by u · v the usual scalar product of u and v. By applying the definition of Dj

and the Cauchy-Schwarz inequality we find that

(λsj + (1− λ)tj)
2 6

(
λ
√
sj−1

√
sj+1 + (1− λ)

√
tj−1

√
tj+1

)2
(14)

= (u · v)2 6 ∥u∥2∥v∥2 = (λsj−1 + (1− λ)tj−1)(λsj+1 + (1− λ)tj+1).(15)

Then λs+ (1− λ)t ∈ Dj, for all λ ∈ [0, 1], and hence Dj is convex. Therefore D is convex.

The proof of the inequality f(a) > f(b) is contained in the proof of [8, Lemma 3.1], however

we reproduce it for the sake of completeness and for its implications in the proof of the second

part of the result.

Let us consider the function g : [0, 1] → R>0 defined by g(λ) = f(a + λ(b − a)), for all

λ ∈ [0, 1]. We observe that

(16)
∂f

∂t1
(t) = − 1

t21
+

1

t2
,

∂f

∂tj
(t) = −tj−1

t2j
+

1

tj+1

,
∂f

∂tn
(t) = −tn−1

t2n
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for all t ∈ Rn
>0 and all j = 2, . . . , n − 1. In particular, we have ∂f

∂tj
(t) 6 0, for all t ∈ D and

all j = 1, . . . , n. Then

(17) g′(λ) =
n∑

j=1

(
∂f

∂tj
(a+ λ(b− a))

)
(bj − aj) 6 0

for all λ ∈ ]0, 1[. Hence g is a decreasing function, which implies that f(a) > f(b).

Let us suppose that f(a) = f(b), which means that g(0) = g(1). Then there exists some

λ0 ∈ ]0, 1[ such that g′(λ0) = 0, by the Mean Value Theorem. Let c0 = a+λ0(b− a) ∈ D. By

(17) and the fact that ∂f
∂tj

(t) 6 0, for all t ∈ D and all j = 1, . . . , n, we conclude that

(18)
∂f

∂t1
(c0)(b1 − a1) = 0,

∂f

∂tj
(c0)(bj − aj) = 0,

∂f

∂tn
(c0)(bn − an) = 0

for all j = 2, . . . , n− 1.

Let us suppose that an ̸= bn. Then (18) implies that

∂f

∂tn
(a+ λ0(b− a))(an − bn) = −an−1 + λ0(bn−1 − an−1)

(an + λ0(bn − an))2
(bn − an) = 0.

Then λ = −bn−1/(an−1 − bn−1), which contradicts the hypothesis that λ ∈ ]0, 1[. Therefore

an = bn.

If we assume that an−1 ̸= bn−1, by (16) and (18), we conclude that

(19) (λ0bn−1 + (1− λ0)an−1)
2 = (λ0bn−2 + (1− λ0)an−2)(λ0bn + (1− λ0)an).

We observe that, by inequality (14), this condition can not hold if a2j < aj−1aj+1 or b2j <

bj−1bj+1. So (19) forces that

(20) a2n−1 = an−2an and b2n−1 = bn−2bn.

By (14), (15) and the characterization of equality in the Cauchy-Schwarz inequality, con-

dition (19) is equivalent to saying that√
(1− λ0)an√
(1− λ0)an−2

=

√
(1− λ0)bn√
(1− λ0)bn−2

,

which in turn is equivalent to saying that an/an−2 = bn/bn−2. Then, since an = bn, we obtain

that an−2 = bn−2. Hence an−1 = bn−1, by (20), and thus we arrive to a contradiction. The

remaining equalities aj = bj, for all j = 1, . . . , n − 2, follow analogously. Then the result is

proven. �

We recall that a Noetherian local ring is called quasi-unmixed when its completion in the

topology defined by the maximal ideal is equidimensional. Quasi-unmixed rings are also called

formally equidimensional (see [16] or [19]).

Corollary 11. Let R be a Noetherian local ring. Let us suppose that R is quasi-unmixed. Let

I1, I2 be two proper ideals of finite colength of R such that I1 ⊆ I2. Then

(21) DP(I1) 6 DP(I2)
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and equality holds if and only if I1 = I2.

Proof. If I1 = I2, then ei(I1) = ei(I2), for all i = 1, . . . , n (see [16, §17.4] or [29, p. 306]) and
hence DP(I1) = DP(I2). Let D be the set defined in Proposition 10. Let us consider the

vectors

(22) a = (e1(I2), . . . , en(I2)), b = (e1(I1), . . . , en(I1)).

Since I1 ⊆ I2, then ei(I2) 6 ei(I1), for all i = 1, . . . , n. Moreover, the vectors a and b

defined in (22) belong to D, by (2). Then we can apply Proposition 10 to deduce that

DP(I1) 6 DP(I2) and equality holds if and only if ei(I1) = ei(I2), for all i = 1, . . . , n. In

particular DP(I1) = DP(I2) implies e(I1) = e(I2). The equality e(I1) = e(I2) together with

the inclusion I1 ⊆ I2 implies that I1 = I2 by the Rees’ Multiplicity Theorem [16, p. 222]. �

If f ∈ On, then we denote by J(f) the ideal of On generated by ∂f
∂x1

, . . . , ∂f
∂xn

. Let us

suppose that f has an isolated singularity at the origin, that is, the ideal J(f) has finite

colength in On. Let µ
∗(f) denote the vector (µ(1)(f), . . . , µ(n)(f)), where µ(i)(ft) denotes the

Milnor number of the restriction of ft to a general plane of dimension i in Cn passing through

the origin, for all i = 1, . . . , n (see [29, § 1]).
We say that a given property (Pt) holds for all |t| ≪ 1 if there exists an open ball U centered

at 0 in C such that the property (Pt) holds whenever t ∈ U .

Corollary 12. Let ft : (Cn, 0) → (C, 0) be an analytic deformation such that ft has an

isolated singularity at the origin, for all |t| ≪ 1. Then

(1) DP(J(ft)) is lower semicontinuous, that is, DP(J(f0)) 6 DP(J(ft)), for all |t| ≪ 1

(2) DP(J(ft)) is constant, for |t| ≪ 1, if and only if µ∗(ft) is constant, for |t| ≪ 1.

Proof. By the results of Teissier in [29, §1], it is well known that µ(i)(ft) = ei(J(ft)), where

µ(i)(ft) denotes the Milnor number of the restriction of ft to a general plane of dimension i

in Cn passing through the origin. Since Milnor numbers are upper semicontinuous (see [12,

Theorem 2.6]), we conclude that ei(J(ft)) 6 ei(J(f0)), for all i = 1, . . . , n. Then both items

of the result follow as an immediate consequence of Proposition 10. �

Theorem 13. Let I be a proper ideal of On of finite colength. Then the following conditions

are equivalent:

(a) I is diagonal.

(b) lct(I0) = DP(I).

(c) lct(I) = DP(I) and lct(I) = lct(I0).

Proof. Let us see the implication (a) ⇒ (b). Let a1, . . . , an ∈ Z>1 such that I = ⟨xa1
1 , . . . , xan

n ⟩.
In particular I = I0. We can assume that a1 6 . . . 6 an (by permuting the variables,

if necessary). Therefore ei(I) = ei(I) = a1 · · · ai, for all i = 1, . . . , n, which implies that

ai = ei(I)/ei−1(I), for all i = 1, . . . , n. Then, by Theorem 9, we obtain that

lct(I0) = lct(I) = lct
(
⟨xa1

1 , . . . , xan
n ⟩

)
=

1

a1
+ · · ·+ 1

an
= DP(I).
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Let us prove (b) ⇒ (a). Let us suppose first that I is an ideal generated by monomials

such that lct(I0) = DP(I). Hence lct(I) = 1
µ0
, where µ0 = min{µ > 0 : µe ∈ Γ+(I)} and

e = (1, . . . , 1), by Theorem 9. Let π denote a supporting hyperplane of Γ+(I) containing the

point µ0e and defined by the zeros of a linear form with rational coefficients. Let us write

the equation of π as
x1

c1
+ · · ·+ xn

cn
= 1

where c1, . . . , cn ∈ Q>0. If necessary, we can reorder the variables to obtain c1 6 . . . 6 cn.

Let r be a positive integer such that rc1, . . . , rcn ∈ Z>1 and let us denote by H the ideal of

On generated by xrc1
1 , . . . , xrcn

n . Since π is a supporting hyperplane of Γ+(I) passing through

the point µ0e, we have Ir ⊆ H and lct(Ir) = lct(H). Moreover ei(H) = ric1 · · · ci, for all

i = 1, . . . , n, since c1 6 · · · 6 cn. Therefore

(23) lct(Ir) = lct(H) =
1

rc1
+

1

rc2
+ · · ·+ 1

rcn
=

1

e1(H)
+

e1(H)

e2(H)
+ · · ·+ en−1(H)

en(H)
= DP(H).

Since I = I0, we have that lct(I) = DP(I), by hypothesis. Thus

(24) lct(Ir) =
1

r
lct(I) =

1

r
DP(I) = DP(Ir),

where the last equality follows from the relation ei(I
r) = riei(I), for all i = 1, . . . , n (see [16,

Proposition 17.5.1]). Then (23) and (24) show that DP(Ir) = DP(H) and, by Corollary 11,

we obtain that Ir = H. Thus rΓ+(I) = Γ+(I
r) = Γ+(H), which implies that Γ+(I) has a

unique compact face ∆ of dimension n− 1. Since the vertexes of Γ+(I) are contained in Zn
>1,

we conclude that we can take r = 1 and that, in this case, the hyperplane π contains ∆.

Consequently ci ∈ Z>1 and ci = ei(I)/ei−1(I), for all i = 1, . . . , n. Hence I = ⟨xc1
1 , . . . , x

cn
n ⟩,

which means that I is diagonal.

Let I be an arbitrary ideal of On of finite colength such that lct(I0) = DP(I). Then, by a

direct application of (12) and Corollary 11 we obtain the following chain of inequalities

DP(I) = lct(I) = lct(I0) > 1

e1(I0)
+

e1(I
0)

e2(I0)
+ · · ·+ en−1(I

0)

en(I0)
(25)

> 1

e1(I)
+

e1(I)

e2(I)
+ · · ·+ en−1(I)

en(I)
= DP(I).(26)

Hence we deduce that lct(I0) = DP(I0), which implies, by the case analyzed before, that

I0 is a diagonal ideal. Moreover (25) and (26) also show that DP(I) = DP(I0). Then I = I0,

by Corollary 11, and consequently I is a diagonal ideal.

The equivalence between (b) and (c) follows as a direct application of (12). �

Remark 14. (i) We observe that the condition lct(I) = DP(I) does not imply that lct(I) =

lct(I0) in general and hence it does not force the ideal I to be diagonal, as is shown in Example

15. Obviously, the condition lct(I) = lct(I0) holds if I is a monomial ideal. If I is an arbitrary

ideal of On, let us denote by KI the ideal of On generated by all the monomials xk such that
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xk ∈ I. Then lct(KI) 6 lct(I) 6 lct(I0). Let lct(I0) = p
q
, p, q ∈ Z>1. Then µ(I0) = q

p
. If we

suppose that (x1 · · · xn)
q ∈ Ip, then q > µ(KIp), by Theorem 9. Since Kp

I ⊆ KIp , we have

(27) q > µ(KIp) > µ(Kp
I ) = p µ(KI) > p µ(I) > p µ(I0) = q.

Then all inequalities of (27) become equalities and then lct(I) = lct(I0).

(ii) If I denotes an ideal of On of finite colength generated by monomials, then the equiv-

alence between the conditions lct(I) = DP(I) and I is diagonal also follows as a corollary of

a more general result stated for multi-circled plurisubharmonic singularities and proved by

Rashkovskii in [23, Theorem 1.5] following techniques from pluripotential theory.

Example 15. Let us consider the polynomials of O2 given by g1 = (x + y)2 + y4 and g2 =

(x + y)y2. Let I be the ideal of O2 generated by g1 and g2. Then e1(I) = ord(I) = 2

and e(I) = 8. If we apply to I the linear coordinate change (x, y) 7→ (x − y, y), then we

obtain the ideal J = ⟨x2 + y4, xy2⟩. We observe that J is a Newton non-degenerate ideal

(see [2] or [27]), which implies that J = J0 = ⟨x2, y4⟩. Then J is diagonal and hence

lct(I) = lct(J) = lct(J0) = 3
4
= 1

2
+ 2

8
= DP(I).

We observe that Γ+(I) has a unique compact face ∆ of dimension 1, hence I is diagonal

if and only if I is generated by monomials, which is to say that I is Newton non-degenerate.

Following the notation introduced in [2, p. 398] we see that (g1)∆ = (x+ y)2, (g2)∆ = 0, and

hence the solutions of the system (g1)∆ = (g2)∆ = 0 are not contained in {(x, y) ∈ C2 : xy =

0}. Then I is not Newton non-degenerate, by [2, Proposition 3.6] and thus I is not a diagonal

ideal, although lct(I) = DP(I).

According to Example 15, it seems reasonable to expect that, if we fix coordinates x1, . . . , xn

in Cn and I is a proper ideal of finite colength of On such that DP(I) = lct(I), then there

exists a linear coordinate change φ : Cn → Cn such that φ∗(I) is diagonal with respect to

x1, . . . , xn.
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